

1

2 **The fish pathogen *Aliivibrio salmonicida* LFI1238 can degrade**
3 **and metabolize chitin despite major gene loss in the chitinolytic**
4 **pathway**

5 Anna Skåne¹, Giusi Minniti¹, Jennifer S.M. Loose, Sophanit Mekasha, Bastien Bissaro, Geir
6 Mathiesen, Magnus Ø. Arntzen and Gustav Vaaje-Kolstad*

7 Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life
8 Sciences (NMBU), Ås, Norway

9 ¹These authors contributed equally to the work

10 *Corresponding author. Email: gustav.vaaje-kolstad@nmbu.no

11

12 **ABSTRACT**

13 The fish pathogen *Aliivibrio (Vibrio) salmonicida* LFI1238 is thought to be incapable of
14 utilizing chitin as a nutrient source since approximately half of the genes representing the
15 chitinolytic pathway are disrupted by insertion sequences. In the present study, we combined
16 a broad set of analytical methods to investigate this hypothesis. Cultivation studies revealed
17 that *Al. salmonicida* grew efficiently on *N*-acetylglicosamine (GlcNAc) and chitobiose
18 ((GlcNAc)₂), the primary soluble products resulting from enzymatic chitin hydrolysis. The
19 bacterium was also able to grow on chitin particles, albeit at a lower rate compared to the
20 soluble substrates. The genome of the bacterium contains five disrupted chitinase genes
21 (pseudogenes) and three intact genes encoding a glycoside hydrolase family 18 (GH18)
22 chitinase and two auxiliary activity family 10 (AA10) lytic polysaccharide monooxygenases
23 (LPMOs). Biochemical characterization showed that the chitinase and LPMOs were able to
24 depolymerize both α - and β -chitin to (GlcNAc)₂ and oxidized chitooligosaccharides,
25 respectively. Notably, the chitinase displayed up to 50-fold lower activity compared to other
26 well-studied chitinases. Deletion of the genes encoding the intact chitinolytic enzymes
27 showed that the chitinase was important for growth on β -chitin, whereas the LPMO gene-
28 deletion variants only showed minor growth defects on this substrate. Finally, proteomic
29 analysis of *Al. salmonicida* LFI1238 growth on β -chitin showed expression of all three
30 chitinolytic enzymes, and intriguingly also three of the disrupted chitinases. In conclusion,
31 our results show that *Al. salmonicida* LFI1238 can utilize chitin as a nutrient source and that
32 the GH18 chitinase and the two LPMOs are needed for this ability.

33

34 **IMPORTANCE**

35 The ability to utilize chitin as a source of nutrients is important for the survival and spread of
36 marine microbial pathogens in the environment. One such pathogen is *Aliivibrio (Vibrio)*
37 *salmonicida*, the causative agent of cold water vibriosis. Due to extensive gene decay, many
38 key enzymes in the chitinolytic pathway have been disrupted, putatively rendering this
39 bacterium incapable of chitin degradation and utilization. In the present study we demonstrate
40 that *Al. salmonicida* can degrade and metabolize chitin, the most abundant biopolymer in the
41 ocean. Our findings shed new light on the environmental adaption of this fish pathogen.

42 **INTRODUCTION**

43 Chitin is one of the most abundant biopolymers in nature and is a primary component of rigid
44 structures such as the exoskeleton of insects and crustaceans, and the cell wall of fungi and
45 some algae (1-4). Some reports also indicate that chitin is found in the scales and gut of fish
46 (5, 6). This linear polysaccharide consists of *N*-acetyl-D-glucosamine (GlcNAc) units linked
47 by β -1,4 glycosidic bonds that associates with other chitin chains to form insoluble chitin
48 fibers. Despite the recalcitrance of chitin, the polymer is readily degraded and metabolized by
49 chitinolytic microorganisms in the environment (7, 8).

50 Most bacteria solubilize and depolymerize chitin by secreting chitinolytic enzymes. Such
51 enzymes include chitinases from family 18 and 19 of the glycoside hydrolases (GH18 and -
52 19) and lytic polysaccharide monooxygenases (LPMOs) from family 10 of the auxiliary
53 activities (AA10), according to classification by the carbohydrate active enzyme database
54 (CAZy; <http://www.cazy.org/>) (9). Whereas chitinases cleave chitin chains by a hydrolytic
55 mechanism (10, 11), LPMOs perform chitin depolymerization by an oxidative reaction (12-
56 14). The latter enzymes usually target the crystalline parts of chitin fibers that are
57 inaccessible for the chitinases. When combined, chitinases and LPMOs act synergistically,
58 providing efficient depolymerization of this recalcitrant carbohydrate (12, 15-17). The
59 products of enzymatic chitin degradation are mainly GlcNAc and (GlcNAc)₂, but also native
60 and oxidized chitooligosaccharides, the latter (aldonic acids) arising from LPMO activity.

61 The chitin degradation pathway is conserved in the *Vibrionaceae* (18, 19). Here, GlcNAc and
62 (GlcNAc)₂ are transported into the periplasm by unspecific porins (20, 21) or by dedicated
63 transport proteins for chitooligosaccharides ((GlcNAc)₂₋₆), named chitoporins (22, 23). Once
64 transported to the periplasm, (GlcNAc)₂₋₆ may be hydrolyzed to GlcNAc by family GH20 *N*-
65 acetylhexosaminidases or *N,N*-diacetylchitobiose phosphorylases (24). Transport of GlcNAc
66 or deacetylated GlcN across the inner membrane can occur through phosphotransferase
67 systems, while (GlcNAc)₂ may be transported through the action of an ABC transporter (18).
68 Once located in the cytosol GlcNAc, GlcNAc1P or GlcN enter the amino-sugar metabolism.
69 It should be noted that the fate of chitooligosaccharide aldonic acid is not known.

70 Chitin degradation can be achieved by several marine bacteria, and can give advantages for
71 survival and proliferation in the marine environment (8, 25). Some pathogens have chitin
72 central in their lifecycle, the most prominent example being the human pathogen *Vibrio*
73 *cholerae* that uses chitin-containing zoo-plankton as transfer vectors and nutrition (26, 27).

74 The ability of the Gram-negative marine bacterium *Aliivibrio salmonicida* (previously *Vibrio*
75 *salmonicida*), to utilize chitin or GlcNAc as a nutrient source is controversial. This
76 pathogenic bacterium, which is the causative agent of cold water vibriosis in salmonids, was
77 identified as a new vibrio-like bacteria in 1986 (28). Upon discovery and initial
78 characterization of the pathogen (strain HI 7751), Egidius et al. did not observe degradation
79 of chitin by the bacterium when growing on agar plates containing purified chitin. On the
80 other hand, the monomeric building block of chitin, GlcNAc, was readily consumed by the
81 bacterium. When the genome of the bacterium was sequenced two decades later (strain
82 LFI1238), it was shown that insertion sequence (IS) elements caused disruption of almost
83 10% of the protein encoding genes (29, 30). Especially effected was the chitin utilization
84 pathway where seven genes, including three chitinases and a chitoporin, were either disrupted
85 or truncated (29). In addition, the gene encoding the periplasmic chitin-binding protein
86 (VSAL_I2576, also called CBP) was disrupted by a frameshift. The CBP ortholog in *V.*
87 *cholerae* (VC_0620) has been shown to activate the two-component chitin catabolic
88 sensor/kinase ChiS that regulates chitin utilization (31, 32). The gene encoding the ChiS
89 ortholog in *Al. salmonicida* is intact (29), along with the Tfox encoding gene which protein
90 product also is involved in regulation of enzymes related to chitin degradation in the
91 *Vibrionaceae* (33, 34). Of the putative secreted chitinolytic enzymes, only one chitinase and
92 two lytic polysaccharide monooxygenases remained intact in the *Al. salmonicida* genome. It
93 was suggested that such extensive gene disruption could indicate inactivation of this pathway
94 and indeed, the authors could not observe neither degradation of insoluble chitin nor
95 utilization of GlcNAc as a nutrient source (29).

96 In order to obtain a deeper understanding of the roles of the *Al. salmonicida* chitinolytic
97 enzymes, we have analyzed the chitin degradation potential of *Al. salmonicida* LFI1238 by
98 biochemical characterization of the secreted chitinolytic enzymes, gene deletion and
99 cultivation experiments, gene expression analysis and proteomics.

100 **RESULTS**

101 ***Al. salmonicida* can utilize both GlcNAc and (GlcNAc)₂ as nutrient sources**

102 To assess the ability of *Al. salmonicida* LFI1238 (abbreviated “*Al. salmonicida*” to avoid
103 confusion with *Aeromonas salmonicida*) to grow on GlcNAc and (GlcNAc)₂, the wild type
104 strain was cultivated in minimal medium supplemented with 0.2% glucose (11.1 mM; control
105 experiment), 0.2 % GlcNAc (9.0 mM), or 0.2 % (GlcNAc)₂ (4.7 mM) over a period of 92
106 hours. The cultivation experiments showed that *Al. salmonicida* can utilize both GlcNAc and
107 (GlcNAc)₂ as sole carbon sources (Fig. 1). Growth rates were compared by calculating the
108 specific rate constants (μ) and generation time across the exponential phase (Table S1),
109 showing little difference between the three carbon sources. In order to correlate GlcNAc and
110 (GlcNAc)₂ consumption with the bacterial growth, the concentration of these sugars in the
111 culture supernatant were determined at different time points during growth (Fig. 1E, F). The
112 data show decreasing concentrations of GlcNAc during growth and complete depletion
113 within 40 hours (Fig. 1E). In comparison, (GlcNAc)₂ is utilized at a slower speed, becoming
114 depleted after 80 hours (Fig. 1F).

115

116 **Sequence analysis and homology modelling.**

117 Since *Al. salmonicida* was able to utilize both GlcNAc and (GlcNAc)₂, the major products of
118 enzymatic chitin degradation, it was of interest to analyze the chitinolytic potential of the
119 bacterial genome, investigating the details of both intact genes and pseudogenes. A previous
120 study had already identified the presence of three putatively secreted chitinolytic enzymes
121 (29). Annotation of putative CAZy domains of these three enzymes using the dbCAN server
122 (35) showed that the chitinase sequence, here named AsChi18A, (that contains 881 amino
123 acids, which is unusually large for a chitinase) contains predicted CBM5 and CBM73 chitin
124 binding domains and a C-terminal GH18 domain, the latter modest in size (only 324 amino
125 acids; Fig. 2A). The protein sequence also shows long regions that were not annotated.
126 Attempts to functionally annotate these regions with other sequence analysis servers such as
127 InterPro, Pfam and SMART were inconclusive. The relatively small size of the GH18
128 catalytic domain indicates an enzyme stripped of most sub-domains that often are in place to
129 form a substrate binding cleft. Indeed, homology modelling using Swiss-Model (36) revealed
130 a model structure with a shallow substrate binding cleft, reminiscent of a non-processive
131 *endo*-chitinase, which is clearly observed when compared to the processive *exo*-chitinase

132 *SmChi18A* from *Serratia marcescens* that has a deep substrate binding cleft and the shallow-
133 clefted, non-processive chitinase ChiNCTU2 from *Bacillus cereus* ((37); Fig. 2B). AsChi18A
134 also shows an arrangement of active site residues that is similar to that of the latter enzyme
135 (Fig. S1).

136 Annotation of the LPMO sequences showed that both proteins contained an N-terminal
137 catalytic AA10 domain and a C-terminal CBM73 or CBM5 chitin-binding domain in
138 *AsLPMO10A* and –B, respectively (Fig. 2A). Like the chitinase, both LPMOs displayed
139 regions in the sequence that were not possible to annotate using standard bioinformatics tools.
140 Pair-wise sequence alignment of the two LPMOs revealed only a 20% identity between the
141 catalytic domains. Blast search and modelling by homology of the individual catalytic
142 domains showed that the catalytic module of *AsLPMO10A* was similar to CBP21 from *S.*
143 *marcescens* (49.5% identity, Fig. 2 C; (38, 39)) and to the catalytic AA10 domain of GbpA, a
144 *Vibrio cholerae* colonization factor ((40); 65.6% identity). The similarity of full-length
145 *AsLPMO10A* to *V. cholera* GbpA (61% sequence identity) and their similar multi-modular
146 architecture (both have a N-terminal AA10 LPMO domain, followed by a “GbpA2” domain,
147 an un-annotated domain and a C-terminal CBM73 domain) indicate the possibility of
148 functionally similar roles. The catalytic AA10 domain of *AsLPMO10B* is, as already noted,
149 very unlike *AsLPMO10A*. From sequence database searches, orthologs were identified in a
150 large variety of species from the *Vibrionaceae* family, and also in other marine bacteria like
151 *Shewanella* and *Pseudoalteromonas*. None of these related enzymes have hitherto been
152 biochemically characterized. When searching for similar sequences in the PDB database, the
153 most similar structure to the *AsLPMO10B* catalytic domain belongs to the viral proteins
154 called “spindolins” (43.5% identity, but the alignment contains many insertions/ deletions).
155 There exist no activity data for spindolins, but it is assumed that they are active towards
156 chitin (41). It is therefore not straightforward to assign an activity to *AsLPMO10B* based on
157 sequence analysis. In order to analyze the putative structural difference between the LPMO
158 domains, homology models were made using the Swiss-Model homology modelling software
159 (36). When compared to CBP21, one of the best characterized family AA10 LPMOs, both *Al.*
160 *salmonicida* LPMOs show several differences that may influence both substrate binding and
161 catalysis (Fig. 2C): *AsLPMO10A* is relatively similar to CBP21 but displays some
162 differences that may be of functional relevance: amino acids W62, R119, K195 in
163 *AsLPMO10A* correspond to amino acids Y54, T111 and N185 in CBP21 that all have been
164 shown to have influence on substrate binding and the functional stability of the enzyme (42,

165 43). AsLPMO10B shows an active site environment similar to CBP21 but has an extension of
166 the putative binding surface that positions a putatively solvent exposed Trp (W46) further
167 away from the active site histidines than for Y54 in CBP21 and W62 in AsLPMO10A.
168 Whether these differences are important for the substrate binding properties of the enzymes is
169 not straightforward to interpret based on the data presented in this study, since both *Al.*
170 *salmonicida* proteins have CBMs that very likely contribute to chitin binding.

171 **Analysis of pseudogenes related to chitin catabolism**

172 In addition to the intact genes encoding the chitinase, AsChi18A and LPMOs, AsLPMO10A
173 and -B, the genome of *Al. salmonicida* LFI12338 harbors multiple pseudogenes encoding
174 truncated or fragmented enzymes related to chitin catabolism that are assumed to be non-
175 functional (ORF identifiers VSAL_I2352, VSAL_I0763, VSAL_I0902, VSAL_I1108,
176 VSAL_I1414 and VSAL_I1942). Interestingly, transcription of *Al. salmonicida* pseudogenes
177 (including chitinase-related pseudogenes) has been observed (44-46). In addition, *Al.*
178 *salmonicida* is motile despite two flagellar synthesis genes (*fliF*/VSAL_I2308 and
179 (*flaG*/VSAL_I12316) being disrupted by premature stop codons (29). Thus, we performed a
180 deeper analysis of the *Al. salmonicida* pseudogenes related to the chitinolytic machinery to
181 investigate their putative functionality. The analysis revealed that VSAL_I2352 (predicted
182 chitoporin) contains a frameshift after codon 266, which most likely will result in a non-
183 functional protein if expressed. On the other hand, VSAL_I0763 (chitinase fragment),
184 VSAL_I0902 (truncated chitinase), VSAL_I1108 (truncated chitodextrinase), VSAL_I1414
185 (disrupted chitinase) and VSAL_I1942 (disrupted chitinase) are rather truncated or disrupted
186 by the type Vsa_2 insertion sequence (IS) elements (Fig. 3A), resulting in coding sequences
187 (CDSs) of varying lengths that may give functional protein if expressed (Fig. 3B). Annotation
188 of putative CAZy domains predicted that VSAL_I0902 (truncated chitinase fragment),
189 VSAL_I1108 (truncated chitodextrinase) and VSAL_I1942 (disrupted chitinase) contain
190 regions encoding GH18 domains, while VSAL_I1414 (disrupted chitinase) was predicted to
191 contain a region encoding a GH19 domain (Fig. 3B). No functional domain was predicted
192 for VSAL_I0763 (sequence containing 609 nucleotides truncated by upstream IS element and
193 subsequent recombinations). It is believed that VSAL_I0902 and VSAL_I0763 are fragments
194 belonging to one single chitinase (29).

195 In conclusion, four truncated chitinase genes contain regions encoding GH-domains which
196 may give functional protein if translated.

197

198 **AsChi18A and AsLPMO10A and -B binds chitin**

199 In order to determine the biochemical properties of putatively chitinolytic enzymes (the
200 pseudogene encoded chitinases were not expressed and characterized), AsChi18A and
201 AsLPMO10A and -B were cloned, expressed and purified (Fig. S2). The presence of putative
202 chitin binding modules on all three chitinolytic enzymes prompted investigation of the
203 substrate binding properties of the proteins. Using purified protein, α -chitin and β -chitin were
204 used as substrates in particle sedimentation assays (Fig. 4). All proteins showed binding to
205 the substrate particles and AsLPMO10B seems to bind slightly weaker to the substrates used
206 compared to AsLPMO10A.

207

208 **AsChi18A displays low chitinolytic activity**

209 Since all three enzymes bound to chitin, the catalytic properties of the purified chitinase and
210 two LPMOs were analyzed. Using β -chitin as substrate, the activity and operational stability
211 of AsChi18A was followed over several hours at temperatures ranging from 10-60 °C. The
212 progress curves observed for AsChi18A indicate an optimal operational stability, i.e. the
213 highest temperature for which enzyme activity remains stable over time, at approximately 30
214 °C (Fig. 5A). Similar to other GH18 chitinases, the dominant product of chitin hydrolysis by
215 AsChi18A was (GlcNAc)₂ with small amounts of GlcNAc (< 5%).

216 In order to compare AsChi18A activity with other well-characterized chitinases, the chitin
217 degradation potential of the enzyme was compared with the four GH18 chitinases of *S.*
218 *marcescens* (*SmChi18A*, -B, -C and -D) (47-49) and, *CjChi18D*, which is the most potent
219 chitinase of *Cellvibrio japonicus* (50). Activities were monitored at pH 6.0 (Fig. 5C), which
220 is the pH where the *S. marcescens* and *C. japonicus* chitinases have their optima (47, 51, 52),
221 and at pH 7.5 (Fig. 5D), which is a typical pH of sea water and the near pH-optimum of
222 AsChi18A. Strikingly, *SmChi18A*, -B, -C and *CjChi18D* yielded more than 50-fold more
223 (GlcNAc)₂ than AsChi18A after 24 h incubation at pH 6. At pH 7.5, the differences in yields
224 were lower (in the range of 25-40-fold larger yields, except for *SmChi18D*), most likely
225 reflecting the difference in pH optima. It should be noted that the presence of NaCl in
226 concentrations similar to sea water (~0.6 M) only marginally influenced AsChi18A activity
227 (Fig. S3).

228

229 **AsLPMO10A and -B are active towards chitin**

230 Both *Al. salmonicida* LPMOs were able to oxidize α - and β -chitin, yielding aldonic acid
231 chitooligosaccharide products with degree of polymerization ranging from 3 to 8 (Fig. S4).
232 Such product profiles are commonly observed for family AA10 LPMOs that target chitin (12,
233 14, 53). The two enzymes displayed slightly different operational stabilities when probed at
234 temperatures ranging from 10 to 60 °C (Fig. 6). AsLPMO10A showed an operational stability
235 similar to that of AsChi18A, being approximately 30 °C (Fig. 6A, B). In contrast,
236 AsLPMO10B showed an operational stability lower than 30 °C (Fig. 6C, D). Comparison of
237 the LPMO activities showed that AsLPMO10A seems generally more active than
238 AsLPMO10B, the former enzyme yielding approximately twice as much soluble oxidized
239 products than the latter (Fig. 6B, D).

240

241 **Combination of the chitinase and LPMOs shows enzyme synergies**

242 For the putative chitinolytic system of *Al. salmonicida* the situation was different than any
243 other chitinolytic system studied since the chitin degradation potential of the chitinase was
244 substantially lower than that of the LPMOs (Fig. 5C, D and Fig. 6). Usually, the chitinase of a
245 chitinolytic system is substantially more efficient in substrate solubilization than the LPMO.
246 Nevertheless, synergies were observed when combining the AsChi18A with AsLPMO10B
247 giving an almost double yield than the sum of products calculated by adding the sum of their
248 individual yields, for both β - and α -chitin (Fig. 7). AsLPMO10A, on the other hand, showed
249 a weaker synergy when combined with AsChi18A.

250

251 **AsChi18A is important for growth of *Al. salmonicida* on chitin**

252 Since the *Al. salmonicida* chitinase and LPMOs were able to depolymerize both α - and β -
253 chitin to soluble sugars that are metabolizable for the bacterium (GlcNAc and (GlcNAc)₂),
254 the ability of the bacterium to utilize chitin particles as a carbon source was assessed. For this
255 experiment, β -chitin was used for its higher purity and lower recalcitrance compared to α -
256 chitin. To unravel the roles of AsChi18A and AsLPMO10A and -B in chitin degradation, *Al.*
257 *salmonicida* gene deletion strains were included in the cultivation experiments. The two

258 single LPMO deletion strains showed a moderate decrease of the growth rate compared to the
259 wild type, displaying a 30% increase in generation time (Fig. 8A and Table 1). In contrast to
260 the biochemical assays that showed stronger synergy between recombinant *AsChi18A* and
261 *AsLPMO10B* compared to *AsLPMO10A*, the cultivation assays showed that deletion of the
262 single LPMOs resulted in the same growth reduction as deletion of both LPMOs. Deletion of
263 the *AsChi18A* gene decreased growth to a larger extent than observed for the LPMO mutant
264 strains (Fig. 8A), indicating that *AsChi18A* is more important than the LPMOs for the ability
265 of *Al. salmonicida* to utilize chitin as a carbon source. The triple deletion mutant
266 ($\Delta A\Delta B\Delta Chi$) was least able to utilize chitin as a source of nutrients, which also was clear
267 from an agar-plate chitin solubilization assay where only a marginal disappearance of chitin
268 was observed (Fig. S5). Growth of $\Delta A\Delta B\Delta Chi$ and wild type on LB25 medium was on the
269 other hand similar (Fig. S6), indicating that the gene deletions only influenced chitin
270 utilization and not metabolism in general.

271 It should be noted that the wild type bacteria incubated in the minimal medium (Asmm)
272 without added chitin obtained growth to $OD\ 0.37\pm0.05$ after 7 days incubation (Fig. 8 panel
273 A and Table 1) due to the presence essential amino acids and traces of the LB25 pre-culture
274 medium. Furthermore, it can also be observed that all bacterial strains incubated in the
275 defined media supplemented with chitin increased ~ 0.1 in OD within the first 24 hours. This
276 is most likely caused by the presence of chitin monomers, dimers, oligosaccharides or other
277 nutrients in the chitin substrate that could be utilized by the bacteria without the need of the
278 chitinase or LPMOs.

279 To evaluate whether growth of the bacterium correlated with chitinolytic activity, the culture
280 supernatant of wild type growing on β -chitin was sampled once a day in the period of highest
281 growth (days 5-8) and analyzed for hydrolytic activity towards the soluble
282 chitooligosaccharide, chitopentaose. Indeed, the chitin hydrolytic potential of the culture
283 supernatant increased from day 5 to day 8 (Fig. 8B), indicating secretion of one or more
284 chitinases (only dimeric and trimeric products were observed; large concentrations of
285 GlcNAc would indicate the presence of a secreted *N*-acetylhexosaminidase).

286

287 **Gene expression analysis by PCR amplification of cDNA**

288 Encouraged by the biochemically functional chitinolytic machinery of *Al. salmonicida* and
289 the ability of the bacterium to metabolize chitin degradation products and chitin particles, it

290 was of interest to couple these traits to transcription of genes representing the enzymes in the
291 chitinolytic machinery. The pseudogene encoding parts of a family GH18 chitinase
292 (VSAL_I0902; AsChi18B_p) was also included in the analysis. RNA was isolated from *Al.*
293 *salmonicida* LFI1238 grown on glucose, GlcNAc, (GlcNAc)₂ and β-chitin (same cultures as
294 shown in Fig. 1 and 8), from both exponential and stationary phase. Gene expression was
295 assessed qualitatively by agarose gel chromatography (Table 2). The gene expression was
296 assessed as positive if the target gene was amplified in two out of three biological replicates
297 and at the same time no amplification was observed in PCR samples obtained in the control
298 reactions having no reverse transcriptase during cDNA synthesis (examples shown in Fig.
299 S7). The resulting data indicated that *AsChi18A*, *AsLPMO10B* and, surprisingly, the chitinase
300 pseudogene, *AsChi18B_p*, were expressed in the exponential phase during growth on all carbon
301 sources. Similarly, expression of *AsChi18A* and *AsLPMO10A* were detected in the stationary
302 phase, however not in all conditions. Expression of *AsLPMO10B* was only detected in the
303 exponential phase during growth on GlcNAc.

304

305 **Proteomic analysis of expressed carbohydrate active enzymes (CAZymes)**

306 To obtain a more complete understanding of chitin degradation by *Al. salmonicida* during
307 growth, label free quantitative proteomics was used to identify and quantify proteins secreted
308 by the bacterium when growing on this insoluble polysaccharide. Guided by the gene
309 expression analysis (Table 2), cultures were grown to exponential phase on 1% β-chitin
310 before harvesting and separation into supernatant and cell pellet fractions for analysis of both
311 secreted and intracellular proteins. For analysis of bacteria and proteins binding to chitin,
312 chitin from the growing culture was collected and boiled directly in sample buffer. These
313 samples are referred to as “chitin-bound” samples and are enriched in proteins with high
314 affinity for chitin. In total, 1179 proteins were identified (Supplementary data file 1), from
315 which 20 were annotated as CAZymes, including glycoside hydrolases, transferase activities,
316 lipid biosynthesis, glycogen metabolism, peptidoglycan (murein) and carbohydrate metabolic
317 processes (Fig. 9, Table S2). In more detail, both LPMOs (*AsLPMO10A* and
318 *AsLPMO10B*) and *AsChi18A* were identified, albeit not in all samples and at variable
319 intensities. *AsLPMO10A* was present at highest abundance amongst the CAZymes, especially
320 in the chitin-bound samples. The protein was identified in all three biological replicates in all

321 sampled conditions except in the bacterial pellet obtained from growth on glucose, where the
322 protein only was identified in one biological replicate (Fig. 9).

323 AsChi18A and AsLPMO10B were only detected in the culture supernatant in one or two of
324 the biological replicates obtained from growth on glucose, and in two out of three replicates
325 of the chitin-bound samples. AsChi18A was only identified in the chitin-bound sample and
326 the culture supernatant of the glucose grown samples. However, the chitinase was found at
327 noticeable higher intensity in the chitin-bound samples compared to the supernatant samples
328 obtained from cultivation on glucose.

329 Importantly, a GH20 β -N-acetylhexosaminidase (Uniprot ID: B6EGV7) was identified
330 amongst the CAZymes. All samples showed a relatively similar abundance of this GH20.
331 This enzyme, also called Chitobiase, is vital for hydrolyzing $(\text{GlcNAc})_2$ into two GlcNAc
332 units, but also has the ability to depolymerize longer chitooligosaccharides (even aldonic acid
333 chitooligosaccharides resulting from LPMO activity) (53). Sequence analysis revealed 58%
334 identity between the *Al. salmonicida* GH20 identified (~100% sequence coverage) and the
335 biochemically characterized β -N-acetylhexosaminidase *VhNAG1* from *Vibrio harvey* 650
336 (54). The amino acids involved in catalysis and substrate binding are conserved (Fig. S8)
337 indicating a function of the *Al. salmonicida* GH20 in chitin catabolism. It should be noted
338 that *N,N*-diacetylchitobiose phosphorylases also can perform a role similar to β -N-
339 acetylhexosaminidases. Interestingly, a family 3 glycosyl hydrolase (GH3), annotated as
340 beta-hexosaminidase was also identified. GH3s have a broad range of substrate specificities,
341 which mostly involves peptidoglycan recycling pathways. However, the marine bacteria
342 *Pseudoalteromonas piscicida*, *Vibrio furnissi* and *Thermotoga maritima* encode GH3s that
343 are believed to participate in intracellular chitin metabolism (55-57). The AsGH3 enzyme was
344 detected at similar levels in both glucose and chitin cultures, indicating that it is not
345 dependent on chitin degradation. Also, the amino acid sequence of AsGH3 was similar to the
346 NagZ enzymes of this GH family (e.g. 67% sequence identity to NagZ of *V. cholerae*), which
347 removes β -N-acetylglucosamine from ends of peptidoglycan fragments (58). 4-alpha-
348 glucanotransferase (GH77) and membrane-bound lytic murein transglycosylase (GH23) were
349 only detected when the bacterium was grown on glucose. A putative glycosyl transferase
350 family 2 (GT2) was only detected in the chitin substrate fraction. GTs are generally involved
351 in biosynthesis by transferring sugar moieties from activated donor molecules to specific
352 acceptor molecules, forming glycosidic bonds.

353

354 **Analysis of the chitin catabolic pathway in *Al. salmonicida***

355 To assess the chitin catabolic pathway used by the bacterium, the proteomics data were
356 scrutinized with the aim of identifying expressed proteins with a putative role in uptake,
357 transport or downstream processing of chitin degradation products. An illustration of relevant
358 findings and the suggested pathway is shown in Fig. 10. Guided by the biochemical assays
359 and cultivation experiments, secreted *AsChi18A*, *AsLPMO10A* and *AsLPMO10B* are
360 indicated to hydrolyze and cleave chitin into smaller oligosaccharides. It must be noted that
361 *AsChi18Bp*, *AsChi19Ap* and *AsChi18Cp* are illustrated in context with *AsChi18A* based on
362 conserved domains, rather than evidence of participating in extracellular hydrolysis of chitin.
363 Interestingly, the chitinase pseudogene, *AsChi18Bp*, is one of few proteins exclusively
364 identified in chitin samples. The GH20 β -N-acetylhexosaminidase, which shows a ~3 fold
365 increase in abundance during growth on chitin compared to glucose (p=0.0082, paired two-
366 tailed t-test; Fig. S9), is indicated to hydrolyze (GlcNAc)₂ into GlcNAc in the periplasmic
367 space.

368 Utilization of extracellular sugars requires uptake and transportation across both the outer and
369 inner membranes. With the lack of a functional chitoporin, other proteins relevant for outer
370 membrane transport were investigated. Of proteins related to transport through the outer
371 membrane, 14 proteins were identified, including outer membrane assembly factors and outer
372 membrane proteins of the OmpA family, OmpU, TolC. These proteins are not generally
373 known for sugar transport but cannot be excluded. For transport of sugars across the inner
374 membrane, the most relevant transporters identified were 9 proteins assigned to the
375 phosphoenolpyruvate-dependent sugar phosphotransferase system and two N-
376 acetylglucosamine and glucose permeases (NagE). The latter transporters are likely
377 contributing to translocation of GlcNAc across the inner membrane and showed increased
378 abundance in chitin samples compared to glucose (Fig. 10). Two PTS component IIA and
379 two Lactose/Cellobiose specific IIB subunits were identified, of which the lactose/cellobiose
380 specific subunits likely contribute to sugar transportation across the inner membrane, were
381 found upregulated during growth on chitin compared to glucose. Furthermore, out of 9 ABC
382 transporter proteins identified, the four components not related to iron or amino acid transport
383 were assessed. The ABC transport protein, “ATP binding component” (B6EMA3) shows
384 increased abundance in the chitin-bound samples, whereas “ATP-binding protein” (B6ESL1)
385 was only identified during growth on chitin. However, it is uncertain whether these proteins

386 are involved in transport of GlcNAc/(GlcNAc)₂. It should be noted that no ABC transporter
387 proteins specific for (GlcNAc)₂, or GlcNAc specific subunits could be identified, although
388 these are common in transport of such sugars (59-61).

389 In terms of downstream processing of GlcNAc, the monosaccharide is most likely converted
390 into GlcNAc6P by the permease NagE or *N*-acetylglucosamine kinase NagK (Fig. 10). *N*-
391 acetylglucosamine deacetylase is encoded by the genome of *Al. salmonicida*, albeit was not
392 identified in this experiment. Deacetylation of GlcNAc6P would result in GlcN-6P, a product
393 further processed into Fru-6P by glucosamine-6-phosphate deaminase, an enzyme which was
394 found at higher abundance in the chitin pellet samples compared to glucose (Fig. 10).
395 Alternatively, GlcN-6P can be processed (in three steps) by Phosphoglucosamine mutase (EC
396 5.4.2.10), the bifunctional protein GlmU (*N*-acetylglucosamine-1-phosphate
397 uridyltransferase (EC 2.3.1.157) and UDP-*N*-acetylglucosamine pyrophosphorylase (EC
398 2.7.7.23) into UDP-GlcNAc, a sugar that can be processed to other UDP sugars or utilized in
399 pathways such as lipopolysaccharide biosynthesis or peptidoglycan synthesis. These enzymes
400 were found in all conditions analyzed (Fig. 10).

401

402 DISCUSSION

403 Knowing whether *Al. salmonicida* is able to utilize chitin as a source of carbon (and nitrogen)
404 is important for understanding the ecology of the bacterium and its implications for
405 pathogenicity. The literature contains conflicting information about this topic, but in the
406 present study, we clearly demonstrate that *Al. salmonicida* is capable of degrading chitin to
407 soluble chitooligosaccharides and to utilize these as a nutrient source. This capability is
408 dependent on the single chitinase in the *Al. salmonicida* genome, despite the low *in vitro*
409 activity of chitinase, and the ability of the LPMOs to degrade chitin. In the absence of
410 AsChi18A, only products from LPMOs activity will be available to the bacterium. These
411 products are oxidized chitooligosaccharides with a high degree of polymerization, that most
412 likely cannot be taken up by the bacterium due to the absence of a specific outer membrane
413 transporter (chitoporin). The fact that minor growth of the bacterium still is achieved in the
414 absence of the chitinase is most likely due to the presence of a GH20 *N*-acetylhexosaminidase
415 in the culture supernatant, that can depolymerize LPMO-generated chitooligosaccharides to
416 GlcNAc, which can be taken up and catabolized by the bacterium. Another explanation may
417 be that the chitooligosaccharides are cleaved by secreted pseudo-chitinases, proteins indeed
418 observed by the proteomics data. In support for the latter hypothesis, minor growth on β -

419 chitin and indications of degradation of colloidal chitin was observed for the *Al. salmonicida*
420 $\Delta A\Delta B\Delta Chi$ variant (Figs 8 and S5, respectively). Notably, the importance of a single
421 chitinase for growth on chitin is not unique to *Al. salmonicida* LFI1238. In *C. japonicus*,
422 *CjChi18D* is essential for the degradation of α -chitin despite the expression of three
423 additional chitinases and two LPMOs (50). Similarly, a systematic genetic dissection of chitin
424 degradation and uptake in *Vibrio cholerae* found the chitinase *ChiA2* critical for growth on
425 chitin, but not sufficient alone (62).

426 Both *As. salmonicida* LPMOs are required for obtaining maximum growth on chitin, an
427 observation that is different than for the efficient chitin degrader *C. japonicus* where deletion
428 of the chitin-active LPMO only resulted in delayed growth, but did not affect growth rate
429 (50). This may be explained by the 50-fold lower activity of *AsChi18A* compared to
430 *CjChi18D* of *C. japonicus*. In the latter organism, the contribution of the LPMOs in chitin
431 solubilization is most likely minor compared to *Al. salmonicida*, for which the rate of
432 depolymerization is almost equal for the LPMOs and the chitinase. *AsLPMO10A* and -B are
433 distinctly different in domain organization and sequence and the former enzyme is more
434 active towards β -chitin than the latter. This may be related to the chitin binding properties of
435 the enzymes as *AsLPMO10A* binds better to both α - and β -chitin than *AsLPMO10B* (Fig. 4).
436 Alternatively, the difference in activity can be related to the ability of the components in the
437 reaction mixture to generate reactive oxygen species such as hydrogen peroxide, e.g. by the
438 oxidase activity of LPMOs as shown in several studies (63-65). In such a scenario, the
439 discovery that LPMOs can use H_2O_2 as a co-substrate, and that the concentration of H_2O_2 in
440 solution may be rate limiting for LPMO reactions (13, 66, 67), may account for activity
441 differences between LPMOs when no external H_2O_2 is added to the enzyme reaction (only
442 reductant).

443 The contribution of the LPMOs for chitin utilization by *Al. salmonicida* is most likely related
444 to the synergy obtained when combining the LPMOs with the chitinase. Such synergy can be
445 explained by the ability of *AsLPMO10s* to cleave chitin chains that are inaccessible to
446 *AsChi18A* (i.e. in the crystalline regions of the substrate). The newly formed chitin chain
447 ends formed by LPMO activity, represent new points of attachment for the chitinases, thereby
448 increasing substrate accessibility. Indeed, several studies have demonstrated this phenomenon
449 (16, 68-70), including a study on the virulence-related LPMO from *Listeria monocytogenes*
450 (71).

451 A surprising observed was made when combining both LPMOs and the chitinase in a chitin
452 degradation reaction (Fig. 7, panels B&D). Here, no synergy was observed for β -chitin
453 degradation and a lower than theoretical yield was obtained for α -chitin. This was
454 unexpected since the bacterial cultivation assay indicated a cooperative relationship between
455 the LPMOs as the reduced growth observed for two single LPMO deletion strains were
456 similar to that observed for the double LPMO mutant strain (As Δ LPMO10A- Δ LPMO10B).
457 The explanation for the lack of synergy is not straightforward, but it may be that a total
458 concentration of 2 μ M LPMO is too much for these reactions, giving rise to less bound
459 enzyme to the substrate and thereby production of harmful reactive oxygen species (ROS) by
460 the non-bound LPMO molecules. It is well established that LPMOs not bound to the substrate
461 are more prone to autooxidation (13, 43, 72). Another explanation could be that a non-
462 optimal enzyme stoichiometry could create competition for substrate binding sites. Indeed,
463 Both LPMOs were expressed during growth on β -chitin, although AsLPMO10A was detected
464 in substantially higher abundance. As a matter of fact, AsLPMO10A was the protein showing
465 the highest abundance among the detected CAZymes, also when the bacterium was cultivated
466 on glucose. This could imply that this LPMO has additional functions (this is discussed in
467 more detail below). All three chitinolytic enzymes were observed in highest abundance in the
468 samples obtained from the chitin particles, indicating high affinity of the enzymes towards
469 chitin, a trait corroborated by the substrate binding experiments.

470

471 The proteomic analysis identified peptides from three pseudogenes. Interestingly, AsChi18Bp
472 was only identified during growth on chitin, in contrast to the gene expression analysis where
473 it was detected during growth in all carbon sources. This suggests a regulatory mechanism of
474 translation influenced by the presence of chitin particles and that the relevant transcription
475 factor regulating this gene still is functional. It is not uncommon that bacterial pseudogenes
476 are expressed (73, 74) and Kuo & Ochman have hypothesized that this may be related to the
477 regulatory region of the pseudogenes still remaining intact (74). It must be noted that
478 translation of a pseudogene does not necessarily equal a functional protein. Indeed, our data
479 showing a large growth impairment upon AsChi18A deletion suggest that translation of
480 pseudogenes is insufficient for chitin degradation, although, as previously noted, a minor
481 growth also can be observed for the triple knock out strain. Pseudogenes have long been
482 considered to only represent dysfunctional outcomes of genome evolution, and the multitude
483 of pseudogenes in *Al. salmonicida* LFI1238 possibly reflects its adaption to a pathogenic

484 lifestyle. On the other hand, there is increasing evidence indicating that pseudogenes can
485 have functional biological roles, and recent studies have shown that pseudogenes potentially
486 regulate expression of protein-coding genes (reviewed in (75, 76)).

487 An intriguing observation of chitin catabolism by *Al. salmonicida* is the absence of key
488 regulatory proteins such as ChiS and Tfox in the proteomics data. These regulatory proteins
489 are important for chitin catabolism in other bacterial species in the *Vibrionaceae* (18, 31, 33,
490 34). There is no doubt that *Al. salmonicida* is capable of chitin catabolism, thus the bacterium
491 may have evolved an alternative mechanism for regulating the chitin utilization loci. In
492 support of this hypothesis, the gene encoding the periplasmic chitin binding protein, which
493 activates ChiS when bound to (GlcNAc)₂ (31), is disrupted in the *Al. salmonicida* genome
494 (29).

495 Although the *Al. salmonicida* chitinolytic system clearly is active and functional, there are
496 some observations that may indicate other or additional functions of the chitinolytic enzymes.
497 Firstly, the activity of the chitinase is substantially lower than what would be expected for an
498 enzyme dedicated to chitin hydrolysis. Secondly, the dominantly expressed LPMO
499 (*AsLPMO10A*) is not essential for chitin degradation and is also abundantly expressed when
500 the bacterium is cultivated on glucose. These observations could be associated with the
501 adaption of a pathogenic lifestyle where the need for chitin as a nutrient source has been
502 reduced, but could also indicate other or additional functions, as for example roles in
503 virulence. The notion of chitinases having additional functions has been shown in several
504 studies, for example cleavage of mucin glycans by the *V. cholerae* chitinase Chi2A (77) and
505 hydrolysis of LacdiNAc (GalNAc β 1-4GlcNAc) and LacNAc (Gal β 1-4GlcNAc) by the *L.*
506 *monocytogenes* and *Salmonella typhimurium* chitinases (78). Such substrates were not
507 evaluated by activity assays with *AsChi18A*. Moreover, incubation of *AsChi18A* with mucus
508 collected from Atlantic salmon skin revealed an unidentifiable product (different from the
509 negative control), but determination of its identity was unsuccessful.

510 Compared to other virulence related chitinases, *AsChi18A* has a similar size, but different
511 modular architecture. For example, ChiA2 from *V. cholerae*, which has been shown to
512 improve survival of the bacterium in the host intestine, also contains around 800 amino acids,
513 but the GH18 domain is close to the N-terminus and a CBM44 and a CBM5 chitin-binding
514 domain are present on the C-terminal side. As already noted, ChiA2 has been shown to
515 cleave intestinal mucin (releasing GlcNAc), but has a deep substrate binding cleft and

516 resembles an *exo*-chitinase (85% sequence identity to the structurally resolved *exo*-chitinase
517 of *Vibrio harveyi*; (79)). An unusual property of AsChi18A is its double pH optimum, shown
518 by enzyme activity being approximately equal at pH 4 and 7 (Fig. 5B). Chitinases usually
519 display a single pH optimum, but double pH optima are not uncommon for hydrolytic
520 enzymes, e.g. like phytase from *Aspergillus niger* (80) and β -galactosidase from
521 *Lactobacillus acidophilus* (81). It is possible that this property is associated with the chitinase
522 being utilized in environments that vary in pH. If the *Al. salmonicida* chitinase has evolved
523 an additional role than chitin degradation, the same question applies for the LPMOs. Both
524 LPMOs are active towards chitin, but it is not certain that this is the intended substrate of
525 these enzymes. For instance, GbpA, an LPMO from *V. cholera*, has activity towards chitin
526 (53), but its main function seems to be related to bacterial colonization of transfer vectors
527 (e.g. zoo-plankton), the host epithelium (e.g. human intestine) or both (82, 83). The LPMO of
528 *L. monocytogenes* is also active towards chitin (71), but the gene encoding this enzyme is not
529 expressed when the bacterium grows on chitin (on the other hand, the *L. monocytogenes*
530 chitinase-encoding genes are expressed when the bacterium is grown on chitin (71, 84)). The
531 LPMO of the human opportunistic pathogen *Pseudomonas aeruginosa*, CbpD, was recently
532 shown to be a chitin-active virulence factor that attenuates the terminal complement cascade
533 of the host (85). In the present study, both LPMOs were expressed in the presence of chitin,
534 but also in the glucose control condition, indicating that regulation is not controlled by chitin
535 or soluble chitooligosaccharides. Thus, chitin may represent a potential substrate for these
536 LPMOs, but possibly not the (only) biologically relevant substrate.

537 On the other hand, some LPMOs are designed to only disrupt and disentangle chitin fibers,
538 rather than to contribute to their degradation in a metabolic context, namely the viral family
539 AA10 LPMOs (also called spindolins) (41). These LPMOs are harbored by insect-targeting
540 entomopox- and baculoviruses, and have been shown to disrupt the chitin containing
541 peritrophic matrix that lines the midgut of insect larvae (86). The main function proposed for
542 the viral LPMOs is to destroy the midgut lining in order to allow the virus particles to access
543 the epithelial cells that are located underneath. Since the scales and gut of fish are indicated
544 to contain chitin (5, 6), it is tempting to speculate that the role of the fish pathogen LPMOs is
545 similar to that of viral LPMOs, namely to disrupt this putatively protective chitin layer in
546 order to provide an entry point to the bacteria for infection.

547 In conclusion, the present study shows that *Al. salmonicida* LFI1238 can degrade and
548 catabolize chitin as a sole carbon source, despite possessing a chitinolytic pathway assumed
549 to be incomplete. Our findings imply that the bacterium can utilize chitin to proliferate in the
550 marine environment, although possibly not as efficient as other characterized chitinolytic
551 marine bacteria. Nevertheless, it is likely that this ability can be of relevance for the spread of
552 this pathogen in the ocean. Finally, our discovery that pseudogenes are actively transcribed
553 and translated indicates that such genes cannot be disregarded as being functionally
554 important.

555

556

557 **METHODS AND MATERIALS**

558 **Bacterial strains and culturing conditions**

559 *Al. salmonicida* strain LFI1238 originally isolated from the head kidney of diseased farmed
560 cod (*Gadhus morhua*; (29)) and mutant strains (see below) were routinely cultivated at 12 °C
561 in liquid Luria Broth (LB) supplemented with 2.5% sodium chloride (LB25; 10 g/L tryptone,
562 5 g/L yeast extract, 12.5 g/L NaCl) or solid LB25 supplemented with 15 g/L agar powder
563 (LA25), and if applicable 2% (w/v) colloidal chitin made from α -chitin (gift from Silje
564 Lorentzen). Growth analysis was performed at 12 °C in *Al. salmonicida* specific minimal
565 media (Asmm: 100 mM KH₂PO₄, 15 mM NH₄(SO₄)₂, 3.9 μ M FeSO₄ \times 7H₂O, 2.5 % NaCl,
566 0.81 mM MgSO₄ \times 7H₂O, 2 mM valine, 0.5 mM isoleucine, 0.5 mM cysteine, 0.5 mM
567 methionine and 40 mM glutamate). Prior to inoculation of Asmm media, strains were grown
568 up to 48 hours in 10-15 mL LB25 at 200 rpm. 1 mL bacteria were harvested by centrifugation
569 at 6000 \times g for 1 minute, followed by immediate resuspension of the pellet in 1 mL Asmm.
570 The cell suspension was transferred to the final cultures by a 1:50 dilution in media
571 supplemented with 0.2% glucose, 0.2% N-acetyl-D-glucosamine, 0.2 % diacetyl-chitobiose
572 (Megazyme, Bray, County Wicklow, USA) or 1 % β -chitin from squid pen purchased from
573 France Chitine (Batch 20140101, Orange, France). Culture volumes ranged from 5-50 mL.
574 Final cultures were incubated at 12 °C with shaking at 175 rpm. Growth was measured by
575 optical density (OD₆₀₀) using Ultrospec® 10 Cell Density Meter (Biochrom). The baseline
576 was set by using sterile Asmm media with or without 1% β -chitin. OD₆₀₀ measurements of
577 the β -chitin cultures was performed by allowing the cultures to settle for 30 seconds before
578 collecting 1 mL for measurement.

579 **Generation of gene deletion strains**

580 LFI1238 derivative in-frame deletion mutants Δ AsChi18A, Δ AsLPMO10A, Δ AsLPMO10B,
581 Δ AsLPMO10A- Δ LPMO10B and Δ LPMO10A- Δ LPMO10B- Δ Chi18A (also referred to as
582 Δ A Δ B Δ Chi) were constructed by allelic exchange as described by others (87, 88). For
583 clarification, Table 3 lists the target genes, their associated protein name, predicted
584 carbohydrate-active enzyme family (CAZyme family) and corresponding CAZyme annotated
585 name applied throughout this study.

586 Primers were ordered from eurofins Genomics (Ebersberg, Germany), and designed with
587 restriction sites and regions complementary to the pDM4 cloning vector to allow for in-fusion
588 cloning. Table 4 lists primers used for construction of the deletion alleles. For construction of
589 Δ AsChi18A, the flanking regions upstream and downstream of the AsChi18A gene were

590 amplified using primer pairs GH18_YF/GH18_IR and GH18_IF/GH18_YR, respectively.
591 The two PCR fragments were fused by overlapping extension PCR where complementarity in
592 the 5' regions of the primers resulted in linkage of the *AsChi18A* -flanking regions.
593 Δ AsLPMO10A and Δ AsLPMO10B was constructed in the same manner as described for
594 Δ AsChi18A using the listed primers (Table 4).

595 The final PCR products were inserted into the suicide vector pDM4 by In-Fusion ® HD
596 cloning (Takara Bio USA, Inc). In short, pDM4 linearized with SpeI and XhoI was gently
597 mixed with 5 \times In-Fusion HD Enzyme premix, purified PCR fragment (purified using
598 Nucleospin® Gel and PCR Clean-up, MACHEREY-NAGEL GmbH & Co. KG), and H₂O to
599 acquired final volume. Ratio of insert and linearized vector was determined using the online
600 tool “In-Fusion molar ratio calculator” (Takara Bio USA, Inc). The reaction mix was
601 incubated at 50 °C for 15 min. Following incubation, the reaction mix was placed on ice for
602 20 min and transformed into *E. coli* S17-1 λ pir by standard transformation techniques.

603 Conjugation was performed as described by others (87-90). In brief, pelleted cells from 1 mL
604 *E.coli* S17-1 donor cells (OD₆₀₀ 0.60-0.80) and 1 mL *Al. salmonicida* LFI1238 recipient cells
605 (OD₆₀₀ 1.00-1.40) were washed in LB, mixed and transferred to LA1 as a spot. The spot plate
606 was incubated 6 hours in room temperature and ~17 hours at 12 °C. The next day, the cell
607 spot was collected and resuspended in 2 mL LB25, grown for 24 hours with shaking and
608 spread onto LA25 containing chloramphenicol (2 μ L/mL). Potential transconjugates were re-
609 streaked on LA25 2CAM, incubated for 3-5 days and tested for integration of the pDM4
610 construct by colony PCR using a combination of primers annealing within and outside the
611 integrated plasmid (Table S3). Next, confirmed transconjugates were grown in LB25 to
612 OD₆₀₀ 0.4 and spread onto LA25 containing 5% sucrose. Colonies appearing within 5 days
613 were tested for excision of the integrated plasmid by sequentially patching single colonies
614 onto LA25 plates containing 2CAM or 5% sucrose. Mutants showing loss of resistance to
615 CAM and presence of gene-deletion product (colony PCR using primer pairs
616 As Δ Chi18A_For/ As Δ Chi18A_Rev), was confirmed by GATC Biotech Sanger sequencing
617 (Eurofins genomics, Germany).

618 Mutant strains containing multiple gene deletions were generated in a step-wise manner.
619 Specifically, LFI1238 Δ AsLPMO10A were recipient cells for pDM4- Δ AsLPMO10B.
620 Similarly, the resulting Δ AsLPMO10A/ Δ LPMO10B strain were recipient cells for pDM4-

621 ΔAsChi18A, thus generating the triple mutant strain ΔLPMO10A/ΔLPMO10B/ΔChi18A. All
622 strains and vectors are listed in Table 5.

623 **Cloning, expression and purification**

624 Codon-optimized genes encoding the following *AsLPMO10A* (residues 1-491, UniProt ID;
625 B6EQB6), *AsLPMO10B* (residues 1-395, UniProt ID; B6EQJ6) and *AsChi18A* (residues 1-
626 846, UniProt ID; B6EH15) from *Al. salmonicida* (LFI1238) were purchased from GenScript
627 (Piscataway, NJ, USA). Gene-specific primers (Table 6), with sequence overhangs
628 corresponding to the pre-linearized pNIC-CH expression vector (AddGene, Cambridge,
629 Massachusetts, USA) were used to amplify the genes in order to insert them into the vector
630 by a ligation independent cloning method (91). All the cloned genes contained their native
631 signal peptides. Sequence-verified plasmids were transformed into ArcticExpress (DE3)
632 competent cells (Agilent Technologies, California, USA) for protein expression. Cells
633 harboring the plasmids were inoculated and grown in Terrific Broth (TB) medium
634 supplemented with 50 µg/mL of kanamycin (50 mg/mL stock). Cells producing the full-
635 length *AsLPMO10s* were cultivated in flask-media at 37 °C until OD = 0.700, cooled down
636 for 30 min at 4 °C, induced with 0.5 mM IPTG and incubated for 44 hours at 10 °C with
637 shaking at 200 rpm. Cells producing *AsChi18A* were grown in a Harbinger LEX bioreactor
638 system (Epiphyte Three Inc, Toronto, Canada) using the same procedure described above,
639 although the cell were cultured for a shorter time period (12 hours) and air was pumped into
640 the culture by spargers. Successively, cells were harvested using centrifugation and the
641 periplasmic extracts were generated by osmotic shock (92). The periplasmic fractions,
642 containing the mature proteins (signal peptide-free), were sterilized by filtration (0.2 µm)
643 before purification (see below).

644 *AsLMO10A* and *AsLPMO10B* were purified by anion exchange chromatography using a 5
645 mL HiTrap DEAE FF column (GE Healthcare) followed by hydrophobic interaction
646 chromatography (HIC) using a 5 mL HiTrap Phenyl FF (HS) column (GE Healthcare). For
647 the ion exchange procedure, proteins in the periplasmic extract were applied on the column
648 using a binding buffer containing 50 mM Bis-Tris-HCl pH 6.0. After all non-bound proteins
649 had passed through the column, bound proteins were eluted by applying a linear gradient (0
650 to 100 % in 20 column volumes with a flow rate of 1 mL/min), using an elution buffer
651 containing Bis-Tris-HCl pH 6.0 and 500 mM NaCl. Fractions were collected and analyzed
652 for the presence of LPMO using SDS-PAGE. Fractions containing LPMO were pooled and

653 adjusted to 1M $(\text{NH}_4)_2\text{SO}_4$ and applied on the HIC column using a binding buffer consisting
654 of 50 mM Tris-HCl pH 7.5 and 1 M $(\text{NH}_4)_2\text{SO}_4$. Following elution of unbound proteins,
655 bound proteins were eluted by applying a linear gradient (0 to 100% over 20 column volumes
656 with a flow rate of 1.5 mL/min), using an elution buffer containing 50 mM Tris-HCl pH 7.5.
657 In addition, AsLPMO10B was further purified by size exclusion chromatography using a
658 HiLoad 16/60 Superdex 75 column operated at 1 mL/min and with a running buffer
659 containing 1X PBS, pH 7.4.

660 AsChi18A was purified by immobilized metal affinity chromatography using a HisTrap FF 5
661 mL column (GE Healthcare). The periplasmic extract containing AsChi18A was applied on
662 the column using a binding buffer consisting of 20 mM Tris-HCl pH 8.0 and 5 mM
663 imidazole, using a flow rate of 3 mL/min. Bound proteins were eluted from the column by
664 applying a linear gradient (0 to 100 % over 20 column volumes with a flow rate of 3 mL/min)
665 with an elution buffer containing 20 mM Tris-HCl pH 8.0 and 500 mM imidazole. Fractions
666 containing the pure protein, identified by SDS-PAGE, were pooled and concentrated using
667 Amicon Ultra centrifugal filters (Millipore, Cork, Ireland).

668 Protein purity was analyzed by SDS-PAGE. Concentrations of the pure proteins were
669 determined by measuring A_{280} and using the theoretical molar extinction coefficients of the
670 respective enzyme (calculated using the ExPASy ProtParam tool) to estimate the
671 concentration in mg/mL. Before use, AsLPMO10A and AsLPMO10B were saturated with
672 Cu(II) by incubation with excess of CuSO₄ in a molar ratio of 1:3 for 30 minutes at room
673 temperature. The excess Cu(II) was eliminated by passing the protein through a PD MidiTrap
674 G-25 desalting column (GE Healthcare) equilibrated with 50 mM Tris-HCl pH 8.0 and 150
675 mM NaCl.

676

677

678 **Preparation of substrates**

679 The substrates used in the assays were either squid pen β -chitin (France Chitin, Orange,
680 France), shrimp shell α -chitin purchased from Chitinor As (Avaldsnes, Norway) and skin
681 mucus of *Salmo salar*. Skin mucus was collected from freshly killed farmed Atlantic salmon
682 purchased from the Solbergstrand Marine Research Facility (Drøbak, Norway). The mucus

683 was gently scraped off the skin of the fish using a spatula and stored in plastic sample tubes at
684 -20°C until use.

685 **Enzyme activity assays**

686 For activity assays, chitin was suspended in 20 mM Tris-HCl pH 7.5, in 2 mL Eppendorf
687 tubes to yield a final concentration of 10 mg/mL. All reactions were incubated at 30 °C and
688 stirred in an Eppendorf Comfort Thermomixer at 700 rpm. For LPMO reactions, the final
689 enzyme concentrations were 1 µM and reactions were started by the addition of 1 mM of
690 ascorbic acid (this activates the LPMOs). Similar reaction conditions were used for
691 *AsChi18A*, although the final enzyme concentration used was 0.5 µM and ascorbic acid was
692 not added in the reactions. At regular intervals, samples were taken from the reactions and the
693 soluble fractions were separated from the insoluble substrate particles using a 96-well filter
694 plate (Millipore) operated with a vacuum manifold. Subsequently, the soluble fraction of
695 *AsLPMO10s*-catalyzed reactions were incubated with 1.5 µM of a chitobiase from *S.*
696 *marcescens* (also known as *SmCHB* or *SmGH20A*) at 37 °C overnight in order to convert
697 LPMO products (oxidized chitooligosaccharides of various degree of polymerization) to *N*-
698 acetylglucosamine (GlcNAc) and chitobionic acid (GlcNAcGlcNAc1A) as previously
699 described in (53, 93), followed by a sample dilution with 50 mM H₂SO₄ in a ratio of 1:1 prior
700 quantification by HPLC (see below). The soluble fractions of *AsChi18A* reactions, were
701 diluted with H₂SO₄ after the filtration step, which stopped the enzymatic reaction, before
702 quantification of (GlcNAc)₂ by HPLC (see below). Additionally, in order to collect samples
703 for product profiling by matrix-assisted laser desorption/ionization time of flight mass
704 spectrometry (MALDI-TOF MS, see below) of the two *AsLPMO10s*-catalyzed reactions, 5
705 µL of the soluble fraction was sampled after filtration and kept at -20 °C prior to analysis.

706 **Analysis and quantification of native and oxidized chitooligosaccharides, (GlcNAc)₂ and
707 GlcNAc**

708 Qualitative analysis of the native and oxidized products of the *AsLPMO10A* and -B soluble
709 fractions were performed by MALDI-TOF MS using a method developed by G. Vaaje-
710 Kolstad et al. (12). For this analysis, 1 µL of sample was mixed with 2 µL 2,5-
711 dihydroxybenzoic acid (9 g·L⁻¹, prepared in 150:350 H₂O/Acetonitrile), applied to a MTP 384
712 target plate in ground steel TF (Bruker Daltonics) and dried under a stream of warm air. The
713 samples were analyzed with an Ultraflex MALDI-TOF/TOF instrument (Bruker Daltonics
714 GmbH, Bremen, Germany) equipped with a Nitrogen 337 nm laser beam, using Bruker

715 FlexAnalysis software. Quantitative analysis of all soluble products formed by the
716 chitinolytic enzymes or GlcNAc or (GlcNAc)₂ in culture supernatants was performed by ion
717 exclusion chromatography using a Dionex Ultimate 3000 UHPLC system (Dionex Corp.,
718 Sunnyvale, CA, USA), equipped with a Rezex RFQ-Fast acid H⁺ (8%) 7.8% x 100 mm
719 column (Phenomenex, Torrance, CA). The column was pre-heated to 85 °C and was operated
720 by running 5 mM H₂SO₄ as a mobile phase at a flow rate of 1 mL/min. The products were
721 separated isocratically and detected by UV absorption at 194 nm. The amount of GlcNAc and
722 (GlcNAc)₂ were quantified using standard curves. Pure GlcNAc and (GlcNAc)₂ were
723 obtained from Sigma and Megazyme, respectively. In order to quantify chitobionic acid
724 (GlcNAcGlcNAc1A), a standard was produced in-house by treating chitobiose (Megazyme,
725 Bray, Irleand) with a chitooligosaccharide oxidase (ChitO) from *Fusarium graminearum* ,
726 which yields 100% conversion of chitobiose to chitobionic acid, a method previously
727 described by J. S. M. Loose et al. (53). Standards were regularly analysed in each run.

728 **Analysis of chitinase activity in culture supernatants**

729 To analyze presence of chitinolytic activity in the supernatant of *Al. salmonicida* when
730 growing on β-chitin, 1 mL sample of wild type bacterial culture was harvested at time points
731 during growth on chitin. The sample was centrifugated and the supernatant filter sterilized
732 using 0.22μm sterile Ultra-free centrifugal filters. 500 μL filter sterilized supernatant was
733 concentrated to 100 μL using Amicon ultra centrifugal filter units with 3 000 Da cut-off
734 (Merck Millipore, Cork Ireland) and washed three times in 10 mM Tris pH 7.5, 0.2 M NaCl
735 (Tris-HCl NaCl). The concentrated supernatant containing secreted enzymes were stored in
736 Tris-HCl at 4 °C until use. The presence of chitinolytic activity was assessed by mixing 100
737 μM chitopentaose with 15 μL enzyme cocktail in 20 mM Tris pH 7.5 0.2 M NaCl and
738 incubated at 30 °C. The generated products were analyzed and quantified by ion exclusion
739 chromatography as described above.

740 **Protein binding assays**

741 The binding capacity of *AsLPMO10s* and *AsChi18A* on α -chitin and β -chitin was tested,
742 suspending 10 mg/mL of substrate in 20 mM Tris-HCl pH 7.5 to a total volume of 350 μ L in
743 2 mL Eppendorf tubes. Reactions were started by the addition of *AsLPMO10A* or –B (0.75
744 μ M final concentration) or *AsChi18A* (0.50 μ M), which were incubated in 2 mL Eppendorf
745 tubes, at 30 °C and stirred in an Eppendorf Comfort Thermomixer at 700 rpm. Samples were
746 taken (100 μ L) after 2 hours and immediately filtrated using a 96-well filter plate (Millipore)
747 operated with a vacuum manifold to obtain the unbound protein fraction. In order to assess
748 the percentage of bound proteins to the substrate, control samples with only enzyme and
749 buffer were performed, representing the maximum quantity of protein present in the samples
750 (100%). The protein concentration in each sample was determined using the Bradford assays
751 (Bio-Rad, Munich, Germany).

752

753 **RNA isolation and gene expression analysis**

754 To analyze expression of specific genes as previously done by e.g. T. M. Wagner et al. (94),
755 samples were taken at mid exponential phase (OD = 0.6-0.7) and early stationary phase (OD
756 = 1.0-1.3).1 mL sample of each culture was directly transferred to 2 mL RNAProtect cell
757 reagent (Qiagen, Hilden, Germany). The samples were vortexed 5 sec, incubated 5 min at
758 room temperature and subsequently harvested by centrifugation at 4000 \times g, for 10 min at 4
759 °C. The supernatant was carefully decanted, and the cell pellet stored at -20 °C until cell lysis
760 and RNA isolation. RNA isolation was performed using Qiagen RNeasy Mini Kit (Qiagen,
761 Hilden, Germany) using the Quick-Start protocol. In order to disrupt the bacterial cell wall
762 before isolation, the pellet was lysed using 200 μ L Tris-EDTA pH 8.0 supplemented with 1
763 mg/mL lysozyme, vortexed for 10 sec and subsequently incubated at room temperature for 45
764 min. 700 μ L buffer RLT (kit buffer, Qiagen) supplemented with 10 μ L/mL β -
765 mercaptoethanol was added to the sample and mixed vigorously before proceeding with the
766 protocol. The quantity of isolated RNA was determined using NanoDrop.

767 Residual genomic DNA (gDNA) was removed using The Heat&Run gDNA removal kit
768 (ArcticZymes®, Tromsø, Norway). 8 μ L of the RNA samples was transferred to a RNase
769 free Eppendorf tube on ice. For each 10 μ L reaction, 1 μ L of 10 \times reaction buffer and 1 μ L
770 Heat-labile-dsDNase was added. The suspension was gently mixed and incubated at 37 °C
771 for 10 min. To inactive the enzyme, samples were immediately transferred to 58 °C for 5
772 min. The RNA concentration was measured using the nanodrop before proceeding to copy
773 DNA (cDNA) synthesis.

774 cDNA synthesis was performed using iScriptTM Reverse Transcription Supermix (Bio-Rad,
775 Hercules, CA, USA). For each sample, 100 ng RNA, 4 μ L 5 \times iScriptTM Reverse transcription
776 Supermix and RNase free water to a total volume of 20 μ L was assembled in PCR reaction
777 tubes. All samples were additionally prepared with iScriptTM no reverse transcriptase control
778 supermix to account for residual gDNA in downstream analysis. The cDNA synthesis of the
779 samples were performed by using a SimpliAmpTM Thermal Cycler (Thermo Fischer
780 Scientific, USA) with the following steps: priming at 25 °C for 5 min, reverse transcription at
781 46 °C for 20 min, and inactivation of the reverse transcriptase at 95 °C for 1 min. The
782 synthesized cDNA was stored at -20 °C until analysis.

783 The cDNA samples were screened for presence of *AsChi18A*, *AsLPMO10A*, *AsLPMO10B*
784 and *VSAL_I0902/AsChi18Bp* by PCR amplification using Red Taq DNA polymerase 2 \times
785 Master mix (VWR, Oslo, Norway) according to the manufacturers protocol. The PCR
786 reaction was carried out using 30 cycles, annealing temperature 58 °C (*AsChi18A*,
787 *AsLPMO10A*, *AsLPMO10B*) or 56 °C (*VSAL_I0902/AsChi18Bp*) and 30 sec extension. To
788 evaluate gDNA presence, samples prepared with no reverse transcriptase during cDNA
789 synthesis (referred to as -RT control) was applied as template for primer pairs *AsLPMO10A*
790 and *VSAL_I0902*.

791 PCR products were visualized by agarose gel electrophoresis of the total 20 μ L PCR reaction
792 in 1.3 % agarose 1xTAE electrophoresis buffer (Thermo scientific, Vilnius, Lithuania). The
793 agarose was supplemented with peqGreen DNA/RNA dye (peqlab brand, VWR, Oslo,
794 Norway) for visualization. After gel visualization, the gene expression was assessed as
795 positive if the target gene was amplified in two out of three biological replicates and at the
796 same time no amplification was observed in PCR samples prepared with the -RT controls. A
797 complete list of primers used for amplification of target genes is shown in Table S4.

798

799 **Sample preparation and proteomic analysis**

800 Biological triplicates of *Al. salmonicida* LFI1238 was incubated in 50 mL Asmm
801 supplemented with 1 % β -chitin. At mid-exponential phase, cultures were harvested and
802 fractioned into supernatant and pellet by centrifugation at 4 000 \times g for 10 min at 4°C. β -
803 chitin aliquots from the culture flasks were transferred to 2 mL Safe-Lock Eppendorf tubes
804 (Eppendorf, Hamburg, Germany) and boiled directly for 5 min in 30 μ L NuPAGE LDS
805 sample buffer and NuPAGE sample reducing agent (InvitrogenTM, CA, USA). Filter sterilized

806 supernatant was concentrated using Vivaspin® 20 centrifugal concentrators (Vivaproducts,
807 Littleton, MA, USA) by centrifugation at 4 000 rpm and 4 °C until it reached 1 mL
808 concentrate. The bacterial pellet was lysed in 2 mL 1× BugBuster™ protein extraction
809 reagent (Novagen), incubated by slow shaking for 20 min, followed by centrifugation and
810 protein precipitation. Proteins were precipitated by adding trichloroacetic acid (TCA) to 10 %
811 and incubation over-night at 4 °C. The precipitated proteins were harvested by centrifugation
812 at 16 000 × g and 4°C for 15 min and washed twice in ice-cold 90 % acetone/0.01 M HCl.
813 All final samples were boiled in 30 µL NuPAGE LDS sample buffer and sample reducing
814 agent for 5 min and loaded on Mini-PROTEAN® TGX Stain- Free™ Gels (Bio-Rad
815 laboratories, Hercules, CA, USA). Electrophoresis was performed at 300 V for 3 min using
816 the BIO-RAD Mini-PROTEAN® Tetra System. Gels were stained with Coomassie Brilliant
817 Blue R250 and 1×1 mm cube gel pieces were excised and transferred to 2 mL LoBind tubes
818 containing 200 µL H₂O. Sequentially, the gel pieces were washed 15 min in 200 µl H₂O and
819 decolored by incubating 2×15 min in 200 µL 50% acetonitrile, 25mM ammonium
820 bicarbonate (AmBic). Next, reduction was performed by incubating the gel pieces in
821 dithiothreitol (10 mM DTT/100mM AmBic) for 30 minutes at 56 °C and alkylation was done
822 with iodo-acetamide (55 mM IAA/100mM AmBic) for 30 minutes at room temperature.
823 After removal of the IAA solution, the gel pieces were dehydrated using 200µL 100%
824 acetonitrile and digested using 30-45 µL of 10 ng/µL trypsin solution overnight at 37 °C. The
825 next day, digestion was stopped by addition of 40 µL 1% trifluoroacetic acid (TFA). Peptides
826 were extruded from the gel pieces by 15 minutes sonication and desalted using C18 ZipTips
827 (Merch Millipore, Darmstadt, Germany), according to manufacturer's instructions.

828 Peptides were essentially analyzed as previously described (95). In brief, peptides were
829 loaded onto a nanoHPLC-MS/MS system (Dionex Ultimate 3000 UHPLC; Thermo
830 Scientific) coupled to a Q-Exactive hybrid quadrupole orbitrap mass spectrometer (Thermo
831 Scientific). Peptides were separated using an analytical column (Acclaim PepMap RSLC
832 C18, 2 µm, 100 Å, 75 µm i.d. × 50 cm, nanoViper) with a 90-minutes gradient from 3.2 to 44
833 % [v/v] acetonitrile in 0.1% [v/v] formic acid) at flow rate 300 nL/min. The Q-Exactive mass
834 spectrometer was operated in data-dependent mode acquiring one full scan (400-1500 m/z) at
835 R=70000 followed by (up to) 10 dependent MS/MS scans at R=35000. The raw data were
836 analyzed using MaxQuant version 1.6.3.3 and proteins were identified and quantified using
837 the MaxLFQ algorithm (96). The data were searched against the UniProt *Al. salmonicida*
838 proteome (UP000001730; 3513 sequences) supplemented with common contaminants such

839 as human keratin and bovine serum albumin. In addition, reversed sequences of all protein
840 entries were concatenated to the database to allow for estimation of false discovery rates. The
841 tolerance levels used for matching to the database were 4.5 ppm for MS and 20 ppm for
842 MS/MS. Trypsin/P was used as digestion enzyme and 2 missed cleavages were allowed.
843 Carbamidomethylation of cysteine was set as fixed modification and protein N-terminal
844 acetylation, oxidation of methionines and deamidation of asparagines and glutamines were
845 allowed as variable modifications. All identifications were filtered in order to achieve a
846 protein false discovery rate (FDR) of 1%. Perseus version 1.6.2.3 (97) were used for data
847 analysis, and the quantitative values were log2-transformed, and grouped according to carbon
848 source and condition (substrate/supernatant/pellet). Proteins were only considered detected if
849 they were present in at least two replicates in at least one condition. All identified proteins
850 were annotated with putative carbohydrate-active functions as predicted by dbCAN2 (98),
851 biological functions (GO and Pfam) downloaded from UniProt, and for subcellular location
852 using SignalP5.0 (99).

853

854 **Pseudogenes**

855 Pseudogenes are gene sequences that have been mutated or disrupted into an inactive form
856 over the course of evolution and is commonly thought of as “junk DNA”. The genome of *Al.*
857 *salmonicida* LFI1238 contains a significant number of IS elements, and several genes are
858 truncated and annotated as such pseudogenes. Since pseudogenes in general are believed to
859 be non-functional, putative products of these are commonly not included in proteome
860 databases. Consequently, a proteomic analysis towards the annotated proteome of *Al.*
861 *salmonicida* LFI1238 will not detect products of these genes. To include these in our
862 analysis, a few required steps were taken. Firstly, pseudogenes of three chitinases, a
863 chitoporin and a chitodextrinase were selected as genes of interests based on the publication
864 by Hjerde et al (29). Next, the truncated nucleotide sequence of a pseudogene was retrieved
865 by searching the complete genome sequence annotation of *Al. salmonicida* LFI1238
866 chromosome I (FM178379.1) for the specific gene locus. The gene locus of each selected
867 pseudogene is shown in Table 7. The nucleotide sequences were translated to putative protein
868 sequences using the translate tool at ExPASy Bioinformatics Resource Portal (100). The
869 translate tool identifies potential start and stop codons of the query sequence by assessing
870 reading frames 1-3 of forward and reverse DNA strand. Manually, putative peptides larger or

871 equal to 6 amino acids were selected as supplement for the proteomic analysis. Pseudogene
872 products of which unique peptides were identified was assigned a putative CAZy annotation
873 using dbCAN2.

874

875 **Data availability**

876 The mass spectrometry proteomics data have been deposited to the ProteomeXchange
877 Consortium via the PRIDE (101) partner repository with the dataset identifier PXD021397.

878 **ACKNOWLEDGEMENTS**

879 This work was funded by grant 249865 (GV-K, AS, MØA and JSML) from the Norwegian
880 Research Council and by a PhD fellowships from the Norwegian University of Life Sciences,
881 Faculty of Chemistry Biotechnology and Food Science to GiM. BB has received the support
882 of the EU in the framework of the Marie-Curie FP7 COFUND People Programme, through
883 the award of an AgreenSkills fellowship (under grant agreement n° 267196). The authors
884 would like to thank Simen Foyn Nørstebø (Faculty of Veterinary Medicine, Department of
885 Food Safety and Infection Biology, Norwegian university of life sciences) for providing
886 bacterial strains for deletion mutagenesis and for valuable advice regarding the protocol and
887 Anne Cathrine Bunæs for assistance in purification of proteins.

888

889 **AUTHOR CONTRIBUTIONS**

890 AS: Planned experiments, performed experiments, analyzed data, wrote the paper. JSML:
891 planned experiments, wrote the paper. GiM: Planned experiments, performed experiments,
892 analyzed data, wrote the paper. JSML: planned experiments, wrote the paper. SM: performed
893 experiments, analyzed data, wrote the paper. BB: performed experiments, analyzed data,
894 wrote the paper. MØA: performed experiments, analyzed data, wrote the paper. GeM:
895 planned experiments, wrote the paper. GV-K: conceptualized the study, planned
896 experiments, analyzed data, wrote the paper, supervised the study.

897

898 **CONFLICTS OF INTEREST**

899 The authors declare no conflict of interest.

900

901

902 REFERENCES

- 903 1. Wang Y, Chang Y, Yu L, Zhang C, Xu X, Xue Y, Li Z, Xue C. 2013. Crystalline structure
904 and thermal property characterization of chitin from Antarctic krill (*Euphausia superba*).
905 *Carbohydr Polym* 92:90-97.
- 906 2. Raabe D, Romano P, Sachs C, Fabritius H, Al-Sawalmih A, Yi SB, Servos G, Hartwig HG.
907 2006. Microstructure and crystallographic texture of the chitin–protein network in the
908 biological composite material of the exoskeleton of the lobster *Homarus americanus*. *Mat Sci
909 Eng A* 421:143-153.
- 910 3. Acosta N, Jiménez C, Borau V, Heras A. 1993. Extraction and characterization of chitin from
911 crustaceans. *Biomass Bioenerg* 5:145-153.
- 912 4. Bacon JS, Davidson ED, Jones D, Taylor IF. 1966. The location of chitin in the yeast cell
913 wall. *Biochem J* 101:36C-38C.
- 914 5. Tang WJ, Fernandez J, Sohn JJ, Amemiya CT. 2015. Chitin is endogenously produced in
915 vertebrates. *Curr Biol* 25:897-900.
- 916 6. Wagner G, Lo J, Laine R, Almeder M. 1993. Chitin in the epidermal cuticle of a vertebrate
917 (*Paralipophrys trigloides*, Blenniidae, Teleostei). *Cell Mol Life Sci* 49:317-319.
- 918 7. Gooday GW. 1990. The ecology of chitin degradation. *Adv Microb Ecol* 11:387-430.
- 919 8. Keyhani NO, Roseman S. 1999. Physiological aspects of chitin catabolism in marine bacteria.
920 *Biochim Biophys Acta* 1473:108-22.
- 921 9. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The
922 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res* 42:D490-5.
- 923 10. Brameld KA, Shrader WD, Imperiali B, Goddard WA. 1998. Substrate assistance in the
924 mechanism of family 18 chitinases: Theoretical studies of potential intermediates and
925 inhibitors. *J Mol Biol* 280:913-923.
- 926 11. Terwisscha van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijkstra BW.
927 1995. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure
928 of a complex with allosamidin: evidence for substrate assisted catalysis. *Biochemistry*
929 34:15619-15623.
- 930 12. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH. 2010. An
931 oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. *Science*
932 330:219-222.
- 933 13. Bissaro B, Røhr ÅK, Müller G, Chylenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad
934 G, Eijsink VGH. 2017. Oxidative cleavage of polysaccharides by monocupper enzymes
935 depends on H₂O₂. *Nat Chem Biol* 13:1123-1128.
- 936 14. Gregory RC, Hemsworth GR, Turkenburg JP, Hart SJ, Walton PH, Davies GJ. 2016. Activity,
937 stability and 3-D structure of the Cu(ii) form of a chitin-active lytic polysaccharide
938 monooxygenase from *Bacillus amyloliquefaciens*. *Dalton Trans* 45:16904-16912.
- 939 15. Forsberg Z, Mackenzie AK, Sørlie M, Røhr AK, Helland R, Arvai AS, Vaaje-Kolstad G,
940 Eijsink VGH. 2014. Structural and functional characterization of a conserved pair of bacterial
941 cellulose-oxidizing lytic polysaccharide monooxygenases. *Proc Natl Acad Sci U S A*
942 111:8446-8451.
- 943 16. Nakagawa YS, Kudo M, Loose JS, Ishikawa T, Totani K, Eijsink VGH, Vaaje-Kolstad G.
944 2015. A small lytic polysaccharide monooxygenase from *Streptomyces griseus* targeting
945 α - and β -chitin. *FEBS J* 282:1065-1079.
- 946 17. Sabbadin F, Hemsworth GR, Ciano L, Henrissat B, Dupree P, Tryfona T, Marques RDS,
947 Sweeney ST, Besser K, Elias L, Pesante G, Li Y, Dowle AA, Bates R, Gomez LD, Simister
948 R, Davies GJ, Walton PH, Bruce NC, McQueen-Mason SJ. 2018. An ancient family of lytic
949 polysaccharide monooxygenases with roles in arthropod development and biomass digestion.
950 *Nat Commun* 9:756.
- 951 18. Hunt DE, Gevers D, Vahora NM, Polz MF. 2008. Conservation of the chitin utilization
952 pathway in the Vibionaceae. *Appl Environ Microbiol* 74:44-51.
- 953 19. Lin H, Yu M, Wang X, Zhang XH. 2018. Comparative genomic analysis reveals the evolution
954 and environmental adaptation strategies of vibrios. *BMC Genomics* 19:135.

- 955 20. Uchiyama T, Kaneko R, Yamaguchi J, Inoue A, Yanagida T, Nikaidou N, Regue M,
956 Watanabe T. 2003. Uptake of *N,N'*-diacetylchitobiose [(GlcNAc)₂] via the phosphotransferase
957 system is essential for chitinase production by *Serratia marcescens* 2170. *J Bacteriol*
958 185:1776-82.
- 959 21. Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V. 2008. NagA-dependent uptake
960 of *N*-acetyl-glucosamine and *N*-acetyl-chitin oligosaccharides across the outer membrane of
961 *Caulobacter crescentus*. *J Bacteriol* 190:5230-8.
- 962 22. Keyhani NO, Li XB, Roseman S. 2000. Chitin catabolism in the marine bacterium *Vibrio*
963 *furnissii* - Identification and molecular cloning of a chitoporin. *J Biol Chem* 275:33068-
964 33076.
- 965 23. Suginta W, Chumjan W, Mahendran KR, Schulte A, Winterhalter M. 2013. Chitoporin from
966 *Vibrio harveyi*, a channel with exceptional sugar specificity. *J Biol Chem* 288:11038-11046.
- 967 24. Park JK, Keyhani NO, Roseman S. 2000. Chitin catabolism in the marine bacterium *Vibrio*
968 *furnissii* - Identification, molecular cloning, and characterization of a *N-N'*-diacetylchitobiose
969 phosphorylase. *J Biol Chem* 275:33077-33083.
- 970 25. Erken M, Lutz C, McDougald D. 2015. Interactions of *Vibrio* spp. with zooplankton.
971 *Microbiol Spectr* 3.
- 972 26. Lutz C, Erken M, Noorian P, Sun S, McDougald D. 2013. Environmental reservoirs and
973 mechanisms of persistence of *Vibrio cholerae*. *Front Microbiol* 4:375.
- 974 27. Pruzzo C, Vezzulli L, Colwell RR. 2008. Global impact of *Vibrio cholerae* interactions with
975 chitin. *Environ Microbiol* 10:1400-10.
- 976 28. Egidius E, Wiik R, Andersen K, Hoff K, Hjeltnes B. 1986. *Vibrio salmonicida* sp. nov., a new
977 fish pathogen. *Int J Syst Evol Microbiol* 36:518-520.
- 978 29. Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, Churcher C, Harris D,
979 Norbertczak H, Quail MA, Sanders S, Thurston S, Parkhill J, Willlassen NP, Thomson NR.
980 2008. The genome sequence of the fish pathogen *Aliivibrio salmonicida* strain LFI1238
981 shows extensive evidence of gene decay. *BMC Genomics* 9:616.
- 982 30. Kashulin A, Sørum H, Hjerde E, Willlassen NP. 2015. IS elements in *Aliivibrio salmonicida*
983 LFI1238: Occurrence, variability and impact on adaptability. *Gene* 554:40-49.
- 984 31. Klancher CA, Yamamoto S, Dalia TN, Dalia AB. 2020. ChiS is a noncanonical DNA-binding
985 hybrid sensor kinase that directly regulates the chitin utilization program in *Vibrio cholerae*.
986 *Proc Natl Acad Sci U S A* 117:20180-20189.
- 987 32. Li X, Roseman S. 2004. The chitinolytic cascade in Vibrios is regulated by chitin
988 oligosaccharides and a two-component chitin catabolic sensor/kinase. *Proc Natl Acad Sci U S*
989 A 101:627-31.
- 990 33. Debnath A, Mizuno T, Miyoshi SI. 2020. Regulation of chitin-dependent growth and natural
991 competence in *Vibrio parahaemolyticus*. *Microorganisms* 8.
- 992 34. Metzger LC, Matthey N, Stoudmann C, Collas EJ, Blokesch M. 2019. Ecological
993 implications of gene regulation by TfoX and TfoY among diverse *Vibrio* species. *Environ*
994 *Microbiol* 21:2231-2247.
- 995 35. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. 2012. dbCAN: a web resource for automated
996 carbohydrate-active enzyme annotation. *Nucleic Acids Res* 40:W445-W451.
- 997 36. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG,
998 Bertoni M, Bordoli L. 2014. SWISS-MODEL: modelling protein tertiary and quaternary
999 structure using evolutionary information. *Nucleic Acids Res* 42:W252-W258.
- 1000 37. Hsieh YC, Wu YJ, Chiang TY, Kuo CY, Shrestha KL, Chao CF, Huang YC, Chuankhayan P,
1001 Wu WG, Li YK, Chen CJ. 2010. Crystal structures of *Bacillus cereus* NCTU2 chitinase
1002 complexes with chitooligomers reveal novel substrate binding for catalysis: a chitinase
1003 without chitin binding and insertion domains. *J Biol Chem* 285:31603-15.
- 1004 38. Suzuki K, Suzuki M, Taiyoji M, Nikaidou N, Watanabe T. 1998. Chitin binding protein
1005 (CBP21) in the culture supernatant of *Serratia marcescens* 2170. *Biosci Biotechnol Biochem*
1006 62:128-135.
- 1007 39. Vaaje-Kolstad G, Horn SJ, van Aalten DMF, Synstad B, Eijsink VGH. 2005. The non-
1008 catalytic chitin-binding protein CBP21 from *Serratia marcescens* is essential for chitin
1009 degradation. *J Biol Chem* 280:28492-28497.

- 1010 40. Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AFM,
1011 Svergun DI, Eijsink VGH, Chatterjee NS, van Aalten DMF. 2012. The *Vibrio cholerae*
1012 colonization factor GbpA possesses a modular structure that governs binding to different host
1013 surfaces. *PLoS Path* 8.
- 1014 41. Chiu E, Hijnen M, Bunker RD, Boudes M, Rajendran C, Aizel K, Olieric V, Schulze-Briese
1015 C, Mitsuhashi W, Young V, Ward VK, Bergoin M, Metcalf P, Coulibaly F. 2015. Structural
1016 basis for the enhancement of virulence by viral spindles and their in vivo crystallization. *Proc
1017 Natl Acad Sci USA* 112:3973-3978.
- 1018 42. Aachmann FL, Sørli M, Skjåk-Bræk G, Eijsink VGH, Vaaje-Kolstad G. 2012. NMR
1019 structure of a lytic polysaccharide monooxygenase provides insight into copper binding,
1020 protein dynamics, and substrate interactions. *Proc Natl Acad Sci U S A* 109:18779-84.
- 1021 43. Loose JSM, Arntzen MO, Bissaro B, Ludwig R, Eijsink VGH, Vaaje-Kolstad G. 2018.
1022 Multipoint precision binding of substrate protects lytic polysaccharide monooxygenases from
1023 self-destructive off-pathway processes. *Biochemistry* 57:4114-4124.
- 1024 44. Khider M, Hansen H, Hjerde E, Johansen JA, Willassen NP. 2019. Exploring the
1025 transcriptome of luxI- and ΔainS mutants and the impact of N-3-oxo-hexanoyl-L- and N-3-
1026 hydroxy-decanoyl-L-homoserine lactones on biofilm formation in *Aliivibrio salmonicida*.
1027 *PeerJ* 7:e6845.
- 1028 45. Khider M, Hjerde E, Hansen H, Willassen NP. 2019. Differential expression profiling of
1029 DeltalitR and DeltarpoQ mutants reveals insight into QS regulation of motility, adhesion and
1030 biofilm formation in *Aliivibrio salmonicida*. *BMC Genomics* 20:220.
- 1031 46. Pedersen HL, Hjerde E, Paulsen SM, Hansen H, Olsen L, Thode SK, Santos MT, Paulssen
1032 RH, Willassen NP, Haugen P. 2010. Global responses of *Aliivibrio salmonicida* to hydrogen
1033 peroxide as revealed by microarray analysis. *Mar Genomics* 3:193-200.
- 1034 47. Brurberg MB, Nes IF, Eijsink VGH. 1996. Comparative studies of chitinases A and B from
1035 *Serratia marcescens*. *Microbiology* 142:1581-1589.
- 1036 48. Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T. 2002.
1037 Chitinases A, B, and C1 of *Serratia marcescens* 2170 produced by recombinant *Escherichia
1038 coli*: enzymatic properties and synergism on chitin degradation. *Biosci Biotechnol Biochem*
1039 66:1075-1083.
- 1040 49. Tuveng TR, Hagen LH, Mekasha S, Frank J, Arntzen MØ, Vaaje-Kolstad G, Eijsink VGH.
1041 2017. Genomic, proteomic and biochemical analysis of the chitinolytic machinery of *Serratia
1042 marcescens* BJL200. *BBA - Proteins Proteom* 1865:414-421.
- 1043 50. Monge EC, Tuveng TR, Vaaje-Kolstad G, Eijsink VGH, Gardner JG. 2018. Systems analysis
1044 of the glycoside hydrolase family 18 enzymes from *Cellvibrio japonicus* characterizes
1045 essential chitin degradation functions. *J Biol Chem* 293:3849-3859.
- 1046 51. Synstad B, Gåseidnes S, Van Aalten DM, Vriend G, Nielsen JE, Eijsink VGH. 2004.
1047 Mutational and computational analysis of the role of conserved residues in the active site of a
1048 family 18 chitinase. *FEBS J* 271:253-262.
- 1049 52. Synstad B, Vaaje-Kolstad G, Cedervist FH, Saua SF, Horn SJ, Eijsink VGH, Sørli M.
1050 2008. Expression and characterization of endochitinase C from *Serratia marcescens* BJL200
1051 and its purification by a one-step general chitinase purification method. *Biosci Biotechnol
1052 Biochem* 72:715-723.
- 1053 53. Loose JSM, Forsberg Z, Fraaije MW, Eijsink VGH, Vaaje-Kolstad G. 2014. A rapid
1054 quantitative activity assay shows that the *Vibrio cholerae* colonization factor GbpA is an
1055 active lytic polysaccharide monooxygenase. *FEBS Lett* 588:3435-3440.
- 1056 54. Suginta W, Chuenark D, Mizuhara M, Fukamizo T. 2010. Novel beta-N-
1057 acetylglucosaminidases from *Vibrio harveyi* 650: cloning, expression, enzymatic properties,
1058 and subsite identification. *BMC Biochem* 11:40.
- 1059 55. Chitlaru E, Roseman S. 1996. Molecular cloning and characterization of a novel β-N-Acetyl-
1060 D-glucosaminidase from *Vibrio furnissii*. *J Biol Chem* 271:33433-33439.
- 1061 56. Choi KH, Seo JY, Park KM, Park CS, Cha J. 2009. Characterization of glycosyl hydrolase
1062 family 3 beta-N-acetylglucosaminidases from *Thermotoga maritima* and *Thermotoga
1063 neapolitana*. *J Biosci Bioeng* 108:455-9.

- 1064 57. Tsujibo H, Fujimoto K, Tanno H, Miyamoto K, Imada C, Okami Y, Inamori Y. 1994. Gene
1065 sequence, purification and characterization of *N*-acetyl-beta-glucosaminidase from a marine
1066 bacterium, *Alteromonas* sp. strain O-7. *Gene* 146:111-5.
- 1067 58. Cheng Q, Li H, Merdek K, Park JT. 2000. Molecular characterization of the beta-*N*-
1068 acetylglucosaminidase of *Escherichia coli* and its role in cell wall recycling. *J Bacteriol*
1069 182:4836-40.
- 1070 59. Yadava U, Vetting MW, Al Obaidi N, Carter MS, Gerlt JA, Almo SC. 2016. Structure of an
1071 ABC transporter solute-binding protein specific for the amino sugars glucosamine and
1072 galactosamine. *Acta Crystallogr F Struct Biol Commun* 72:467-72.
- 1073 60. Oiki S, Mikami B, Maruyama Y, Murata K, Hashimoto W. 2017. A bacterial ABC transporter
1074 enables import of mammalian host glycosaminoglycans. *Sci Rep* 7:1069.
- 1075 61. Wei X, Guo Y, Shao C, Sun Z, Zhurina D, Liu D, Liu W, Zou D, Jiang Z, Wang X, Zhao J,
1076 Shang W, Li X, Liao X, Huang L, Riedel CU, Yuan J. 2012. Fructose uptake in
1077 *Bifidobacterium longum* NCC2705 is mediated by an ATP-binding cassette transporter. *J Biol*
1078 *Chem* 287:357-67.
- 1079 62. Hayes CA, Dalia TN, Dalia AB. 2017. Systematic genetic dissection of chitin degradation and
1080 uptake in *Vibrio cholerae*. *Environ Microbiol* 19:4154-4163.
- 1081 63. Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz
1082 D, Rogniaux H, Gimbert I, Record E, Berrin JG. 2015. Substrate specificity and
1083 regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by *Podospora*
1084 *anserina*. *Biotechnol Biofuels* 8:90.
- 1085 64. Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich
1086 D, Eijsink VGH, Horn SJ. 2014. A C4-oxidizing lytic polysaccharide monooxygenase
1087 cleaving both cellulose and cello-oligosaccharides. *J Biol Chem* 289:2632-2642.
- 1088 65. Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R. 2012. Production of four
1089 *Neurospora crassa* lytic polysaccharide monooxygenases in *Pichia pastoris* monitored by a
1090 fluorimetric assay. *Biotechnol Biofuels* 5:79.
- 1091 66. Hangasky JA, Iavarone AT, Marletta MA. 2018. Reactivity of O₂ versus H₂O₂ with
1092 polysaccharide monooxygenases. *Proc Natl Acad Sci U S A* 115:4915-4920.
- 1093 67. Kuusk S, Bissaro B, Kuusk P, Forsberg Z, Eijsink VGH, Sørlie M, Välijamäe P. 2018.
1094 Kinetics of H₂O₂-driven degradation of chitin by a bacterial lytic polysaccharide
1095 monooxygenase. *J Biol Chem* 293:523-531.
- 1096 68. Vaaje-Kolstad G, Bøhle LA, Gåseidnes S, Dalhus B, Bjørås M, Mathiesen G, Eijsink VGH.
1097 2012. Characterization of the chitinolytic machinery of *Enterococcus faecalis* V583 and high-
1098 resolution structure of its oxidative CBM33 enzyme. *J Mol Biol* 416:239-254.
- 1099 69. Hamre AG, Eide KB, Wold HH, Sørlie M. 2015. Activation of enzymatic chitin degradation
1100 by a lytic polysaccharide monooxygenase. *Carbohydr Res* 407:166-169.
- 1101 70. Yang Y, Li J, Liu X, Pan X, Hou J, Ran C, Zhou Z. 2017. Improving extracellular production
1102 of *Serratia marcescens* lytic polysaccharide monooxygenase CBP21 and *Aeromonas veronii*
1103 B565 chitinase Chi92 in *Escherichia coli* and their synergism. *AMB Express* 7:170.
- 1104 71. Paspaliari DK, Loose JS, Larsen MH, Vaaje-Kolstad G. 2015. *Listeria monocytogenes* has a
1105 functional chitinolytic system and an active lytic polysaccharide monooxygenase. *FEBS J*
1106 282:921-936.
- 1107 72. Filandr F, Kavan D, Kracher D, Laurent C, Ludwig R, Man P, Halada P. 2020. Structural
1108 dynamics of lytic polysaccharide monooxygenase during catalysis. *Biomolecules* 10.
- 1109 73. Feng Y, Chien KY, Chen HL, Chiu CH. 2012. Pseudogene recoding revealed from proteomic
1110 analysis of salmonella serovars. *J Proteome Res* 11:1715-9.
- 1111 74. Kuo CH, Ochman H. 2010. The extinction dynamics of bacterial pseudogenes. *PLoS Genet* 6.
- 1112 75. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DR. 2011. Pseudogenes: pseudo-
1113 functional or key regulators in health and disease? *RNA* 17:792-798.
- 1114 76. Milligan MJ, Lipovich L. 2015. Pseudogene-derived lncRNAs: emerging regulators of gene
1115 expression. *Front Genet* 5.
- 1116 77. Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. 2014. The *Vibrio cholerae*
1117 extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine.
1118 *PloS one* 9:e103119.

- 1119 78. Frederiksen RF, Yoshimura Y, Storgaard BG, Paspaliari DK, Petersen BO, Chen K, Larsen T,
1120 Duus JØ, Ingmer H, Bovin NV. 2015. A diverse range of bacterial and eukaryotic chitinases
1121 hydrolyzes the LacNAc (Gal β 1–4GlcNAc) and LacdiNAc (GalNAc β 1–4GlcNAc) motifs
1122 found on vertebrate and insect cells. *J Biol Chem* 290:5354-5366.
- 1123 79. Songsiririthigul C, Pantoom S, Aguda AH, Robinson RC, Suginta W. 2008. Crystal
1124 structures of *Vibrio harveyi* chitinase A complexed with chitooligosaccharides: implications
1125 for the catalytic mechanism. *J Struct Biol* 162:491-499.
- 1126 80. Nagashima T, Tange T, Anazawa H. 1999. Dephosphorylation of phytate by using the
1127 *Aspergillus niger* phytase with a high affinity for phytate. *Appl Environ Microbiol* 65:4682-
1128 4684.
- 1129 81. Choonia HS, Lele S. 2013. Three phase partitioning of β -galactosidase produced by an
1130 indigenous *Lactobacillus acidophilus* isolate. *Sep Purif Technol* 110:44-50.
- 1131 82. Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links *Vibrio cholerae*
1132 environmental survival and human infection. *Nature* 438:863-866.
- 1133 83. Bhowmick R, Ghosal A, Das B, Koley H, Saha DR, Ganguly S, Nandy RK, Bhadra RK,
1134 Chatterjee NS. 2008. Intestinal adherence of *Vibrio cholerae* involves a coordinated
1135 interaction between colonization factor GbpA and mucin. *Infect Immun* 76:4968-4977.
- 1136 84. Leisner JJ, Larsen MH, Jørgensen RL, Brøndsted L, Thomsen LE, Ingmer H. 2008. Chitin
1137 hydrolysis by *Listeria* spp., including *L. monocytogenes*. *Appl Environ Microbiol* 74:3823-
1138 3830.
- 1139 85. Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunaes AC, Mekasha S, Røhr
1140 AK, Kommedal E, Ludviksen JA, Arntzen MO, Schmidt B, Zurich RH, van Sorge NM,
1141 Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. 2021. The lytic
1142 polysaccharide monooxygenase CbpD promotes *Pseudomonas aeruginosa* virulence in
1143 systemic infection. *Nat Commun* 12:1230.
- 1144 86. Mitsuhashi W, Kawakita H, Murakami R, Takemoto Y, Saiki T, Miyamoto K, Wada S. 2007.
1145 Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the
1146 peritrophic membrane. *J Virol* 81:4235-4243.
- 1147 87. Nørstebø SF, Paulshus E, Bjelland AM, Sørum H. 2017. A unique role of flagellar function in
1148 *Aliivibrio salmonicida* pathogenicity not related to bacterial motility in aquatic environments.
1149 *Microb Pathog* 109:263-273.
- 1150 88. Bjelland AM, Sørum H, Tegegne DA, Winther-Larsen HC, Willassen NP, Hansen H. 2012.
1151 LitR of *Vibrio salmonicida* is a salinity-sensitive quorum-sensing regulator of phenotypes
1152 involved in host interactions and virulence. *Infect Immun* 80:1681-1689.
- 1153 89. Nørstebø SF, Loetherington L, Landsverk M, Bjelland AM, Sørum H. 2018. *Aliivibrio*
1154 *salmonicida* requires O-antigen for virulence in Atlantic salmon (*Salmo salar* L.). *Microb*
1155 *Pathog* 124:322-331.
- 1156 90. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. 1996. Flagellin A is essential for the
1157 virulence of *Vibrio anguillarum*. *J Bacteriol* 178:1310-9.
- 1158 91. Aslanidis C, de Jong PJ. 1990. Ligation-independent cloning of PCR products (LIC-PCR).
1159 *Nucleic Acids Res* 18:6069-74.
- 1160 92. Manoil C, Beckwith J. 1986. A genetic approach to analyzing membrane protein topology.
1161 *Science* 233:1403-8.
- 1162 93. Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JSM, Crouch LI, Røhr ÅK, Gardner JG,
1163 Eijsink VGH, Vaaje-Kolstad G. 2016. Structural and functional analysis of a lytic
1164 polysaccharide monooxygenase important for efficient utilization of chitin in *Celvibrio*
1165 *japonicus*. *J Biol Chem* 291:7300-7312.
- 1166 94. Wagner TM, Janice J, Paganelli FL, Willems RJ, Askarian F, Pedersen T, Top J, de Haas C,
1167 van Strijp JA, Johannessen M, Hegstad K. 2018. *Enterococcus faecium* TIR-domain genes are
1168 part of a gene cluster which promotes bacterial survival in blood. *Int J Microbiol*
1169 2018:1435820.
- 1170 95. Tiukova IA, Brandenburg J, Blomqvist J, Sampels S, Mikkelsen N, Skaugen M, Arntzen MO,
1171 Nielsen J, Sandgren M, Kerkhoven EJ. 2019. Proteome analysis of xylose metabolism in
1172 *Rhodotorula toruloides* during lipid production. *Biotechnol Biofuels* 12:137.

- 1173 96. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide
1174 label-free quantification by delayed normalization and maximal peptide ratio extraction,
1175 termed MaxLFQ. *Mol Cell Proteomics* 13:2513-26.
- 1176 97. Tyanova S, Temu T, Cox J. 2016. The MaxQuant computational platform for mass
1177 spectrometry-based shotgun proteomics. *Nat Protoc* 11:2301-2319.
- 1178 98. Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, Yi H, Yang Z, Yin Y. 2018. dbCAN-
1179 seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. *Nucleic
1180 Acids Res* 46:D516-D521.
- 1181 99. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von
1182 Heijne G, Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural
1183 networks. *Nat Biotechnol* 37:420-423.
- 1184 100. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. 2003. ExPASy: The
1185 proteomics server for in-depth protein knowledge and analysis. *Nucleic Acids Res* 31:3784-8.
- 1186 101. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti
1187 A, Griss J, Mayer G, Eisenacher M, Perez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz
1188 S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaino JA.
1189 2019. The PRIDE database and related tools and resources in 2019: improving support for
1190 quantification data. *Nucleic Acids Res* 47:D442-D450.
- 1191 102. Simon R, Priefer U, Puhler A. 1983. A broad host range mobilization system for in vivo
1192 genetic-engineering - transposon mutagenesis in Gram-negative bacteria. *Bio-Technology*
1193 1:784-791.
- 1194 103. Vaaje-Kolstad G, Houston DR, Riemen AHK, Eijsink VGH, van Aalten DMF. 2005. Crystal
1195 structure and binding properties of the *Serratia marcescens* chitin-binding protein CBP21. *J
1196 Biol Chem* 280:11313-11319.

1197

1198

1199 **TABLES**

1200 **Table 1.** Growth rate and max cell density of *Al. salmonicida* and derivative mutant strains.

Strain	Rate constant μ (hours ⁻¹)	Generation time (hours)	Max cell density (OD ₆₀₀)
Wild type	0.43 ± 0.01	17.5 ± 0.4	1.60 ± 0.08
ΔAsChi18A	na	na	0.82 ± 0.03
ΔAsLPMO10A	0.27 ± 0.07	29.1 ± 8.2	1.25 ± 0.08
ΔAsLPMO10B	0.28 ± 0.01	26.8 ± 1.1	1.15 ± 0.04
ΔAΔB	0.28 ± 0.02	26.8 ± 1.7	1.24 ± 0.04
ΔAΔBΔChi	na	na	0.58 ± 0.02
Wild type control media	na	na	0.37 ± 0.05

1201

1202

1203 **Table 2. Gene expression of *AsChi18A*, *AsLPMO10A*, *AsLPMO10B* and *AsChi18B_p***. Exp =
1204 Exponential phase, Stat.= Stationary phase. Data shown as positive (“+” on green background) or
1205 negative (“-“ on blue background) detection of expression, based on three biological replicates.
1206 *AsChi18A* (VSAL_I0757), *AsLPMO10A* (VSAL_II0134), *AsLPMO10B* (VSAL_II0217) and *AsChi18B_p*
1207 (VSAL_I0902).

	GlcNAc		(GlcNAc) ₂		Glucose		β -Chitin	
	Exp.	Stat.	Exp.	Stat.	Exp.	Stat.	Exp.	Stat.
<i>AsChi18A</i>	+	+	+	-	+	+	+	+
<i>AsLPMO10A</i>	+	+	+	+	+	-	+	-
<i>AsLPMO10B</i>	+	-	-	-	-	-	-	-
<i>AsChi18B_p</i>	+	-	+	-	+	-	+	-

1208

1209

1210 **Table 3.** Description of genes targeted for deletion.

Gene name	Protein name	CAZy family	CAZyme name
<i>VSAL_I0757 chiA</i>	Endochitinase chiA	GH18	<i>AsChi18A</i>
<i>VSAL_II0134 gbpA</i>	GlcNAc-binding protein A	AA10	<i>AsLPMO10A</i>
<i>VSAL_II0217</i>	Chitinase B	AA10	<i>AsLPMO10B</i>

1211

1212

1213 **Table 4.** Primers used for construction of in frame deletion mutants.

Primer	Sequence 5'-3'
<i>AsGH18_YF</i>	GAAGGGCCCCACTAGTCGCACACTGATTATCACACT
<i>AsGH18_IR</i>	GTTCATTAATGTCAGACTGTTAATGAAAATCCGTTCAT
<i>AsGH18_IF</i>	CATTAACAGTCTGACATTAATGAACGCTCAATAA
<i>AsGH18_YR</i>	ACCGTCGACCCTCGAGGTGTTCTAATAGCGGGCATT
<i>AsLPMO10A_YF</i>	GAAGGGCCCCACTAGTGGGTACAAGATTGTTGCTTT
<i>AsLPMO10A _IR</i>	ATCCAAGCCATCGTTGAGCATTATTCATCATTATT
<i>AsLPMO10A _IF</i>	AAATGCTAACGATGGCTTGGATAAAATCTAACCA
<i>AsLPMO10A _YR</i>	ACCGTCGACCCTCGAGGTGTACGGATGTTCTAACATC
<i>AsLPMO10B_YF</i>	GAAGGGCCCCACTAGTCCGTCAATCATCAACTAGAGA
<i>AsLPMO10B _IR</i>	TCCCCATTCTATTGTATTGTATTCATATTTCATCCTGTCT
<i>AsLPMO10B _IF</i>	AATACAATA GAATGGGGAGTATGGCGA
<i>AsLPMO10B _YR</i>	ACCGTCGACCCTCGAGTTCTGTCACCCATGATCAC

1214

1215 **Table 5.** Complete list of strains and vectors.

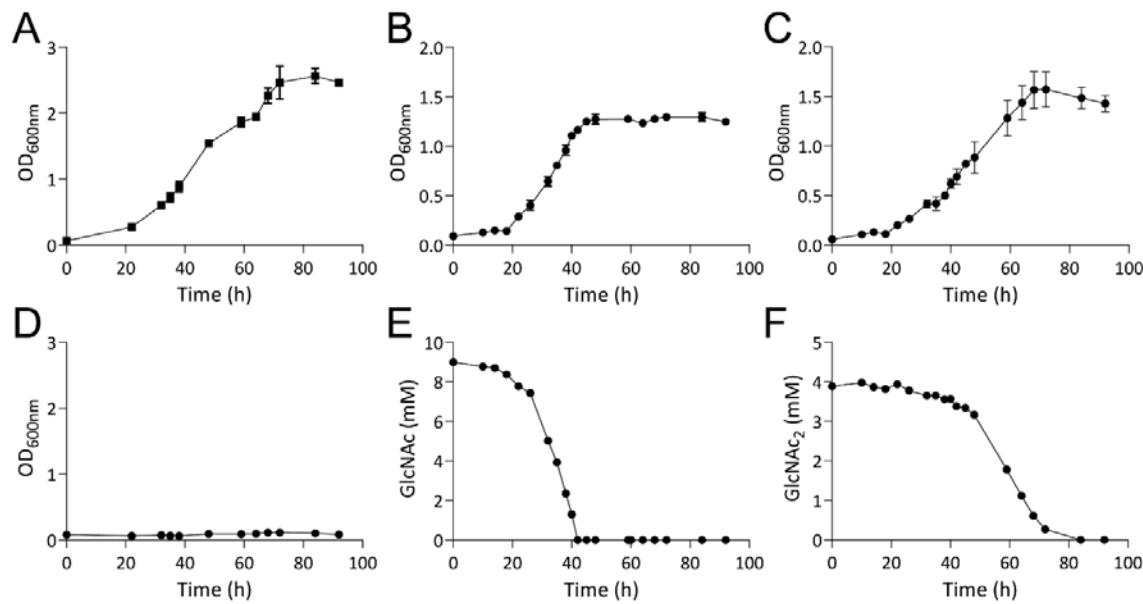
Strain or plasmid	Comment	Ref.
LFI1238	<i>Aliivibrio salmonicida</i> strain LFI1238	§
S17-1 λpir	<i>Escherichia coli</i> conjugation donor strain S17-1 λpir	(102)
AsΔChi18A	LFI1238 containing gene deletion ΔChi18A	*
AsΔLPMO10A	LFI1238 containing gene deletion ΔLPMO10A	*
AsΔLPMO10B	LFI1238 containing gene deletion ΔLPMO10B	*
AsΔLPMO10A-Δ10B	LFI1238 containing gene deletions ΔLPMO10A and ΔLPMO10B	*
AsΔLPMO10A-Δ10B-ΔChi	LFI1238 containing gene deletions ΔLPMO10A, ΔLPMO10B and ΔChi18A	*
pDM4	pDM4 SacB suicide plasmid/ cloning vector	(90)
pDM4-AsΔChi18A	pDM4-construct designed for allelic exchange and deletion of AsChi18A	*
pDM4-AsΔLPMO10A	pDM4-construct designed for allelic exchange and deletion of AsLPMO10A	*
pDM4-AsΔLPMO10B	pDM4-construct designed for allelic exchange and deletion of AsLPMO10B	*

1216 §Originally isolated by the Norwegian Institute of Fisheries and Aquaculture Research, N-9291 Tromsø,

1217 Norway, but provided by Simen Foyn Nørstebø for this study. *This study.

1218 **Table 6.** Cloning primers for *AsLPMO10A* and -B and *AsChi18A*.

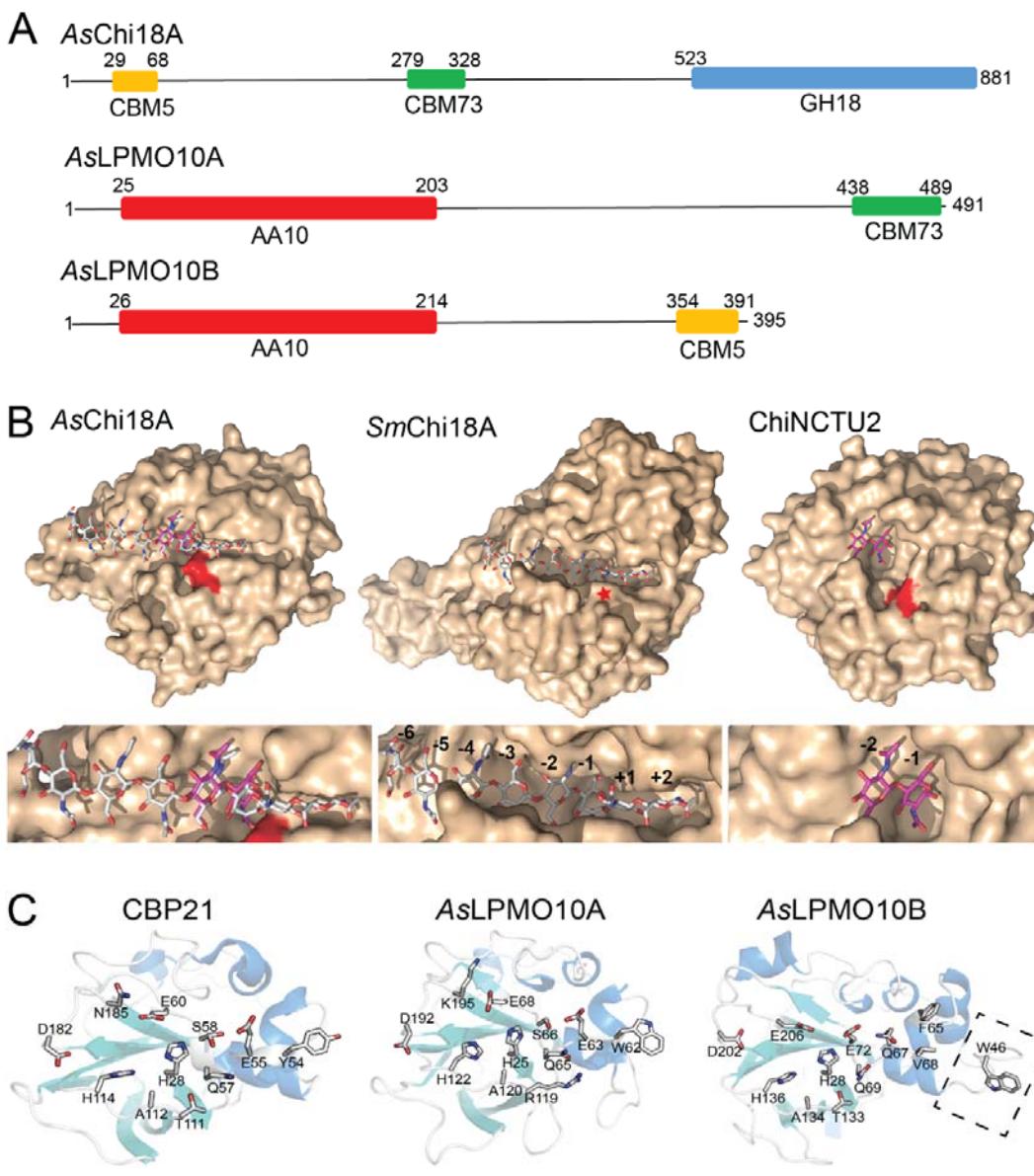
Cloning primers	Sequence (5'-3')
pNIC-CH/ <i>AsLPMOA</i> (forward)	TTAAGAAGGAGATACTATGATGAATAATGCAGTACCAA
pNIC-CH/ <i>AsLPMOA</i> (reverse)	AATGGCTTGGGACAAAATCTAAGCGCACCATCATCACCACCATT
pNIC-CH/ <i>AsLPMOB</i> (forward)	TTAAGAAGGAGATACTATGACCAACACGATTAAATCAATT
pNIC-CH/ <i>AsLPMOB</i> (reverse)	AATGGGGTGTGGCGCTAAGCGCACCATCATCACCACCATT
pNIC-CH/ <i>AsGH18A</i> (forward)	TTAAGAAGGAGATACTATGAAACGTATCTTATTAAACAGT
pNIC-CH/ <i>AsGH18A</i> (reverse)	TGATGAATGCGCAAGCGCACCATCATCACCACCATT


1219

1220 **Table 7. Pseudogenes analyzed.** Gene locus, product name and CAZyme based name.

Gene locus	Product	CAZyme based name
<i>VSAL_I0763</i>	Chitinase A (fragment)	na
<i>VSAL_I0902</i>	Chitinase A (fragment)	<i>AsChi18Bp</i>
<i>VSAL_I1414</i>	Putative chitinase (pseudogene)	<i>AsChi19p</i>
<i>VSAL_I1942</i>	Chitinase (pseudogene)	<i>AsChi18Cp</i>
<i>VSAL_I2352</i>	Chitoporin (pseudogene)	na
<i>VSAL_I1108</i>	Chitodextrinase (fragment)	na

1221


1222 **FIGURES**

1223

1224 **Figure 1. Utilization of Glucose, GlcNAc and (GlcNAc)₂.** Panels A to C show the growth of *Al.*
1225 *salmonicida* LFI1238 in minimal media supplemented with 0.2 % glucose, 0.2% GlcNAc (9.0 mM) or
1226 0.2 % (GlcNAc)₂ (4.7 mM), respectively. Growth in defined media without supplementation of
1227 carbon source (negative control) is shown in panel D. Growth results are shown as mean value of
1228 three biological replicates and the standard deviation is indicated. Panels E & F show the depletion of
1229 soluble substrates by *Al. salmonicida*, determined by sampling of the culture supernatant of one
1230 replicate different time points through the growth time-period and quantification of GlcNAc (panel E)
1231 or (GlcNAc)₂ (panel F) by ion exclusion chromatography. Results are shown as the mean value of
1232 three technical replicates.

1233

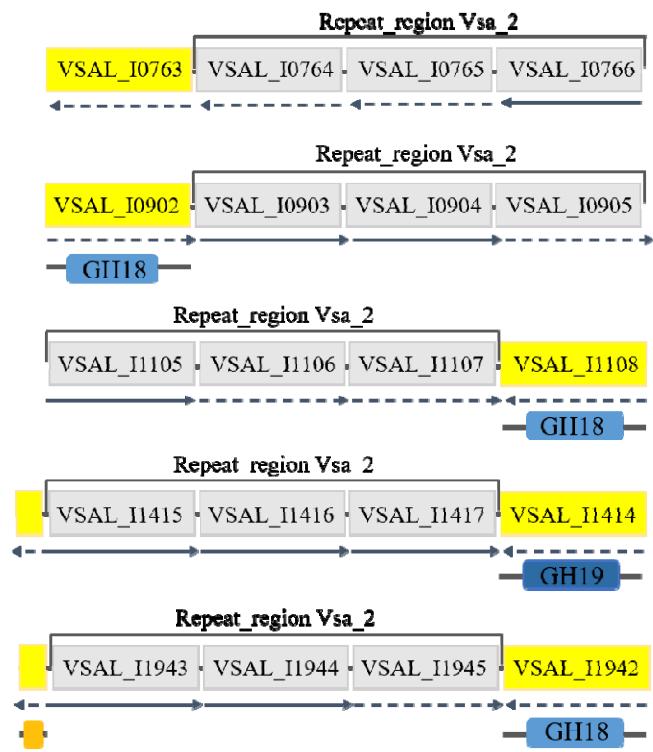
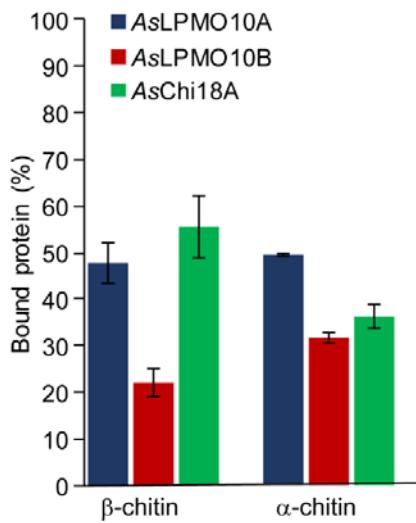


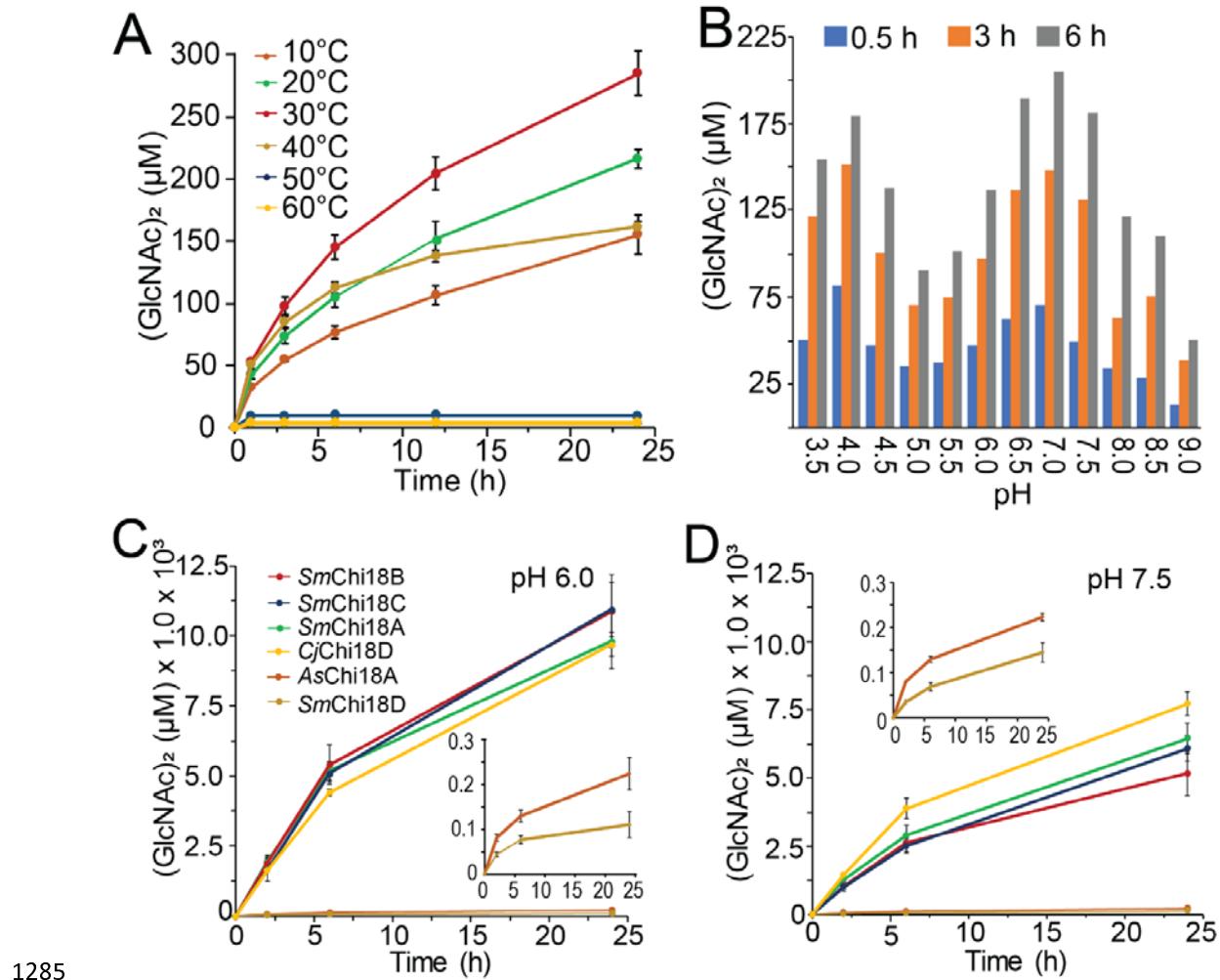
Figure 2. Predicted domains and three dimensional structures of the *A. salmonicida* chitinase and LPMOs. (A) Prediction of CAZy domains of the chitinolytic enzymes was performed using the dbCAN server. Numbers indicate the position in the sequence. The theoretical molecular weight of the proteins calculated by the ProtParam tool (in the absence of the predicted signal peptide) is 87.4, 52.5 and 41.2 kDa for AsChi18A, AsLPMO10A and AsLPMO10B, respectively. Signal peptides were determined by the SignalP 4.0 server (<http://www.cbs.dtu.dk/services/SignalP/>) and represent residues 1-29, 1-25 and 1-26 for AsChi18A, AsLPMO10A and AsLPMO10B, respectively. The GenBank protein identifiers for the enzymes are CAQ78442.1 (AsChi18A, also called “endochitinase A”), CAQ80888.1 (AsLPMO10A, also called “chitin binding protein”) and CAQ80971.1 (AsLPMO10B, also called “chitinase B”). (B) The homology model of AsChi18A (left structure) and the structures of SmChi18A deep clefted *exo*-chitinase from *S. marcescens* (middle structure) and the *Bacillus cereus* GH18 ChiNCTU2 shallow clefted chitinase (37) are shown in light brown surface representation with the catalytic acids colored red (or indicated by a red star for SmChiA, as it is concealed by other amino acids). Ligands are shown in stick representation with gray (chitoctaose; SmChi18A) and purple (chitobiose; ChiNCTU2) colored carbon atoms. Subsites are indicated by numbering. Ligands shown in the AsChi18A substrate binding cleft are derived from structural superimpositions of the AsChi18A model with SmChi18A or ChiNCTU2 and are provided for illustrational purposes only.

1253 The template used for modelling the *AsChi18A* catalytic GH18 domain was PDB ID 3N1A (apo-
1254 enzyme structure of ChiNCTU2 from *B. cereus*) and gave a Qmean value of -1.99, which represents a
1255 good quality model. **(C)** The crystal structure of CBP21 (PDB ID 2BEM) and the homology models
1256 for *AsLPMO10A* and *AsLPMO10B* are shown in cartoon representation. For CBP21, the side chains
1257 of the amino acids that have been shown to be involved in substrate binding by experimental evidence
1258 (42, 43, 103) are shown in stick representation. The corresponding amino acids in *AsLPMO10A* and
1259 *AsLPMO10B* are also shown in stick representation. One exception is W46 of *AsLPMO10B*, which is
1260 not present in the two other enzymes. The latter residue is positioned on an insertion that potentially
1261 extends the putative binding surface (indicated by rectangle with dashed lines). In CBP21, Ser58 is
1262 shown with two alternative side chain conformations. Swiss Model was used with default parameters to
1263 generate the homology models of *AsLPMO10A* and -B, using PDB structures 2WX (66.5%
1264 sequence identity to *AsLPMO10A*) and 4YN2 (43.6% sequence identity to *AsLPMO10B*) as
1265 templates, respectively. The Q-mean scores obtained were -1.65 for *AsLPMO10A* model and -3.34 for
1266 *AsLPMO10B*

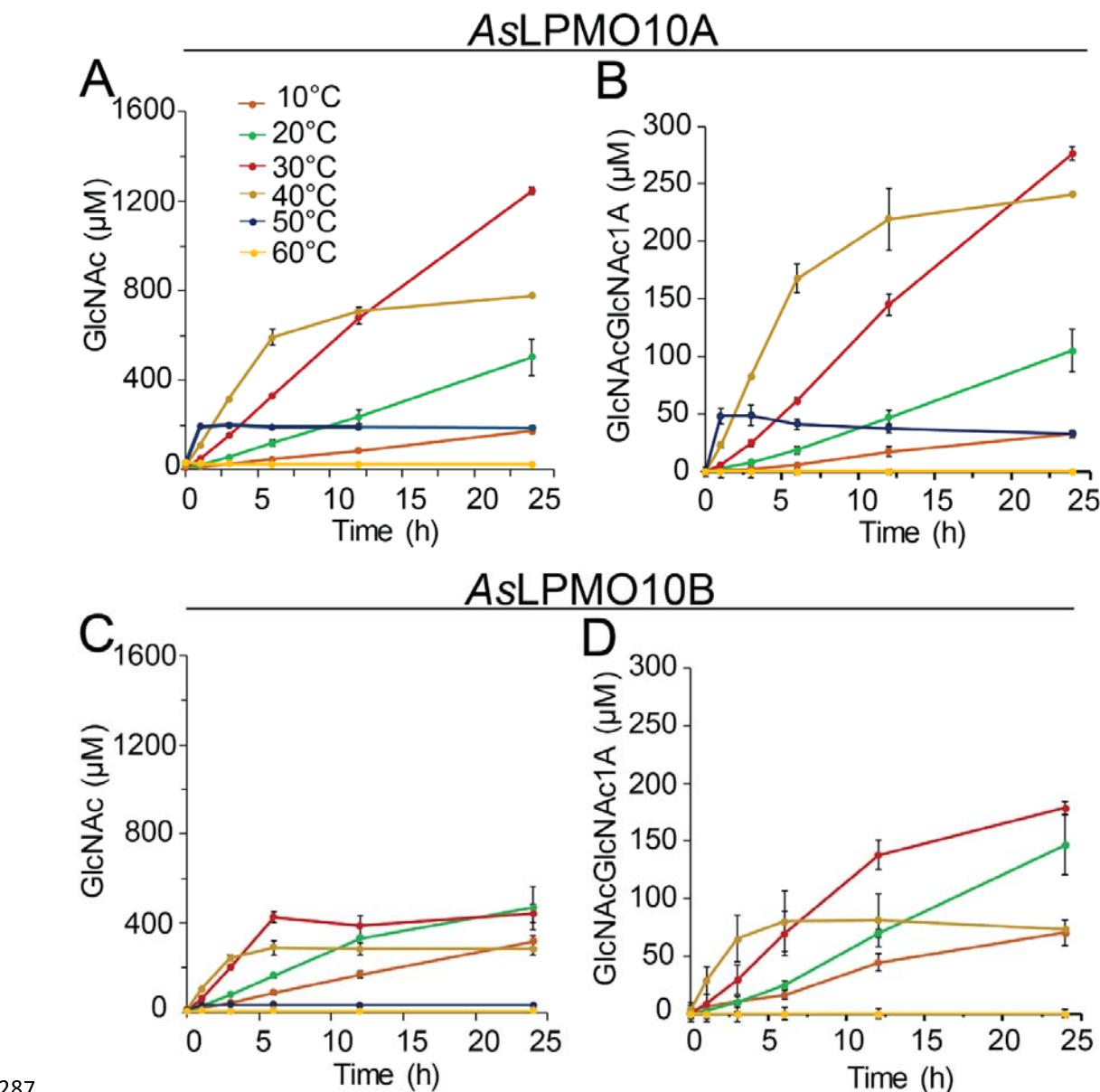
1267


1268

1269

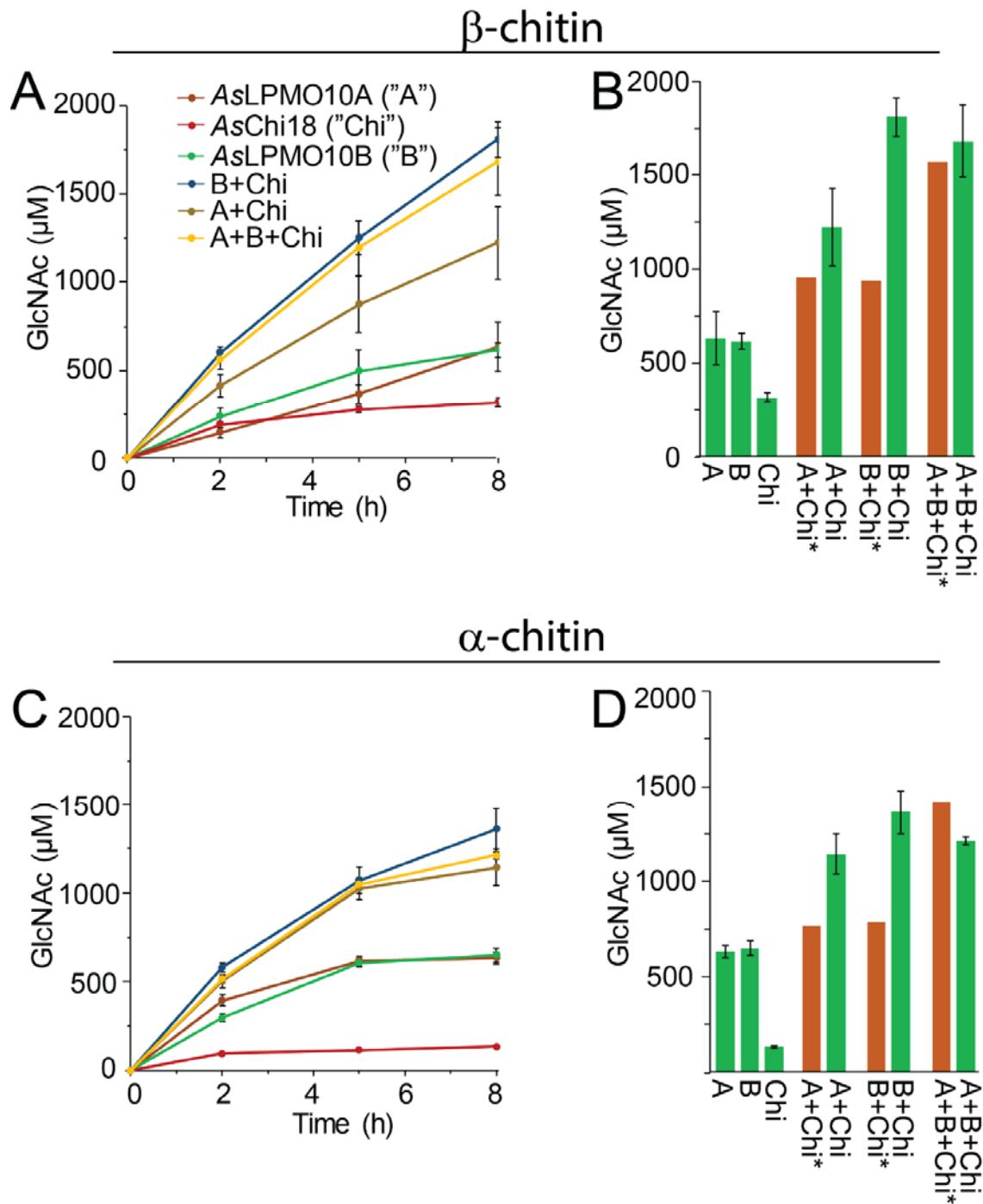

1270 **Figure 3. Sequence analysis of putative chitinase pseudogenes.** The gene locus and insertion
1271 sequence elements are shown in yellow and gray, respectively, with the locus name indicated. Solid
1272 lined arrow direction indicates reading frame direction, while dashed lined arrows indicate
1273 pseudogenes. CAZyme annotation of the pseudogenes genes was done using dbCAN2 and the
1274 resulting enzyme activity prediction is displayed below each gene. Annotation of VSAL_I0763,
1275 VSAL_I0902, VSAL_I1108 was performed with the truncated chitinase/chitodextrinase sequence.
1276 VSAL_I1414 and VSAL_I1942 were analyzed using the full-length sequences including repeat
1277 region. The illustrations representing the ORFs are not to scale.

1278


1279
1280 **Figure 4. Substrate binding of AsChi18A, AsLPMO10A and -B.** Each bar shows the percentage of
1281 bound proteins after 2 h of incubation at 30 °C. Reactions contained 10 mg/mL of substrate, 0.75 μ M
1282 (LPMOs) or 0.50 μ M (AsChi18A) of enzymes and 10 mM of Tris-HCl buffer at pH 7.5. All reactions
1283 were run in triplicates and the standard deviations are indicated by error bars.

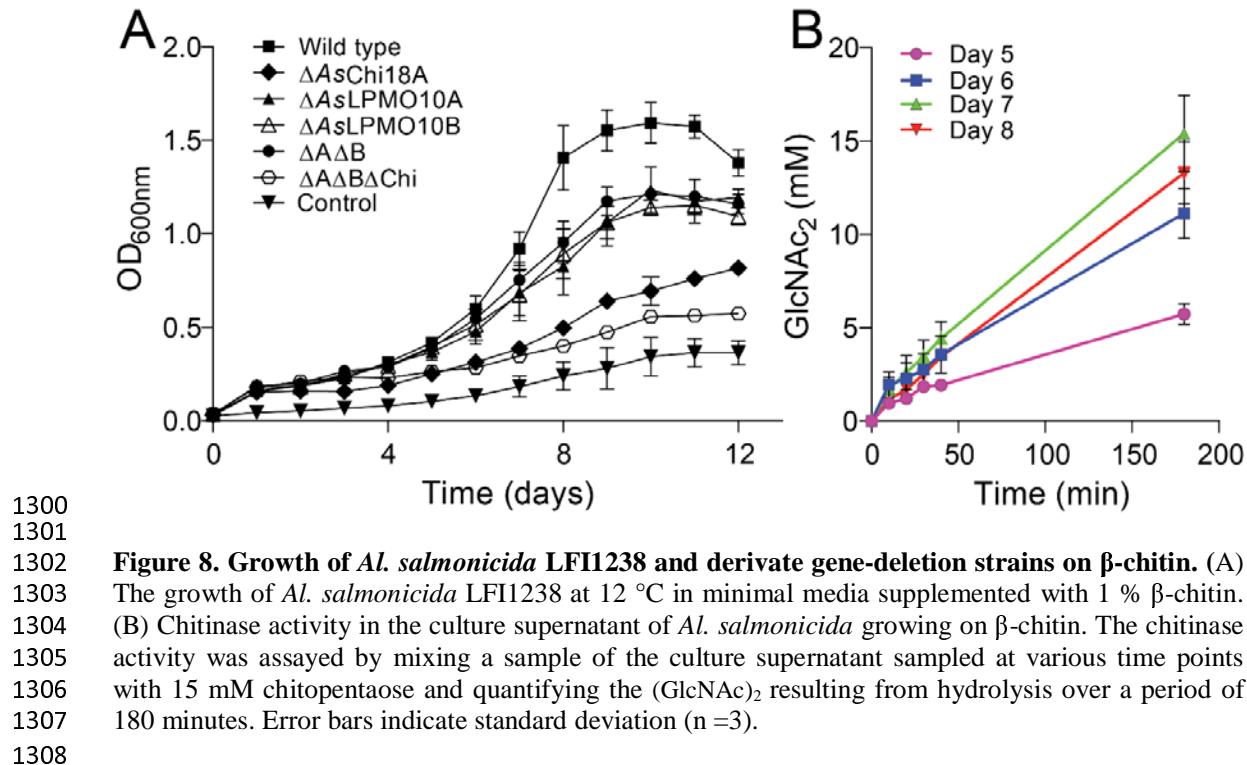
1284

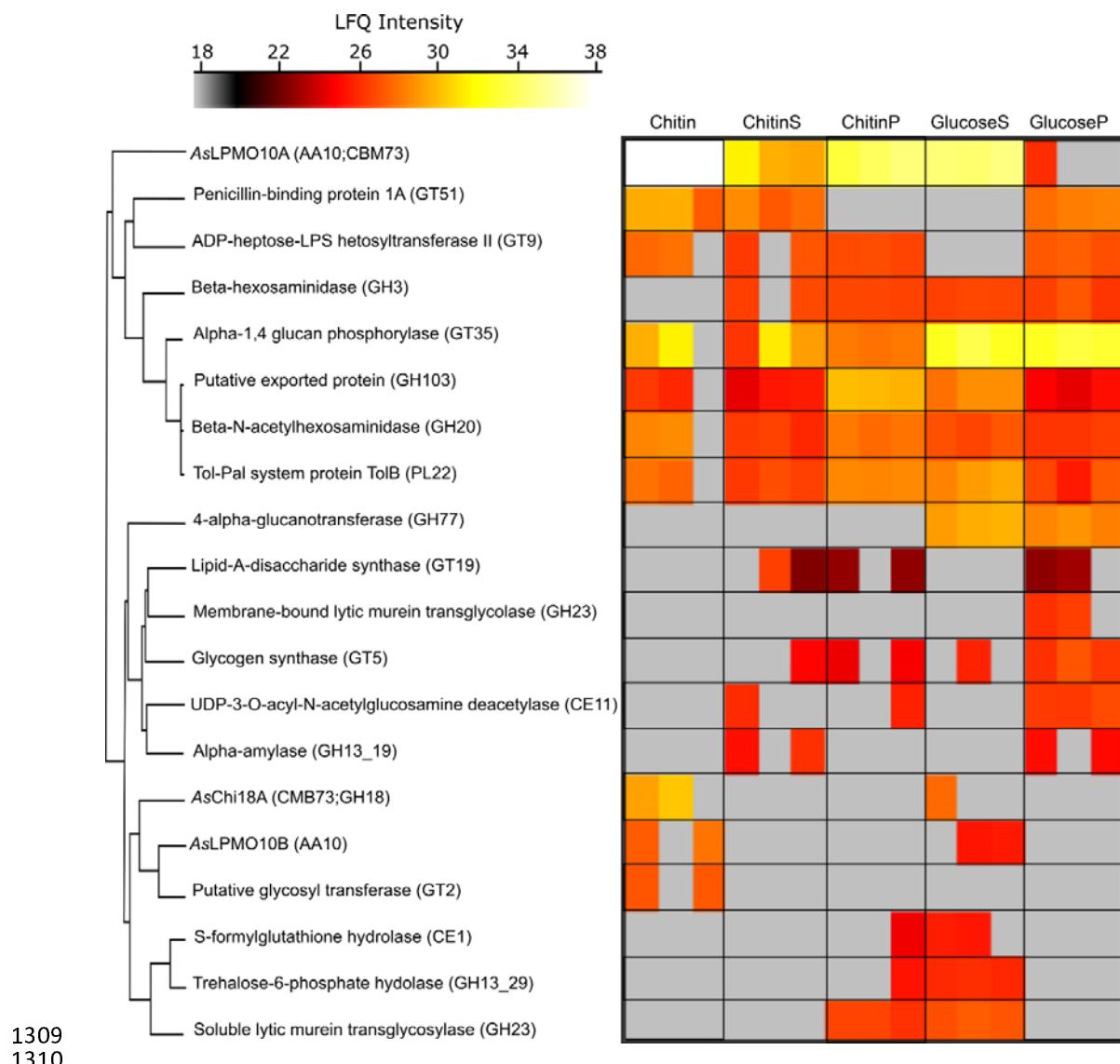
Figure 5. Enzymatic properties of AsChi18A. Production of $(\text{GlcNAc})_2$ by AsChi18A analysed at various temperatures (A) and pH values (B). The activity of AsChi18A was also compared to the chitinases from *Serratia marcescens* (SmChi18A, -B, -C and -D) and *C. japonicus* (CjChi18D) at pH 6.0 (C) and 7.5 (D). All reactions conditions included 10 mg/mL β -chitin and 0.5 μM enzyme. For data displayed in panel A, reactions were carried out at pH 7.5. For the data displayed in panel B, all reactions were incubated at 30 °C. Buffers used were formic acid pH 3.5, acetic acid pH 4.0 and 4.5, ammonium acetate pH 4.5 and 5.0, MES pH 5.5, 6.0 and 6.5, BisTris-HCl pH 7.0, Tris-HCl pH 7.5 and 8.0 and Bicine pH 8.5 and 9.0. The amounts of $(\text{GlcNAc})_2$ presented are based on the average of three independent reactions containing 10 mg/mL β -chitin, 0.5 μM enzyme and 10 mM buffer. The insets in panel C and D show magnified views of reactions catalysed by AsChi18A and SmChi18D. Standard deviations are indicated by error bars (n=3).


1286

1287

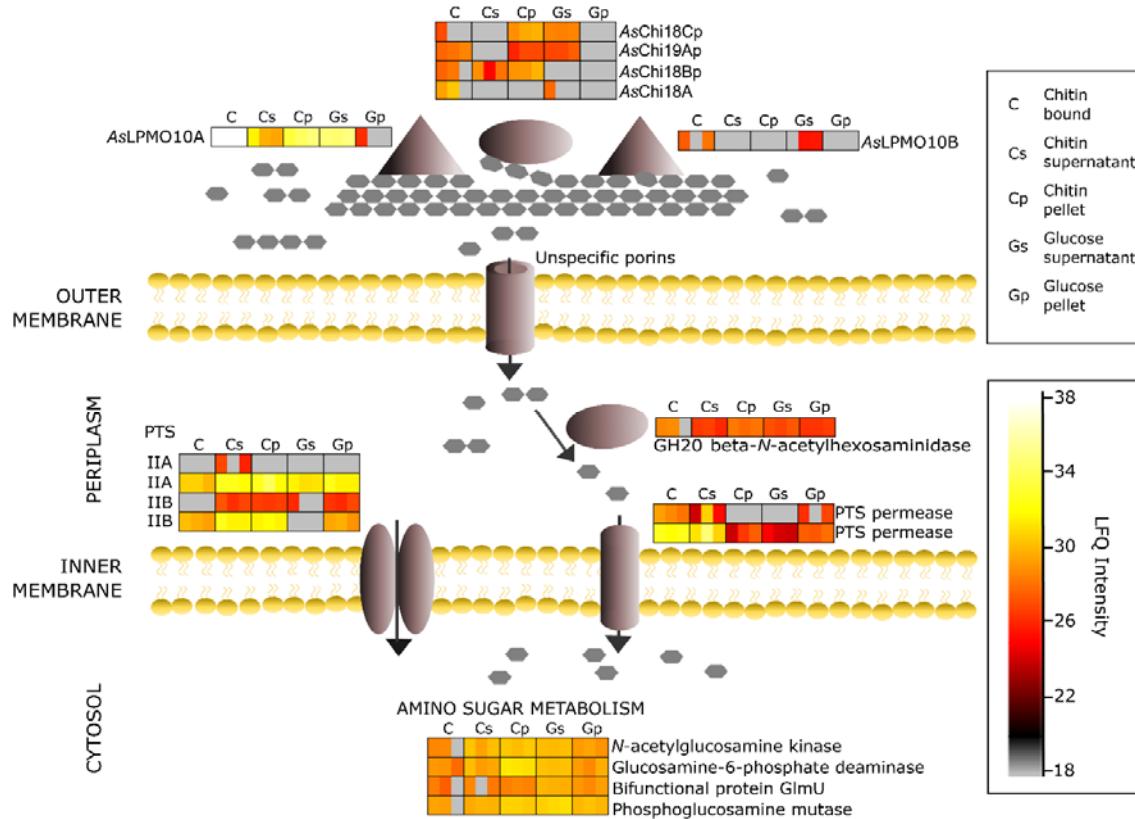
Figure 6. Operational temperature stability of *A. salmonicida* LPMOs. The activity of AsLPMO10A and AsLPMO10B is indicated by the production of GlcNAc is shown in panel A and C, respectively. Since the end-product of chitin degradation by the LPMOs are oxidized chitooligosaccharides (Fig. S4) that are inconvenient to quantify, the reaction products obtained from the reactions were depolymerized by Chitobiase that completely converts the oligosaccharide mixture to GlcNAc and oxidized (GlcNAc)₂ (i.e. GlcNAcGlcNAc1A). The quantities of the latter products formed by the LPMOs, are shown in panel B and D. The amounts presented are based on the average of three independent reactions, which contained 10 mg/mL of β -chitin, 1 μ M of enzyme, 1 mM of ascorbic acid and 10 mM of Tris-HCl buffer at pH 7.5, incubated at different temperatures between 10 and 60 °C (colour code provided in panel A). Standard deviations are indicated by error bars.


1288



1289
1290

1291 **Figure 7. Synergistic activity of AsLPMO10s and AsChi18A on chitin.** Panels A and C show the
 1292 production of GlcNAc by the individual and combined enzymes on β - and α -chitin, respectively.
 1293 Panels B and D show the theoretically calculated amounts of GlcNAc based on the sum of its
 1294 production by the individual enzymes (*, brown bars) and the detected amounts of GlcNAc by
 1295 combining the enzymes after 8 h (green bars). The amounts presented are based on the average of
 1296 three independent reactions containing 10 mg/mL of chitin substrate, 1 μ M of LPMOs and/or 0.5 μ M
 1297 of GH18, 1 mM of ascorbic acid and 10 mM of Tris-HCl buffer at pH 7.5, incubated at 30 °C for 8 h.
 1298 Standard deviations are indicated by error bars (n=3).


1299

1309
1310
1311 **Figure 9. CAZymes expressed by *Al. salmonicida* LFI1238.** Heatmap presentation of identified
1312 CAZymes and label free quantification intensities ranging from low intensity (grey), medium intensity
1313 (red) to high intensity (white). The data is presented as three biological replicates. Conditions are as
1314 following: proteins eluted from chitin obtained from the culturing experiment (Chitin), culture
1315 supernatant proteins from the chitin cultivation experiment (ChitinS), proteins extracted from the
1316 bacterial cells obtained from the chitin cultivation experiment (ChitinP), culture supernatant proteins
1317 obtained from culturing the bacterium on glucose (GlucoseS) and proteins extracted bacterial cell
1318 pellet from the glucose cultivation experiment (GlucoseP).

1319

