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SUMMARY 32 

Recent data support a hierarchical model of colon cancer driven by a population of cancer 33 

stem cells (CSCs). Greater understanding of the mechanisms that regulate CSCs may 34 

therefore lead to more effective treatments. Serial limiting dilution xenotransplantation 35 

assays of colon cancer patient-derived tumors demonstrated ALDHPositive cells to be 36 

enriched for tumorigenic self-renewing CSCs. In order to identify CSC modulators, we 37 

performed RNA-sequencing analysis of ALDHPositive CSCs from a panel of colon cancer 38 

patient-derived organoids (PDOs) and xenografts (PDXs). These studies demonstrated 39 

CSCs to be enriched for embryonic and neural development gene sets. Functional 40 

analyses of genes differentially expressed in both ALDHPositive PDO and PDX CSCs 41 

demonstrated the neural crest stem cell (NCSC) regulator and wound response gene 42 

EGR2 to be required for CSC tumorigenicity and to control expression of homeobox 43 

superfamily embryonic master transcriptional regulator HOX genes and the embryonic 44 

and neural stem cell regulator SOX2. In addition, we identify EGR2, HOXA2, HOXA4, 45 
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HOXA5, HOXA7, HOXB2, HOXB3 and the tumor suppressor ATOH1 as new prognostic 46 

biomarkers in colorectal cancer. 47 

 48 

INTRODUCTION 49 

Colorectal cancer (CRC), the third most common cancer and fourth most common cause 50 

of cancer deaths worldwide1, is a heterogeneous tumor driven by a subpopulation of 51 

CSCs, that may also be the source of relapse following treatment2–5. Elucidation of the 52 

mechanisms that regulate CSC survival and tumorgenicity may therefore lead to novel 53 

treatments and improved patient outcomes. 54 

 55 

CSCs are undifferentiated cancer cells that share many of the attributes of stem cells, 56 

such as multipotency, self-renewal and the ability to produce daughter cells that 57 

differentiate2,6,7. Stem cells are controlled by core gene networks that include the 58 

embryonic master transcriptional regulator HOX genes8,9 and SOX210, whose 59 

misregulation can result in aberrant stem cell function, developmental defects and 60 

cancer11,12. These genes are crucial for embryonic development and their expression is 61 

maintained in adult tissue stem cells, where they regulate self-renewal and 62 

differentiation9,13–15. HOX genes and SOX2 are aberrantly expressed in several cancers, 63 

including CRC, and emerging evidence demonstrates their involvement in the 64 

transformation of tissue stem cells into CSCs11,16–23. Modulation of HOX genes and SOX2 65 

could therefore provide novel therapeutic strategies to block tumorigenesis and overcome 66 

therapy resistance in CRC and other CSC driven cancers. 67 

 68 
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During embryonic development of the neural crest, which gives rise to the peripheral 69 

nervous system (PNS) and several non-neuronal cell types24, HOX and SOX genes are 70 

regulated by retinoic acid25,26, a product of the normal tissue stem cell and CSC marker 71 

aldehyde dehydrogenase (ALDH1A1, ALDH1A2, ALDH1A3)8,26–29, and by the neural 72 

crest stem cell (NCSC) zinc finger transcription factor and wound response gene EGR2 73 

(KROX20)30–41.  74 

 75 

Here we carried out whole transcriptome analysis of functionally tested ALDHPositive CSCs 76 

from a panel of colon PDOs and PDX models and show that colon CSCs and Lgr5Positive 77 

intestinal stem cells (ISCs) are highly enriched for nervous system development and 78 

neural crest genes. Furthermore, we demonstrate that the neural crest stem cell (NCSC) 79 

gene EGR2 is a marker of poor prognosis in CRC and modulates expression of HOX 80 

genes and SOX2 in CSCs to regulate tumorigenicity and differentiation.  81 

 82 

RESULTS 83 

Colon cancer PDOs are heterogeneous and enriched for ALDHPositive self-renewing 84 

CSCs 85 

Colon cancer PDO models were established from freshly isolated primary tumors and 86 

metastases from colon cancer patients (Table S1) by embedding in growth-factor reduced 87 

Matrigel and cultivating in serum free media, as previously described42–44. 88 

Immunostaining of PDOs for the structural proteins EZRIN and EPCAM demonstrated 89 

that PDOs retain the apical-basal polarity and structural adhesion of the normal intestine 90 

(Figure 1A).  Immunostaining of PDOs and equivalent PDX models for stem cell regulator 91 
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Wnt signaling protein BETA-CATENIN demonstrated differences in nuclear localization 92 

of BETA-CATENIN and confirmed previous data demonstrating heterogeneous Wnt 93 

signaling activity within the tumors43 (Figure 1B). Increased aldehyde dehydrogenase 94 

(ALDH) activity, as measured using the Aldefluor™ assay, is a marker of CSCs in colon 95 

cancer and many other cancer types29. We previously carried out limiting dilution serial 96 

xenotransplantation of ALDHNegative and  ALDHPositive cells and demonstrated that colon 97 

CSCs are ALDHPositive and enriched for Wnt signaling activity43. However, ALDHNegative 98 

cells also gave rise to tumors when transplanted at higher cell numbers. In order to 99 

determine if ALDHNegative and ALDHPositive cells maintained their self-renewal and 100 

tumorigenic capacity, we performed additional rounds of limiting dilution serial 101 

xenotransplantation of ALDHNegative and ALDHPositive cells (Figure 1E). These data 102 

confirmed that PDOs are enriched for ALDHPositive cells compared to equivalent PDX 103 

models (Figure 1C and D) and that ALDHPositive CSCs self-renew to maintain their 104 

tumorigenic capacity over extended rounds of xenotransplantation, but that ALDHNegative 105 

cells do not (Figure 1E).  106 

 107 

Colon CSCs are enriched for embryonic and nervous system development gene 108 

expression signatures 109 

In order to identify modulators of colon CSCs, ALDHNegative cells and ALDHPositive CSCs 110 

were isolated from PDO and PDX models and subjected to whole transcriptome analysis 111 

by RNA-sequencing. ALDH1A1 is a marker of poor prognosis in several cancer 112 

types27,29,45–49 and has been reported to be responsible for the aldehyde dehydrogenase 113 

activity that defines the ALDHPositive cell fraction in the AldefluorTM assay50. However, 114 
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nineteen different isoforms of ALDH exist and several of these, including ALDH1A2, 115 

ALDH1A3 and ALDH2 have also been reported to be involved in the AldefluorTM assay51–116 

53. Here we show that ALDH1A1 expression is enriched in ALDHPositive CSCs compared 117 

to ALDHNegative cells (Figure 2A and S1). GSEA of ALDHPositive and ALDHNegative cells 118 

isolated from PDO and PDX models demonstrated that ALDHPositive CSCs are enriched 119 

for nervous system development, TNFa via NFkB signaling, epithelial mesenchymal 120 

transition (EMT), embryonic development and Wnt signaling transcripts (Figure 2B).   121 

 122 

Differential gene expression analysis identified 218 genes upregulated in PDOs and 250 123 

genes upregulated in PDX models compared to ALDHNegative cells. Of these, 30 genes 124 

were found to be differentially expressed in both ALDHPositive PDO and PDX cells (Figure 125 

2C). Interestingly, many of these differentially expressed and common PDO-PDX genes 126 

are expressed during embryogenesis and have a role in neural crest cell (NCC) and 127 

central nervous system (CNS) development. Of these 30 common genes (Figure S2) 10, 128 

ALDH1A150, EGR231,38,41,54–60, EGR356,58,61–66, HDGFRP367–72, OLFM273–76, 129 

OLFML375,77,78, PCP479–82, PEG1083–91, PRKACB92,93, and THBS194–99, were selected for 130 

functional analysis based on their tissue expression and roles in development and cancer 131 

(Figure 2D, S2 and S3).  132 

 133 

EGR2 is required for colon CSC survival in non-adherent cell culture 134 

The ability of CSCs to survive and form spheroids in non-adherent cell culture is the gold 135 

standard assay for the assessment of normal stem cells and CSCs in vitro100,101. In order 136 

to test 10 of the differentially expressed genes common to  ALDHPositive PDO-PDX models, 137 
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cells were transfected with siRNAs against ALDH1A1, EGR2, EGR3, HDGFRP3, OLFM2, 138 

OLFML3, PCP4, PEG10, PRKACB and THBS1 (Figure 3B), serially plated at limiting 139 

dilution into low-attachment plates and assessed for spheroid formation. siRNA EGR2 140 

caused a significant decrease in spheroid formation and proliferation in all models (Figure 141 

3A, C and D). Immunostaining of PDO, PDX and clinical samples demonstrated EGR2 to 142 

be ubiquitously expressed, with increased cytoplasmic and nuclear expression in cancer 143 

compared to normal mucosa (Figure S4).  144 

 145 

shRNA EGR2 cells are less tumorigenic, more differentiated and have decreased 146 

expression of HOX genes and SOX2 147 

Limiting dilution xenotransplantation of control virus transduced and shRNA EGR2 148 

transduced 195-CB-P cells was carried out to determine if EGR2 regulates tumorigenesis 149 

in vivo. Control virus transduced cells generated xenografts at each cell dilution tested 150 

but shRNA EGR2 transduced cells were significantly impaired in their ability to generate 151 

tumors when transplanted at low cell number (Figure 3E). In addition, shRNA EGR2 152 

tumors grew more slowly than control transduced cells (Figure 3F). These data 153 

demonstrate that loss of EGR2 in CSCs significantly decreased their tumorigenic 154 

capacity. Quantitative RT-PCR analysis of three shRNA EGR2 tumors confirmed that the 155 

shRNA EGR2 knockdown was present (Figure 3G). Significantly, expression of 156 

proliferation (MKI67, MYC), intestinal stem cell genes (ALCAM, ALDH1A1, BMI1, EPHA4, 157 

EPHB2, LRIG1, OLFM4, PROM1) and Wnt signaling genes (AXIN2, CTNNB1, LGR5, 158 

RUNX2) were decreased, while the expression of differentiation markers, including the 159 

tumor suppressor and Wnt signaling target ATOH1, were strongly increased (Figure 3G). 160 
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Interestingly, ATOH1 is also essential for neuronal differentiation during embryonic 161 

development102–109. 162 

 163 

During embryogenesis EGR2 has a conserved role in regulating embryonic master 164 

transcriptional regulator HOX genes and the stem cell regulator SOX230–32,34–41. In 165 

addition, several HOX genes and SOX2 have recently been shown to be enriched in and 166 

to regulate colon CSCs17–20,23.  We therefore investigated whether these genes were 167 

similarly regulated by EGR2 in colon PDX tumors. Notably, we found that SOX2 and 168 

several HOX genes, namely HOXA2, HOXA4, HOXA5, HOXA7, HOXB2, HOXB3 and 169 

HOXD10, were downregulated in shRNA EGR2 tumors (Figure 3G).  170 

 171 

EGR2, ATOH1, HOXA2, HOXA4, HOXA5, HOXA7, HOXB2 and HOXB3 are predictors 172 

of patient outcome in colorectal cancer 173 

To characterize EGR2, ATOH1, HOXA2, HOXA4, HOXA5, HOXA7, HOXB2, HOXB3 174 

HOXD10 and SOX2 expression in clinical samples, we analyzed expression across 175 

different colorectal tumor stages (Figure 4A). These data demonstrated that EGR2 (p-176 

value 0.027), HOXA2 (p-value 0.026), HOXA4 (p-value 0.000075) HOXA5 (p-value 177 

0.001), HOXA7 (p-value 0.009), HOXB3 (p-value 0.0016) and HOXD10 (p-value 0.043) 178 

expression are more enhanced in late stage T4 clinical tumors. Of these, HOXA4, 179 

HOXA5, HOXA7, and HOXB3 are significant at FDR < 5%. Analysis of Kaplan-Meier 180 

survival curves showed that patients with higher EGR2, HOXA2, HOXA4, HOXA5, 181 

HOXA7, HOXB2 and HOXB3 expression have a poorer clinical outcome (p-values 182 

0.00017, 0.0028, 0.0006, 0.0043, 0.0022, 0.00025 and 0.019, respectively). Of these, 183 
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higher EGR2, HOXA2, HOXA4, HOXA5 and HOXA7 are significant at FDR < 5%. 184 

Furthermore, these data demonstrated that high levels of ATOH1 are predictive of good 185 

prognosis (p-value 0.0013). These data support ATOH1, EGR2 and its target genes 186 

HOXA2, HOXA4, HOXA5, HOXA7 and HOXB3 as potential new biomarkers for CRC 187 

prognosis.  188 

 189 

DISCUSSION 190 

We previously demonstrated that colon cancer PDOs are enriched for CSCs and  191 

preserve the functional and molecular heterogeneity found in vivo, thus making them 192 

excellent models for the study of CSCs43. However, the defined conditions of the PDO 193 

culture media results in reduced cell type diversity42. Conversely, the in vivo environment 194 

promotes differentiation and reduces CSCs to a minority population. Therefore, in order 195 

to identify genes that regulate CSC survival and differentiation we carried out whole 196 

transcriptome analyses of functionally defined ALDHNegative cells and ALDHPositive CSCs 197 

from colon cancer PDO and PDX models and performed functional analyses of genes 198 

differentially expressed and common to ALDHPositive CSCs from both models.  199 

 200 

Interestingly, these analyses revealed transcripts associated with nervous system 201 

development and NCSCs to be highly enriched in both PDO and PDX CSCs. Recent 202 

studies have demonstrated that solid tumors, including CRC, contain nerve fibers that 203 

promote tumor growth and metastasis, indeed, neurogenesis in CRC is an independent 204 

indicator of poor clinical outcome110,111, but their origin and mechanism of innervation is 205 

unknown112–117.  206 
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 207 

A growing body of evidence has demonstrated a gut-neural axis118–123 in which various 208 

intestinal cells, including stem cells, interact with the autonomic nervous system (ANS), 209 

either directly124–130 or via the enteric nervous system (ENS)131–133, a network of neurons 210 

and glia within the bowel wall that regulates most aspects of intestinal function134, to 211 

control stem cell proliferation and differentiation135,136. For example, ISCs express ANS-212 

associated alpha2A adrenoreceptor (Adra2a) and acetylcholine (ACh) receptors 213 

implicated in controlling intestinal epithelial proliferation130,137–140. In addition, 214 

differentiated cell types, such as intestinal enterochromaffin (EC) cells have been found 215 

to be electrically excitable and modulate serotonin-sensitive primary afferent nerve fibers 216 

via synaptic connections, enabling them to detect and transduce environmental, 217 

metabolic, and homeostatic information from the gut directly to the nervous system141. 218 

Recent studies have also demonstrated that enteroendocrine cells form neuroepithelial 219 

circuits by directly synapsing with vagal neurons and called for a renaming of these cells 220 

from enteroendocrine to neuropod cells129,142. Neuropod cells and EC cells, like all 221 

differentiated intestinal cells (enteroendocrine, enterocyte, goblet, paneth) and CSCs, 222 

derive from multipotent Lgr5Positive crypt stem cells143,144. Significantly, colorectal CSCs 223 

themselves have been shown to be capable of generating neurons when transplanted 224 

intraperitoneally in nude mice145. Intestinal stem cells and CSCs should therefore possess 225 

the capacity to express nervous system genes, since they are the progenitors of cells with 226 

neural function. However, until now, no previous study had directly reported nervous 227 

system gene enrichment in ISCs or CSCs.  228 

 229 
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We therefore carried out gene ontology analysis of Lgr5Positive crypt stem cell 230 

transcriptomes from earlier studies146–148. In agreement with our CSC data (Figure 2), this 231 

analysis revealed normal ISCs to also be enriched for nervous system genes (Figure S5). 232 

In addition, the PDOs showed ubiquitous staining for the epithelial cell marker EPCAM 233 

(Figure 1A), demonstrating that they do not contain a separate non-epithelial neural cell 234 

lineage that could be the origin of the nervous system gene expression. Overall, these 235 

data suggest that CSCs may be a source of the neural connections that interact with the 236 

ANS and peripheral nervous system (PNS) to drive tumor growth and metastasis112–116. 237 

Denervation of the ANS and PNS, which causes loss of autonomic neurotransmitters in 238 

the gut, results in loss of crypt stem cell proliferation and suppression of tumorigenesis124–239 

128,131,132,149–151. The inhibition of nervous system gene transcription in CSCs and their 240 

progeny may therefore provide a novel therapeutic strategy in colorectal cancer, with 241 

results similar to denervation149,150,152.  242 

 243 

During embryonic development, the PNS, of which the ENS is a part, arises from NCSCs, 244 

multipotent and highly migratory stem cells that move throughout the embryo to colonize 245 

multiple organ primordia and differentiate into numerous cell types24,153–155. Recently, self-246 

renewing NCSCs have been discovered in post-natal tissue156–160, including the adult 247 

gut161,162, although the degree to which these cells contribute to the adult tissue is not yet 248 

known. 249 

 250 

EGR2 is a conserved regulator and marker of NCSCs that acts upstream of several HOX 251 

genes and SOX2 to control cell fate in embryonic and nervous system stem cells30–41. 252 
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Interestingly, its expression is also rapidly activated after wounding in the embryonic and 253 

adult mouse33, suggesting a role in adult tissue stem cells, which contribute to tissue 254 

regeneration and wound repair163. However, no previous study has identified a role for 255 

EGR2 in CRC. Here, we demonstrate that EGR2 is enriched in colon CSCs and is 256 

required for tumorigenicity and to maintain CSCs in an undifferentiated state by regulating 257 

HOX genes and SOX2.  258 

 259 

SOX2 is one of the early genes activated in the developing neural crest and has a broad 260 

role as a transcriptional regulator in embryonic and adult stem cells15,164–169. In embryonic 261 

and adult neural stem cells, it is required for the maintenance of neural stem cell 262 

properties, including proliferation, survival, self-renewal and neurogenesis170–174. In the 263 

intestine, its expression results in cell fate conversion and redirects the intestinal 264 

epithelium to a more undifferentiated phenotype175–177. In addition, SOX2 has been 265 

associated with a stem cell state in several cancer types178–180 and is aberrantly 266 

expressed in CRC176,181,182. Overall, these data, combined with our own, support a role 267 

for SOX2 in CRC tumor initiation and progression, possible by promoting neural 268 

specification in CSCs and their descendants.  269 

 270 

HOX genes have been reported to be enriched in and required for the maintenance of 271 

normal stem cells and CSCs in various adult tissues11,13,16,183–189. Recently, HOXA4, 272 

HOXA9 and HOXD10 were shown to be selectively expressed in ALDHPositive intestinal 273 

crypt stem cells and colon CSCs, to promote self-renewal and regulate expression of 274 

stem cell markers17,18. Here, we demonstrate that the same HOX genes that are regulated 275 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.428317doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428317
http://creativecommons.org/licenses/by-nc-nd/4.0/


Regan et al. 2020  Neural Crest Gene Regulation of CSCs 

 13 

by EGR2 in NCSCs are also regulated by EGR2 in colon CSCs and that several of these, 276 

HOXA2, HOXA4, HOXA5, HOXA7, HOXB2, HOXB3, along with EGR2, are indicators of 277 

poor prognosis in CRC.  278 

 279 

These data demonstrate that colon CSCs are enriched for neural crest and nervous 280 

system development genes, including the NCSC regulator EGR2, which controls SOX2 281 

and HOX genes to maintain CSCs in an undifferentiated state required for tumorigenesis. 282 

Targeting EGR2 to induce differentiation and block potential intestinal-neural cell 283 

specification, e.g. by downregulating the neural stem cell regulator SOX2, may offer a 284 

novel therapeutic strategy to eliminate colon CSCs and prevent nervous system driven 285 

proliferation and metastasis. 286 

 287 

EXPERIMENTAL PROCEDURES 288 

 289 

Human tissue samples and establishment of patient-derived cancer organoid cell 290 

cultures  291 

Tumor material was obtained with informed consent from CRC patients under approval 292 

from the local Institutional Review Board of Charité University Medicine (Charité Ethics 293 

Cie: Charitéplatz 1, 10117 Berlin, Germany) (EA 1/069/11) and the ethics committee of 294 

the Medical University of Graz  and the ethics committee of the St John of God Hospital 295 

Graz (23-015 ex 10/11). Tumor staging was carried out by experienced and board-296 

certified pathologists (Table S1). Cancer organoid cultures were established and 297 

propagated as described42,44.  298 
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 299 

Limiting dilution xenotransplantation 300 

Housing and handling of animals followed European and German Guidelines for 301 

Laboratory Animal Welfare. Animal experiments were conducted in accordance with 302 

animal welfare law, approved by local authorities, and in accordance with the ethical 303 

guidelines of Bayer AG. PDO derived PDX models were processed to single cells and 304 

sorted by FACS (BD FACS Aria II) for ALDH activity (Aldefluor assay) and DAPI to 305 

exclude dead cells. Cells were then re-transplanted at limiting dilutions by injected 306 

subcutaneously in PBS and Matrigel (1:1 ratio) at limiting cell dilutions into female 8 – 10-307 

week-old nude-/- mice.  308 

 309 

Histology and immunohistochemistry 310 

Tumors were fixed in 4% paraformaldehyde overnight for routine histological analysis and 311 

immunohistochemistry. Immunohistochemistry was carried out via standard techniques 312 

with non-phospho (Active) β-Catenin (#8814, rabbit monoclonal, Cell Signaling 313 

Technology; diluted 1:200) and EGR2 (ab43020, Abcam, rabbit IgG, polyclonal, diluted 314 

1:1000) antibodies. Negative controls were performed using the same protocols with 315 

substitution of the primary antibody with IgG-matched controls (ab172730, rabbit IgG, 316 

monoclonal [EPR25A], Abcam). Colorectal cancer tissue microarrays from the 317 

OncoTrack patient cohort44 were obtained from The Institute of Pathology, Medical 318 

University Graz, Austria and analyzed using Aperio TMALab and Image software (Leica 319 

Biosystems). 320 

 321 
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Immunofluorescence staining of PDOs 322 

For immunofluorescence imaging, cancer organoid cultures were fixed in 4% 323 

paraformaldehyde for 30 min at room temperature and permeabilized with 0.1% Triton X-324 

100 for 30 min and blocked in phosphate-buffered saline (PBS) with 10% bovine serum 325 

albumin (BSA). Samples were incubated with primary antibodies overnight at 4oC. 326 

Antibodies used were Non-phospho (Active) β-Catenin (#8814, rabbit monoclonal, Cell 327 

Signaling Technology; diluted 1:200), EZRIN (ab40839, rabbit monoclonal, Abcam, 328 

diluted 1:200), EPCAM (#2929, mouse monoclonal, Cell Signaling Technology, diluted 329 

1:500) and EGR2 (ab43020, rabbit polyclonal, Abcam, diluted 1:1000). Samples were 330 

stained with a conjugated secondary antibody overnight at 4oC. F-actin was stained with 331 

Alexa Fluor® 647 Phalloidin (#A22287, Thermo Fisher; diluted 1:20) for 30 min at room 332 

temperature. Nuclei were counterstained with DAPI. Negative controls were performed 333 

using the same protocol with substitution of the primary antibody with IgG-matched 334 

controls. Cancer organoids were then transferred to microscope slides for examination 335 

using a Zeiss LSM 700 Laser Scanning Microscope.  336 

 337 

Aldefluor Assay 338 

Organoids and xenografts were processed to single cells and labelled using the Aldefluor 339 

Assay according to manufacturer’s (Stemcell Technologies) instructions. ALDH levels 340 

were assessed by FACS on a BD LSR II analyzer. 341 

 342 

RNA Sequencing 343 
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Cells were lysed in RLT buffer and processed for RNA using the RNeasy Mini Plus RNA 344 

extraction kit (Qiagen). Samples were processed using Illumina’s TrueSeq RNA protocol 345 

and sequenced on an Illumina HiSeq 2500 machine as 2x125nt paired-end reads. The 346 

raw data in Fastq format were checked for sample quality using our internal NGS QC 347 

pipeline. Reads were mapped to the human reference genome (assembly hg19) using 348 

the STAR aligner (version 2.4.2a). Total read counts per gene were computed using the 349 

program “featureCounts” (version 1.4.6-p2) in the “subread” package, with the gene 350 

annotation taken from Gencode (version 19). The “DESeq2” Bioconductor package was 351 

used for the differential-expression analysis.  352 

 353 

siRNA transfection  354 

Cells were seeded in 100 µl volumes of Accell™ Delivery Media (Dharmacon™) at 1.0 x 355 

105 cells per well in ultra-low attachment 96-well plates and transfected with 2 µM 356 

concentrations of Accell™ siRNAs (Table S2) and control siRNA (Accell™ non-targeting 357 

siRNA control) (Dharmacon™) by incubating for up to 72 h in Accell siRNA Delivery 358 

Media.  359 

 360 

Viral transduction 361 

Cells were seeded in 100 µl volumes of antibiotic free culture media at 1.0 x105 cells per 362 

well in ultra-low attachment 96-well plates. Control and shRNA lentiviruses were 363 

purchased from Sigma-Aldrich (Table S3). Viral particles were added at a multiplicity of 364 

infection of 1. Cells were transduced for up to 96 h or until GFP positive cells were 365 
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observed before being embedded in Matrigel for the establishment of lentiviral transduced 366 

cancer organoid cultures. Puromycin (2 µg/ml) was used to keep the cells under selection.  367 

 368 

Limiting dilution spheroid assays 369 

For siRNA spheroid assays, transfected live (DAPINegative) cells were sorted at 10 cells per 370 

well into 96-well ultra-low attachment plates. 20 days later wells containing spheroids 371 

were counted and used to calculate CSC frequency using ELDA software. Proliferation 372 

was measured using the CellTiter-Glo® Luminescent Cell Viability Assay. 373 

 374 

Gene expression analysis 375 

For quantitative real-time RT-PCR analysis RNA was isolated using the RNeasy Mini Plus 376 

RNA extraction kit (Qiagen). cDNA synthesis was carried out using a Sensiscript RT kit 377 

(Qiagen). RNA was transcribed into cDNA using an oligo dTn primer (Promega) per 378 

reaction. Gene expression analysis was performed using TaqMan® Gene Expression 379 

Assays (Applied Biosystems) (Table S4) on an ABI Prism 7900HT sequence detection 380 

system (Applied Biosystems). GAPDH was used as an endogenous control and results 381 

were calculated using the Δ-ΔCt method. Data were expressed as the mean fold gene 382 

expression difference in three independently isolated cell preparations over a comparator 383 

sample with 95% confidence intervals. Pairwise comparison of gene expression was 384 

performed using R190 together with package ggplot2191 on log2 transformed RNAseq data 385 

from 533 patients with clinical data (n=378 colon adenocarcinomas, n=155 rectal 386 

carcinomas staged T1-T4) extracted from the cBioPortal for Cancer Genomics 387 

(cbioportal.org)192,193. Survival curves were generated using the Kaplan-Meier Plotter 388 
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(www.kmplot.com/analysis)194. Gene ontology enrichment analysis was carried out using 389 

the Gene Ontology Resource (www.geneontology.org)195,196. 390 

 391 

Statistical analysis 392 

GraphPad Prism 6.0 was used for data analysis and imaging. All data are presented as 393 

the means ± SD, followed by determining significant differences using the two-tailed t test. 394 

Significance of RT-PCR data was determined by inspection of error bars as described by 395 

Cumming et al. (2007)197. Limiting-dilution frequency and probability estimates were 396 

analyzed by the single-hit Poisson model and pairwise tests for differences in stem cell 397 

frequencies using the ELDA software (http://bioinf.wehi.edu.au/software/elda/index.html, 398 

Hu and Smyth, 2009)198. Gene set enrichment analysis was carried out using pre-ranked 399 

feature of the Broad Institute GSEA software version 2 using msigdb v5.1 gene sets199,200. 400 

The ranking list was derived from the fold changes (1.5fold upregulated) calculated from 401 

the differential gene expression calculation and nominal p-values. P-values <0.05 were 402 

considered as statistically significant. For the final list of significant genes, False 403 

Discovery Rate was computed using the Benjamini-Hochberg method201. 404 

 405 
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  934 

FIGURE LEGENDS 935 

 936 

Figure 1. Colon cancer PDOs are heterogeneous and enriched for self-renewing 937 

ALDHPositive CSCs 938 

(A) Immunofluorescence staining of colon cancer PDOs for EZRIN (green) and EPCAM 939 

(red). Nuclei are stained blue with DAPI (Bars = 20 µm). (B) Immunofluorescence staining 940 
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of a PDO for BETA-CATENIN (green) and F-ACTIN (red) (left hand side) and 941 

immunostaining of a PDX model for BETA-CATENIN (right hand side) (Bars = 20 µm). 942 

(C) Representative Aldefluor Assay FACS plots of cells derived from PDO model 195-943 

CB-P (data from 10 independent experiments). DEAB (diethylaminobenzaldehyde) is a 944 

specific inhibitor of ALDH and is used to control for background fluorescence. (D) 945 

Frequency (±SD) of ALDHPositive cells in PDOs and corresponding PDX models (data from 946 

10 independent experiments). (E) Tables show results of two rounds of limiting dilution 947 

serial xenotransplantation of ALDHPositive and ALDHNegative cells from previously 948 

established PDO derived xenograft models. The number of successfully established 949 

tumors as a fraction of the number of animals transplanted is given. P-values for pairwise 950 

tests of differences in CSC frequencies between ALDHPositive versus ALDHNegative cells in 951 

151-ML-M, 278-ML-P, 302-CB-M and 195-CB-P in serial transplant round one tumors are 952 

1.12 x 10-4, 1.37 x 10-1, 8.39 x 10-14 and 2.92 x 10-17 respectively and in 278-ML-P, 302-953 

CB-M and 195-CB-P serial transplant round two tumors are 3.82 x 10-7. 3.67 x 10-22 and 954 

3.78 x 10-15, respectively. (See also Figure S1 and Table S1). 955 

 956 

Figure 2. PDO and PDX ALDHPositive CSCs are enriched for nervous system 957 

development gene sets and neural crest stem cell genes    958 

(A) RNA sequencing generated FPKM values for ALDH1A1 (n = 3 separate cell 959 

preparations). (B) Gene set enrichment analysis for nervous system development 960 

(nominal p-values = <0.0005), TNFα signaling via NFkB (nominal p-value = <0.0005), 961 

epithelial to mesenchymal transition (nominal p-values = <0.0005 and 0.002),  embryonic 962 

development (nominal p-value = <0.0005), and Wnt β-Catenin signaling (nominal p-963 
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values= <0.0005) in ALDHPositive cells (compared to ALDHNegative cells) from PDO models 964 

(top panels) and PDX models (bottom panels). (C) Venn diagram shows the number of 965 

RNA-sequencing generated transcripts upregulated in PDO ALDHPositive cells (218 genes) 966 

and PDX ALDHPositive cells (250 genes) and upregulated in both PDO ALDHPositive cells 967 

and PDX ALDHPositive cells (30 genes) n = 4 separate cell preparations, basemean greater 968 

than or equal to 100, log2 fold change = 1.5 fold upregulated, p-value <0.05). (D) Table 969 

shows 10 genes upregulated in both PDO ALDHPositive cells and PDX ALDHPositive cells 970 

selected for functional analysis by RNA-interference (relevant literature is cited in 971 

brackets below gene names). (See also Figure S2 and S3). 972 

 973 

Figure 3. EGR2 is required for CSC tumorigenicity and differentiation and regulates 974 

expression of NCSC HOX genes and SOX2  975 

(A) Proliferation of siRNA transfected patient-derived colon cancer cells in non-adherent 976 

cell culture compared to control cells (mean ± SD; data from three independent 977 

experiments). *p-value < 0.05; ***p-value < 0.001 (t test). (B) Fold expression of 978 

ALDH1A1, EGR2, EGR3, HDGFRP3 OLFML2, PCP4, PEG10, PRKACB and THBS1 RT-979 

PCR gene expression data (±95% confidence intervals) in siRNA transfected 278-ML-P 980 

cells (n=3 independent cell preparations) over the comparator population (control siRNA 981 

transfected 278-ML-P cells) (see also Table S2 and S4). (C) Frequency of siRNA EGR2 982 

spheroid formation in non-adherent cell culture compared to control transfected cells 983 

(mean ± SD; data from three independent experiments). ns = not significant; *p-value < 984 

0.05; **p-value < 0.01 (t test). (D) Representative images of a 278-ML-P control spheroid 985 

(LHS) and a siRNA EGR2 spheroid (RHS) in non-adherent cell culture (Bars = 100 µm). 986 
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(E) Table shows results of limiting dilution transplantation of control virus transduced and 987 

shRNA EGR2 transduced 195-CB-P cells. The number of established tumors as a fraction 988 

of the number of animals transplanted is given. P-values for pairwise tests of differences 989 

in CSC frequencies between control virus versus shRNA EGR2 1, shRNA EGR2 2 and 990 

shRNA EGR2 3 195-CB-P cells are 6.9 x10-9, 4.9 x 10-6 and 6.92 x 10-8, respectively. (F) 991 

Growth curves for xenografts derived from control virus transduced cells and shRNA 992 

EGR2 transduced cells. (G) Fold expression of EGR2, proliferation, differentiation, stem 993 

cell genes, Wnt signaling and EGR2 NCSC target genes RT-PCR gene expression data 994 

(±95% confidence intervals) in four separate 195-CB-P shRNA EGR2 tumors over the 995 

comparator population (four control virus transduced 195-CB-P xenografts). Significant 996 

differences are as follows: ∗p < 0.05, ∗∗p < 0.01. (see also Table S3).  997 

 998 

Figure 4. EGR2, HOXA2, HOXA4, HOXA5, HOXA7 and HOXB3 are increased in late 999 

stage tumors and are indicators of poor prognosis in clinical samples 1000 

(A) Expression of EGR2, ATOH1, HOXA2, HOXA4, HOXA5, HOXA7, HOXB2, HOXB3, 1001 

HOXD10 and SOX2 in colorectal cancer patients across different tumor stages (T1 v T4, 1002 

p-value = 0.027, 0.53, 0.026, 0.000075, 0.001, 0.009, 0.075, 0.0016, 0.043 and 0.1, 1003 

respectively). Of these, HOXA4, HOXA5, HOXA7, and HOXB3 are significant at FDR < 1004 

5%. RNAseq and clinical data of 533 patients (n=378 colon adenocarcinoma, n=155 1005 

rectal adenocarcinoma) was extracted from cBioPortal. (B) Kaplan-Meier survival curves 1006 

for EGR2, ATOH1, HOXA2, HOXA4, HOXA5, HOXA7, HOXB2, HOXB3, HOXD10 and 1007 

SOX2 in colorectal cancer patients comparing lower third percentile to upper third 1008 

percentile (logrank p-values = 0.00017, 0.0013, 0.0028, 0.0006, 0.0043, 0.0022, 0.00025, 1009 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.428317doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.02.428317
http://creativecommons.org/licenses/by-nc-nd/4.0/


Regan et al. 2020  Neural Crest Gene Regulation of CSCs 

 45 

0.019, 0.11 and 0.21, respectively. Of these, higher EGR2, HOXA2, HOXA4, HOXA5 and 1010 

HOXA7 are significant at FDR < 5%. Results based upon data generated by the Kaplan-1011 

Meier Plotter (www.kmplot.com/analysis)194. 1012 

 1013 
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Figure S4: EGR2 immunostaining in PDO, PDX and clinical samples. 
 
(A) Immunofluorescence staining of PDO for EGR2 (green) and F-ACTIN (red). Nuclei are stained blue 
with DAPI (Bars = 20 µm). Immunostaining of PDX tissue (B) and tissue microarrays of normal intestinal 
mucosa and colorectal cancer patient tissue (C) for EGR2. (Bars = 200 µm). Related to Figure 3. 
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Figure S5: Lgr5 intestinal crypt-base stem cells are enriched for nervous system 
genes.  
 
Gene ontology analysis of Lgr5 intestinal stem cell gene signatures from (A) Merlos- 
Suarez, et al., 2011), (B) Munoz, et al., (2012) and (C) Yan, et al., (2017). Related to Figure 2. 
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Table S1 Tissue Origin and TNM Classification of Malignant Tumors (TNM). Related to Figure 1. 
 
T: primary tumor size, N: regional lymph nodes involved, M: distant metastasis. 
 
 

 
 

Table S2: Dharmacon™ Smartpool siRNAs. Related to Figure 3. 
 

 

 
 

Table S3. Lentiviral Transduction Particles. Related to Figure 3. 
 

 

Patient Model Origin TNM stage Stage

162-MW-P Sigmoid colon & descending colon T3 N0 M0 IIA
151-ML-M Liver T2 N0 M0 , M1a IVA
278-ML-P Sigmoid colon & descending colon T4a N0 M0 IIB
302-CB-M Liver T3 N1a M1a IVA
195-CB-P Sigmoid colon T4a N2b M1a IVA

siRNA Dharmacon™ Product Product Number

ALDH1A1 Accell Human (216) siRNA - SMARTpool E-008722-00-5
EGR2 Accell Human (1959) siRNA - SMARTpool E-006527-01-5
EGR3 Accell Human (1960) siRNA - SMARTpool E-006528-00-5
HDGFRP3 Accell Human (50810) siRNA - SMARTpool E-017093-00-5
OLFM2 Accell Human (93145) siRNA - SMARTpool E-015212-00-5
OLFML3 Accell Human (56944) siRNA - SMARTpool E-020325-00-5
PCP4 Accell Human (5121) siRNA - SMARTpool E-020122-00-5
PEG10 Accell Human (23089) siRNA - SMARTpool E-032579-00-5
PRKACB Accell Human (5567) siRNA - SMARTpool E-004650-00-5
THBS1 Accell Human (7057) siRNA - SMARTpool E-019743-00-5

LENTIVIRUS SIGMA PRODUCT PRODUCT NAME VECTOR TRC NUMBER

Control SHC003V
MISSION® tGFP™ Positive Control Transduction 

Particles –pLKO.1-puro-CMV-tGFP NA

shEGR2 1 SHCLNV-NM_000399
EGR2  MISSION shRNA Lentiviral Transduction 

Particles –hPGK-Puro-CMV-tGFP TRCN0000013839

shEGR2 2 SHCLNV-NM_000399
EGR2  MISSION shRNA Lentiviral Transduction 

Particles –hPGK-Puro-CMV-tGFP TRCN0000013840

shEGR2 3 SHCLNV-NM_000399
EGR2 MISSION shRNA Lentiviral Transduction 

Particles –hPGK-Puro-CMV-tGFP TRCN0000013841
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Table S4. Taqman Gene Expression Assays. Related to Figure 3. 
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