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1. Abstract 
 
This work provides a framework based on multivariate autoregressive modeling for linear causal 

filtering in the sense of Granger. In its bivariate form, the linear causal filter defined here takes as 
input signals A and B, and it filters out the causal effect of B on A, thus yielding two new signals only 
containing the Granger-causal effect of A on B. In its general multivariate form for more than two 
signals, the effect of all indirect causal connections between A and B, mediated by all other signals, 
are accounted for, partialled out, and filtered out also. The importance of this filter is that it enables 
the estimation of directional measures of causal information flow from any non-causal, non-
directional measure of association. For instance, based on the classic coherence, a directional 
measure of strength of information flow from A to B is obtained when applied to the linear causal 
filtered pair containing only A to B connectivity information. This particular case is equivalent to the 
isolated effective coherence (doi.org/10.3389/fnhum.2014.00448). Of more recent interest are the 
large family of phase-phase, phase-amplitude, and amplitude-amplitude cross-frequency coupling 
measures which are non-directional. The linear causal filter makes it now possible to estimate the 
directional causal versions these measures of association. One important field of application is in 
brain connectivity analysis based on cortical signals of electric neuronal activity (e.g. estimated 
sources of EEG and MEG, and invasive intracranial ECoG recordings). The linear causal filter 
introduced here provides a novel solution to the problem of estimating the direction of information 
flow from any non-directional measure of association. This work provides definitions, non-
ambiguous equations, and clear prescriptions for implementing the linear causal filter in diverse 
settings. 

 
 

2. The multivariate autoregressive model 
 
It is assumed throughout that the set of time series recordings have no measurement noise, and 

that there are no other sources of influence other than those expressed by the multivariate 
autoregressive model. Furthermore, the time series are assumed to be wide sense stationary, with 
zero mean. Informally, this means that the multivariate autoregressive model fully describes the 
measurements, and that it can be estimated given sufficient data. 
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The methods described here apply to zero mean signals that are sampled in the form of EN  

epochs, each consisting of TN  discrete time samples, i.e. ( )0... 1Tt N= − . 

 

For the multivariate time series ( ) 1pt x , for ( )0... 1Tt N= − , consider the autoregressive 

model of order “q”: 

Eq. 1 ( ) ( ) ( ) ( )
1

q

k

t k t k t
=

= − +x a x e  

where ( ) 1pt e  is the innovations time series with covariance matrix p p

ee

S , and ( ) p pk a  

are the autoregressive coefficients for 1...k q= . It is assumed that 1q   and 2p  . Furthermore, there 

should be sufficient data for estimation. 
 

Given time series recordings for ( )tx  and the autoregressive order “q”, estimators for the 

coefficients ( )ka  in Eq. 1 can be obtained by, e.g., least squares (see e.g. Shumway and Stoffer 2017). 

 
The frequency domain representation of Eq. 1 (see e.g. Wei 2019) is: 

Eq. 2 ( ) ( ) ( )
1−

  = −   X I A E  

where I is the identity matrix of appropriate dimension (in this case p pI ), ( ) 1p X  and 

( ) 1p E  are the discrete Fourier transforms of ( )tx  and ( )te  respectively,  denotes the discrete 

frequency, and ( ) p p A  is the discrete Fourier transform of the extended sequence ( )ka , defined 

as zero for 0k =  and for k q , i.e.: 

Eq. 3 ( )
( ) ( )

0 , 0

0 , 1 ... 1T

if k
k

if k q N

=
= 

= + −
a  

 
For the sake of completeness, the discrete Fourier transform is defined in Eq. 60 in “Appendix A”. 

A simplified equation for the sequence of autoregressive coefficients is presented in Eq. 62 in 
“Appendix A”. 

 
The cross-spectrum is (see e.g. Wei 2019): 

Eq. 4 ( ) ( ) ( )
11 *1

2
p p

xx ee

TN

−−    = −  −     
S I A S I A  

where the superscript “*” denotes transposed and complex conjugate. 
 
Note that the Fourier transform of the innovations can be obtained from Eq. 2: 

Eq. 5 ( ) ( ) ( )  = −   E I A X  

 
 

3. Causality in the sense of Granger 
 
Throughout, the term “causal” is exclusively limited to causality in the sense of Granger. Causality 

in the sense of Granger is defined by non-zero coupling coefficients. For instance, if: 

Eq. 6 ( ) 0ija k   
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for some pair of signals ( i j ), for some lag “k”, then “j Granger causes i”. In Eq. 6, ( )ija k  is the 

corresponding element of ( )ka . This translates to the frequency domain, where “j Granger causes i” 

if: 

Eq. 7 ( ) 0ijA    

for some pair of signals ( i j ), for some frequency “”. In Eq. 7, ( )ijA   is the corresponding element 

of ( )A . 

 
 

4. Least squares estimation for the multivariate autoregressive model: coefficients and 
innovations covariance 

 
The multivariate autoregressive model of order “q” for zero mean time series recordings 

( ) 1pt 


x , sampled in the form of EN  epochs, each consisting of TN  discrete time samples is: 

Eq. 8 ( ) ( ) ( ) ( )
1

q

k

t k t k t
  

=

= − +x a x e  

for 1... EN =  and ( )... 1Tt q N= − . This can be written as: 

Eq. 9 ( ) ( ) ( )t t t
  

= +x eay  

with: 

Eq. 10 ( ) ( ) ( ) ( )1 2 ..
p qp

q


 =  a a aa  

Eq. 11 ( )

( )
( )

( )

( ) 1

1

2

:

qp

t

t
t

t q









 −
 

− = 
 
 

−  

x

x

x

y  

 
The least squares solution is: 

Eq. 12 
1−=a fg  

with: 

Eq. 13 

( )
( ) ( ) ( )

1

1

1 E TN N
p qpT

t qE T

t t
N N q

−


 

= =

= 
−

 xf y  

Eq. 14 

( )
( ) ( ) ( ) ( )

1

1

1 E TN N
qp qpT

t qE T

t t
N N q

−


 

= =

= 
−

g y y  

 

The estimator for the covariance matrix of the innovations ( )te  in Eq. 8 and Eq. 9 is: 

Eq. 15 
1 T

ee

−= −S h fg f  

where: 

Eq. 16 

( )
( ) ( )

1

1

1 E TN N
T p p

t qE T

t t
N N q

−


 

= =

= 
−

 x xh  

 
Note that these equations are valid for stable autoregressive processes if the inverse of g  in Eq. 

14 exists. 
 
As usual, the order “q” can be estimated using Akaike's information criterion (AIC) (Akaike 1974). 
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5. The linear causal filter 
 
The linear causal filter defined here takes as input a multivariate time series, and for any given 

distinct pair of signals “i” and “j”, it filters out the effect of all causal connections mediated by all other 
signals (accounting for, and partialling out their effects), and it filters out the causal effect of “j” on 
“i”, thus leaving exclusively the effect of “i” on “j”. 

 
The derivation of the linear causal filter is presented in three steps. 
 
In a first step, the discrete Fourier transform of the multivariate time series, given by Eq. 2, is 

reduced to the two variables of interest, namely the i-th and the j-th time series, giving: 

Eq. 17 
( )
( )

( ) ( )
( ) ( )

( )
( )

1
1

1

Partial

i ii ij i

j ji jj j

X A A E

X A A E

−

      −  −  
=     

 −  −       

 

for any i j  with , 1...i j p= , where ( )A
••

 , ( )E
•
 , and ( )X

•
  correspond to the elements of 

( ) p p A , ( ) 1p E , and ( ) 1p X  respectively. 

 
In the first step above, all indirect causal connections between the i-th and j-th variables have 

been accounted for and partialled out, yielding the simple system in Eq. 17. This is true because the 
coefficients and innovations in the right-hand side of Eq. 17 are multivariate, and not marginal 
bivariate (except for the case when the total number of signals is exactly two). 

 
In the second step, the directional connection from “j to i” is severed (i.e. cut off), leaving 

exclusively the direct, directional connection from “i to j”, giving: 

Eq. 18 
( )
( )

( )
( ) ( )

( )
( )

1
1 0

1

i j
ii ii

i j
ji jj jj

A EX

A A EX

−
→

→

     −  
=     

−  −        

 

in which the coupling coefficient from “j to i” has been set to zero, i.e.: 

Eq. 19 ( ) 0ijA  =  

while all other coefficients and innovations remain unchanged. 
 
It is of interest to note that the coherence computed from Eq. 18 is identical to the isolated 

effective coherence for “i to j” in (Pascual-Marqui et al 2014) for independent innovations. 
 
Eq. 18 still does not have the form of a general filter, which takes as input the multivariate data 

( ) 1p X  and returns as output the bivariate system ( ) 2 1i j→  X  containing exclusively 

information flow from “i to j”. 
 
In the third step, linear causal filtering is expressed as: 

Eq. 20 ( )
( )
( )

( ) ( )
i j

ii j i j

i j

j

X

X

→

→ →

→

 
 = =   

  

 XX  

by plugging Eq. 5 into Eq. 18. 
 

In Eq. 20, the linear causal filter ( ) 2i j p→    is: 
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Eq. 21 ( )
( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1 2 2

1 1 2 2

...1 0

1 ...

i i i i ip ipiii j

ji jj j j j j jp jp

A A AA

A A A A A

−

→
  −   −   −  − 

 =   
−  −   −   −   −     

  

where ij  is the Kronecker delta, defined as: 

Eq. 22 
0

1
ij

if i j

if i j


 = 

=
 

 
The linear causal filter is completely determined by the multivariate autoregressive coefficients, 

as can be seen from its definition in Eq. 21. 
 

Linear causal filtering with Eq. 20 will give the discrete Fourier transforms ( )i j

iX →   and ( )i j

jX →   

containing only direct, directional information flow from “i to j”. The inverse discrete Fourier 

transforms of ( )i j

iX →   and ( )i j

jX →   will produce the real-valued filtered time series, denoted 

( )i j

ix t→  and ( )i j

jx t→ , which contains only direct, directional information flow from “i to j”. For the 

sake of completeness, “Appendix B” defines the inverse discrete Fourier transform in general and 
includes information on how to use it when the output is a real signal with DC level equal to zero, 
which is the case of interest here. 

 
Note that by definition, in the bivariate case (i.e. only two signals total), the linear causal filter for 

“i(=1) to j(=2)” will return new signals that have zero coupling from “j(=2) to i(=1)”, i.e.: 

Eq. 23 
( )

( )

12

12

0 ,

0 ,

a k k

A

 =  
 

 =   

 

 
Equations for information flow in the reverse direction from “j to i” can be written as: 

Eq. 24 ( )
( )
( )

( ) ( )
i j

ii j i j

i j

j

X

X



 



 
 = =   

  

 XX  

with: 

Eq. 25 ( )
( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

1

1 1 2 2

1 1 2 2

...1

0 1 ...

i i i i ip ipii iji j

jj j j j j jp jp

A A AA A

A A A A

−


  −   −   −  −  − 

 =   
−   −   −   −     

  

 
 

6. Generic pipeline for the linear causal filtering of signals 
 
Assumptions about the time series data: 

1. Zero mean. 
2. No measurement noise. 
3. Wide sense-stationarity. 
3. There are no other sources of influence other than those expressed by the multivariate 
autoregressive model. 

 
The following generic algorithm is intended to be simple and straightforward; it is not optimized 

for efficiency. The algorithm takes in time series data and the autoregressive order, and outputs, for 
each distinct pair, the filtered signals containing only direct, directional information flow from one 
to the other, in both frequency and time domains. 
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Alg1-Step# 1 

Given zero mean multivariate time series data corresponding to electrophysiological signals, 

( ) 1pt 


x , with p2, for time samples ( )0... 1Tt N= −  and epochs 1... EN = . Given the 

autoregressive order “q”. 
 
 

Alg1-Step# 2 

Estimate the autoregressive coefficients ( ) p pk a  for 1...k q= , using e.g. the least squares 

method (Eq. 8 through Eq. 14). Noting Eq. 3 above, compute its discrete Fourier transform 

( ) p p A  (see e.g. “Appendix A”). 

 
Alg1-Step# 3 

Compute the discrete Fourier transform ( ) 1p


 X . 

 
Alg1-Step# 4 

For all 1...i p=  and all 1...j p= , and if i j , do steps #4.1., #4.2., and #4.3: 

  Alg1-Step# 4.1. Compute the causal filter in Eq. 21 and Eq. 22. 

  Alg1-Step# 4.2. Apply the linear causal filter in Eq. 20 to obtain ( ),

i j

iX →


  and ( ),

i j

jX →


  with direct, 

directional information flow i j→ , for 1... EN = , for ( )1... 2TN= . 

  Alg1-Step# 4.3. Compute the inverse discrete Fourier transforms (see “Appendix B”) of ( ),

i j

iX →


  and 

( ),

i j

jX →


  to obtain the real-valued time series with direct, directional information flow i j→ : ( ),

i j

ix t→

  

and ( ),

i j

jx t→

 . 

 
Alg1-Step# 5 

End. 
 
In summary, this algorithm “Alg1, Steps #1 to #5” takes as input the multivariate time series 

( ) 1pt 


x , and returns for all distinct pairs “i” and “j”, the following filtered variables where only 

i j→  information flow remains: 

1. The Fourier transforms: 

Eq. 26 ( ) ( ), ,,i j i j

i jX X→ →

 
    

2. The time series 

Eq. 27 ( ) ( ), ,,i j i j

i jx t x t→ →

 
  

 
 

7. Instantaneous phase and amplitude (envelope) for linear causal filtered signals 
 
Once the linear causal filtered time series pairs in Eq. 27 are available, they can be further 

processed by means of the following prescription. 
 

Alg2-Step# 1 

Band pass filtering of ( ),

i j

ix t→

  and ( ),

i j

jx t→

  to a frequency band , giving: 

Eq. 28 ( ), ;i j

ix t→


   

Eq. 29 ( ), ;i j

jx t→


   

where, e.g. = 5 Hz to 7 Hz for the electrophysiological theta band, or = 35 Hz to 55 Hz for the 
gamma band (other definitions can be used). 
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Note that -band-pass filtering is a post-processing step, it is applied after the linear causal filter, 

it is not to be applied before the estimation of the multivariate autoregressive model, nor is it to be 
applied before linear causal filter. 

 
 

Alg2-Step# 2 

Computing the corresponding complex-valued analytic signals (see “Appendix C”), denoted as: 

Eq. 30 ( ), ;i j

i t→


 X  

Eq. 31 ( ), ;i j

j t→


 X  

 
Alg2-Step# 3 

Computing the envelopes (instantaneous amplitudes): 

Eq. 32 ( ), ;i j
i t→


 X  

Eq. 33 ( ), ;i j
j t→


 X  

 
Alg2-Step# 4 

Computing the instantaneous phases: 

Eq. 34 
( )

( )
,

,

;

;

i j

i

i j

i

t

t

→



→








X

X
 

Eq. 35 
( )

( )
,

,

;

;

i j

j

i j

j

t

t

→



→








X

X
 

 
Alg2-Step# 5 

End. 
 
For the sake of completeness, “Appendix C” contains the definition the Hilbert transform, the 

analytic signal, the instantaneous phase, and the envelope. Furthermore, of practical value, it contains 
the algorithm of Marple 1999 for the calculation of the discrete Hilbert transform and of the analytic 
signal for sampled time series. 

 
 

8. Measures of directional information flow using linear causal filtering 
 

Directional coherence using linear causal filtering 
 
The squared modulus of the periodogram-based coherence, using the directional Fourier 

transforms in Eq. 26, is: 

Eq. 36 ( )
( ) ( )

( ) ( )

2
*

, ,
1

2 2

, ,
1 1

E

E E

N
i j i j

i j

i j

coh N N
i j i j

i j

X X

r

X X

→ →

 

=→

→ →

 

= =

       
 =

   
    

   



 

 

see e.g. Brillinger 2001. This is a directional version of the coherence. 
 
An alternative parametric estimator for directional coherence can be obtained, using the closed 

form of the cross-spectrum of an autoregressive model. From Eq. 20, the cross-spectral matrix can 
also be written as: 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.05.01.442232doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442232
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pascual-Marqui, Biscay, Bosch-Bayard, Achermann, Faber, Kinoshita, Kochi: Linear causal filtering: definition and theory. 2021-05-01; 
bioRxiv; https://doi.org/10.1101/2021.05.01.442232 

Page 8 of 17 

Eq. 37 ( ) ( ) ( ) ( )
* 2 2i j i j i j

x xx

→ → →     =        S S  

Plugging Eq. 4 into Eq. 37 simplifies to: 

Eq. 38 ( )
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with: 

Eq. 39 
, ,

, ,

ee ii ee ijij
ee

ee ij ee jj

S S

S S

 
=  
 

S  

corresponding to the innovations covariance matrix for the i-th and j-th signals. If the innovations 
are independent, i.e.: 

Eq. 40 
,

,

0

0
ee iiij

ee
ee jj

S

S

 
=  
 

S  

then the squared of the modulus of the coherence giving the directional, causal information flow “i to 
j” is: 

Eq. 41 ( )
( )
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S
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which is the same as the isolated effective coherence (Pascual-Marqui et al 2014). 
 
This measure of directional, causal information flow was shown to have improved properties 

when compared to other similar measures of directed coherence (see Pascual-Marqui et al 2014). 
Also included in (Pascual-Marqui et al 2014) are several results illustrating the properties of the 
isolated effective coherence, based on simulated data and on real human signals of estimated cortical 
activity. 

 
 

Directional phase-phase coupling using linear causal filtering 
 
The non-directional measure of phase-phase coupling between two signals is also known as 

“phase locking value (PLV)”, “phase synchronization” and “phase coherence”. 
 
Some basic early applied literature on this non-causal, non-directional measure of association 

are the papers by Tass et al 1998 and Mormann et al 2000. 
 
In analogy to the directional coherence in Eq. 36, the “periodogram-based phase coherence” is: 

Eq. 42 ( )
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which simplifies to: 

Eq. 43 ( )
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Note that these equations are based on the phases of the directional Fourier transforms in Eq. 26, 
which provide high frequency resolution. In this case, no use is made of the instantaneous phase. A 
similar form of equation, for the nondirectional case, appears in Lowet et al 2016, Equation 15 
therein, and in Pascual-Marqui 2007, Equation 54 therein. 

 
The next two definitions are based on the coherence between the directional instantaneous 

phases given by Eq. 34 and Eq. 35: 

Eq. 44 ( )
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Eq. 45 ( )
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where  denotes the frequency band settings of the band-pass filter used in the algorithm “Alg2-
Step# 1”. 

 
The phase coherence in Eq. 44 is a function of time, while Eq. 45 corresponds to the average over 

time. 
 

Directional cross-frequency versions for frequency pairs ( )1 2,   and for band pairs ( )1 2,   

are defined as: 

Eq. 46 ( )
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Eq. 47 ( )
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Eq. 48 ( )
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The special appeal of the directional PLV in Eq. 43 is its frequency resolution, which is much 

higher than that obtained by band pass filtering just prior to the discrete Hilbert transform, as 
required by the PLV in Eq. 44 and Eq. 45. However, the special appeal of the directional PLV in Eq. 44 
is its high temporal resolution. 

 
We are aware of one previous attempt to estimate the direction of information flow for phase-

phase coupling, namely, the directed phase lag index (dPLI), by Stam and van Straaten (2012). It is 
based on a false premise: the sign of the phase difference (positive or negative) indicates the direction 
of flow. It suffices to change the sign of one signal to reverse the flow, which renders the dPLI 
meaningless. For instance, bipolar intracranial signals are determined up to a factor of 1, rendering 
the dPLI meaningless between two signals each consisting of a local bipolar cortical electric potential 
difference. This fact was proven in Pascual-Marqui et al 2018. 

 
The new directional measures of phase-phase coupling reported in this work are invariant to the 

sign of the signals. 
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Weighted directional PLVs for Eq. 43, Eq. 44, and Eq. 45 are: 

Eq. 49 ( )
( ) ( )

( ) ( )

2
*

, ,
1

1

, ,
1

E

E

N
i j i j

i j
i j

wPLV N
i j i j

i j

X X

r

X X

→ →

 
→ =

→ →

 

=

       
 =

 




 

Eq. 50 ( )
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Eq. 51 ( )
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which are based on the work of Kovach 2017. Note that they bypass the calculation of phase, which 
is undefined for negligible amplitude. 

 
 

Directional phase-amplitude coupling (PAC) using linear causal filtering 
 
There are many non-directional measures of phase-amplitude coupling (PAC) between two 

distinct signals. Taking an example from electrophysiology, and starting from two distinct signals, all 
the published measures quantify in different ways the non-directional association between two 
derived signals: 
1. the envelope (instantaneous amplitude) of one signal that has been high-frequency band-pass 
filtered e.g. gamma 35 Hz to 55 Hz, and 
2. the instantaneous phase of the other signal that has been low-frequency band-pass filtered e.g. 
theta 5 Hz to 7 Hz. 

 
See e.g. Penny et al 2008 and Hülsemann et al 2019 for reviews and comparison of methods. 
 
The methods proposed here do not apply to phase-amplitude coupling of one signal. They apply to 

coupling between the phase of one signal, with the envelope of a distinctly different signal. 
 
To quantify the directional causal influence of the phase of the i-th signal on the amplitude of the 

j-th signal, one can use any non-directional measure of association between the directional phase and 
amplitude: 

Eq. 52 
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To quantify the directional causal influence of the amplitude of the j-th signal on the phase of the 

i-th signal, one can use any non-directional measure of association between the directional phase and 
amplitude: 

Eq. 53 
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The quantities in Eq. 52 and Eq. 53 are defined in Eq. 32, Eq. 33, Eq. 34, and Eq. 35. 
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For instance, using the phase-amplitude coupling measure of Özkurt and Schnitzler (2011), the 

two distinct directional versions: 

Eq. 54 ( ) ( )

( )

( )
( )

( )

2

, 1

, 2
1 1 , 1

1 2
2

, 2
1 1

;
;

;

;

E T

E T

i jN N
i i j

ji j
t i

i j N N
i j

T j
t

t
t

t
Phase Amp

N t

→

 →

→
= = 

→



= =

 
 
  

→ =









 



X
X

X

X

 

Eq. 55 ( ) ( )
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Eq. 54 quantifies the causal influence of the phase of the i-th signal on the envelope of the j-th 

signal. Eq. 55 quantifies the causal influence of the envelope of the j-th signal on the phase of the i-th 
signal. These measures can be used to distinguish which event is the cause of the coupling: for 
instance, does the phase of theta trigger gamma bursts, or are gamma bursts facilitating theta 
oscillations? 

 
 

Directional envelope-envelope coupling using linear causal filtering 
 
The non-directional measure of envelope-envelope coupling between two signals is also known 

as “amplitude-amplitude coupling”. Some basic early literature on this non-causal, non-directional 
measure of association are the papers by Bruns et al 2000, and Bruns and Eckhorn 2004. 

 
Taking an example from electrophysiology, starting from two distinct signals, this coupling 

quantifies the association between two derived real-valued signals: 
1. the envelope (instantaneous amplitude) of one signal that has been band-pass filtered e.g. gamma 
35 Hz to 55 Hz, and 
2. the envelope (instantaneous amplitude) of the other signal that has been band-pass filtered e.g.  
theta 5 Hz to 7 Hz. 

 
A simple measure of association is the simple cross-correlation between the two envelope 

signals, taking the value at the lag for which it is maximum, as described in Bruns and Eckhorn 2004. 
 
Based on this measure, the directional envelope-envelope coupling is: 

Eq. 56 ( ) ( ) ( ) ( ) 2

1 2 , 1 , 2max ; , ;i j i j

i j i jAmp Amp Corr t t→ →

 


→ = −    X X  

where  2 ,Corr • •  is the squared correlation coefficient between the two random variables, sampled 

over all admissible “t” and “”. The quantities in Eq. 56 are defined in Eq. 32 and Eq. 33. 
 
For completeness, the squared correlation between “y” and “z”, for a total sample size “N”, is: 

Eq. 57  
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with: 
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Eq. 58 
1 1

,k ky y z z
N N

= =   

 
Eq. 56 quantifies the causal influence of the 1 -envelope of the i-th signal, on the 2 -envelope 

of the j-th signal. 
 
The causal influence of the 2 -envelope of the j-th signal, on the 1 -envelope of the i-th signal 

can be quantified as: 

Eq. 59 ( ) ( ) ( ) ( ) 2

2 1 , 1 , 2max ; , ;j i j i

j i i jAmp Amp Corr t t→ →

 


→ = −    X X  

 
 

9. Discussion 
 
The practical validity of the linear causal filter hinges on a set of very restrictive assumptions: 

Assumption #1. Wide sense-stationarity. 
Assumption #2. There are no other sources of influence other than those expressed by the signals in 
the multivariate autoregressive model. 
Assumption #3. No measurement noise. 

 
Actually, all Granger causality analyses hinge on these assumptions. 
 
In particular, the measurement noise problem (Assumption #3) has been largely overlooked in 

the time series analysis literature. It seems to have been confused with a conventional simple “model 
plus noise” problem, where parameter estimation is typically unbiased. 

 
Many popular “model plus noise” problems produce non-biased estimators using least squares 

techniques. This gives confidence in the estimators if the sample size if large enough. 
 
However, for autoregressive models, least squares parameter estimation yields biased 

parameters. Other estimation techniques need to be used to obtain non-biased estimators (see e.g. 
Pascual-Marqui et al 2021, and references therein). Simple measurement noise can create false 
Granger causality, when using estimation technique that do not correctly account for measurement 
noise. The reason for this problem lies in the distinct nature of the innovations which determine the 
dynamics. If measurement noise is not explicitly modeled as such, it is confused with the innovations 
and incorrectly drives the dynamics, yielding false coupling coefficients. 

 
The linear causal filter proposed here is parametric, in the sense that it relies on the multivariate 

autoregressive model and its coefficients. However, the same linear causal filter can be defined by 
using nonparametric minimum-phase spectral factorization, as developed by Dhamala et al (2008a, 
2008b). 

 
A generalization of the linear causal filter is straightforward for the case when there are three 

multivariate time series ( ) 1pt x , ( ) 1rt y , and ( ) 1st z , where the causal effects of ( )tz  are 

accounted for and partialled out, and where the causal coupling from ( )ty  to ( )tx  are severed, 

leaving only the two modified time series with only causal flow from “x to y”. 
 
This multivariate generalization might be of interest in the analysis of brain activity signals. For 

instance, x, y, and z might represent activities from three different resting state networks (each one 
composed of several signals from different cortical areas). The linear causal filter will allow the study 
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of the causal influence that one network has on another network, after accounting for and partialling 
out the effects of a third network. In this case, use must be made of multivariate non-directional 
measures of association for coherence and for cross-frequency couplings (e.g. phase-phase, phase-
amplitude, amplitude-amplitude, etc), which can now be decomposed into their directional causal 
components. 

 
Another possible generalization of the linear causal filter is its application to time varying 

autoregressive models, which can be implemented using e.g. the short time Fourier transform. 
 
 

10. Appendix A: discrete Fourier transform (DFT) 
 

The DFT for a time series ( )h t , for ( )0... 1Tt N= − , is defined as: 

Eq. 60 ( ) ( )
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2
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t T

t
H h t
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 
 = − 

 
  

for ( )0... 1TN= − , with 0=  corresponding to the DC component, 2TN=  corresponding to the 

Nyquist frequency, and with 1 = − . The DFT of a vector or of a matrix is calculated for each element. 
In practice, Eq. 60 is implemented by specialized very fast algorithms (see e.g. Cooley and Tukey 
1965). 

 
Let RS  denote the actual sampling rate in Hz, i.e. in number of time samples per second. Then 

discrete frequency ( )0... 1TN= −  corresponds to actual frequency “f” in Hz: 

Eq. 61 R

T

f S
N


=  

 

The DFT of a sequence of autoregressive coefficients ( )a k  of order “q” is a particular case which 

simplifies to: 

Eq. 62 ( ) ( )
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For real-valued time series, the periodogram estimator for the spectral density is: 

Eq. 63 ( ) ( )
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The tapered version of the DFT is: 

Eq. 64 ( ) ( ) ( )
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where ( )u t  for ( )0... 1Tt N= −  is the taper. A review on window functions (or tapers) ( )u t  can be 

found in Harris 1978. See also Brillinger 2001, and Oppenheim and Schafer 2014. 
 
When using the tapered DFT, the periodogram estimator for the spectral density is: 

Eq. 65 ( ) ( )
21

2 T

P H
U

 = 


 

with: 
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Eq. 66 ( )
1

2

0

TN

T
t

U u t
−

=

=   

 
Note that when several epochs are available, the periodogram then corresponds to the average 

of Eq. 63 or Eq. 65 over epochs. 
 
 

11. Appendix B: the inverse discrete Fourier transform (invDFT) 
 

The invDFT of complex-valued ( )H  , for ( )0... 1TN= − , is defined as: 

Eq. 67 ( ) ( )
1

0

1 2
exp

TN

T T

t
h t H

N N

−

=

 
=  + 

 
  

for ( )0... 1Tt N= − . In general, ( )h t  obtained from Eq. 67 can be complex-valued. 

 

A real-valued time series ( )h t  is obtained when ( )H   is given for ( )0... 2TN= , and when the 

values at frequencies higher than the Nyquist frequency satisfy: 

Eq. 68 
*

2 2
T TN N

H k H k
   

+ = −   
   

 

for 1... 1
2

TN
k

 
= − 

 
. 

 
If the invDFT is a zero mean real-valued time series, then follow these steps: 
 
Step #1: Set: 

Eq. 69 ( )0 0H =  

which corresponds to a zero mean time series (i.e. DC level equal to zero). 
 
Step #2: Apply Eq. 68. 
 
Step #3: Apply general definition of the invDFT in Eq. 67. 
 
Step #4: End. 
 
 

12. Appendix C: discrete Hilbert transform and the analytic signal 
 

Let ( )x t  be a real valued signal. Let ( )y t  denote its Hilbert transform, defined as: 

Eq. 70  ( )
( )1 x t

y t d
t

+

−
= 
 −  

where the principle value of the integral is used. 
 

The complex-valued analytic signal of ( )x t  is defined as: 

Eq. 71  ( ) ( ) ( )t x t y t= + X  

where 1 = − . 
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In practice, for ( )x t  sampled at discrete time instants denoted 1... Tt N= , a numerical algorithm 

for computing the analytic signal follows, based on Marple 1999. 
 

Alg3-Step# 1 

Compute the discrete Fourier transform of ( )x t , denoted ( )X   (see “Appendix A”). 

 
Alg3-Step# 2 

Define: 

Eq. 72  ( )

( )

( ) ( )

( )

( ) ( )

, 0

2 , 1... 2 1

, 2

0 , 2 1 ... 1

T

T

T T

X for

X for N
U

X for N

for N N

  =


 = −
 = 

 =


= + −

 

 
Alg3-Step# 3 

The inverse discrete Fourier transform (see “Appendix B”) of ( )U   yields the complex-valued 

analytic signal ( )tX  in Eq. 71 for ( )0... 1Tt N= − .Note that the real part of ( )tX  is the signal ( )x t , 

and the imaginary part ( )y t  is the discrete Hilbert transform. 

 
Alg3-Step# 4 

End. 
 
The envelope, i.e. the instantaneous amplitude, is defined as: 

Eq. 73 ( )tX  

 
The complex valued instantaneous phase is defined as: 

Eq. 74 
( )

( )

t

t

X

X
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Graphical summary of the idea behind “Linear Causal Filtering” 
 

 

C

A B

Actual system

The strength of association
between A and B is due to a
mixture of all direct and
indirect directional pathways
between A and B.
Problem: how to isolate and 
quantify causal information 
flow A→B?

Linear causal filter

C

A B

Filtered system

After computing and 
accounting for all casual 

connections, only the causal 
influence A→B remains, and 
any measure of association is 

now a measure of causal 
influence A→B
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