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Abstract— Conventionally, as a preprocessing step, functional
MRI (fMRI) data are spatially smoothed before further anal-
ysis, be it for activation mapping on task-based fMRI or
functional connectivity analysis on resting-state fMRI data.
When images are smoothed volumetrically, however, isotropic
Gaussian kernels are generally used, which do not adapt to
the underlying brain structure. Alternatively, cortical surface
smoothing procedures provide the benefit of adapting the
smoothing process to the underlying morphology, but require
projecting volumetric data on to the surface. In this paper,
leveraging principles from graph signal processing, we propose
a volumetric spatial smoothing method that takes advantage of
the gray-white and pial cortical surfaces, and as such, adapts
the filtering process to the underlying morphological details at
each point in the cortex.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a key
non-invasive imaging modality for studying brain activity
based on the blood-oxygen-level-dependent signal [1]. When
analyzing fMRI data, a conventional preprocessing step is
to spatially smooth the data, which is generally done for
two reasons: (i) to deal with the multiple testings through
resorting to Gaussian random field theory [2]—as opposed
to using stricter methods such as the Bonferroni correction—
and (ii) to improve the data signal-to-noise ratio (SNR) by
employing spatial smoothing such as lowpass filtering. With
regards to (i), alternative methods have been proposed that
obviate the need for Gaussian smoothing, namely, but not
limited to, false discovery rate correction [3], permutation
testing [4], and wavelet denoising [5]. With regards to (ii), the
conventional use of isotropic filters—such as the Gaussian
filter—comes at the expense of a loss in fine spatial details
of the underlying activity [6], since in virtue of the matched
filter argument, spatial filters are optimal in denoising data
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only if their shape and size conform to the underlying
signal of interest. Given that the spatial profile of brain
fMRI data is confined by the underlying neuroanatomical
structure, alternative spatial filtering methods that incorporate
knowledge about the underlying brain structure have been
proposed, broadly classified into surface-based—see e.g. [7],
[8], [9], [10], [11]—and volume-based—see e.g. [12], [13],
[14], [15]—methods, which differ from methods such as
[16], [17], [18], [19] in that they leverage an independent
contrast image—different from the data to be smoothed—
that confines the spatial profile of the filters.

In this paper, we propose a scheme that enables volumetric
spatial smoothing of cerebral cortical fMRI data in such way
that filtering is informed by the morphological structure of
the cerebral cortex provided by cortical surface extractions.
At the heart of the method lies the representation of a
cerebral hemisphere cortex—a.k.a. the cortical ribbon—as
a graph [20], [21], wherein each voxel is represented as
a vertex and edges are defined based on the Euclidean
adjacency of voxels but constrained by topological informa-
tion provided by reconstructed white-gray border and pial
cortical surfaces [22]. The graphs are subject-specific and
thus encode the unique morphology of each individual’s
cortical structure. Principles from the recently emerged field
of graph signal processing [23], [24] are then leveraged to
perform spatial filtering of fMRI data in such way that the
filter profiles are adapted to cortical morphology.

II. METHODS
A. Graph signal processing: fundamentals

An undirected, non-weighted graph, denoted as G =
(V, E ,A), consists of a set V = {1, 2, . . . , N} of N vertices
and a set E of edges (i.e., pairs (i, j) where i, j ∈ V), and
can be represented by an N ×N symmetric matrix A, i.e.,
the graph adjacency matrix, with its elements defined as
ai,j = 1 if (i, j) ∈ E and ai,j = 0 otherwise. The graph’s
symmetric normalized Laplacian matrix, denoted as L, is
given as L = I−D− 1

2 AD− 1
2 , where D denotes the graph’s

degree matrix, which is a diagonal matrix with elements
given as di,i =

∑
j ai,j , and I denotes the identity matrix.

Since L is real, symmetric, diagonally dominant, and with
non-negative diagonal entries, it is positive semi-definite, and
therefore, it can be eigen-decomposed as

L = UΛUT , (1)

where Λ is a diagonal matrix that stores the eigenvalues
λ1, . . . , λN := λmax and U is a matrix that stores the corre-
sponding eigenvectors in its columns, U = [u1|u2| · · · |uN ];
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hereon, we refer to eigenvectors of U as eigenmodes, in line
with the convention in the neuroimaging community. The
eigenvalues of U define a spectrum for G [25], a space that
can be seen as an extension of the Euclidean Fourier domain.

Given a graph G, data residing on the vertices of G can
be seen as a graph signal, denoted as f ∈ RN . Using U, f
can be transformed to the spectrum G, denoted as f̂ ∈ RN
and obtained as f̂ = U∗f , which is a representation that is
commonly referred to as the graph Fourier transform of f .
This transformation satisfies Parseval’s energy conservation
relation [26], i.e., ||f ||22 = ||f̂ ||22.

Given a graph G and a graph signal f , it is beneficial
to be able to implement filtering operations on f as in
conventional signal processing. In particular, it is of interest
to define graph filters that entail specific spectral proper-
ties, for instance, defining lowpass and highpass filters as
in conventional signal processing. A graph filter can be
conveniently defined in the graph Laplacian spectral domain
as h : [0, λmax] → R, using which, filtering of f , denoted
as fh, can be straightforwardly implemented in the spectral
domain by modulating f̂ with h(·), and then transforming
the modulated signal to the vertex domain, given as

fh = Uh(Λ)f̂ = Uh(Λ)U∗f , (2)

where h(Λ) denotes a diagonal matrix with its entries
computed by sampling h(·) at the eigenvalues. However,
a shortcoming of this approach to graph signal filtering is
that it requires Λ and U, i.e., eigen-decomposition of L.
This is computationally highly impractical for large graphs,
and, in particular, infeasable for the graphs proposed in this
work that are typically of sizes in the range 100 K to 200
K vertices. An alternative approach is to approximate h(·)
as a polynomial, denoted as h̃ : [0, λmax] → R, and to then
implement filtering within the vertex domain as [27]

fh
(2)
= Uh(Λ)U∗f ≈ Uh̃(Λ)U∗f (3)

(1)
= h̃(L)︸︷︷︸

H

f , (4)

where in the last equality we used the property Luk =
λkuk → h̃(L)uk = h̃(λk)uk. As such, graph signal filtering
can be seamlessly implemented through the mere use of poly-
nomial matrix operations on L. In particular, it is insightful
to observe that each row k in H = [δ1h|δ2h| · · · |δNh ]T , where
δkh ∈ RN , is the vertex representation of spectral kernel h(·)
when instantiated at vertex k; these set of vectors provide the
impulse response set for spectral kernel h(·), which, unlike
that in conventional signal processing, are shift-variant.

B. Dataset

We used the Human Connectome Project (HCP) dataset
[28] in this study; the acquisition of the HCP dataset was
approved by the Washington University Institutional Review
Board and informed consent was obtained from all subjects.
In particular, we used a subset of the dataset, the 100
unrelated subjects (54% female, mean age = 29.11± 3.67,
age range = 22-36). To construct cortical graphs, we used

the minimally preprocessed structural data, which come at
0.7 mm isotropic resolution, and the associated extended
preprocessed version of the data, which included FreeSurfer
surface extraction. We also used the HCP functional task
fMRI data, which come at 2 mm isotopic resolution, and
consisted of seven functional tasks: Emotion, Gambling,
Language, Motor, Relational, Social, and Working Memory.
The spatial smoothing methodology proposed in this work
heavily relies on accurate co-registration between the struc-
tural and functional data, which is already implemented in
the HCP preprocessed data. A full description of the imaging
parameters and prepocessing steps can be found in [29].

C. Cerebral hemisphere cortex (CHC) graphs

We design subject-specific, voxel-resolution graphs that
encode the morphology of CHC using the method presented
in [20], [21], which is based on leveraging the volumetric
representation of a subject’s CHC as extracted by FreeSurfer1

[22] from a T1-weighted MRI image, the so called ribbon
representation. Each vertex of the 3D ribbon is considered as
a graph vertex. Graph edges are preliminarily defined based
on the adjacency of voxels within the cubic lattice of size 3×
3×3, i.e., 26 neighborhood connectivity. Consequently, spuri-
ous edges that are anatomically unjustifiable—e.g. edges that
connect voxels that lie on opposite sides of narrow sulci—are
pruned out by using pial and white surface representations
extracted using FreeSurfer. For a more detailed description
of the design, we refer the interested reader to [20], [21].

D. Spectral graph heat kernel filters

Given a CHC graph, we design spatial smoothing filters
associated with a heat kernel profile defined on the graph
spectrum, i.e., k(λ) = e−τλ,∀λ ∈ [0, λmax], where τ is
a free parameter that specifies the resulting filter’s spatial
extent; see Fig. 1. For a given τ , we approximated k(λ) by
a Chebyshev polynomial—approximating a minimax poly-
nomial, minimizing an upper bound on the approximation
error [27]—and applied filtering as in (4).

E. Construction of cortical activity phantoms

A semi-synthetic phantom dataset was constructed through
synthesizing cortical activation patterns and corrupting them
with white Gaussian additive noise. The anatomical scans
of the first 10 subjects from the HCP dataset were used
to generate activation patterns that have confounding spatial
shapes that are constrained by the cortical morphology of
each individual subject, using a method similar to that pro-
posed in [12]. Specifically, for each subject i, 10 random seed
points were selected from within the cortical ribbon, treated
as distinct centers of functional activity. The points were
then represented as an indicator vector xi ∈ RN , wherein
xi[n] = 1 if n corresponds to a center point and xi[n] = 0
otherwise, i.e., ||xi||1 = 10. An activation pattern that
diffuses from the center points along the subject’s cortex was
generated as yi = zi/maxn{zi[n]}, where zi = p

√
Ap
ix,

and Ai denotes the adjacency matrix of subject i, and p is

1https://surfer.nmr.mgh.harvard.edu
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Fig. 1. (a) Distribution of graph Laplacian eigenvalues of a representative
subject’s left hemisphere CHC graph. (b) Spectral graph heat kernels.

Fig. 2. Simulated cortical activity phantoms on 10 HCP subjects.

parameter that determines the extent of the diffused pattern.
In all the following analyses, p was set to 5. The resulting
activation patterns are unique to each subject and exhibit
non-binary distributions of value within the range [0, 1]. The
vector-formed activity patterns {yi}10i=1 were then placed
back into 3D volumetric representations; Fig. 2 shows the
resulting phantoms across the 10 subjects. The phantoms
were then corrupted with additive white Gaussian noise;
phantoms with four noise levels were generated—standard
deviations σn = 2, 4, 8 and 16, resulting in contrast-to-noise
ratios (CNR)—maxn{yi}/σn [30]—of 1/2, 1/4, 1/8 and
1/16, respectively. Ten realizations were generated for each
noise level, resulting in a total of 100 signals for each CNR.

III. RESULTS AND DISCUSSION

Fig. 3 shows realizations of a representative set of graph
spatial smoothing filters when localized at different parts
along the cortical ribbon. In contrast to conventional Gaus-
sian smoothing wherein the spatial shape of the filtering
kernel is the same at each position across the image, in graph-
based spatial smoothing, the shape of graph filters adapts to
each specific position along the domain they are realized at,
based on the encoding provided by the graph.

Cortical morphology-adapted spatial smoothing filters

Gaussian smoothing kernel

(a) (b)

(c)

Fig. 3. (a) Voxels that fall within the cerebral cortex—as defined by the
region in between the pial (green) and white (white) surfaces—of a given
hemisphere define the vertices of a CHC graph, and the graph edges are
defined based on geodesic adjacency of voxels within their 3× 3× 3 voxel
neighborhood [20], [21]. (b) When performing volumetric smoothing of
fMRI data, Gaussian kernels are conventionally used, which are isotropic
and not adapted to the underlying cortical morphology; contours of a
Gaussian kernel with FWHM = 8 mm is displayed. (c) Using CHC graphs,
spatial filters that adapt to the underlying cortical morphology are designed;
in particular, a unique spatial filter is obtained at each position (voxel) within
the cerebral cortex. Contours of eight representative graph filters associated
to a heat kernel spectral profile, with parameter τ = 40, are displayed.

To validate the strength of the proposed filters in de-
noising fMRI data, receiver operating characteristic (ROC)
analysis was performed on the phantom set, see Sec-
tion II-E. Each noise-added phantom was spatially smoothed
with Gaussian spatial smoothing (GAUSS) and graph-based
spatial smoothing (GRASS) over a range of filter sizes,
FWHM = 1, 2, . . . 14 and τ = 10, 15, . . . , 100, respectively.
For GAUSS, two approaches were compared: unconstrained
GAUSS (uGAUSS) and constrained GAUSS (cGAUSS). In
uGAUSS, the data were smoothed without masking out
regions outside the ribbon; that is, the filter has access to
values not only within the cortical ribbon but also to those in
adjacent white matter or CSF. In cGAUSS, the region outside
the ribbon was masked out (set to zero), and consequently,
normalized convolution was performed; that is, filtering was
done in three steps, first, the masked data was smoothed,
then, a mask representing the cortical ribbon (with values
one inside the ribbon and zero outside) was smoothed, and
consequently, the former was divided by the latter.

After filtering, smoothed volumes were thresholded at 100
uniformly-spaced consecutive levels spanning the minimum
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and maximum value in each filtered volume to generate
ROC curves—wherein the clean phantoms were treated as
ground truth, and in turn, the area under curve of each
ROC curve (AUCROC) was computed. Fig. 4 shows the
results. Between the two GAUSS approaches, cGAUSS out-
performed uGAUSS as it uses additional information about
the delineation of the cortical ribbon, preventing mixture of
pure noise from surrounding white matter and CSF. Across
CNRs, GRASS showed superior performance over GAUSS.
Although both cGAUSS and GRASS exploit cortical sur-
face information, GRASS outperforms cGAUSS since i) it
leverages filters whose spatial profile adapts to the domain,
whereas in cGAUSS, the filters are merely masked by the
cortical ribbon, and ii) it prevents mixing of values at touch-
ing parts of the cortex that are only adjacent in Euclidean
sense but not in geodesic sense, for instance touching banks
of narrow sulci. Best performance for GAUSS was obtained
for FWHMs within the range 6 to 10, and for GRASS it was
obtained for τ within the range 30 to 50.

We then performed Dice analysis to quantify the extent of
difference between detection maps resulting from GRASS
and cGAUSS on the real data. Given the large number of
available combinations of cGAUSS and GRASS for different
filter sizes, and lack of a one-to-one mapping between
a Gaussian kernel of a given FWHM and a graph filter
of a specific τ , we selected a subset of filter sizes for
cGAUSS and GRASS for the analysis performed on the real
data, based on the AUCROC performances obtained on the
simulated data. In particular, we selected five filter sizes that
provided the overall best performance for cGAUSS (FWHM
= 6, 7, 8, 9 and 10) and GRASS (τ = 30, 35, 40, 45 and
50); see Fig. 4. With this selection of filter sizes, we are
implicitly assuming that underlying activations in the real
data have spatial spreads that are of approximately the same
size as those in the simulated data. For each subject, and
each functional task, the fMRI data were smoothed using

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

AUCROC

0

2

4

6

8

10

12

14

F
W

H
M

 (
m

m
)

GAUSS

CNR = 1/2

CNR = 1/4

CNR = 1/8

CNR = 1/16

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

AUCROC

0

20

40

60

80

100
GRASS

CNR = 1/2

CNR = 1/4

CNR = 1/8

CNR = 1/16

Fig. 4. Each point along the curves is the average AUCROC over 100
realizations (10 phantoms × 10 realizations of noise). For GAUSS, the
curves shown in red and black are for uGAUSS and cGAUSS, respectively.

the 10 above-listed filter settings, and activation mapping
was then performed for one of the experimental conditions
of each task (Emotion: fear, Gambling: win, Language: math,
Motor: left hand, Relational: match, Social: mental, Working
Memory: body 0-back; for details about the tasks and each
experimental condition, we refer the interested reader to
[31]). Resulting t-maps were then thresholded at 5% false
discovery rate. For a given subject, a given task, and a
given τ , the Dice similarity between the associated GRASS
detection map and the five detection maps for cGAUSS were
computed as dτ,fwhm = 2|Mτ ∩Mfwhm|/|Mτ |+ |Mfwhm|, for
FWHM = 6, . . . , 10, where Mfwhm and Mτ denote the set
of voxels in the detected map for cGAUSS and GRASS,
respectively, and | · | denotes set cardinality. The maximum
Dice was then selected, i.e., max{dτ,fwhm}fwhm=6,··· ,10. This
analysis was repeated across subjects, tasks, and the five
τ values. If activation mapping on data smoothed with
neither cGAUSS nor GRASS resulted in any detections, Dice
similarity was not computed.

Fig. 5(a)-left shows the maximum Dice for different tasks
for τ = 40, showing values within the range 0 to 0.92 and
an average of 0.8 across the seven tasks2. A similar average
Dice similarity was observed using the other four τ values;
see Fig. 5(a)-right. Despite the similarity of detection maps
for GRASS and cGAUSS, the two approaches nevertheless
resulted in a notable set of detections that are not common
between the two. Figs. 5(b) and (c) show the extent of
unique detections by cGAUSS and GRASS, respectively,
as ratios of total number of detections by each method; in
particular, Fig. 5(b) shows |Mfwhm| − |Mτ ∩ Mfwhm|, and
Fig. 5(c) shows |Mτ | − |Mτ ∩ Mfwhm|, for the τ and the
FWHM for which Dice values are shown in Fig. 5(a). On
average, 21%3 of the detections by cGAUSS were not present
in the detection maps for GRASS, and 17%4 vice versa.
Due to lack of ground truth, it is not possible to make any
concrete statements when interpreting these results. However,
if we are to accept the validity of the simulation results—
specifically, that the generated synthetic phantoms resemble
true activations—the superior performance of GRASS over
cGAUSS on the simulations suggests the potential of having
obtained a better specificity and sensitivity using GRASS.

IV. CONCLUSIONS

We proposed a method that enables volumetric spatial
smoothing of functional data in such way that filtering is
informed by the morphological structure of the cerebral
cortex, as defined by extracted cortical surfaces. In future
work, we will compare the proposed method with spatial
smoothing performed on cortical surface [10], [14], and
will also explore the benefits of the proposed method for
processing high spatial resolution fMRI data [32], [33].

2Emotion: 0.8, Gambling: 0.84, Language: 0.74, Motor: 0.76, Relational:
0.81, Social: 0.85 and WM: 0.8.

3Emotion: 22%, Gambling: 15%, Language: 26%, Motor: 29%, Rela-
tional:18%, Social:14% and WM: 21%.

4Emotion: 15%, Gambling: 14%, Language: 24%, Motor: 19%, Rela-
tional: 13%, Social: 16% and WM: 16%.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2021. ; https://doi.org/10.1101/2021.05.04.442605doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.04.442605
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0.2

0.4

0.6

0.8

1

D
ic

e

(a)

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

Em
ot

io
n

G
am

bl
in
g

La
ng

ua
ge

M
ot

or

R
el
at

io
na

l

Soc
ia
l

W
M

(b)

0

20

40

60

80

100

p
e

rc
e

n
ta

g
e

Em
ot

io
n

G
am

bl
in
g

La
ng

ua
ge

M
ot

or

R
el
at

io
na

l

Soc
ia
l

W
M

(c)

0.7

0.75

0.8

0.85

D
ic

e

Em
ot

io
n

G
am

bl
in
g

La
ng

ua
ge

M
ot

or

R
el
at

io
na

l

Soc
ia
l

W
M

15

20

25

30

p
e

rc
e

n
ta

g
e

Em
ot

io
n

G
am

bl
in
g

La
ng

ua
ge

M
ot

or

R
el
at

io
na

l

Soc
ia
l

W
M

15

20

25

30

p
e

rc
e

n
ta

g
e

Em
ot

io
n

G
am

bl
in
g

La
ng

ua
ge

M
ot

or

R
el
at

io
na

l

Soc
ia
l

W
M

 = 30

 = 35

 = 40

 = 45

 = 50

 = 30

 = 35

 = 40

 = 45

 = 50

 = 30

 = 35

 = 40

 = 45

 = 50

Em
ot

io
n

G
am

bl
in
g

La
ng

ua
ge

M
ot

or

R
el
at

io
na

l

Soc
ia
l

W
M

Fig. 5. (a) Left: maximum Dice similarity between detection map resulting from data smoothed with GRASS with τ = 40 and 5 detection maps resulting
from data smoothed with cGAUSS, FWHMs = 6, 7, 8, 9 and 10. Each dot represents one subject. The mean value across subjects is shown by �. Right:
mean values same as in the left plot but for other τ values. (b) Left: for the pair of τ and FWHM for which Dice values are shown in (a), percentage of
detections for cGAUSS that are not present in the detection map for GRASS, i.e., unique detections for cGAUSS. Each dot represents one subject. The
mean value across subjects is shown by �. Right: mean values similar to the left plot but for other τ values. (c) Same as in (b) but for GRASS.
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“Graph signal processing: Overview, challenges, and applications,”
Proc. IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[25] FRK Chung, Spectral graph theory, AMS, Providence, RI, 1997.
[26] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency

analysis on graphs,” Appl. Comput. Harmon. Anal., 2015, doi:
10.1016/j.acha.2015.02.005.

[27] DK Hammond, P Vandergheynst, and R Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol.
30, no. 2, pp. 129–150, 2011.

[28] DC Van Essen, SM Smith, DM Barch, TE Behrens, E Yacoub,
K Ugurbil, and WU-Minn HCP Consortium., “The WU-Minn human
connectome project: an overview.,” Neuroimage, vol. 80, pp. 62–79,
2013.

[29] Matthew F Glasser, Stamatios N Sotiropoulos, J Anthony Wilson,
Timothy S Coalson, Bruce Fischl, Jesper L Andersson, Junqian Xu,
Saad Jbabdi, Matthew Webster, Jonathan R Polimeni, et al., “The
minimal preprocessing pipelines for the human connectome project,”
Neuroimage, vol. 80, pp. 105–124, 2013.

[30] M Welvaert and Y Rosseel, “On the definition of signal-to-noise ratio
and contrast-to-noise ratio for fMRI data,” PloS one, vol. 8, no. 11,
pp. e77089, 2013.

[31] HCP WU-Minn, “1200 subjects data release reference manual,” URL
https://www. humanconnectome. org, 2017.

[32] M Moerel, F De Martino, K Uğurbil, E Yacoub, and E Formisano,
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