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bioRyiv

Mutations in non-coding cis-regulatory DNA sequences can alter gene expression, organismal phenotype, and fitness.
Fitness landscapes, which map DNA sequence to organismal fitness, are a long-standing goal in biology, but have
remained elusive because it is challenging to generalize accurately to the vast space of possible sequences using models
built on measurements from a limited number of endogenous regulatory sequences. Here, we construct a sequence-to-
expression model for such a landscape and use it to decipher principles of cis-regulatory evolution. Using tens of millions
of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Sacccharomyces
cerevisiae, we construct a deep transformer neural network model that generalizes with exceptional accuracy, and enables
sequence design for gene expression engineering. Using our model, we predict and experimentally validate expression
divergence under random genetic drift and strong selection weak mutation regimes, show that conflicting expression
objectives in different environments constrain expression adaptation, and find that stabilizing selection on gene expression
leads to the moderation of regulatory complexity. We present an approach for detecting selective constraint on gene
expression using our model and natural sequence variation, and validate it using observed cis-regulatory diversity across
1,011 yeast strains, cross-species RNA-seq from three different clades, and measured expression-to-fitness curves. Finally,
we develop a characterization of regulatory evolvability, use it to visualize fithess landscapes in two dimensions, discover
evolvability archetypes, quantify the mutational robustness of individual sequences and highlight the mutational
robustness of extant natural regulatory sequence populations. Our work provides a general framework that addresses key
questions in the evolution of cis-regulatory sequences.

accurately map each sequence in a sequence space to its as-
sociated organismal fitness, ideally coupled with an ap-
proach for visualizing the complete sequence space. Partial
fitness landscapes have been characterized empirically(18-
20), often using maximum growth rate as a proxy for fit-
ness(18, 21-23). Many recent studies have favored molecu-

Introduction

Changes in cis-regulatory elements (CREs) play a major role
in the evolution of gene expression(, 2). Mutations in CREs
can affect their interactions with transcription factors
(TFs), change the timing, location and level of gene expres-

sion, and impact organismal phenotype and fitness(3-6).
While TFs evolve slowly because they each regulate many
target genes, CREs evolve much faster and are thought to
drive substantial phenotypic variation(7-10). Thus, under-
standing how cis-regulatory sequence variation affects gene
expression, phenotype and organismal fitness is fundamen-
tal to our understanding of regulatory evolution(6).

A fitness function maps genotypes (which vary through
mutations) to their corresponding organismal fitness val-
ues (where selection operates)(11, 12). A complete fitness
landscape(13-17) is defined by a fitness function that can

lar activities as fitness proxies, which are less susceptible to
experimental biases and measurement noise(24, 25). For
example, studies have now described empirical fitness land-
scapes of proteins(26, 27), adeno-associated viruses(28),
catalytic RNAs(29), promoters(30, 31) and TF binding
sites(32, 33), each using their respective molecular activi-
ties as indicators of fitness. In particular, the molecular ac-
tivity of a promoter sequence as reflected in the expression
of the regulated gene has been used to build a ‘promoter fit-
ness landscape’(30). However, despite advances in high-
throughput measurements, empirical fitness landscape
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Fig. 11 An accurate, comprehensive sequence-to-expression model enables gene expression engineering. a, Approach overview. b,¢, Accu-
rate prediction of expression from sequence. Predicted (x axis) and experimentally measured (y axis) expression in complex media for (b) random
test sequences (sampled separately from and not overlapping with the training data) and (c) native yeast promoter sequences. Pearson’s r and
associated P-values are shown. d, Engineering extreme expression values beyond the range of native sequences using a genetic algorithm (GA)
and the sequence-to-expression model. Normalized kernel density estimates of the distributions of measured expression levels for native yeast
promoter sequences (grey), and sequences designed (by the GA) to have high (red) or low (blue) expression.

studies remain limited to a tiny subset of the complete se-
quence space whose size grows exponentially with the se-
quence length (4% for DNA or RNA, where L is the length of
sequence)(18, 30), and often sample sequences in the local
neighborhood of natural ones(18, 19, 34).

Predicting expression phenotype and fitness from se-
quence would allow us to answer fundamental ques-
tions(34) in evolution and gene regulation in addition to
providing an invaluable bioengineering tool(34-39). A
model relating sequence to expression comprehensively
and accurately could predict how cis-regulatory mutations
affect expression and fitness (when coupled with expres-
sion-to-fitness curves(22, 40-42)), design new sequences
with desired characteristics, determine how quickly selec-
tion can act to reach a new expression optimum, identify
signatures of the selective pressures that have shaped nat-
ural cis-regulatory sequences observed in extant species,
visualize fitness landscapes in sequence space and charac-
terize mutational robustness and evolvability of cis-regula-
tory sequences(6, 18, 19, 34, 43-45).

Here, we tackle these long-standing questions by devel-
oping a framework for studying cis-regulatory evolution
(Fig. 1a) based on a Saccharomyces cerevisiae promoter se-
quence-to-expression model. We learned this model from

the measured expression levels associated with tens of mil-
lions of random sequences using a deep transformer neural
network. The model has exceptional predictive accuracy,
which we leverage for model-guided sequence design with
an evolutionary algorithm, yielding sequences that drive ex-
pression beyond the natural range in yeast. We predict (and
validate experimentally) the impact of random genetic drift
and the strong-selection weak-mutation regime on gene ex-
pression, show that optimizing conflicting expression ob-
jectives constrains expression adaptation even though a
single expression objective can be reached with few muta-
tions, and find that stabilizing selection on expression re-
sults in a moderation of regulatory complexity. We use the
model-predicted expression differences caused by natural
genetic variation in promoters to detect signatures of stabi-
lizing selection on expression directly from regulatory se-
quences (without concomitant expression measurements),
analogous to dn/ds in proteins, allowing us to predict
whether a gene’s expression is conserved across species
and how it affects organismal fitness. Finally, we quantify
the evolvability of regulatory sequences by the extent of ex-
pression changes available to each sequence by mutation.
We relate sequences by their evolvability in a two-dimen-
sional representation, distinguishing mutationally plastic
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and robust sequence archetypes. This representation of
evolvability allows us to detect selective constraint on gene
expression from individual sequences, shows that promot-
ers of genes under stabilizing selection on gene expression
tend to be mutationally robust, and provides the basis for a
systematic exploration of cis-regulatory fitness landscapes.

Results

Learning a sequence-to-expression model from tens of mil-
lions of random sequences

We begin by building a model that takes DNA sequence as
input and predicts expression. Here, we consider the se-
quence space comprising any 80 bp DNA sequence that oc-
cupies the -160 to -80 region (with respect to the Transcrip-
tion Start Site (TSS)) of a promoter construct in S. cerevisiae
(Methods), a critical location for TF binding(46) and deter-
minant of promoter activity(47). To avoid biases(19) to-
wards extant sequences, we measured the expression for
each of over 20 million randomly sampled 80 bp DNA se-
quences using our previously described approach(47)
(Methods). Here, we clone random sequences into a YFP ex-
pression vector, transform them into yeast grown in a de-
fined medium (SD-Ura, synthetic defined lacking uracil;
Methods), sort the yeast into 18 expression bins, and se-
quence the promoters in the yeast in each bin to estimate
expression.

We learned the model using a deep transformer neural
network that can predict expression values from sequence,
with a model architecture (Methods, Supplementary Fig.
$1) designed to reflect known aspects of cis-regulation(48,
49). Briefly, the model has three blocks, each consisting of
multiple layers, and analogous to different biological as-
pects. The first is a convolutional block with three layers,
which identifies sites that are important for computing the
expression target, and are analogous to a TF scanning the
length of the sequence for binding sites. The first layer
learns an abstract representation of first-order TF-se-
quence interactions by operating with convolutional ker-
nels on the sequence, scanning the forward and reverse
strands separately to generate strand-specific features
(each individual kernel in the first layer can be thought of as
learning the motif of one TF, or a combined representation
of the motifs)(50-53); the second can capture interactions
between strands, by using a 2D convolution on the com-
bined features from the individual strands; and the third
layer can capture higher order interactions, such as TF-TF
cooperativity. The second block is analogous to combining
the biochemical activities of multiple bound TFs and ac-
counting for their positional activities. It first uses a trans-
former-encoder with a multi-head self-attention mod-
ule(54) to capture relations between features extracted by
the convolutional block at different positions in the se-
quence, by attending to them simultaneously using a scaled
dot product attention function. Here, the model can learn
‘where to look’ within the sequence. Then, a bidirectional
Long Short-Term Memory (LSTM) layer in this block cap-
tures long range interactions between the sequence re-
gions. Finally, a multi-layer perceptron block can capture
cellular operations that occur after TFs are recruited to the
promoter sequence, by pooling all the features extracted

from the sequence through the previous layers and learning
a scaling function that transforms these abstract feature
representations of biomolecular interactions into an ex-
pression estimate.

The model generalizes in the sequence space to accurately
predict expression from sequence

To show that the learned model can generalize, we pre-
dicted the expression of new test sequences not seen during
model training, and compared them to their experimentally
measured levels (Methods, assayed in the same SD-Ura de-
fined media used for generating the training data). We ob-
tained exceptionally accurate predictions both when testing
on a 5,351 random sequence test set (Pearson’s r = 0.969, P
< 5*10-324, Supplementary Fig. S2a) and when testing on
the 3,978 native yeast promoter sequences (-160 bp to -80
bp relative to the TSS of native yeast genes) for which we
quantified expression using our assay (Pearson’s r = 0.95, P
< 5*%10-324, Supplementary Fig. S2b).

As a contrasting growth condition, we trained a second
model using another 30 million sequence-expression pairs
measured separately in a complex growth medium (YPD,
Methods). Here, too, we observed excellent performance
on 9,982 random test sequences (Pearson’s r = 0.981, P <
5%10-324, Fig. 1b) or 3,929 native yeast promoter sequences
(Pearson’sr=0.961, P < 5*10-324, Fig. 1c). These results rep-
resent a decrease in error of 33%-50% compared to the
performance of our biochemical models(47) when learned
here from the same data, highlighting the superior predic-
tive power of the deep transformer model. Moreover, the
expression measurements were highly correlated for the
same sequences between the two media (Pearson’s r =
0.978, Supplementary Fig. S3a) and the model trained on
the defined medium predicted expression in the complex
medium well (Pearson’s r = 0.970, Supplementary Fig.
S$3b). However, for some sequences we expect differences
between growth conditions, as we study below.

Model-guided expression engineering beyond the range of
native expression

We leveraged the high predictive accuracy of the model for
a synthetic biology application of gene expression engineer-
ing, by using our model as the ‘fitness function’ for a genetic
algorithm (GA) to design sequences with extreme expres-
sion values. We initialized the GA with a population of
100,000 randomly-generated samples from the sequence
space, and simulated 10 generations to maximize (or mini-
mize) the expression output (Methods). To test whether
the designed sequences from the GA indeed achieve their
predicted extreme expression levels, we synthesized the
500 sequences with the top predicted maximum (or mini-
mum) expression levels and tested them experimentally.
The GA-designed sequences drove, on average, more ex-
treme expression than >99% of native sequences (99.6%
for high expressing; 99.3% for low), with ~20% of designed
sequences more extreme than any native sequence tested
(23.5% for high; 18.4% for low) (Fig. 1d). Thus, our se-
quence-to-expression model can be used for gene expres-
sion engineering.
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Fig. 2 | Characterizing the effects of random drift, stabilizing and directional selection on cis-regulatory sequences with the sequence-to-
expression model. a-c, Expression divergence under random genetic drift. a. Simulating trajectories. Top: An imaginary fithess landscape with
trajectories for one (black), two (blue), three (orange), and four (green) random mutations. Bottom: Simulation procedure. b, Predicted expression
divergence under random genetic drift. Distribution of the change in predicted expression (y axis) for 5,720 starting sequences at each mutational
step (x axis) for trajectories simulated under random mutational drift. Silver bar: differences in expression between unrelated sequences. Midline:
median; boxes: interquartile range; whiskers: 1.5x interquartile range. ¢, Experimental validation. Distribution of measured (light grey) and predicted
(dark gray) changes in expression in complex media (y axis) for the synthesized sequences at each mutational step (x axis) from predicted mutational
trajectories under random mutational drift. Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range. d, Stabilizing selection on
gene expression leads to moderation of regulatory complexity extremes. Regulatory complexity (y axis) for sequences from sequential mutational
steps (x axis) under stabilizing selection to maintain the starting expression levels, where the regulatory interactions of starting sequences are initially
complex (blue; n=47) or simple (orange, n=64), in complex media (YPD). Right bars: regulatory complexity for native (dark gray) and random (light
gray) sequences. Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range. e-g, Sequences under SSWM can rapidly evolve to
an expression optimum. e. Simulating trajectories under SSWM. Top: An imaginary fitness landscape with one trajectory to achieve an expression
optimum. Bottom: Simulation procedure. f, Predicted expression evolution under SSWM. Distribution of predicted expression levels (y axis) in
complex media at each mutational step (x axis) for sequence trajectories under SSWM favoring high (red) or low (blue) expression, starting with
5,720 native promoter sequences. Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range. g, Experimental validation.
Experimentally measured expression distribution in complex media (y axis) for the synthesized sequences at each mutational step (x axis) from
predicted mutational trajectories under SSWM, favoring high (red) or low (blue) expression. Midline: median; boxes: interquartile range; whiskers:
1.5x interquartile range. h, Competing expression objectives constrain expression adaptation. Distribution of predicted expression (y axis) in complex
(blue) and defined (red) media at each mutational step (x axis) for a starting set of 5,720 native promoter sequences optimizing for high expression
in defined media (red) and simultaneous low expression in complex media (blue).

expression from the original sequence as two unrelated se-
quences (Fig. 2b). We validated our results experimentally
by synthesizing sequences with zero to three random muta-
tions and measuring their expression in our assay (Meth-
ods). The experimental measurements closely matched our
predictions in both complex (Fig. 2c) and defined (Supple-
mentary Fig. S2c) media, with excellent agreement in both
expression change (Pearson’s r: 0.877 and 0.849, respec-
tively; Supplementary Fig. S2f,g) and expression level
(Pearson’s r: 0.974 and 0.963 respectively; Extended Fig.

Expression divergence under random genetic drift
We next assessed the impact on expression of different evo-
lutionary scenarios: random drift, stabilizing selection, and
directional selection for extreme expression levels, as well
as for two opposing expression requirements (Fig. 2). In
each case we simulated the scenario using our model to pre-
dict the expression phenotype of each sequence, and then
tested the model’'s evolved sequences experimentally,
where possible.

We first simulated random drift of regulatory sequences,

with no selection on expression levels. We randomly intro-
duced a single mutation in each starting sequence, repeated
this process for multiple consecutive generations, and then
used our model to predict the difference in expression be-
tween the mutated sequences in each trajectory relative to
the corresponding starting sequence (Fig. 2a-c).
Expression levels diverged as the number of mutations
increased, with 32 mutations resulting in nearly as different

2j,k).

Stabilizing selection on expression leads to a moderation
of regulatory complexity extremes

Although gene regulatory networks often appear to be
highly interconnected(47, 55-57), the sources of this regu-
latory complexity and how it changes with the turnover of
regulatory mechanisms(58) remain unclear. We thus used
our model to study the evolution of regulatory complexity
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in the context of stabilizing selection, which favors the
maintenance of existing expression levels. First, we used an
interpretable biochemical model we previously devel-
oped(47) to quantify regulatory complexity, defined as 1
minus the Gini coefficient of TF regulatory interaction
strengths (Methods). Starting with native sequences whose
regulatory complexity is either extremely high (many TFs
with similar contributions to expression) or low (few TFs
contribute disproportionately to expression), we simulated
how regulatory complexity changed under stabilizing selec-
tion on gene expression (with each starting set of sequences
chosen to span a range of expression levels). We introduced
single mutations into each starting native sequence for each
of 32 consecutive generations, identified the sequences that
conserved the original expression level and selected one of
them at random for the next generation. To ensure that ex-
pression levels remained unchanged, we experimentally
measured expression for generations 2, 4, 8, 16, and 32, and
excluded any trajectories for which any of these differed
from the original expression level by more than 1. We then
asses the regulatory complexity of the evolved sequences as
before.

We found that as random mutations accumulated, the
regulatory complexity of sequences starting at both com-
plexity extremes shifted towards moderate regulatory com-
plexities (Fig. 2d, rightmost blue and orange), closer to the
averages for both random and native sequences (Fig. 2d,
greys). This suggests that stabilizing selection on expres-
sion leads to a moderation of regulatory complexity, result-
ing from gradual drift in the roles of the different regulators.
Further, the overall distribution of regulatory complexity of
native yeast promoters is similar to that of random se-
quences (Fig. 2d, grey boxes), suggesting that the regula-
tory complexity of native sequences primarily reflects their
sampling from the space of sequences with equivalent ex-
pression outcomes.

Directional selection for extreme expression requires few
mutations
To study the impact of directional selection on gene expres-
sion, we used our model to simulate the strong-selection
weak-mutation (SSWM) regime(59, 60) (Fig. 2e, Methods),
where each mutation is either beneficial or deleterious
(strong selection, with mutations surviving drift and fixing
in an asexual population), and mutation rates are low
enough to only consider single base substitutions during
adaptive walks(61, 62) (weak mutation). Briefly, starting
with the set of all native sequences, at each iteration (gen-
eration), for a given starting sequence of length L, we con-
sider all of its 3L single base mutational neighbors, use our
model to assess their expression, and take the sequence
with the largest increase (or separately, decrease) in ex-
pression at each iteration (generation) as the starting set of
sequences for the next generation (Fig. 2e, Methods).
Sequences that started with diverse initial expression
levels rapidly evolved to high (or separately, low) expres-
sion, with the vast majority evolving close to saturating ex-
treme expression levels within 3-4 mutations in both the
complex (Fig. 2f) and defined (Supplementary Fig. S2d)
media models. We validated these trajectories experimen-
tally for select series of sequences (Fig. 2g, Supplementary
Fig. S2e), measuring the expression driven by synthesized

sequences from several generations along simulated muta-
tional trajectories for complex media (10,322 sequences
from 877 trajectories) and defined media (6,304 sequences
from 637 trajectories). We again observed extreme expres-
sion within 3-4 mutational steps, with high agreement be-
tween measured and predicted expression change (Supple-
mentary Fig. S2h,i; Pearson’s r: 0.973 and 0.956, respec-
tively) and expression levels (Supplementary Fig. S21,m;
Pearson’s r: 0.981 and 0.974) along the trajectories in both
the complex and defined media.

Conflicting expression objectives in different environments
constrain expression adaptation

In contrast to the rapid evolution towards expression ex-
tremes, evolution to satisfy two opposing expression re-
quirements (one in each growth media) is more con-
strained. A concrete example is the expression of the URA3
gene, which codes for an enzyme in the uracil synthesis
pathway: in defined media lacking uracil organismal fitness
increases with increased expression, but in complex media
containing 5-FOA fitness decreases with increased expres-
sion, due to Ura3-mediated conversion of 5-FOA to toxic 5-
fluorouracil (Supplementary Fig. S3c). To study this re-
gime, we used our model with the set of all native sequences
(and separately, a set of random sequences) as starting se-
quences and simulated trajectories under the SSWM re-
gime, simultaneously optimizing for two competing objec-
tives: maximize expression in the defined medium, while
minimizing it in the complex medium. Here, we maximize
the difference in expression between the two conditions at
each iteration, assuming that the cells are exposed to both
environments before the mutations can reach fixation
(Methods). While the difference in expression increased
with each generation (Supplementary Fig. S3d,e), the vast
majority of sequences achieved neither the maximal nor the
minimal expression in either condition (Fig. 2h, Supple-
mentary Fig. S3f), for both native and random starting se-
quences. Interestingly, after 10 generations, the evolved se-
quences became enriched for motifs for TFs involved in nu-
trient sensing and metabolism, compared to the starting se-
quences (Supplementary Fig. S3g). Thus, while evolving a
sequence to achieve a single expression optimum requires
very few mutations, encoding multiple opposite objectives
within the same sequence is more difficult, suggesting that
conflicting expression objectives in different environments
constrain expression adaptation.

The Expression Conservation Coefficient (ECC) detects
signatures of stabilizing selection on gene expression us-
ing natural genetic variation in cis-regulatory DNA

We next applied our sequence-to-expression model to de-
tect evidence of selective pressures on natural regulatory
sequences, inspired by the way in which the ratio of non-
synonymous (“non-neutral”) to synonymous (“neutral”)
substitutions (dn/ds) in protein coding sequences is used
estimate the strength and mode of natural selection(63). By
analogy(64-66), for regulatory sequences(6), we used our
model to assess the impact (a continuum between “non-
neutral” and “neutral”) of naturally occurring regulatory
mutations on gene expression, compared to that expected
with random mutations, and summarize this with an Ex-
pression Conservation Coefficient (ECC) (Methods). To


https://doi.org/10.1101/2021.02.17.430503
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.430503; this version posted February 27, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

The evolutionary history and evolvability of eukaryotic cis-regulatory DNA sequences 6
a Natural sequence variation Simulated sequence variation b
in the gene’s promoter (p) in the gene’s promoter (p) 04 :
44 —
1011 yeast isolates Diversifying / positive selection | Stabilizing selection
3 |
5 0.34 I
—_— —_— o Enriched for | Enriched for core
For each Simulate sequences A S carboxylic acid, | cellular processes, e.g.,
gene with a matched C = alcohol metabolism | RNA / protein metabolism
A relative hamming T S 0.2
T distance distribution A 5 |
=3 |
2 [
Natural distribution Simulated distribution L 044 |
pCDC36 |
O |
O ECC, = log <U_C) % 0o i
— B — - T T T T T 1
-6 -4 -2 0 2 4 6
Predicted expression (f(p)) Predicted expression (f(p)) Expression Conservation Coefficient (ECCp)
c pCDC36 genotype d Identify orthologs between
TCCTAGAAAGGAACTA yeast and species in other clade
TCGTAGAAAGGAACTA -
TCGTAGAAAGGAACTA (For each yeast gene - ortholog pair)
TCGTAGAAAGGAGCTA "4
TCGTAGAARGGAACTG y-axis: compute ECC Label ortholog’s expression conservation status within clade
TCGTAGAAAGGAACTA for yeast gene Expression Divergent Conserved
TCGTAGAAAGGAACTA of ortholog | |
TCGTAGAAAGGAACTA (RNA-seq) Species in clade Species in clade
TCGTAGAAAGGAACTA - 107 years 108 years 10° years — approximate
TCCTACAAAGCAACTA I T 1 evolutionary time
Low eXpﬁlsesIE? | TTGTAGAAAGGAACTA | Saccharomyces Ascomycetes Mammals
CGTAGAAAGGAACTA P =0.00031 P=1.16x107% P =0.00374
TCATAGAAAGGAACTA —~ 51 -
TCATAGAGAGGAACTA- g3 .l
Low expression | TCATAGAAACGCAACTA A g g -
allele 2 | PCATAGAAAGGAATTA ©5 °
TCATAGAAAGGAACTA - 52 2
TCATAGAAAGGAACTA g3 .l
TCGTAGAARGGAACTA g2 E
T T T T T T T T ~ T 07
207 UPC2 0 5 10 0 100 200 300 400 Qo
15 motif Predicted expression  Number of strains Qe ™M
i) of CDC36 (in 1011 genomes) £ _od -
-EE 1.0 4
05 Ae Yang et al. 2016 This study Chen et al. 2019
o. _Nmmhwﬁ_m;m;,‘\‘ggo;'jmg [0 Genes shown to have divergent expression within clade
""""""""" Naaad [0 Genes shown to have conserved expression within clade
e f - 7. N
P=8.18 x 106, N= 80 SP-9-99X,1° i N =80
Spearman’s p = 0.476 pearman’s p = 0.515
* GENE in Keren et al. 2016 54 ® GENEin Keren etal. 2016
w .
&3 o
0.8
8§
BWw g 3|
-‘E S g6 g _ -
] 8 5 7 T
8 s &) . g = ’
= =
8 8o 81 o770
= o
£ E o2 -
i _1
T T T T T T T T T T T T T T T
0.0 0.2 04 0.6 0.8 10 01 02 03 04 05 06 07 08 09
Mutational robustness of GENE Mutational robustness of GENE

Fig. 31 The Expression Conservation Coefficient (ECC) detects signatures of stabilizing selection on gene expression using natural genetic
variation in cis-regulatory DNA. a-c, a, ECC calculation from 1,011 S. cerevisiae genomes®0. b, ECC distribution for S. cerevisiae genes. Frequency
distribution of ECC values (x axis). Dashed line distinguishes regions corresponding to disruptive/positive selection (left) and stabilizing selection
(right) and GO terms enriched by the ECC ranking. Arrowhead: ECC value for the CDC36 promoter sequence. ¢, Convergent regulatory evolution
in the CDC36 promoter. Predicted expression (x axis, left bar plot) and associated number of strains (x axis, right bar plot) of all alleles among the
analyzed CDC36 promoter sequence within 1,011 yeast isolates, along with an alignment of their UPC2 binding site sequences (left; UPC2 binding
motif below). Red vertical lines: two independently evolved low-expressing alleles. Grey vertical boxes: key positions in the UPC2 motif with single
nucleotide polymorphisms. d, Distribution of ECC (y axis, calculated from 1,011 S. cerevisiae genomes, top left) for S. cerevisiae genes whose
orthologs have divergent (blue) or conserved (purple) expression (within Saccharomyces (left), Ascomycota (middle), or mammals (right) (as
determined by cross species RNA-seq, top right). P-values: two-sided Wilcoxon rank-sum test. Midline: median; boxes: interquartile range; whiskers:
1.5x interquartile range. e,f, Genes whose expression changes have stronger effects on organismal fithess have mutationally robust regulatory
sequences. Mutational robustness (x axes) and fitness responsivity (e, y axis) or ECC (f; y axis) for each of 80 genes (points) for which the expression-
to-fitness curves were quantified2!. Spearman’s p and associated P-values are shown.

compute the ECC, we compared, for each gene’s promoter,  variation introduced to that promoter (oc; Fig. 3a). The ran-
the standard deviation of the expression distribution pre-  dom variation was generated by placing random mutations
dicted by the model for a set of naturally varying ortholo-  within the gene’s promoter consensus (the most abundant
gous promoters (os) to the standard deviation of the ex-  base at each position in the orthologous set), while preserv-
pression distribution predicted for a matched setof random  ing the Hamming distance distribution observed in the
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natural sequences (Methods). We define the ECC for a gene
as log(oc/os), such that a positive ECC indicates stabilizing
selection on expression (lower variance in the native se-
quences), a negative ECC indicates diversifying (disruptive)
or directional (positive) selection, and values near 0 suggest
neutral drift (see Methods for definitions).

We calculated the ECC for 5,569 S. cerevisiae genes using
the natural variation observed in the -160 to -80 regions of
over 4.73 million orthologous promoter sequences from the
1,011 S. cerevisiae isolates(67) (Fig. 3a,b, Supplementary
Table 1). Over 70% of promoters had positive ECCs, sug-
gesting stabilizing selection (and conserved expression)
(binomial test P < 10-215) (Fig. 3b), consistent with previous
reports based on direct measurements of gene expres-
sion(68, 69). Genes with high ECCs were enriched in highly-
conserved core cellular processes (e.g., RNA and protein
metabolism(70)) (Fig. 3b, Supplementary Table 2), and
those with low ECCs were most enriched in processes re-
lated to carboxylic acid and alcohol metabolism (Fig. 3b,
Supplementary Table 2), potentially reflecting adaptation
of fermentation genes to the diverse natural and industrial
settings from which these isolates were collected(67).

A striking example of predicted positive selection is the
promoter of CDC36 (ECC=-2.138, Fig. 3b), which has com-
mon natural alleles with either low or high (predicted) ex-
pression across the isolates (Fig. 3c). Analysis of CDC36
promoter sequences (Methods) suggests that low-expres-
sion evolved at least twice independently, resulting in two
distinct variants with reduced expression (Fig. 3c, allele 1
and 2). Interrogation of our previously published biochem-
ical model to identify factors impacting these expression
differences (Supplementary Fig. S4a) suggested that both
low-expression alleles are explained by disruption of the
same binding site for Upc2p, an ergosterol sensing TF (Fig.
3c). The two mutation events at adjacent nucleotides in one
TF binding site support the hypothesis that these two inde-
pendent mutations result from convergent evolution of a
common new CDC36 regulatory and expression phenotype,
which is captured by the low ECC of CDC36.

The ECC is consistent with cross-species RNA-seq and ex-
pression-to-fitness measurements

ECC values were consistent with expression conservation as
measured for yeast orthologs across clades at short (Sac-
charomyces), medium (Ascomycota), or long (mammals)
evolutionary scales (Fig. 3d). In Saccharomyces, orthologs
with conserved expression levels across Saccharomyces
species (as measured by RNA-seq(71)) had significantly
higher ECC (computed from the 1,011 yeast isolates) than
genes whose expression was not conserved (two-sided Wil-
coxon rank-sum test P = 3.1*104) (Fig. 3d, bottom left,
Methods). Next, we performed RNA-seq across 11 Ascomy-
cota yeast species (Methods), and found that orthologs
with conserved expression across Ascomycota had signifi-
cantly higher ECC values (Fig. 3d, bottom center, P =
1.16*10-%). Finally, genes with high ECC values in the 1,011
S. cerevisiae isolates also reflected expression conservation
of their orthologs (one-to-one or one-to-many) within
mammals(72) (Fig. 3d, bottom right, two-sided Wilcoxon
rank-sum test P = 0.00374, Methods). Thus, while yeast-
mammal orthologs are likely critical to an organism’s fit-
ness, those under stabilizing selection for expression in

yeast (by the ECC) tend also to be more conserved in expres-
sion across mammals (by RNA-seq). Thus, the ECC quanti-
fied stabilizing selection on expression in yeast and may
even predict stabilizing selection on orthologs’ expression
in other species.

Genes with higher ECCs also had a stronger effect on or-
ganismal fitness in S. cerevisiae upon changing their gene
expression level, as reflected by our interrogation of previ-
ously measured expression-to-fitness relationships(22).
Specifically, we analyzed the empirically-determined rela-
tionships between the expression levels of each of the 80
genes to organismal fitness in a published experiment(22),
using the total variation of the expression-fitness curve as a
‘fitness responsivity’ score of how fitness depends on ex-
pression (Supplementary Fig. S5, Methods). Fitness re-
sponsivity was significantly positively correlated with the
ECC (Supplementary Fig. S4b, Spearman p = 0.326, P =
0.003). Additionally, we find the same qualitative relation-
ship between a gene’s ECC and fitness responsivity as re-
ported for other genes, including LCBZ (ECC 2.15 and high
fitness responsivity(42)) and MLS1 (ECC -1.32 and ex-
tremely low fitness responsivity(41)). Notably, fitness re-
sponsivity was not associated with regulatory sequence di-
vergence per se across the promoter sequence (as estimated
by the mean Hamming distance among orthologous pro-
moters, Methods, Supplementary Fig. S4c, Spearman p =
0.083, P = 0.46), suggesting that while stabilizing selection
on gene expression (as determined by the ECC) can shape
the types of mutations that accumulate in the population, it
may have little effect on the overall rate at which mutations
accumulate in promoter regions within populations.

Mutational robustness of gene promoters under stabilizing
selection on expression

While a gene’s ECC (computed from the natural genetic var-
iation in regulatory DNA) represents the imprint of its evo-
lutionary history, its mutational robustness (assessed di-
rectly from the gene’s promoter sequence) should describe
how future mutations would affect its expression. We de-
fined the mutational robustness of a sequence length L, as
the percent of its 3L single nucleotide mutational neighbors
predicted to result in a negligible change in expression
(Supplementary Fig. S4d, Methods), following previous
descriptions of mutational robustness(73-75).

The mutational robustness of a gene’s promoter se-
quence was positively correlated with the gene’s fitness re-
sponsivity (Fig. 3e, Spearman p = 0.476, P = 8.18*10%), sug-
gesting that fitness-responsive genes have evolved more
mutationally robust regulatory sequences. Mutational ro-
bustness which, unlike the ECC, is computed for single se-
quences without a set of variants across a population, was
also correlated to the ECC (Fig. 3f, Spearman p = 0.515, P =
9.99*10-7). Similarly, the promoter sequences of yeast genes
with  conserved expression across Saccharomyces
strains(71), Ascomycota species, or mammals(72) had
higher mutational robustness (P = 8.4*10-3, 6.5*10-5, and
0.017, respectively, two-sided Wilcoxon rank-sum test).
Thus, genes whose expression level are under stabilizing se-
lection have regulatory sequences that are more robust to
the impact of mutations (which may reflect their history
and constrain their future).
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A characterization of cis-regulatory evolvability captures
evolutionary properties of the sequence space

Mutational robustness can facilitate evolvability, the ability
of a system to generate heritable phenotypic variation, by
allowing the exploration of novel genotypes that may facili-
tate adaptation(44, 73-75). To characterize regulatory
evolvability, we extended our description of mutational ro-
bustness to develop a general representation of the evolu-
tionary properties of regulatory sequences. To this end, we
represent each sequence as a sorted vector of expression
changes (predicted by our model) that are accessible
through single base substitutions to that sequence: we sort
the expression changes associated with the single base
changes in every possible position to obtain a monoton-
ically increasing vector of length 3L for each sequence of
length L (here, L=80; 3L=240; Fig. 4a, left, Methods). We
term this representation the ‘evolvability vector’, in line
with previous definitions of evolvability(44, 73), however
its relationship with evolvability is context-dependent. Se-
quences for which mutations change expression (i.e., their
evolvability vectors have a large magnitude) are evolvable
in the sense that they can adapt to new expression optima
easily, but under stabilizing selection the majority of muta-
tions in such sequences would be maladaptive, limiting reg-
ulatory program evolvability. Alternatively, sequences in
which mutations tend to preserve expression are less evolv-
able in terms of their expression level, but are more evolva-
ble in their regulatory program since more mutations can
be tolerated.

We next determined whether cis-regulatory evolvability
vectors fell into distinct classes by identifying evolvability
archetypes: extreme canonical patterns of expression
change in mutational neighborhoods. Using our model, we
computed evolvability vectors for a new random sample of
a million sequences and then embedded these evolvability
vectors into a two-dimensional archetypal(76-78) latent
space using an autoencoder(79) (Fig. 4a, right, Methods).
This archetypal latent space is represented as a convex pol-
yhedron whose vertices represent evolvability archetypes;
each sequence can be represented as a single point within
this space. This characterization of evolvability allows us to
encode and visualize sequences by their evolvability in the
context of a fitness landscape.

Three archetypes captured most of the variation in
evolvability vectors (Supplementary Fig. S6a,b; Meth-
ods), corresponding to local expression minimum (AMinima),
local expression maximum (Awmaxima), and plastic expression
(Apiastic) (Fig. 4b). AMinima and Awmaxima correspond to se-
quences where most 3L mutational neighbors do not
change expression, and the ones that do, increase it (for
Awinima) or decrease it (for Amaxima). Conversely, for the plas-
tic archetypal sequences, most 3L mutational neighbors
change expression and are equally likely to decrease or in-
crease it (Fig. 4b). In addition to these three archetypes,
mutationally robust sequences were present as a central
cleft in the archetypal latent space (Fig. 4b,c; “Robust”).
Combining our sequence-to-expression model with the ex-
pression-to-fitness curves characterized previously(22),
and integrating them with our two-dimensional represen-
tation of evolvability, we now have a way of visualizing

promoter fitness landscapes (Fig. 4d, Supplementary Fig.
S$7, Methods).

When embedding the evolvability vectors for native
yeast sequences into the learned archetypal latent space,
there was a strong negative correlation between a se-
quence’s proximity to the plastic archetype and its muta-
tional robustness (Fig. 4e, Supplementary Fig. S6c;
Spearman's p =-0.746, P = 1.97*10-15), the ECC (Fig. 4f, Sup-
plementary Fig. S6d,e; p =-0.596, P = 5.4*10-9), fitness re-
sponsivity (Supplementary Fig. S6f; p =-0.413, P = 1.4*10-
4), and expression conservation across species as measured
by RNA-seq (Ascomycota: P=0.00002, Mammals P =0.0083,
Saccharomyces P = 0.000251; two-sided Wilcoxon rank-
sum test). The archetypal space also distinguishes native
regulatory sequences by their associated expression level
(Fig. 4g), with intermediate expression more likely to be
near the plastic archetype (Aplastic) and depleted near the ro-
bustness cleft (Fig. 4g). This depletion is unlikely to result
from a saturation artifact of our reporter construct; our ra-
tiometric sorting strategy allowed us to detect saturation,
but none was observed. Instead, the robustness cleft could
reflect sequences at the stable extremes of one or more ac-
tivation steps of gene expression (e.g. near 100% or 0% nu-
cleosome occupied), while the plastic archetype could re-
flect instability around the inflection points.

Finally, we studied how natural yeast sequences ex-
plored evolutionary space. Using the 1,011 sequenced S.
cerevisiae isolates(67), we placed the evolvability vectors
for each set of orthologous promoters in the archetypal la-
tent space. When a gene’s promoter from one strain is near
the plastic archetype, its orthologs in the other strains
tended to broadly distribute in the archetypal space (Sup-
plementary Fig. S6g), but avoid the robustness cleft (eg.,
the DBP7 promoter from strain S288C; Fig. 4h). Conversely,
when a promoter is near the robustness cleft (e.g., the UTH1
promoter from S288C), so are its orthologs (Fig. 4i, Supple-
mentary Fig. S6g). Notably, many of the native sequences
in S. cerevisiae are near the robustness cleft (Fig. 4j).

In summary, the evolvability vector, which can be com-
puted using our model directly for any sequence (without
any population genetics data), encodes information about
the sequence’s evolutionary history and evolvability.

Discussion

Here, we presented a framework for addressing fundamen-
tal questions in the evolution and evolvability of cis-regula-
tory sequences(6, 44). The use of large scale random se-
quence libraries(47) and sensitive reporter assays(5, 6, 80-
84) allowed us to measure the expression driven by a large
number of sequences without inherent bias towards natu-
rally occurring sequences(19). Using advanced deep learn-
ing approaches(54) and cutting edge computing hard-
ware(85) for training and inference (Methods), we built a
model from these empirical measurements that captures
the complexity of cis-regulation and generalizes accurately
in the sequence space. Our model is useful for gene-expres-
sion engineering, and can be used as an ‘oracle’ when devel-
oping and evaluating algorithms for model-guided biologi-
cal sequence design(35-39). Importantly, we demonstrate
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Fig. 4 | A characterization of cis-regulatory evolvability captures evolutionary properties of the sequence space and enables the
visualization of fitness landscapes. a, Characterizing cis-regulatory evolvability by computing an evolvability vector and its archetypal
representation. Left and middle: Generation of evolvability vectors for a given sequence. Right: training an autoencoder with evolvability vectors to
generate an archetypal representation that is bounded by a simplex, and can be projected onto a 2D MDS-embedding of archetype space to visualize
sequence spaces. b, Evolvability archetypes discovered by the autoencoder. Left: Evolvability vectors of the rank ordered (x axis) predicted change
in expression (y axis) for native sequences closest to each of the plastic (green), maxima (red) or minima (blue) archetypes and the ‘robustness cleft’
(black). Right: all native yeast (S. cerevisiae S288C) promoter sequences (grey points) projected onto the archetype space by their evolvability
vectors. Evolvability archetypes (colored circles) and their closest native sequences (s1-S4 as on left) are marked. ¢, Evolvability landscape captures
mutational robustness. Evolvability vectors (points) of all native yeast promoter sequences projected onto the archetype space (coloured circles, as
in b) and colored by mutational robustness. d, Visualizing the ABF1 promoter fitness landscape. Promoter sequences represented by their respective
evolvability vectors are projected onto the archetype space and colored by their associated fitness as reflected by their predicted growth rate relative
to the wildtype (color, Methods), estimated by first mapping sequences to expression with our model and then expression to fitness as measured
and estimated previously2!. e,f, The evolvability vectors’ archetypal representation predicts expression conservation from solitary sequences.
Proximity to the plastic archetype (Apisic) (X axis) and mutational robustness (e, y axis) or ECC (f, y axis), for each of 80 genes with measured fitness
responsivity. Top right: Spearman’s p and associated P-value. g, Evolvability landscape captures expression levels. Evolvability vectors (points) of
all native yeast promoter sequences projected onto the archetype space (colored circles, as in b) and colored by predicted expression level. h,i,
Plastic promoter sequences dynamically traverse the archetype space. Evolvability vector projections of native sequences (points) from all 1,011 S.
cerevisiae isolates. Red points: natural promoter sequence variants for DBP7, the promoter closest to the plastic archetype (h) and for UTH1, the
promoter closest to the robustness cleft (i). j, The robustness of native promoter sequences. Density (color) of all native yeast promoter sequences
when their evolvability vectors are projected onto the archetype space.
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how to use the model’s predictive power to tackle key ques-
tions in the study of fitness landscapes for understanding
the genotype-phenotype-fitness relationship(18, 19, 34),
gene expression variation across strains and species(6),
mutational robustness(86), and evolvability(44, 75).

It has previously been suggested that evolution favors
more complex regulatory solutions, with multiple weak
binding sites rather than a single strong site, because com-
plex solutions are more likely to be sampled during evolu-
tion(87). We showed that if stabilizing selection is acting
only on gene expression, extremes of regulatory complexity
gradually move towards the intermediate levels of complex-
ity, closer to the distribution of complexity observed in na-
tive or random sequences (Fig. 2d). The similarity in the
regulatory complexity distributions of native regulatory se-
quences and random sequences supports the model where
most evolved regulatory sequences sample potential con-
straint-satisfying solutions in proportion to their frequency
in the sequence space.

Recent work proposes(88) that adaptation to new envi-
ronments can be facilitated by DNA mutations that destroy
or create TF binding sites and thus cause gene mis-regula-
tion due to regulatory crosstalk, when a TF binds the regu-
latory region of a gene it does not normally regulate. We
found that while most sequences have one or more muta-
tions available that are predicted to dramatically alter ex-
pression in a single environment (Fig. 2f,g), few mutations
are available in any sequence that will satisfy competing ex-
pression objectives (Fig. 2h). This suggests that it would be
difficult for a single promoter sequence to encode the tis-
sue-specific expression constraints of a complex organism
(where different cell/tissue types are different environ-
ments). One potential solution is to encode the regulatory
activities of each gene with multiple regulatory sequences,
such as the distal transcriptional enhancers that regulate
cell type-specific expression in higher eukaryotes(89).

The dn/ds ratio has been used extensively to character-
ize the evolutionary rates of protein coding genes(90), and
we developed an analogous(6, 64) coefficient, the ECC, for
detecting evidence of selection on gene expression from
natural variation within regulatory sequences of a species.
In principle, the ECC can be calculated across orthologous
regulatory sequences from many different species (as op-
posed to individuals within a species, as we did here), but
we advise caution if doing so. The ECC assumes that the
function relating sequence to gene expression is the same
across the orthologous sequences being compared. Since
regulatory sequences evolve much faster than the regula-
tors themselves(10), this assumption is likely a reasonable
approximation within a species, but as evolutionary dis-
tances increase, regulators will diverge, gradually eroding
this assumption. An alternative is to use gene orthology to
infer the extent of expression conservation in one species
using ECCs calculated in another species (Fig. 3d). How-
ever, such relations would extend only to well-mapped
orthologs.

Complementing the ECC, which requires multiple
orthologs of the regulatory region, mutational robustness
as calculated with our model is predictive of selective pres-
sures on individual sequences (Fig. 3e,f). While we find that
strong constraint on the function of regulatory sequences

can shape them to be robust to future mutations, we con-
sider it unlikely that robustness itself is the selected trait,
since increased robustness to future mutations is likely to
be of little marginal benefit(86). Instead, this may reflect a
secondary benefit of having evolved decreased expression
noise(91, 92), or another as-yet-unknown mechanism. It
may also reflect the fact that some ancestral sequences may
be similar in sequence to the mutational neighbors of extant
sequences, and, if selective constraints on gene expression
have remained stable, these ancestral sequences likely have
similar expression levels to the extant sequences.

Our approach for relating sequences using model-de-
rived evolvability vectors allows us to study the evolution-
ary properties of the sequence space. Overall, we find that
sequences span an evolvability spectrum from robust se-
quences, where few mutations alter expression appreciably
and natural genetic variation tends to preserve expression,
to plastic, where most mutations alter expression and natu-
ral genetic variation produced great expression diversity
(Fig. 4c,g-j). It also helps visualize(93) fitness land-
scapes(18) (Fig. 4d, Supplementary Fig. S7) and future
work can further improve our understanding of their global
shape, dimensionality and topography(18, 19).

While our sequence-to-expression model produces ex-
ceptionally accurate predictions and the evolutionary in-
sights we gained from our framework were supported by
multiple lines of evidence, its direct application is currently
limited by regulatory region, environment, and species. Fur-
thermore, while we explored the interplay of competing se-
lective pressures in two environments, most organisms are
exposed to far more than two environments. In particular,
for multicellular organisms, selection acts simultaneously
on expression levels in many different cell types. As similar
models of gene regulation are created for other species, en-
vironments, and additional regulatory regions (e.g. enhanc-
ers), we anticipate that the framework we presented here
will continue to provide insights into cis-regulatory evolu-
tion.
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Methods

Experimental measurement of sequence-expression pairs using a Sort-
seq strategy

We experimentally measured expression using the GPRA Sort-seq(94-97)
strategy we previously described(47). Briefly, for each set of expression
measurements mentioned, random or designed single stranded oligonu-
cleotides were ordered from IDT (Supplementary Table 3), cloned into a
library as previously described(47) and transformed into yeast (strain
Y8205 for the training dataset of random sequences, and strain
S288C::ura3 for all the rest of the sequences measured). Yeast were grown
in continuous log phase, diluting as necessary to maintain an OD between
0.05 and 0.6 for 8-10 generations up until the time of harvest. Cells were
harvested, washed once in ice cold PBS, and kept on ice in PBS until sorting.
Cells were sorted into 18 uniformly-sized expression bins covering the ma-
jority of the expression distribution. Post sort, cells were re-grown in SD-
Ura until saturation, plasmids isolated, and sequencing libraries created
with a 150 cycle NextSeq kit. For libraries with random 80 bp sequences,
sequences were consolidated as previously described(47). Reads from
other (defined, non-random; synthesized by Twist Biosciences) libraries
were aligned to the pre-defined sequences using Bowtie2(98), including
only reads that perfectly matched a designed sequence. For each sequence,
the expression level was the average of the expression bins in which it was
observed, weighted by the number of times it was observed in each bin.
These expression measurements were carried out separately in defined
media lacking uracil (SD-Ura (Sunrise Science, #1703-500)) and complex
media (YPD: yeast extract, peptone, dextrose).

Architecture of the sequence-to-expression model

We captured the relationship between promoter DNA sequence (s)
and gene expression level (e) as a deep transformer neural network model
with the following architecture (Supplementary Fig. S1a) :

Input. The input is the sequence (s) represented in one-hot encoding
as previously described for DNA sequences(50-53, 99-101). Input Shape:
(110,4)

Convolution Block. The convolution block is constructed in the
following order (Supplementary Fig. S1b) :

- Revere Complement Aware 1D Convolution. The forward and
reverse strand are operated on separately with a convolutional
kernel to generate strand specific sequence- environment
interaction features. Kernel Shape: (30, 4, 256).

- Batch Normalization

- Rectified Linear Unit (ReLU)

- Concatenation of Features from the forward and reverse strand

- 2D Convolution: Convolve over the combined features from
both the strands to capture interactions between strands.
Kernel Shape: (2, 30, 4, 256)

- Batch Normalization

- ReLU

- 1D Convolution. Kernel Shape: (30, 64, 64)

- Batch Normalization

- ReLU

Transformer Encoder Blocks. Two transformer encoder blocks(54)
are constructed in the following order (Supplementary Fig. S1c):

- Multi-Head Attention: 8 heads, capturing relations between
features from different positions of (s) to compute a
representation for the features extracted from the convolution
block from (s).

- Residual Connection

- Layer Normalization

- Feed Forward Layer with 8 units

- Residual connection

- Layer Normalization

Bidirectional LSTM layer. A bidirectional LSTM layer to capture the
long-range interactions between different regions of the sequence with 8
units and 0.05 dropout probability.

Fully Connected Layers (Supplementary Fig. S1d). Two Fully
connected layers with 64 Hidden Units, each consisting of ReLU and
Dropout (0.05 dropout probability).

Output. Linear Combination of 64 features extracted as a result of all
the previous operations on the sequence (s) to generate the predicted
expression (e).

Training of the sequence-to-expression model

For training, we used 20,616,659 random sequences for the defined
medium and 30,722,376 random sequences for the complex medium (each
to train a separate model), along with their experimentally measured
expression as described above. Model architecture was written in

TensorFlow(102) 1.14 using Python 3.6.7 with multiple open source
libraries (citations, where relevant, are included in code for them). A mini-
batch size of 1,024 was used for training and a mean squared error loss
was optimized using a RMSProp optimizer(103) with a learning rate of
0.001. Training was carried out on a Google Cloud Tensor Processing Unit
(TPU)(85) v3-8. Evaluation was carried out on 4 Tesla M60 GPUs. The
model architecture visualization was generated using Netron 4.5.1. All
processed data and models are publicly available on Zenodo at
https://zenodo.org/record /4436477 and all code is available on GitHub at
https://github.com/ledv/evolution. These TPU-compatible models (for
both media) were used for computing the predicted expression
corresponding to a sequence throughout the manuscript unless explicitly
stated otherwise in the Methods sections below, in which case a simpler
version of the model architecture was used (which could be trained on
GPUs rather than TPUs).

Architecture of the GPU-based sequence-to-expression model

An initial model trained on GPUs (“GPU model”) used for some of the initial
sequence design and evolutionary simulation sections as indicated below.
This model is highly similar to that described above and used throughout
most of the paper, except that it was trained using GPUs (Tesla M60s)
rather than TPUs. The model did not have transformer blocks or
bidirectional LSTM layers, which we incorporated into the TPU model,
which required access to TPUs.

Input. The input is the sequence (s) represented in one-hot encoding as
before. Input Shape: (1,110,4)

Convolution Block.
- For the forward and reverse strand, separately,

o  Strand-specific convolution layer 1. Kernel Shape:
(1,30,4, 256)

o  Strand-specific convolution layer 2. Kernel Shape:
(30,1, 256, 256)

- Concatenation of features from the forward and reverse strand
- Convolution layer 3. Kernel Shape: (30, 1,512, 256)
- Convolution layer 4. Kernel Shape: (30, 1, 256, 256)

- A bias term and a ReLU activation was added to each
convolution layer in this block.

Fully Connected Layers.
- Fully connected layer 1. Kernel Shape: (110*256, 256).
- Fully connected layer 2. Kernel Shape: (256, 256)

- A bias term and a ReLU activation were added to each layer in
this block.

Output. Linear Combination of the 256 features extracted as a result of all
the previous operations on the sequence (s) to generate the predicted
expression (e).

Every layer was L2 regularized with a 0.0001 weight and had a dropout
probability of 0.2. A mini-batch size of 1,024 was used for training and a
mean squared error loss was optimized using the Adam optimizer with an
initial learning rate of 0.005. The GPU model was trained on the same data
as the TPU model. Training and evaluation were carried out on 4 Tesla M60
GPUs.

Gene expression engineering using a genetic algorithm for sequence
design

To predict new sequences with desired expression we implemented a
genetic algorithm (GA) with the distributed evolutionary algorithms in
python (DEAP) package(104). The mutation probability and the two-point
crossover probability were set to 0.1 and the selection tournament size
was 3. The initial population size was 100,000 and the GA was run for 10
generations. The GPU model was used as the basis for the objective
function for GA, which was maximized for high expression and minimized
for low expression (maximizing negative predicted expression). The top
500 sequences were synthesized (by IDT) and expression was measured
experimentally using our reporter assay, as described above.

Characterizing random genetic drift

To simulate neutral mutational drift (Fig. 2a), we started with a set of
5,720 random sequences, in generation 0. For each sequence in this
starting set, we picked a new single sequence from its 3L mutational
neighborhood (the set of all sequences at a Hamming distance of 1 from a
sequence of length L) randomly and calculated the difference in expression
between the new sequence and the starting sequence using the model. This
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was done for each starting sequence to get generation 1. Each subsequent
generation n, was produced by picking a single sequence randomly from
the 3L mutational neighborhood of each sequence in the preceding
generation n-1. The simulation was carried out for 40 generations.

For experimental validation, we synthesized 1,000 random starting
sequences, and introduced between one to three random mutations to
these sequences. The expression levels of starting and mutated sequences
were measured in both complex and defined media experimentally using
our reporter assay. For 990 of these 1,000 starting sequences, we were
able to make experimental measurements for all three mutational
distances. Additionally, we introduced 20 (median) separate single
mutations each to 196 native sequences, synthesized and measured their
expression similarly for both of these media; these were also included in
the boxes for one mutational step in Fig. 2c and Supplementary Fig. S2c.

Characterizing the regulatory complexity of a sequence

To estimate the regulatory complexity of a sequence, we calculated the Gini
coefficient of the regulatory interaction strengths for each TF. We first
trained a new biochemical model with our defined media data to
complement the existing one trained on complex media, using our
published model architecture of TF binding and position-aware
activity(47) and the training procedure previously described(47). We then
individually calculated the regulatory interaction strength for each
regulator by setting the concentration parameter for that TF (individually)
to 0 in the learned model, and used the model to quantify the resulting
change in expression, as previously described(47). The resulting vector of
interaction strengths was used to calculate a Gini coefficient for each
sequence, separately for the complex and defined media models.
Regulatory complexity for a sequence is then 1-Gini. As starting points for
our trajectories, we selected 200 native promoter sequences (from -160 to
-80, relative to the TSS) with relatively high regulatory complexity and 200
with relatively low regulatory complexity, spanning the range of predicted
expression levels, as starting points for our trajectories.

Trajectories for stabilizing selection on regulatory complexity ex-
tremes were designed using the GPU model. Here, we required all se-
quences to maintain a predicted expression level within 0.5 of the original
expression levels at all steps along the trajectory. In order to ensure that
expression was unchanged, we measured expression level experimentally
for sequences along a trajectory at growing mutational steps from the ini-
tial sequence (2, 4, 8, 16, 32 mutations), as before, and excluded any trajec-
tories where one or more of these points were missing measurements. Fi-
nally, we restricted analysis to only those trajectories for which the meas-
ured expression at no point differed from the starting measured expres-
sion level by more than 1. This resulted in a final set of 47 trajectories start-
ing with high regulatory complexity, and 64 trajectories starting with low
regulatory complexity.

Characterizing directional trajectories under SSWM

To simulate trajectories under a Strong Selection-Weak Mutation (SSWM)
regime, we started with the set of all native yeast sequences (defined as the
subset from -160 to -80 relative to the TSS for all the genes in the yeast
reference genome for which we had a good TSS estimate (Supplementary
Table 3 in (47)) as the starting generation 0. For each sequence in this
starting generation, we picked the sequence from its 3L mutational neigh-
borhood that had the maximal (or separately, minimal) predicted expres-
sion using our model to get generation 1. Each subsequent generation n
was produced by picking for each sequence in generation n-1 the sequence
from its 3L mutational neighborhood with the maximal (or separately,
minimal) expression. The simulation was carried out for 10 rounds.

For experimental validation, we synthesized a subset of sequences
from several generations along simulated mutational trajectories using the
GPU model for defined (6,304 sequences from 637 trajectories, 591 of
which had every sequence along the trajectory successfully measured) and
complex media (10,322 sequences from 877 trajectories, 805 of which had
every sequence along the trajectory successfully measured ) and measured
their expression in the corresponding media experimentally using our re-
porter assay.

Measuring the URA3 expression-to-fithess relationship

We studied two complementary environments with opposite selective
pressures on the expression of URA3 (encoding an enzyme responsible for
uracil synthesis): defined media, where organismal fitness increases with
gene expression (up to saturation) and complex media + 5-FOA, where fit-
ness decreases with Ura3 expression.

We used the GPU models trained on defined and complex media to
choose a set of 11 sequences that span a broad range of predicted expres-
sion levels in the two media when cloned into a YFP expression vector(47).
We experimentally estimated the relationship between expression of URA3

and organismal fitness in yeast, from these 11 sequences, by cloning pro-
moter sequence in front of YFP to measure expression level and in front of
URA3 to measure fitness. Unless otherwise noted, yeast were grown at
30°C, in an orbital shaker incubator at 225 RPM. Each vector was trans-
formed into yeast (S288C::ura3), and three independent transformants
were selected per vector to serve as biological replicates. For measuring
expression, yeast were grown overnight in either YPD+NAT (yeast extract,
peptone, dextrose, with 75ug/ml nourseothricin) or SD-Ura (synthetic de-
fined media, lacking uracil; Sunrise Science 1703-500), and then re-inocu-
lated in the morning and allowed to grow for 6 hours prior to measuring
expression by flow cytometry for each replicate as the log ratio of YFP to
the constant background RFP, including only cells obtaining the top 50%
of RFP expression. Fitness was obtained by measuring the growth rate of
each yeast strain in either SD-Ura or YPD+NAT+5-FOA (0.25 mg/ml 5-
FOA). Yeast were grown continuously in triplicate in log phase, with linear
shaking at 30°C in a Synergy H1 plate reader (Biotek), by diluting each well
to maintain OD<0.7, with OD measured at 15 minute intervals. Growth rate
was defined for each replicate as the median of the instantaneous
smoothed growth rates over 5 measurements in log phase, considering
only time points where 0.05<0D<0.5. Each promoter’s expression and
growth rate were summarized as the mean of the three replicates.

Characterizing trajectories under conflicting expression objectives in
different environments

To simulate sequence evolution in two complementary environments with
opposite selective pressures (defined media and complex media), we
started with the set of all native yeast sequences as the starting generation
0, and defined the objective function as the difference in predicted expres-
sion between defined and complex media using the models trained in the
respective media. In one experiment, we maximized this difference (de-
fined minus complex), and the other we minimized it (maximizing complex
minus defined). For each sequence in generation 0, we picked the sequence
from its 3L mutational neighborhood that had the maximum (or sepa-
rately, minimum) value for the objective function as generation 1 using the
model. Each subsequent generation n was produced by picking for each se-
quence in generation n-1 the sequence from its 3L mutational neighbor-
hood with the maximum (or separately, minimum) value for the objective
function, to a total of 10 generations.

We de novo identified motifs that were enriched in the sequences of
generation 10 compared to the starting sequences using DREME(105), and
searched each of the top 5 consensus motifs in the YeTFaSCo data-
base(106), reporting the closest match, or one of multiple similar matches.

Characterizing Finding orthologous promoters in the 1,011 S. cere-
visiae genomes dataset

To identify orthologs of S288C promoters in the whole genome sequences
of the 1,011 yeast strains(67), we used BLAT(107) to identify regions of
280% identity with each -160 to -80 region (relative to the TSS) annotated
in the reference S288C genome sequence (R64)(108). We excluded on a
gene-by-gene basis any strains with more than one such match, where the
match contained insertions or deletions, or had incomplete matches. Genes
with more than 1.2 matches with 280% identity per genome, on average,
were excluded altogether.

Computing the expression conservation coefficient (ECC)

To calculate the ECC, for each yeast gene promoter, we used the model to
predict an expression value for each orthologous promoter in the 1,011
yeast genomes (above), defining an expression distribution with a stand-
ard deviation os. We also generated, from each gene’s consensus promoter
sequence (defined as the most abundant base at each position across the
strains), a set of sequences with random mutations, such that the number
of sequences at each Hamming distance from the consensus promoter se-
quence was the same for the natural and simulated sets. We used the same
model to predict the expression of the simulated sequences, and calculate
its standard deviation oc. The nominal ECC is log(oc/os). Because the vari-
ance on simulated sequences is better estimated than in natural orthologs
(whose sequences may be more constrained), we subtract a constant cor-
rection factor calculated by creating a second simulated set of randomly
mutated sequences whose diversity is limited to the same extent as in the
natural set, by creating only one random mutation for every unique se-
quence in the set of native orthologs. We then predict expression for this
second set, and use this standard deviation (oc¢) to calculate a null ECC for
each gene (log(oc/oc)); he median of these null ECCs over all the genes is

ac,
used as the constant correction factor C = medianygenes; (logZ (—C‘)>
’ acr;

The corrected ECC for gene g is then:

ac,
ECC, = log, - -C

Bg


https://doi.org/10.1101/2021.02.17.430503
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.430503; this version posted February 27, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

The evolutionary history and evolvability of eukaryotic cis-regulatory DNA sequences 13

The computed ECC values for all yeast genes, available in Supplementary
Table 1, were used to identify cases or presumed stabilizing selection (se-
lection favoring a fixed non-extreme value of a trait), diversifying (disrup-
tive) selection (selection favoring more than one extreme values of a trait;
as opposed to a single fixed intermediate value), and directional (positive)
selection (selection favoring a single extreme value of a trait over all other
possible values of the trait). We re-computed the ECC values for all yeast
genes using the S288C reference sequences instead of the consensus se-
quence for the promoters of each gene and got very similar results.

Inferring expression conservation across Saccharomyces species us-
ing RNA-seq data and comparing with ECC values

Published RPKM values for orthologs of S. cerevisiae genes in closely re-
lated Saccharomyces species(71) were obtained from the Gene Expression
Omnibus (GEO) (accession GSE83120). Only genes for which expression
was quantified in all species were used in subsequent analysis. RPKM val-
ues were log, scaled after adding a pseudo count of 2, and the variance in
expression of each gene across the species was calculated. We ranked
genes by their gene expression variance, and took the 2% of genes with the
lowest variance as those considered to have conserved gene expression
levels (‘expression conserved’), while the 2% with the highest variance
were considered ‘expression not-conserved’. To compare to ECC values, we
estimated the p-value of a two-sided Wilcoxon rank-sum test (imple-
mented using the scipy.stats.ranksums SciPy(109) function) comparing the
ECC values for genes in the ‘expression conserved’ and ‘expression not-
conserved’ categories. To control for the dependence between expression
mean and variance, we also repeated the analysis using the coefficient of
variation (P = 1.05*10-4) and the coefficient of dispersion (P = 2.42*104)
instead of variance and obtained similar results.

Experimental protocol for RNA-seq measurements from 11 Ascomy-
cota species

We performed RNA-seq on the following 11 Ascomycota yeast species: Sac-
charomyces cerevisiae, Saccharomyces bayanus, Naumovozyma (Saccharo-
myces) castellii, Candida glabrata, Kluyveromyces lactis, Kluyveromyces
waltii, Candida albicans, Yarrowia lipolytica, Schizosaccharomyces japoni-
cus, Schizosaccharomyces octosporus, and Schizosaccharomyces pombe.
Each of the 11 species was grown in BMW medium, chosen to minimize
cross-species growth differences, as previously described(110). N. castellii
was grown at 25°C while the rest of the species were grown at 30°C. RNe-
asy Midi or Mini Kits (Qiagen, Valencia, CA) were used to isolate total RNA
from log-phase cells by mechanical lysis using the manufacturer instruc-
tions as previously described(110). dUTP strand-specific RNA-seq libraries
were constructed as previously described(111) with the following modifi-
cations. (1) The polyA*-selected RNA was fragmented in a 40 pl reaction
containing 1x Fragmentation Buffer (Affymetrix) by heating at 80°C for 4
minutes followed by cleanup via ethanol precipitation for all libraries (ex-
cept Y. lipolytica, S. pombe, S. japonicus, and S. octosporus; for these species,
the conditions described previously were used(111)), followed by cleanup
via 1.8x RNAClean XP beads (Beckman Coulter Genomics). (2) For C. gla-
brata, K. lactis, S. bayanus, S. pombe, S. japonicus, and S. octosporus libraries,
the adapter ligation was performed overnight at 16°C. For the rest, this was
done at 16°C for 2 hours as described previously(111). (3) Normalization
was carried out based on the cDNA input and pooling of selected Illumina
barcoded-adaptor-ligated cDNA products followed by gel size selection oc-
curred as follows: range of 275 to 575 bp for pooled C. albicans, K. waltii,
and N. castellii libraries, and 375 to 575 bp for C. glabrata, K. lactis, and S.
bayanus libraries. For the other libraries, no pooling was performed before
gel size-selection - range of 310 to 510 bp for Y. lipolytica and 350 to 550
bp for S. pombe, S. japonicus, and S. octosporus. (4) The final PCR product
was purified by 1.8x AMPure XP beads (Beckman Coulter Genomics) fol-
lowed by a second gel size-selection for the range of 300 to 575 bp for C.
albicans, K. waltii, and S. castellii libraries, but no second gel size-selection
was performed for the other libraries. The pooled final library was se-
quenced on one to four lanes of HiSeq2000 (Illumina) with 68 base (Y. lip-
olytica had 76 base) paired-end reads and 8 base index reads.

Transcript assembly, mapping and expression calculation for the 11 As-
comycota species RNA-seq

For each of the 11 Ascomycota yeast species above, reads were assembled
using Trinity(112)(version ‘trinityrnaseq_r2012-05-18’) and the assem-
bled transcripts were mapped onto the assemblies to the respective ge-
nomes using GMAP(113). The Jaccard coefficient was used to join adjacent
assemblies given enough connecting reads (using the Trinity default of
0.35 for the Jaccard cutoff). Finally, upon mapping all assembled tran-
scripts, the Jaccard coefficient was used to clip assemblies which did not
have enough support over a certain region. For each of the species, assem-
bled transcripts were mapped to the genome sequence(114) using

BLAT(107). Estimated expression values were calculated for each tran-
script using RSEM(115) (defined in RSEM as the estimate of the number of
fragments thatare derived from a given isoform or gene, or the expectation
of the number of alignable and unfiltered fragments that are derived from
an isoform or gene given the maximum likelihood abundances). Only reads
mapping to the sense mRNA strand were considered. Orthology between
genes in different species was used as previously described(114).

Inferring expression conservation across Ascomycota species using
our RNA-seq data and comparing with ECC values

Estimated expression values from the 11 Ascomycota species RNA-seq
data were used after removing all genes with NA values in expression for
more than three species. Estimated expression values were log, scaled af-
ter adding a pseudo count of 1, and the variance in expression for each gene
across the species was calculated. Genes were ordered by their variance in
expression across the reported fungal species. Here, the 10% of genes with
the lowest expression variance were considered to have ‘conserved’ ex-
pression, and the 10% with highest expression variance were considered
to have expression ‘not conserved’. To compare to ECC values, we esti-
mated the p-value of a two-sided Wilcoxon rank-sum test (implemented
using the scipy.stats.ranksums SciPy(109) function) comparing the ECC val-
ues for genes in the ‘conserved’ and ‘not conserved’ categories. We ob-
tained similar results when we repeated the analysis using the coefficient
of variation (P = 4.22*10-5) and the coefficient of dispersion (P = 8.05*10-
5) instead of variance.

Inferring expression conservation across Mammalian species using
RNA-seq data and comparing with ECC values

Ensembl Biomart(116) was used to find one to one or one to many
orthologs of S. cerevisiae genes in humans (of '"Human homology type' ei-
ther ‘ortholog_oneZone’ or ‘'ortholog oneZ2many'; all ‘many2many’
orthologs were excluded). A percent identity >50% (‘%id. query gene iden-
tical to target Human gene’) was also required for an ortholog pair to be
used in the subsequent analysis. For the retained human orthologs of yeast
genes, we directly used the previously reported ‘evolutionary variance’
values across mammalian species from the original publication(72) (based
on an Ornstein Uhlenbeck (OU model)(72)). Here, the 25% of genes with
the lowest ‘evolutionary variance’ were considered to have conserved ex-
pression and the top 25% were considered to be not conserved (the same
thresholds used in the original study(72)). This was done separately for
each profiled tissue (brain, heart, kidney, liver, lung and skeletal muscle).
We verified that were no genes with conflicting expression conservation
classes among tissues. Subsequently, a human ortholog for a yeast gene
was considered to have conserved (or non-conserved) expression if it was
found to have conserved (or non-conserved) expression in at least one of
the profiled tissues. To compare to ECC values, we estimated the p-value of
a two-sided Wilcoxon rank-sum test (implemented using the
scipy.stats.ranksums SciPy(109) function) comparing the ECC values for
genes in the “conserved” and “not conserved” categories.

Quantifying sequence dissimilarity using mean Hamming distance

For each group of orthologous yeast gene promoters (with ungapped align-
ments), we calculated the mean of Hamming distances between each pair
of orthologous promoters across the 1,011 isolates.

Fitness responsivity

Published expression-to-fitness curves in glucose media for each of 80
genes were obtained from the Supplementary Data of the original publica-
tion(22). For each of these curves, the total variation (Supplementary Fig.
S5) was calculated by partitioning the expression range into 36 regular in-
tervals (as reported in the ‘impulse fit’ of the expression-to-fitness curves
in the original publication(22)) and summing the absolute difference in fit-
ness at the endpoints of each partition as follows correction factor
S|Fsene(eiv1) — Fgene(e)|, for each gene’s expression-to-fitness function,
Fgpng(€).

Mutational robustness

For every sequence, mutational robustness was defined as the fraction of
sequences in its 3L mutational neighborhood that altered the expression
by an amountless than €, where € is set at two times the standard deviation
of expression variance across all genes with an ECC >0 (here, e = 0.1616;
ECC calculated using the 1,011 S. cerevisiae genomes, Supplementary Fig.
S4d). Using different values for € yielded very similar results.

The evolvability vector

To compute an evolvability vector for a sequence s,, for each sequence s;
in the 3L mutational neighborhood of s,, we calculate the difference
between the predicted expression of s; and that of sy : d; = f(s;) — f(so),
where f(s) represents the predicted expression of the model. We define


https://doi.org/10.1101/2021.02.17.430503
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.430503; this version posted February 27, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

The evolutionary history and evolvability of eukaryotic cis-regulatory DNA sequences 14

the evolvability vectors as the vector D ({d4, d,, ..., d3.}), sorted such that
d; = d;_, ,Vi(i.e.d; values are in ascending order).

Archetypal analysis of the sequence space using evolvability vectors
The evolvability vectors for a new random sample of a million sequences
were used as input to an autoencoder with an archetypal regularization
constraint(79) on the embedding layer. The autoencoder was trained using
the AANet implementation made available with the publication(79) with
no noise added to the archetypal layer during training, a linear activation
on the output layer, an equal weight of 1 on each of the loss terms (the
mean squared error loss term along with the non-negativity and convexity
constraints), a learning rate of 0.001, and a minibatch size of 4,096. The
autoencoder accepts an evolvability vector (of length 240 for an 80bp
sequence) as input to the first encoder layer, where each node in the input
layer is connected to each node in the encoder layer (fully connected layer).
Every layer in the autoencoder was fully connected. The encoder
architecture used was [1024,512,256,128,64] where each entry
corresponds to the number of nodes in the corresponding hidden layer and
the decoder architecture was the encoder’s mirror image. The output layer
was the same shape as input layer and each node in the last decoder layer
was connected to each node in the output layer. To select the optimal
number of archetypes, the autoencoder was first trained for a 1,000
minibatches separately for 1 to 9 archetypes. Following the recommended
approach(79) for picking the optimal number of archetypes, we used an
elbow plot of mean squared error on the evolvability vectors (here, using
native sequences) vs. the number of archetypes in the autoencoder
(Supplementary Fig. S6a).

We then trained the autoencoder from scratch with 3 archetypes,
using the full training data and parameters for 250,000 batches. Since this
autoencoder aims to reconstruct the original evolvability vector for each
sequence by learning feature representations after passing them through
an information bottleneck, we first verified its reconstruction accuracy on
the set of native yeast promoter sequences (Supplementary Fig. S6b,
Pearson’s r = 0.992). To visualize the evolvability vectors corresponding to
sequences in 2 dimensions (2D), the evolvability vectors corresponding to
the three archetypes were first generated by decoding their archetypal la-
tent space coordinates ((1,0,0), (0,1,0) and (0,0,1)) through the decoder,
and MDS was performed on the decoded evolvability vectors of the arche-
types. Then, as previously described(79), the encoded evolvability vector
of each new sequence was projected into the 2D MDS space by represent-
ing it as a mixture of the archetypes and interpolating them between the

MDS coordinates of each archetype. For every sequence, we can now com-
pute the following equivalent representations : (i) its evolvability vector,
(ii) an archetypal triplet quantifying the similarity of its encoded (latent
space) evolvability vector to the three archetypes and (iii) a two-dimen-
sional multidimensional scaling (MDS) coordinate(79) for visualizing the
evolvability vectors. The representation of the evolvability vector for each
sequence in this archetypal space is now bounded by a simplex (whose ver-
tices correspond to the 3 evolvability archetypes). For each native and nat-
ural yeast promoter sequence from the sequence space, we inferred the
archetypal triplet and MDS coordinates using its evolvability vector with
this trained autoencoder. The MDS coordinates for the archetypes and the
native yeast promoter sequences were used to generate the visualizations
of the sequence space shown.

Visualizing promoter fitness landscapes

1000 random sequences were sampled and projected onto the MDS
coordinate system for visualizing the sequence space described above. The
expression level of each sequence was calculated using our model, and
expression values were scaled so that the minimum was 0 and maximum
was 1. Previously quantified expression-to-fitness relationships(22) to
compute fitness (fraction of wildtype growth rate) by using cubic spline
interpolation (implemented using the scipy.interpolate.CubicSpline
SciPy(109) function) on the expression level after scaling the measured
expression-to-fitness curves to have an expression range of 0 to 1. These
fitness values were then used to generate the contour plots (implemented
using the matplotlib.pyplot.tricontourf function; Fig. 4d, Supplementary
Fig. S7) that visualize the fitness landscape in that gene’s promoter
sequence space.

Supplementary Tables

Supplementary Table 1

The Expression Conservation Coefficient (ECC), mutation tolerance, evolv-
ability vector archetypal coordinates and predicted expression corre-
sponding to all native promoter sequences.

Supplementary Table 2
The GO terms enriched by the ECC ranking.

Supplementary Table 3
The list of single stranded oligonucleotides used.
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Supplementary Fig. S1 | The deep transformer neural network architecture for the sequence-to-expression model. a, Model architecture with
three blocks (horizontal lines) and multiple layers (boxes). b-d. Expanded architecture (Methods) for the convolutional (b), transformer encoder (c)
and multi-layer perceptron (d) blocks.
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Supplementary Fig. S2 | The sequence-to-expression model generalizes accurately and helps characterize sequence trajectories under
different evolutionary regimes. a,b, Accurate prediction of expression from sequence in defined media. Predicted (x axis) and experimentally
measured (y axis) expression in defined media (SD-Uracil) for (a) random test sequences (sampled separately from and not overlapping with the
training data) and (b) native yeast promoter sequences. Top left: Pearson’s r and associated P-value. ¢, Experimental validation of trajectories from
simulations of random genetic drift. Distribution of measured (light grey) and predicted (dark gray) changes in expression in the defined media (SD-
Uracil) (y axis) for the synthesized sequences at each mutational step (x axis) from predicted mutational trajectories under random mutational drift.
Midline: median; boxes: interquartile range; whiskers: 1.5x interquartile range. d, e, Simulation and validation of expression trajectories under SSWM
in defined media (SD-Uracil). d, Distribution of predicted expression levels (y axis) in defined media at each evolutionary time step (x axis) for
sequences under SSWM favoring high (red) or low (blue) expression, starting with 5,720 native promoter sequences. Midline: median; boxes:
interquartile range; whiskers: 1.5x interquartile range. e, Experimentally measured expression distribution in defined media (y axis) for the synthesized
sequences at each mutational step (x axis) from predicted mutational trajectories under SSWM, favoring high (red) or low (blue) expression. Midline:
median; boxes: interquartile range; whiskers: 1.5x interquartile range. f-m, Experimental validation of predicted expression for sequences from the
random genetic drift and SSWM simulations. Experimentally measured (y axis) and predicted (x axis) expression level (j-m) or expression change
from the starting sequence (f-i) in complex (f,j,h,1) or defined (g,i,k,m) media using sequences from the random drift (Fig. 2¢ and (c); f,9,j,k here)
and SSWM (Fig. 2g and (d,e); h,i,I,m here) simulations. Top left: Pearson’s r and associated P-values.
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Supplementary Fig. S3 | Characterization of sequence trajectories under strong competing selection pressures. a,b, Expression is highly
correlated between defined and complex media. Measured (a) and predicted (b) expression in defined (x axis) and complex (y axis) media for random
test sequences. ¢, Opposing relationships between organismal fitness and URA3 expression in two environments. Measured expression (x axis,
using a YFP reporter) and fitness (y axis; when used as the promoter sequence for the URA3 gene) for yeast with each of 11 promoters predicted to
span a wide range of expression levels in complex media with 5-FOA (red), where higher expression of URAS3 is toxic due to URA3-mediated
conversion of 5-FOA to 5-fluorouracil, and in defined media lacking uracil (blue), where URA3 is required for uracil synthesis. Error bars: Standard
error of the mean. d-f, Competing expression objectives are slow to reach saturation. d,e, Difference in predicted expression (y axis) at each
evolutionary time step (x axis) under selection to maximize (red) or minimize (blue) the difference between expression in defined and complex media,
starting with either native sequences (d, as Fig. 2f) or random sequences (e). f, Distribution of predicted expression (y axis) in complex (blue) and
defined (red) media at each evolutionary time step (x axis) for a starting set of 5,720 random sequences. Midline: median; boxes: interquartile range;
whiskers: 1.5x interquartile range. g, Motifs enriched within sequences evolved for competing objectives in different environments. Top five most
enriched motifs, found using DREME(705) (Methods) within sequences computationally evolved from a starting set of random sequences to either
maximize (left) or minimize (right) the difference in expression between defined and complex media, along with DREME E-values, the corresponding
rank of the same motif when using native sequences as a starting point, the likely cognate TF and that TF’s known motif.
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Supplementary Fig. S4 | Signatures of stabilizing selection on gene expression detected from regulatory DNA across natural populations.
a, Expression-altering alleles in the CDC36 promoter are attributed primarily to altered UPC2 binding. TF interaction strength(47) (expression at-
tributable to each TF) difference between the high and low alleles (each point is a TF) for each of two low expression alleles (allele 1: x axis; allele 2:
y axis). Each low-expressing allele is compared to the high-expression allele with the most similar sequence (across all promoter sequences analyzed
from the 1,011 strains; eTF, Apign — erpa,,)- b, ¢, Fitness responsivity is associated with ECC, but not with simple sequence diversity. Fitness
responsivity (y axes) and ECC (b, x axis) or mean Hamming distance (¢, x axis) for each of 80 genes (points). Top right: Spearman’s p and associated
P-values. d, Determination of expression change threshold for defining a "tolerated mutation" to compute mutational robustness. We used all genes
with an ECC consistent with stabilizing selection (ECC>0; left), calculated the variance in predicted expression across the 1011 yeast strains for each
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had an expression variation lower than e.
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Supplementary Fig. S5 | Fitness responsivity of a gene as the total variation of its expression-to-fitness relationship F;y; curves. Expres-
sion (x axis) and fitness (y axis) levels for different promoter variants for each select gene fit from experimental measurements by Keren et al(22).

Fitness responsivity calculated as the total variation in each curve is noted above each panel.
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Supplementary Fig. S6 | Analysis of cis-regulatory evolvability reveals sequence-encoded signatures of expression conservation from
solitary sequences. a, Selection of optimal number of archetypes. Mean-square-reconstruction error (y axis) for reconstructing the evolvability
vectors from the embeddings learned by the autoencoder for an increasing number of archetypes (x axis). Red circle: optimal number of archetypes
selected as prescribed(79) by the “elbow method”. b, The archetypal embeddings learned by the autoencoder accurately capture evolvability vectors.
Original (y axis) and reconstructed (x axis) expression changes (the values in the evolvability vectors) for each native sequence (none seen by the
autoencoder in training). ¢,d, Sequence-encoded signatures of expression conservation. The proximity to the plastic archetype (x axes) and
mutational robustness (y axis, ¢) or ECC (y axis, d) for all yeast genes. Top right: Spearman’s p and associated P-values. “L"-shape of relationship
in ¢ results from the robust cleft, Amaxima, @and Awminima @ll being distal to Apisic (left side of plot). e, All native (S288C reference) promoter sequences
(points) projected onto the evolvability archetype space learned from random sequences; colored by their ECC. Large colored circles: evolvability

archetypes. f, The proximity to the plastic archetype (x axis) and fitness responsivity (y axis) for the 80 genes with measured fitness responsivity.
Top right: Spearman’s p and associated P-values. g, All native (S288C reference) promoter sequences (points) projected on the evolvability
archetype space learned from random sequences; colored by their mean pairwise distance in the evolvability archetype space between all promoter
alleles across the 1,011 yeast isolates for that gene (ortholog evolvability dispersion). Large colored circles: evolvability archetypes.
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Supplementary Fig. S7 | Visualizing promoter fitness landscapes in sequence space. Visualizing the fitness landscapes for the promoters of
HXT3 (a), ADH1 (b), GCN4 (c), RPL3 (d), FBA1 (e), TUBS3 (f). 1000 promoter sequences represented by their evolvability vectors projected onto the
2D archetypal space and colored by their associated fitness as reflected by their predicted growth rate relative to wildtype (color, Methods), estimated
by first mapping sequences to expression with our model and then expression to fitness as measured and estimated previously(22).


https://doi.org/10.1101/2021.02.17.430503
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.430503; this version posted February 27, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

The evolutionary history and evolvability of eukaryotic cis-regulatory DNA sequences 22

References

1. B.Prud’homme, N. Gompel, S. B. Carroll, Emerging principles of regulatory evolution. Proc. Natl. Acad. Sci. U.S.A. 104 Suppl 1, 8605-8612 (2007).

2. P.]. Wittkopp, G. Kalay, Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59—
69 (2011).

3. N. Gompel, B. Prud’homme, P. J. Wittkopp, V. A. Kassner, S. B. Carroll, Chance caught on the wing: cis-regulatory evolution and the origin of pigment
patterns in Drosophila. Nature. 433, 481-487 (2005).

4.  B.Prud’homme, N. Gompel, A. Rokas, V. A. Kassner, T. M. Williams, S.-D. Yeh, ]. R. True, S. B. Carroll, Repeated morphological evolution through cis-
regulatory changes in a pleiotropic gene. Nature. 440, 1050-1053 (2006).

5. T.Fuqua, J. Jordan, M. E. van Breugel, A. Halavatyi, C. Tischer, P. Polidoro, N. Abe, A. Tsai, R. S. Mann, D. L. Stern, J. Crocker, Dense and pleiotropic
regulatory information in a developmental enhancer. Nature, 1-5 (2020).

6. M.S. Hill, P. Vande Zande, P. ]. Wittkopp, Molecular and evolutionary processes generating variation in gene expression. Nature Reviews Genetics, 1-
13 (2020).

7. S.B. Carroll, Evolution at Two Levels: On Genes and Form. PLOS Biology. 3, e245 (2005).

8. D. M. Weinreich, N. F. Delaney, M. A. Depristo, D. L. Hartl, Darwinian evolution can follow only very few mutational paths to fitter proteins. Science.
312,111-114 (2006).

9. A Eyre-Walker, P. D. Keightley, The distribution of fitness effects of new mutations. Nat. Rev. Genet. 8, 610-618 (2007).

10. M. T. Weirauch, T. R. Hughes, Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same.
Trends Genet. 26, 66-74 (2010).

11. U.Gerland, T. Hwa, On the Selection and Evolution of Regulatory DNA Motifs. Journal of Molecular Evolution. 55, 386-400 (2002).

12. H.A. Orr, The genetic theory of adaptation: a brief history. Nature Reviews Genetics. 6, 119-127 (2005).

13. S.Wright, Evolution in Mendelian Populations. Genetics. 16, 97-159 (1931).

14. ].I Jiménez, R. Xulvi-Brunet, G. W. Campbell, R. Turk-MacLeod, I. A. Chen, Comprehensive experimental fitness landscape and evolutionary network
for small RNA. PNAS. 110, 14984-14989 (2013).

15. D.M. Weinreich, Y. Lan, C. S. Wylie, R. B. Heckendorn, Should evolutionary geneticists worry about higher-order epistasis? Current Opinion in Genetics
& Development. 23, 700-707 (2013).

16. M.-R. Meini, P. E. Tomatis, D. M. Weinreich, A. ]. Vila, Quantitative Description of a Protein Fitness Landscape Based on Molecular Features. Mol Biol
Evol. 32,1774-1787 (2015).

17. I Fragata, S. Matuszewski, M. A. Schmitz, T. Bataillon, J. D. Jensen, C. Bank, The fitness landscape of the codon space across environments. Heredity.
121, 422-437 (2018).

18. J.A.G. M. de Visser, ]. Krug, Empirical fitness landscapes and the predictability of evolution. Nat. Rev. Genet. 15, 480-490 (2014).

19. D.A.Kondrashov, F. A. Kondrashov, Topological features of rugged fitness landscapes in sequence space. Trends in Genetics. 31, 24-33 (2015).

20. S.Venkataram, B. Dunn, Y. Li, A. Agarwala, J. Chang, E. R. Ebel, K. Geiler-Samerotte, L. Hérissant, ]. R. Blundell, S. F. Levy, D. S. Fisher, G. Sherlock, D. A.
Petrov, Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast. Cell. 166, 1585-1596.e22 (2016).

21. R.T.Hietpas,].D.]Jensen, D. N. A. Bolon, Experimental illumination of a fitness landscape. Proc. Natl. Acad. Sci. U.S.A. 108, 7896-7901 (2011).

22. L. Keren, ]. Hausser, M. Lotan-Pompan, I. Vainberg Slutskin, H. Alisar, S. Kaminski, A. Weinberger, U. Alon, R. Milo, E. Segal, Massively Parallel
Interrogation of the Effects of Gene Expression Levels on Fitness. Cell. 166, 1282-1294.e18 (2016).

23. C.Li, W.Qian, C.]. Maclean, J. Zhang, The fitness landscape of a tRNA gene. Science. 352, 837-840 (2016).

24. D. L. Hartl, What Can We Learn From Fitness Landscapes? Curr Opin Microbiol. 0,51-57 (2014).

25. U.Obolski, Y. Ram, L. Hadany, Key issues review: evolution on rugged adaptive landscapes. Rep Prog Phys. 81, 012602 (2018).

26. K.S.Sarkisyan, D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov, D. N. Ivankov, N. G. Bozhanova, M. S. Baranov, 0. Soylemez, N. S.
Bogatyreva, P. K. Vlasov, E. S. Egorov, M. D. Logacheva, A. S. Kondrashov, D. M. Chudakov, E. V. Putintseva, I. Z. Mamedov, D. S. Tawfik, K. A. Lukyanov,
F. A. Kondrashov, Local fitness landscape of the green fluorescent protein. Nature. 533, 397-401 (2016).

27. V. 0. Pokusaeva, D. R. Usmanova, E. V. Putintseva, L. Espinar, K. S. Sarkisyan, A. S. Mishin, N. S. Bogatyreva, D. N. Ivankov, A. V. Akopyan, S. Y.
Avvakumov, I. S. Povolotskaya, G. J. Filion, L. B. Carey, F. A. Kondrashov, An experimental assay of the interactions of amino acids from orthologous
sequences shaping a complex fitness landscape. PLoS Genet. 15,e1008079 (2019).

28. P.].Ogden, E. D. Kelsic, S. Sinai, G. M. Church, Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design.
Science. 366, 1139-1143 (2019).

29. J.N.Pitt, A. R. Ferré-D’Amaré, Rapid construction of empirical RNA fitness landscapes. Science. 330, 376-379 (2010).

30. J.Otwinowski, I. Nemenman, Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter. PLoS ONE. 8,e61570 (2013).

31. R. K. Shultzaberger, D. S. Malashock, J. F. Kirsch, M. B. Eisen, The Fitness Landscapes of cis-Acting Binding Sites in Different Promoter and
Environmental Contexts. PLOS Genetics. 6, 1001042 (2010).

32. V.Mustonen, J. Kinney, C. G. Callan, M. Lassig, Energy-dependent fitness: a quantitative model for the evolution of yeast transcription factor binding
sites. Proc. Natl. Acad. Sci. U.S.A. 105,12376-12381 (2008).

33. J.Berg, S. Willmann, M. Lassig, Adaptive evolution of transcription factor binding sites. BMC Evol. Biol. 4,42 (2004).

34. J.A.G.M.de Visser,S. F. Elena, I. Fragata, S. Matuszewski, The utility of fitness landscapes and big data for predicting evolution. Heredity (Edinb). 121,
401-405 (2018).

35. S.Sinaij, E. D. Kelsic, A primer on model-guided exploration of fitness landscapes for biological sequence design. arXiv:2010.10614 [cs, q-bio] (2020)
(available at http://arxiv.org/abs/2010.10614).

36. S.Sinai, R. Wang, A. Whatley, S. Slocum, E. Locane, E. D. Kelsic, AdaLead: A simple and robust adaptive greedy search algorithm for sequence design.
arXiv:2010.02141 [cs, math, q-bio] (2020) (available at http://arxiv.org/abs/2010.02141).

37. D.H.Brookes, J. Listgarten, Design by adaptive sampling. arXiv:1810.03714 [cs, g-bio, stat] (2020) (available at http://arxiv.org/abs/1810.03714).

38. N.Killoran, L.]. Lee, A. Delong, D. Duvenaud, B. ]. Frey, Generating and designing DNA with deep generative models. arXiv:1712.06148 [cs, q-bio, stat]
(2017) (available at http://arxiv.org/abs/1712.06148).

39. J. Linder, N. Bogard, A. B. Rosenberg, G. Seelig, A Generative Neural Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein
Sequences. Cell Systems. 11, 49-62.e16 (2020).

40. M. S. Rich, C. Payen, A. F. Rubin, G. T. Ong, M. R. Sanchez, N. Yachie, M. ]. Dunham, S. Fields, Comprehensive Analysis of the SUL1 Promoter of
Saccharomyeces cerevisiae. Genetics. 203, 191-202 (2016).

41. A.C.Bergen, G. M. Olsen, J. C. Fay, Divergent MLS1 Promoters Lie on a Fitness Plateau for Gene Expression. Mol. Biol. Evol. 33,1270-1279 (2016).

42. J].S. Rest, C. M. Morales, ]. B. Waldron, D. A. Opulente, ]. Fisher, S. Moon, K. Bullaughey, L. B. Carey, D. Dedousis, Nonlinear fitness consequences of
variation in expression level of a eukaryotic gene. Mol. Biol. Evol. 30, 448-456 (2013).

43. 1. Fragata, A. Blanckaert, M. A. D. Louro, D. A. Liberles, C. Bank, Evolution in the light of fitness landscape theory. Trends in Ecology & Evolution. 34,
69-82 (2019).

44. ].L.Payne, A. Wagner, The causes of evolvability and their evolution. Nature Reviews Genetics. 20, 24-38 (2019).

45. D.S. Lawrie, D. A. Petrov, Comparative population genomics: power and principles for the inference of functionality. Trends Genet. 30, 133-139

(2014).


https://doi.org/10.1101/2021.02.17.430503
http://creativecommons.org/licenses/by-nc/4.0/

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

56.

58.

59.

61.

62.

63.
64.

65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

77.

79.

80.

81.

82.

83.

84.

85.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.430503; this version posted February 27, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

The evolutionary history and evolvability of eukaryotic cis-regulatory DNA sequences 23

L. Erb, E. van Nimwegen, Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters. PLoS
One. 6,e24279 (2011).

C. G. de Boer, E. D. Vaishnav, R. Sadeh, E. L. Abeyta, N. Friedman, A. Regev, Deciphering eukaryotic gene-regulatory logic with 100 million random
promoters. Nat. Biotechnol. 38, 56-65 (2020).

M. T. Weirauch, A. Cote, R. Norel, M. Annala, Y. Zhao, T. R. Riley, ]. Saez-Rodriguez, T. Cokelaer, A. Vedenko, S. Talukder, DREAM5 Consortium, H. J.
Bussemaker, Q. D. Morris, M. L. Bulyk, G. Stolovitzky, T. R. Hughes, Evaluation of methods for modeling transcription factor sequence specificity. Nat.
Biotechnol. 31,126-134 (2013).

S. Brodsky, T. Jana, K. Mittelman, M. Chapal, D. K. Kumar, M. Carmi, N. Barkai, Intrinsically Disordered Regions Direct Transcription Factor In Vivo
Binding Specificity. Molecular Cell. 79, 459-471.e4 (2020).

B. Alipanahi, A. Delong, M. T. Weirauch, B. ]. Frey, Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature
Biotechnology. 33, 831-838 (2015).

J- Zhou, O. G. Troyanskaya, Predicting effects of noncoding variants with deep learning-based sequence model. Nature Methods. 12,931-934 (2015).
A. Shrikumar, P. Greenside, A. Kundaje, Reverse-complement parameter sharing improves deep learning models for genomics. bioRxiv, 103663
(2017).

D. Quang, X. Xie, FactorNet: A deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution
sequential data. Methods (San Diego, Calif.). 166, 40-47 (2019).

A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, in Advances in Neural Information Processing Systems 30,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett, Eds. (Curran Associates, Inc, 2017;
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf), pp. 5998-6008.

J. Crocker, N. Abe, L. Rinaldi, A. P. McGregor, N. Frankel, S. Wang, A. Alsawadi, P. Valenti, S. Plaza, F. Payre, R. S. Mann, D. L. Stern, Low affinity binding
site clusters confer hox specificity and regulatory robustness. Cell. 160, 191-203 (2015).

A. Tanay, Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res. 16, 962-972 (2006).

S. A.Jaeger, E. T. Chan, M. F. Berger, R. Stottmann, T. R. Hughes, M. L. Bulyk, Conservation and regulatory associations of a wide affinity range of mouse
transcription factor binding sites. Genomics. 95, 185-195 (2010).

N. Habib, I. Wapinski, H. Margalit, A. Regev, N. Friedman, A functional selection model explains evolutionary robustness despite plasticity in regulatory
networks. Mol. Syst. Biol. 8, 619 (2012).

J. H. Gillespie, Molecular Evolution Over the Mutational Landscape. Evolution. 38,1116-1129 (1984).

P. D. Sniegowski, P. J. Gerrish, Beneficial mutations and the dynamics of adaptation in asexual populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365,
1255-1263 (2010).

H. A. Orr, The Population Genetics of Adaptation: The Adaptation of Dna Sequences. Evolution. 56,1317-1330 (2002).

I. G. Szendro, J. Franke, J. A. G. M. de Visser, ]. Krug, Predictability of evolution depends nonmonotonically on population size. PNAS. 110, 571-576
(2013).

N. Yang, N. Bielawski, Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. (Amst.). 15,496-503 (2000).

A. M. Moses, Statistical tests for natural selection on regulatory regions based on the strength of transcription factor binding sites. BMC Evolutionary
Biology. 9, 286 (2009).

J. D. Smith, K. F. McManus, H. B. Fraser, A novel test for selection on cis-regulatory elements reveals positive and negative selection acting on
mammalian transcriptional enhancers. Mol. Biol. Evol. 30, 2509-2518 (2013).

J. Liu, M. Robinson-Rechavi, Robust inference of positive selection on regulatory sequences in the human brain. Sci Adv. 6 (2020),
doi:10.1126/sciadv.abc9863.

J. Peter, M. De Chiara, A. Friedrich, ].-X. Yue, D. Pflieger, A. Bergstrom, A. Sigwalt, B. Barre, K. Freel, A. Llored, C. Cruaud, K. Labadie, J.-M. Aury, B. Istace,
K. Lebrigand, P. Barbry, S. Engelen, A. Lemainque, P. Wincker, G. Liti, ]. Schacherer, Genome evolution across 1,011 Saccharomyces cerevisiae isolates.
Nature. 556, 339-344 (2018).

Y. Gilad, A. Oshlack, S. A. Rifkin, Natural selection on gene expression. Trends Genet. 22, 456-461 (2006).

S. A. Signor, S. V. Nuzhdin, The Evolution of Gene Expression in cis and trans. Trends in Genetics. 34, 532-544 (2018).

E. Eden, R. Navon, I. Steinfeld, D. Lipson, Z. Yakhini, GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC
Bioinformatics. 10, 48 (2009).

J.-R. Yang, C. J. Maclean, C. Park, H. Zhao, J. Zhang, Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei
Lecture, SMBE 2016, Gold Coast). Mol. Biol. Evol. 34,2125-2139 (2017).

J. Chen, R. Swofford, J. Johnson, B. B. Cummings, N. Rogel, K. Lindblad-Toh, W. Haerty, F. di Palma, A. Regev, A quantitative framework for
characterizing the evolutionary history of mammalian gene expression. Genome Res. 29, 53-63 (2019).

A. Wagner, Robustness and evolvability: a paradox resolved. Proc. R. Soc. B. 275,91-100 (2008).

J. Masel, M. V. Trotter, Robustness and Evolvability. Trends in Genetics. 26, 406-414 (2010).

J. L. Payne, A. Wagner, The Robustness and Evolvability of Transcription Factor Binding Sites. Science. 343, 875-877 (2014).

0. Shoval, H. Sheftel, G. Shinar, Y. Hart, 0. Ramote, A. Mayo, E. Dekel, K. Kavanagh, U. Alon, Evolutionary trade-offs, Pareto optimality, and the geometry
of phenotype space. Science. 336, 1157-1160 (2012).

H. Sheftel, O. Shoval, A. Mayo, U. Alon, The geometry of the Pareto front in biological phenotype space. Ecol Evol. 3, 1471-1483 (2013).

Y. Korem, P. Szekely, Y. Hart, H. Sheftel, ]. Hausser, A. Mayo, M. E. Rothenberg, T. Kalisky, U. Alon, Geometry of the Gene Expression Space of Individual
Cells. PLoS Comput. Biol. 11, 1004224 (2015).

D. v. Dijk, D. B. Burkhardt, M. Amodio, A. Tong, G. Wolf, S. Krishnaswamy, in 2019 IEEE International Conference on Big Data (Big Data) (2019;
http://dx.doi.org/10.1109/BigData47090.2019.9006484).

A. Melnikov, A. Murugan, X. Zhang, T. Tesileanu, L. Wang, P. Rogov, S. Feizi, A. Gnirke, C. G. Callan, ]. B. Kinney, M. Kellis, E. S. Lander, T. S. Mikkelsen,
Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nature biotechnology. 30,
271-277 (2012).

J. C. Kwasnieski, I. Mogno, C. A. Myers, J. C. Corbo, B. A. Cohen, Complex effects of nucleotide variants in a mammalian cis-regulatory element.
Proceedings of the National Academy of Sciences of the United States of America. 109, 19498-19503 (2012).

M. Kircher, C. Xiong, B. Martin, M. Schubach, F. Inoue, R. J. A. Bel], J. F. Costello, J. Shendure, N. Ahituv, Saturation mutagenesis of twenty disease-
associated regulatory elements at single base-pair resolution. Nature Communications. 10, 3583 (2019).

K. G. Townsley, K. J. Brennand, L. M. Huckins, Massively parallel techniques for cataloguing the regulome of the human brain. Nat. Neurosci. 23,1509~
1521 (2020).

K. Renganaath, R. Cheung, L. Day, S. Kosuri, L. Kruglyak, F. W. Albert, Systematic identification of cis-regulatory variants that cause gene expression
differences in a yeast cross. Elife. 9 (2020), doi:10.7554 /eLife.62669.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L. Cantin, C. Chao, C. Clark, J.
Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, ]. Hu, R. Hundt, D. Hurt, J.
Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch, N. Kumar, S. Lacy, ]. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A.
Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, ]. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R.


https://doi.org/10.1101/2021.02.17.430503
http://creativecommons.org/licenses/by-nc/4.0/

86.
87.
88.
89.

90.
91.

92.

93.
94.

95.

96.

97.

98.

100.

101.

102.

103.

104.

105.
106.

107.
108.

109.

110.

111.

112.

113.

114.

115.

116.

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.430503; this version posted February 27, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

The evolutionary history and evolvability of eukaryotic cis-regulatory DNA sequences 24

Walter, W. Wang, E. Wilcox, D. H. Yoon, In-Datacenter Performance Analysis of a Tensor Processing Unit. arXiv:1704.04760 [cs] (2017) (available at
http://arxiv.org/abs/1704.04760).

J. L. Payne, A. Wagner, Mechanisms of mutational robustness in transcriptional regulation. Front. Genet. 6 (2015), d0i:10.3389/fgene.2015.00322.

X. He, T.S. P. C. Duque, S. Sinha, Evolutionary origins of transcription factor binding site clusters. Mol Biol Evol. 29, 1059-1070 (2012).

A. Wagner, Adaptive gene misregulation. Genetics (2021), doi:10.1093 /genetics/iyaa044.

S. Heinz, C. E. Romanoski, C. Benner, C. K. Glass, The selection and function of cell type-specific enhancers. Nature Reviews Molecular Cell Biology. 16,
144-154 (2015).

L. D. Hurst, The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in Genetics. 18, 486-487 (2002).

B. Lehner, Selection to minimise noise in living systems and its implications for the evolution of gene expression. Molecular Systems Biology. 4, 170
(2008).

B. P. H. Metzger, D. C. Yuan, J. D. Gruber, F. Duveau, P. ]. Wittkopp, Selection on noise constrains variation in a eukaryotic promoter. Nature. 521, 344-
347 (2015).

D. M. McCandlish, Visualizing fitness landscapes. Evolution. 65, 1544-1558 (2011).

S. Kosuri, D. B. Goodman, G. Cambray, V. K. Mutalik, Y. Gao, A. P. Arkin, D. Endy, G. M. Church, Composability of regulatory sequences controlling
transcription and translation in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 110, 14024-14029 (2013).

0. Shalem, E. Sharon, S. Lubliner, I. Regev, M. Lotan-Pompan, Z. Yakhini, E. Segal, Systematic dissection of the sequence determinants of gene 3’ end
mediated expression control. PLoS Genet. 11,e1005147 (2015).

J. B. Kinney, A. Murugan, C. G. Callan Jr, E. C. Cox, Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory
sequence. Proc. Natl. Acad. Sci. U. S. A. 107,9158-9163 (2010).

E. Sharon, Y. Kalma, A. Sharp, T. Raveh-Sadka, M. Levo, D. Zeevi, L. Keren, Z. Yakhini, A. Weinberger, E. Segal, Inferring gene regulatory logic from high-
throughput measurements of thousands of systematically designed promoters. Nat. Biotechnol. 30, 521-530 (2012).

B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods. 9, 357-359 (2012).

7. Avsec, R. Kreuzhuber, J. Israeli, N. Xu, J. Cheng, A. Shrikumar, A. Banerjee, D. S. Kim, T. Beier, L. Urban, A. Kundaje, O. Stegle, ]. Gagneur, The Kipoi
repository accelerates community exchange and reuse of predictive models for genomics. Nature Biotechnology. 37, 592-600 (2019).

A. Morrow, V. Shankar, D. Petersohn, A. Joseph, B. Recht, N. Yosef, Convolutional Kitchen Sinks for Transcription Factor Binding Site Prediction.
arXiv:1706.00125 [q-bio] (2017) (available at http://arxiv.org/abs/1706.00125).

T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, W. Xie, G. L. Rosen,
B.]. Lengerich, J. Israelj, J. Lanchantin, S. Woloszynek, A. E. Carpenter, A. Shrikumar, J. Xu, E. M. Cofer, C. A. Lavender, S. C. Turaga, A. M. Alexandari, Z.
Lu, D. J. Harris, D. DeCaprio, Y. Qi, A. Kundaje, Y. Peng, L. K. Wiley, M. H. S. Segler, S. M. Boca, S. J. Swamidass, A. Huang, A. Gitter, C. S. Greene,
Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface. 15 (2018), doi:10.1098/rsif.2017.0387.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, ]. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, . Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, TensorFlow: A system for large-scale machine learning.
arXiv:1605.08695 [cs] (2016) (available at http://arxiv.org/abs/1605.08695).

G. Hinton, Tieleman, T., Lecture 6.5---RmsProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning (2012).

F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, C. Gagné, DEAP: Evolutionary Algorithms Made Easy. Journal of Machine Learning Research.
13,2171-2175 (2012).

T. L. Bailey, DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics (Oxford, England). 27,1653-1659 (2011).

C. G. de Boer, T. R. Hughes, YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic acids research. 40, D169-79
(2012).

W.J. Kent, BLAT—The BLAST-Like Alignment Tool. Genome Res. 12, 656-664 (2002).

J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley, E. T. Chan, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. R. Engel, D. G. Fisk, J. E.
Hirschman, B. C. Hitz, K. Karra, C. J. Krieger, S. R. Miyasato, R. S. Nash, ]. Park, M. S. Skrzypek, M. Simison, S. Weng, E. D. Wong, Saccharomyces Genome
Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700-D705 (2012).

P.Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. ]. van der Walt, M.
Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. . Nelson, E. Jones, R. Kern, E. Larson, C. ]. Carey, I. Polat, Y. Feng, E. W. Moore, ]. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nature Methods. 17, 261-272 (2020).

D. A. Thompson, S. Roy, M. Chan, M. P. Styczynsky, ]. Pfiffner, C. French, A. Socha, A. Thielke, S. Napolitano, P. Muller, M. Kellis, J. H. Konieczka, I.
Wapinski, A. Regev, Evolutionary principles of modular gene regulation in yeasts. eLife. 2, e00603 (2013).

M. Yassour, J. Pfiffner, J. Z. Levin, X. Adiconis, A. Gnirke, C. Nusbaum, D.-A. Thompson, N. Friedman, A. Regev, Strand-specific RNA sequencing reveals
extensive regulated long antisense transcripts that are conserved across yeast species. Genome Biology. 11, R87 (2010).

M. G. Grabherr, B.]. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen,
A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev, Full-length transcriptome assembly from RNA-Seq
data without a reference genome. Nature Biotechnology. 29, 644-652 (2011).

T. D. Wy, C. K. Watanabe, GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 21, 1859-1875 (2005).
I. Wapinski, A. Pfeffer, N. Friedman, A. Regev, Natural history and evolutionary principles of gene duplication in fungi. Nature. 449, 54-61 (2007).

B. Li, C. N. Dewey, RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12, 323
(2011).

A.D. Yates, P. Achuthan, W. Akanni, J. Allen, . Allen, ]. Alvarez-Jarreta, M. R. Amode, I. M. Armean, A. G. Azov, R. Bennett, . Bhai, K. Billis, S. Boddu, J. C.
Marugén, C. Cummins, C. Davidson, K. Dodiya, R. Fatima, A. Gall, C. G. Giron, L. Gil, T. Grego, L. Haggerty, E. Haskell, T. Hourlier, O. G. Izuogu, S. H.
Janacek, T. Juettemann, M. Kay, I. Lavidas, T. Le, D. Lemos, ]. G. Martinez, T. Maurel, M. McDowall, A. McMahon, S. Mohanan, B. Moore, M. Nuhn, D. N.
Oheh, A. Parker, A. Parton, M. Patricio, M. P. Sakthivel, A. I. Abdul Salam, B. M. Schmitt, H. Schuilenburg, D. Sheppard, M. Sycheva, M. Szuba, K. Taylor,
A. Thormann, G. Threadgold, A. Vullo, B. Walts, A. Winterbottom, A. Zadissa, M. Chakiachvili, B. Flint, A. Frankish, S. E. Hunt, G. IIsley, M. Kostadima, N.
Langridge, J. E. Loveland, F.]. Martin, ]. Morales, J. M. Mudge, M. Muffato, E. Perry, M. Ruffier, S. ]. Trevanion, F. Cunningham, K. L. Howe, D. R. Zerbino,
P. Flicek, Ensembl 2020. Nucleic Acids Res. 48, D682-D688 (2020).


https://doi.org/10.1101/2021.02.17.430503
http://creativecommons.org/licenses/by-nc/4.0/

