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Traces of semantization - from episodic to semantic memory in a spiking

cortical network model

Nikolaos Chrysanthidis' - Florian Fiebig! - Anders Lansner'-> - Pawel Herman

Abstract Episodic memory is the recollection of past
personal experiences associated with particular times
and places. This kind of memory is commonly sub-
ject to loss of contextual information or "semantiza-
tion", which gradually decouples the encoded memory
items from their associated contexts while transforming
them into semantic or gist-like representations. Novel
extensions to the classical Remember/Know behavioral
paradigm attribute the loss of episodicity to multiple
exposures of an item in different contexts. Despite re-
cent advancements explaining semantization at a behav-
ioral level, the underlying neural mechanisms remain
poorly understood. In this study, we suggest and evalu-
ate a novel hypothesis proposing that Bayesian-Hebbian
synaptic plasticity mechanisms might cause semanti-
zation of episodic memory. We implement a cortical
spiking neural network model with a Bayesian-Hebbian
learning rule called Bayesian Confidence Propagation
Neural Network (BCPNN), which captures the semanti-
zation phenomenon and offers a mechanistic explanation
for it. Encoding items across multiple contexts leads to
item-context decoupling akin to semantization. We com-
pare BCPNN plasticity with the more commonly used
spike-timing dependent plasticity (STDP) learning rule in
the same episodic memory task. Unlike BCPNN, STDP
does not explain the decontextualization process. We also
examine how selective plasticity modulation of isolated
salient events may enhance preferential retention and re-
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sistance to semantization. Our model reproduces impor-
tant features of episodicity on behavioral timescales un-
der various biological constraints whilst also offering
a novel neural and synaptic explanation for semantiza-
tion, thereby casting new light on the interplay between
episodic and semantic memory processes.

Keywords Episodic memory - Semantic memory -
Semantization - Decontextualization - Bayesian-Hebbian
plasticity - BCPNN - STDP - Spiking cortical memory
model

1 INTRODUCTION

Remembering single episodes is a fundamental attribute
of human cognition. A memory, such as with whom you
celebrated your last birthday, is more vividly recreated
when we can recall contextual information, such as the
location of the event (Eichenbaum et al., 2007; Gillund,
2012). The term "episodic memory" was originally in-
troduced by Tulving (1972) to designate memories of
personal experiences. Retrieval from episodic memory
includes a feeling of mental time travel realized by "I
remember". In contrast, semantic memory retrieval en-
capsulates what is best described by "I know" (Tulving,
1985; Umanath and Coane, 2020). Unlike episodic mem-
ories, semantic memories refer to general knowledge
about words, items and concepts, lacking spatiotemporal
source information, possibly resulting from the accumu-
lation of episodic memories (Schendan, 2012; Gillund,
2012).

Initially, Tulving (1972) proposed that episodic and
semantic memory are distinct systems and compete in re-
trieval. Recent studies suggest, however, that the division
between episodic and semantic memory is rather vague
(McCloskey and Santee, 1981; Renoult et al., 2019),
as neural activity reveals interaction between episodic
and semantic systems during retrieval (Weidemann et al.,
2019). According to Squire and Zola (1998) retrieval
of semantic memory depends on the acquisition of the
episode in which such information was experienced. Ap-
parently, there is a clear interdependence between the
two systems as the content of episodic memory invari-
ably involves semantic representations (Martin-Ordas
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et al., 2014), and consequently semantic similarity aids
episodic retrieval (Howard and Kahana, 2002).

Episodic memory traces are susceptible to transfor-
mation and loss of information (Tulving, 1972), and
this loss of episodicity can be attributed to semantiza-
tion, which typically takes the form of a decontextual-
ization process (Duff et al., 2020; Habermas et al., 2013;
Viard et al., 2007). Meeter and Murre (2004) highlight
and review the dynamical nature of memories and neu-
ral interactions through the scope of Transformation the-
ory, which suggests that all memories start as episodic
representations that gradually transform into semantic
or gist-like representations (Winocur and Moscovitch,
2011; Petrican et al., 2010). Decontextualization can oc-
cur over time as studies suggest that older adults report
fewer episodic elements than younger adults (Petrican
et al., 2010). Yet, could this item-context decoupling rely
on accumulation of episodicity over multiple exposures
of stimuli in various contexts over time? Baddeley (1988)
hypothesized that semantic memory might represent the
accumulated residue of multiple learning episodes, con-
sisting of information which has been semanticized and
detached from the associated episodic contextual de-
tail. In fact, simple language vocabulary learning implies
that learners encode words in several different contexts,
which leads to semantization and definition-like knowl-
edge of the studied word (Beheydt, 1987; Bolger et al.,
2008).

Retrieval from episodic memory has been studied
extensively through the lens of the classical Remem-
ber/Know (R/K) paradigm, in which participants are
required to provide a Know or Remember response
to stimulus-cues, judging whether they are able to re-
call item-only information or additional details about
episodic context, respectively (van den Bos et al., 2020).
Extensions of the classical R/K behavioral experiment
demonstrate that item-context decoupling can occur
rapidly (Opitz, 2010). In these experiments, items are
presented during an encoding phase either in a unique
context, or across several contexts. Low context variabil-
ity leads to greater recollection, whereas context overload
results in decontextualization and a higher fraction of
correctly classified Know responses (Opitz, 2010; Smith
and Manzano, 2010; Smith and Handy, 2014). In the cur-
rent study, we offer and evaluate a Bayesian-hypothesis
about synaptic and network mechanisms underlying the
memory semantization (item-context decoupling).

In earlier works, we developed and investigated a
modular spiking neural network model of cortical asso-
ciative memory with respect to memory recall, includ-
ing oscillatory dynamics in multiple frequency bands,
and compared it to experimental data (Lundqvist et al.,
2010, 2011; Herman et al., 2013). Recently we demon-
strated that the same model, enhanced with a Bayesian-
Hebbian learning rule (Bayesian Confidence Propagation
Neural Network, BCPNN) to model synaptic and intrin-
sic plasticity, was able to quantitatively reproduce key
behavioral observations from human word-list learning
experiments (Fiebig and Lansner, 2017), such as serial
order effects during immediate recall. This model per-
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formed one-shot memory encoding and was further ex-
panded into a two-area cortical model used to explore
a novel indexing theory of working memory, based on
fast Hebbian synaptic plasticity (Fiebig et al., 2020). In
this context, it was suggested that the underlying naive
Bayes view of association would make the associative
binding between two items weaker if one of them is later
associated with additional items. Thus, if we conceive of
episodicity as an associative binding between item and
context, the BCPNN synaptic plasticity update rule might
provide a mechanism for semantization. In this work, we
test this hypothesis and examine to what extent the re-
sults match available behavioral data on semantization.
We further compare those outcomes of dynamic learn-
ing with a model featuring the more well-known spike-
timing dependent plasticity (STDP) learning rule. We
also demonstrate how selective plasticity modulations of
one-shot learning (tentatively modelling effects of atten-
tion, emotional salience, valence, surprise, etc. on plas-
ticity) may enhance episodicity and counteract semanti-
zation.

To our knowledge, there are no previous computa-
tional models of item-context decoupling akin to seman-
tization. Overall, there are rather few computational mod-
els of episodic memory (Norman and O’Reilly, 2003),
and those that exist are typically abstract, aimed at pre-
dicting behavioral outcomes without a specific focus on
underlying neural and synaptic mechanisms (Greve et al.,
2010; Wixted, 2007). Our model bridges these perspec-
tives and explains semantization based on synaptic plas-
ticity, while it also reproduces important episodic mem-
ory phenomena on behavioral time scales under con-
strained network connectivity with plausible postsynaptic
potentials, firing rates, and other biological parameters.

2 RESULTS

2.1 Semantization of episodic representations in the
BCPNN model

The network model used here features two reciprocally
connected networks, the so-called Item and Context net-
works. The architecture of each network follows our pre-
vious spiking implementations of attractor memory net-
works (Lansner, 2009; Tully et al., 2014, 2016; Lundqvist
et al.,, 2011; Fiebig and Lansner, 2017; Chrysanthidis
et al., 2019; Fiebig et al., 2020), and is best understood
as a subsampled cortical layer 2/3 patch with nested hy-
percolumns (HCs) and minicolumns (MCs; Fig. 1A, see
STARX*METHODS for details). In our model, items are
embedded in the Item network, and context informa-
tion in the Context network as internal long-term mem-
ory representations, derived from prior Hebbian learning
(Fig. 1B,C, STARxMETHODS). Our episodic memory
task is designed to follow a seminal experimental study
by Opitz (2010). We stimulate some items in a single con-
text and others in a few different contexts establishing
multiple associations (Fig. 2). Stimulus duration during
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Fig. 1 Network architecture and connectivity of the Item (green) and Context (blue) networks. A) The model represents a subsampled
modular cortical layer 2/3 patch consisting of minicolumns (MCs) nested in hypercolumns (HCs). Both networks contain 12 HCs, each
comprising 10 MCs. We preload abstract long-term memories of item and context representations into the respective network, in the form of
distributed cell assemblies with weights establishing corresponding attractors. Associative plastic connections bind items with contexts. The
network features lateral inhibition via basket cells (purple and blue lines) resulting in a soft winner-take-all dynamics. Competition between
attractor memories arises from this local feedback inhibition together with disynaptic inhibition between HCs. B) Weight distribution of
plastic synapses targeting pyramidal cells. The attractor projection distribution is positive with a mean of 2.1, and the disynaptic inhibition
is negative with a mean of -0.3 (we show the fast AMPA weight components here, but the simulation also includes slower NMDA weight
components). C) Weight matrix between attractors and competing MCs across two sampled HCs. The matrix displays the mean of the
weight distribution between a presynaptic (MCp,.) and postsynaptic minicolumn (MC,,y), within the same or different HC (black cross
separates grid into blocks of HCs, only two of which are shown here). Recurrent attractor connections within the same HC are stronger
(main diagonal, dark red) compared to attractor connections between HCs (off-diagonals, orange) while inhibition is overall balanced
between patterns (blue). Negative inter-pyramidal weights between competing MCs amounts to disynaptic inhibition mediated by double

bouquet cells.
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(CNX) during the encoding phase in 250 ms cue episodes, with
an interstimulus interval of 500 ms. The colors of the co-activated
contexts are consistent with their corresponding associated item.
The recall phase occurs with a delay of 1 s and involves different
trials with either brief cues (50 ms) of the A) items, or B) contexts
presented during the item-context association encoding phase.

idence of item-context decoupling as the yellow item
(but not the blue) is successfully recognized when cued
but without any corresponding accompanying activation
in the Context network. Successful and complete item
recognition without any contextual information retrieval
accounts for a Know response, as opposed to Remem-
ber judgments, which are accompanied by successful
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Fig. 3 Semantization of episodic memory traces. A) Schematic of the Item (green) and Context (blue) networks. Attractor projections are
long-range connections across HCs in the same network and learned associative binding are connections between networks. B) Spike raster
of pyramidal neurons in HC1 of both the Item and Context networks. Items and their corresponding context representations are simultane-
ously cued in their respective networks (cf. Fig. 2A). Each item is drawn with a unique color, while contexts inherit their coactivated item’s
color in the raster (i.e., the yellow pattern in the Item network is repeated over four different contexts, forming four separate associations
marked with the same color). The testing phase occurs 1 s after the encoding. Brief 50 ms cues of already studied items trigger their acti-
vation. Following item activation, we detect evoked attractor activation in the Context network. C) Average cued recall performance in the
Context network (20 trials). The bar diagram reveals progressive loss of episodic context information (i.e., semantization) over the number
of context associations made by individual cued items (cf. Fig. 2A). D) Distribution of plastic connection weights between the Item and
Context networks (NMDA component shown here). Weights are noticeably weaker for items which participate in multiple associations.
The distributions of synaptic weights exhibit a broader range for the items with multiple context associations, as the sample size is larger.
E) The distribution of intrinsic excitability currents of pyramidal cells coding for specific context representations. The intrinsic excitability
distributions feature similar means because each context is activated exactly once, regardless of whether the associated item forms multiple
associations or not. F) Average cued recall performance in the Item network (20 trials). Decontextualization over the number of associations
is also observed when we briefly cue episodic contexts instead (cf. Fig. 2B, S3). G) Distribution of strength of plastic connections from the
contexts to their associated items. Analogously to D), synapses weaken once an item is encoded in another context. H) Intrinsic plasticity
distribution of cells in the Item network. Means of the intrinsic excitability distributions are higher for pyramidal cells coding for repeatedly
activated items. ***p<0.001 (Mann-Whitney, N=20 in C, F); Error bars in C, F represent standard deviations of Bernoulli distributions;
Means of distributions of one, two, three, and four associations in D, G, H show significant statistical difference (p<0.001, Mann-Whitney,
N=2000).

context recall. Cue-based activations are reported us-  two associations; p<0.001 for two vs three and three vs
ing a detection algorithm (see STARAMETHODS). Fig-  four associations, Mann-Whitney, N=300, Fig. S1). So,
ure 3C demonstrates the performance of contextual re-  we attribute the loss of episodicity to a statistically signif-
trieval when items serve as cues. To elucidate this ob-  icant weakening of means of the associative weight dis-

served progressive loss of episodicity, we sample and  tributions with the increasing number of associated con-
analyze the learned weight distributions of item-context  texts. The associative weight distributions shown here re-
binding recorded after the association encoding period  fer to the NMDA component, while the weight distribu-
(Fig. 3D). The item-context weight distribution in the  tions of the faster AMPA receptor connections display a
one-association case has a significantly higher mean than  similar trend (Fig. S2). The gradual trace modification we
in the two-, three-, or four-association case (p<0.001, observe relies on the nature of Bayesian learning, which
Mann-Whitney, N=2000). This progressive weakening of = normalizes and updates weights over estimated presynap-
weights leads to significantly lower mean EPSP ampli-  tic (Bayesian-prior) as well as postsynaptic (Bayesian-
tudes for the associative projections (p<0.05 for one vs  posterior) spiking activity (see Sect. 2.3 for details).
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Our simulation results are in line with related behav-
ioral studies (Opitz, 2010; Smith and Manzano, 2010;
Smith and Handy, 2014), which also reported item-
context decoupling as the items were presented across
multiple contexts. In agreement with our study, Opitz
(2010) concluded that repetition of an item across differ-
ent contexts (similar to high context variability) leads to
item-context decoupling. Furthermore, Smith and Man-
zano (2010) demonstrated in an episodic context variabil-
ity task configuration, that episodicity deteriorates with
context overload (number of words per context). Mean
recall drops from ~0.65 (one word per context) to 0.50
(three words per context), reaching ~0.33 in the most
overloaded scenario (fifteen words per context).

In Figure 3E we show the distribution of intrinsic ex-
citability over units representing different contexts. Pyra-
midal neurons in the Context network have a similar in-
trinsic excitability, regardless of their selectivity because
all the various contexts are encoded exactly once.

Next, analogously to the previous analysis, we show
that item-context decoupling emerges also when we
briefly cue contexts rather than items during recall testing
(Fig. 2B, Fig. S3). In agreement with experimental data
(Smith and Manzano, 2010; Smith and Handy, 2014) we
obtain evidence of semantization as items learned across
several discrete contexts are hardly retrieved when one of
their associated contexts serves as a cue (Fig. 3F). We fur-
ther sample and present the underlying associative weight
distribution, between the Context and the Item networks
(Fig. 3G). The distributions again reflect the semantiza-
tion effect in a significant weakening of the correspond-
ing weights. In other words, an assembly of pyramidal
neurons representing items encoded across multiple con-
texts receive weaker projections from the Context net-
work. Beyond four or more associations, the item-context
binding becomes so weak that it fails to deliver sufficient
excitatory current to trigger associated representations in
the Item network. At the same time, intrinsic excitability
of item neurons increases with the number of associated
contexts corresponding to how much these neurons were
active during the encoding phase [Fig. 3H; cf. Egorov
et al. (2002), Tully et al. (2014)].

2.2 Item-context interactions under STDP

In this section, we contrast the results obtained
with the BCPNN synaptic learning rule with those de-
riving from the more commonly used STDP learning
rule in the same episodic memory task (Fig. 2, see
STAR+*METHODS). The modular network architecture
as well as neural properties and embedded memory pat-
terns remain identical, but associative projections be-
tween networks are now implemented using a standard
STDP synaptic learning rule (Morrison et al., 2008). The
parameters of the STDP model are summarized in Table
S3.

Figure 4A shows an exemplary spike raster of pyra-
midal cells in HC1 of both the Item and the Context net-
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works, based on the first variant of the episodic memory
task described in Figure 2A. As earlier, items are encoded
in a single or in multiple different contexts and they are
briefly cued later during recall. A successful item acti-
vation may lead to a corresponding activation of its as-
sociated information in the Context network. We detect
these activations as before (see STAR¥xMETHODS), and
report the cue-based recall score over the number of as-
sociations (Fig. 4B).

Unlike the BCPNN network, we observe no evi-
dence of semantization for high context variability. In-
stead, recollection is noticeably enhanced with an in-
creasing number of associations, which is in fact the op-
posite of what would be needed to explain item-context
decoupling. STDP generates similarly strong associative
binding regardless of context variability (Fig. 4C). The
enhanced recollection in high context variability cases
stems from the multiplicative effect of synaptic augmen-
tation in the Tsodyks-Makram model on the Hebbian
attractor weights. Items stimulated multiple times (e.g.,
four times) have a higher likelihood of being encoded
near the end of the task, leading to more remaining aug-
mentation during testing, thus, effectively boosting cued
recall (see Fig. S4). This effect of the enhanced recall di-
minishes after removing synaptic augmentation from the
model (Fig. S5). As far as the context-cued variant of the
task is concerned, there are also no signs of item-context
decoupling for high context variability (Fig. 4D). The
associative projections between Context and Item net-
works again have distributions with comparable means
over context variability (Fig. 4E). An inclusion of intrin-
sic plasticity dynamics in the model does not explain de-
contextualization either (see Fig. S6). Overall, decontex-
tualization is not evident in either variant of the episodic
memory task under the STDP learning rule.
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Fig. 4 Network model where associative projections are implemented using standard STDP synaptic plasticity. A) Spike raster of pyramidal
neurons in HC1 of both the Item and Context networks. B) Average item-cued recall performance in the Context network (20 trials).
Episodic context retrieval is preserved even for high context variability (as opposed to BCPNN, cf. Fig. 3C). C) Distribution of NMDA
receptor mediated synaptic weights between the item and context neural assemblies following associative binding. The distributions of
item-context weights have comparable means at ~0.065 nS regardless of how many context associations a given item forms. Bins merely
display a higher count for the four-association case as the total count of associative weights is more extensive compared to items with
fewer associations. D) Average cued recall performance in the Item network when episodic contexts are cued (20 trials). E) Distribution of
NMDA component weights between associated context and item assemblies. ***p<0.001 (Mann-Whitney, N=20 in B, D); Error bars in B,

D represent standard deviations of Bernoulli distributions.

2.3 BCPNN and STDP learning rule in a microcircuit
model

To better elucidate the emergent synaptic changes
of the BCPNN and STDP model, we also apply these
learning rules in a highly reduced microcircuit of spiking
neurons. To this end, we now track the synaptic weight
changes continuously.

First, we apply the BCPNN learning rule to the mi-
crocircuit model. We consider two separate item neu-
rons (ID=1 and 2), which form two or three associa-
tions with context neurons (ID=3,4, or 5,6,7), respec-
tively (Fig. 5A). We display the synaptic strength de-
velopment of the synapse between item neuron-1 and
context neuron-3 (two associations, green), as well as
the synapse between item neuron-2 and context neuron-5
(three associations, red) over the course of training these
associations via targeted stimulation. BCPNN synapses
get strengthened when the item-context pairs are simul-
taneously active and weaken when the item in question
is activated with another context. Therefore, synapses of
the item neuron that is encoded in three different con-

texts converge on weaker weights (Fig. 5A, 12 s), than
those of the item neuron with two associated contexts.
Weight modifications in the microcircuit model reflect
the synaptic alterations observed in the large-scale net-
work. BCPNN weights are shaped by traces of activation
and co-activation (Eq. 7,8, STARxMETHODS), which
also get updated during the activation of an item within
another context. For example, the item neuron-1 and con-
text neuron-3 are not stimulated together between 6 s and
8 s, but neuron-1 and context neuron-4 are. Thus, the
traces of the item activation (P,) increase, while the ones
linked to context-3 (P;) decay with a time constant of 15
s (Table S1). Since the item and context neuron (ID=1, 3)
are not stimulated together, their coactivation traces (F;;)
decay between 6 s and 8 s. Overall, this leads to a weak-
ening of the weight and hence, to a gradual decoupling
(Eq. 8, STAR«METHODS).

In the same manner, we keep track of weight change
in a microcircuit with the STDP learning rule (Fig. 5B).
Unlike the microcircuit with BCPNN presented in Figure
5A, the STDP weights corresponding to the associations
made by both item neurons converge to similar values,
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Fig. 5 Continuous weight recordings in a microcircuit model with
plastic synapses under the A) BCPNN or B) STDP learning rule.
Neural and synaptic parameters correspond to those in the scaled
model. In both cases, two item neurons (ID=1,2) are trained to form
two or three associations, respectively (dashed connections are sim-
ulated but their weight development is not shown here). During
training, neurons are stimulated to fire at 20 Hz for 2 s. We display
the developing synaptic weight between specific item-context pairs,
(ID=1 and 3 in the two-association scenario) and (ID=2 and 5 in the
three-association scenario), and compare the converged weight val-
ues between the two- and three-association case under both learning
rules, following a final readout spike at 11 s.

even though they are associated with different number of
contexts. As before, the synapse between an item neuron
and an associated context neuron strengthens when this
pair is simultaneously active, but remains stable when
the item neuron is encoded in another context. For in-
stance, the synapse between item neuron-2 and context
neuron-5 strengthens when this pair is encoded (0-2 s),
yet remains unaffected when item neuron-2 is activated
in another context (i.e., context neuron-6, 4-6 s). This
synaptic behavior explains the observed differences be-
tween the BCPNN and STDP large-scale model.

2.4 Preferential retention

Several studies propose that one-shot salient events
promote learning, and that these memories can be re-
tained on multiple time scales ranging from seconds to
years (Petrican et al., 2010; Gruber et al., 2016; Frank-
land et al., 2004; Panoz-Brown et al., 2016; Eichenbaum,
2017; Sun et al., 2018). Hypothetical mechanisms behind
these effects are dopamine release and activation of DR1
like receptors, resulting in synapse-specific enhancement
(Otmakhova and Lisman, 1996; Kuo et al., 2008), and
systems consolidation (McClelland et al., 1995; Fiebig
and Lansner, 2014). On the whole, salient or reward
driven events may be encoded more strongly as the result
of a transient plasticity modulation. Recall from long-
term memory is often viewed as a competitive process

in which a memory retrieval does not depend only on its
own synaptic strength but also on the strength of other
components (Shiffrin, 1970). In view of this, we study
the effects of plasticity modulation on encoding specific
items within particular contexts, with the aim of investi-
gating the role of enhanced learning for semantization in
our model.
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Fig. 6 Plasticity modulation of a specific item-context pair en-
hances recollection and counteracts semantization. A) Context re-
call performance. One of the pairs (context-E, item-1) presented
in the episodic memory task (cf. Fig. 2A) is subjected to enhanced
plasticity during encoding, resulting in the boosted recall rate (3 as-
sociations, Normal vs Biased). B) Individual context retrieval con-
tribution in the overall recall (3 associations). Retrieval is similar
among the three contexts since plasticity modulation is balanced
(left: Normal, K=K,,;mai» cf. Table S1). However, when context-E
is encoded with enhanced learning (with item-1), its recall increases
significantly (right: Biased, K=Kp,o5, cf. Table S1). C) Weight
distributions of the NMDA weight component. Encoding item-1
with context-E under modulated plasticity yields stronger synaptic
weights [3 association, ,f (light red, highly overlapping distribu-
tions) vs ¥ (dark red)]. ***p<0.001 (Mann-Whitney, N=20 in A, B,
N=2000 in C); Error bars in A,B represent standard deviations of
Bernoulli distributions; Means of the weight distributions of one,
two, three-a,-3, and four associations in C show significant statis-
tical difference (p<0.001, Mann-Whitney, N=2000).

Using the same network and episodic memory task
as before (Fig. 2A), we modulate plasticity during the
encoding of item-1 (red) in context-E via K=Kp,,s (Eq.
7, STARAMETHODS, Table S1). This results in an in-
creased cued recall probability for the item associated
with three episodic contexts relative to the unmodulated
control (Fig. 6A, Normal vs Biased scenario, 3 associ-
ations). Episodic retrieval improves from 0.6 (Normal,
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Fig. 6A, left) to 0.8 (Biased; modulated plasticity, Fig.
6A, right) when item-1 is cued, which now performs
more similarly to item with just two associated contexts.
We further analyze and compare the recall of each con-
text when its associated item-1 is cued (Fig. 6B, 3 as-
sociations). The control scenario (Normal, Fig. 6B, left)
without transient plasticity modulation shows that the
three contexts (ID=A, E and J) are all recalled with sim-
ilar probabilities (20 trials). In contrast, encoding a spe-
cific pair with enhanced learning (upregulated K=xp00s5)
yields higher recall for the corresponding context. In par-
ticular, the plasticity enhancement during associative en-
coding of the context-E (with item-1) results in an in-
creased recall score to 0.8 (0.25 control), while the other
associated contexts, ID=A and J, are suppressed (Fig.
6B), primarily due to soft winner-take-all competition be-
tween contexts (Fig. 1A).

We attribute these changes to the stronger weights
due to enhanced learning (Fig. 6c¢, dark red distribution,
7). Weights between unmodulated item-context pairs
(item-1 and context-A,-J) show mostly unaltered weight
distributions (a,f3, light red), while the biased associa-
tive weight distribution between item-1 and context-E is
now comparable to the weight distribution of the one-
association case. Performance does not exactly match
that case though due to some remaining competition
among the three contexts. Overall, these results demon-
strate how a single salient episode may strengthen mem-
ory traces and thus impart resistance to semantization
(Rodriguez et al., 2016).

3 DISCUSSION

The primary objective of this work was to explore the
interaction between synaptic plasticity and context vari-
ability in the semantization process. To cast new light
on the episodic-semantic interplay, we built a memory
model of two spiking neural networks coupled with plas-
tic connections, which collectively represent distributed
cortical episodic memory. Our results suggest that some
forms of plasticity offer a synaptic explanation for the
cognitive phenomenon of semantization, thus bridging
scales and linking network connectivity and dynamics
with behavior. In particular, we demonstrated that with
Bayesian-Hebbian (BCPNN) synaptic plasticity, but not
with standard Hebbian STDP, the model can reproduce
traces of semantization in the learning outcomes. No-
tably, this was achieved with biologically constrained
network connectivity, postsynaptic potential amplitudes,
firing rates and oscillatory dynamics compatible with
mesoscale recordings from cortex and earlier models.
Nevertheless, our hypothesis of the episodic-semantic in-
terplay at a neural level requires further experimental
study of synaptic strength dynamics in particular. We also
demonstrated how a transient plasticity modulation (re-
flecting known isolation effects) may preserve episodic-
ity, staving off decontextualization.

Our study conforms to related behavioral experi-
ments reporting that high context variability or con-
text overload leads to item-context decoupling (Opitz,
2010; Smith and Manzano, 2010; Smith and Handy,
2014). These studies suggest that context-specific mem-
ory traces transform into semantic representations while
contextual information is progressively lost. Memory
traces remain intact but fail to retrieve their associated
context. Semantization is typically described as a de-
contextualization process that occurs over time. How-
ever, several experiments, including this study, proposed
that exposures of stimuli in different additional contexts
(rather than time itself) is the key mechanism advancing
semantization (Opitz, 2010; Smith and Manzano, 2010;
Smith and Handy, 2014). Admittedly, our hypothesis
cannot exclude other seemingly coexisting phenomena
that may benefit semantization over time (e.g., reconsol-
idation or systems consolidation due to sleep or aging).

To our knowledge, there is no other spiking bio-
physical computational model of comparable detail that
captures the semantization of episodic memory explored
here, whilst simultaneously offering a neurobiological
explanation of this phenomenon. Unlike other dual-
process episodic memory models, which require repeated
stimulus exposures to support recognition (Norman and
O’Reilly, 2003), our model is able to successfully recall
events learned in "one shot" (a distinctive hallmark of
episodicity). We note that the attractor-based theory pro-
posed in this study does not exclude the possibility of a
dual-process explanation for recollection and familiarity
(Yonelinas, 2002; Yonelinas et al., 2010).

3.1 Related models of familiarity and recollection

Perceptual or abstract single-trace dual-process com-
putational models based on signal detection theory ex-
plain episodic retrieval but the potential loss of contextual
information is only implied as it does not have its own
independent representation (Greve et al., 2010; Wixted,
2007). These computational models often aim to explain
traditional R/K behavioral studies. As discussed earlier,
participants in such studies are instructed to give a Know
response if the stimulus presented in the test phase is
known or familiar without any contextual detail about its
previous occurrence. Conversely, Remember judgments
are to be provided if the stimulus is recognized along with
some recollection of specific contextual information per-
taining to the study episode. This results in a strict cri-
terion for recollection, as it is possible for a subject to
successfully recall an item but fail to retrieve the source
information (Ryals et al., 2013). Numerous studies sug-
gest that recollection contaminates Know reports because
recalling source information sensibly assumes prior item
recognition (Wais et al., 2008; Johnson et al., 2009).
Mandler (1979, 1980), and Atkinson and Juola (1973)
treat familiarity as an activation of preexisting memory
representations. Our results are compatible with this no-
tion because our model proposes to treat item-only acti-
vations as Know judgments, while those accompanied by
the activation of context representations best correspond
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to a Remember judgment. Item activation is a faster pro-
cess and precedes context retrieval (Yonelinas and Ja-
coby, 1994), and our model reflects this finding by ne-
cessity, as item activations are causal to context retrieval.

To us, familiarity recognition is simply characterized
by a lack of contextual information, yet the distinction
we make between Context and Item networks is arbitrary.
Any item can be a context and vice versa, so the networks
are interchangeable. While sparse interconnection is suf-
ficient for our model’s function, both networks may just
as well be part of the same modality and cortical brain
areas. A more specific scenario might assume that items
and contexts share part of the same local network. In prin-
ciple, our model should be capable of replicating similar
results in a single modality scenario.

3.2 Semantization on longer time scales

Source recall is likely supported by multiple inde-
pendent, parallel, interacting neural structures and pro-
cesses since various parts of the medial temporal lobes,
prefrontal cortex and parts of the parietal cortex all con-
tribute to episodic memory retrieval including informa-
tion about both where and when an event occurred (Diana
etal., 2007; Gilboa, 2004; Watrous et al., 2013). A related
classic idea on semantization is the view that it is in fact
an emergent outcome of systems consolidation. Sleep-
dependent consolidation in particular has been linked to
advancing semantization of memories and the extraction
of gist information. (Friedrich et al., 2015; Payne et al.,
2009).

Models of long-term consolidation suggest that richly
contextualized memories, become more generic over
time. Without excluding this possibility, we note that this
is not always the case, as highly salient memories often
retain contextual information (which our model speaks
to). Instead, our model argues for a much more imme-
diate neural and synaptic contribution to semantization
that does not require slow multi-area systems level pro-
cesses that have yet to be specified in sufficient detail
to be tested in neural simulations. We have previously
shown, however, that an abstract simulation network of
networks with broader distributions of learning time con-
stants can consolidate memories across several orders
of magnitude in time, using the same Bayesian-Hebbian
learning rule as used here (Fiebig and Lansner, 2014).
That model included representations for prefrontal cor-
tex, hippocampus, and wider neocortex, implementing an
extended complementary learning systems theory (Mc-
Clelland et al., 1995), which is itself an advancement of
systems consolidation (Squire and Alvarez, 1995). We
consequently expect that the principled mechanism of se-
mantization explored here can be scaled along the tempo-
ral axis to account for lifelong memory, provided that the
plasticity involved is itself Bayesian-Hebbian. Our model
does not advance any specific anatomical argument as
to the location of the respective networks (Diana et al.,
2007; Yonelinas, 2002).

The model purposefully relies on a generic corti-
cal architecture focused on a class of synaptic plastic-

ity mechanisms which may well serve as a substrate of
a wider system across brain areas and time.

3.3 Biological plausibility and parameter sensitivity

We investigate and explain behavior and macroscale
system dynamics with respect to neural processes, bio-
logical parameters of network connectivity, and electro-
physiological evidence. Our model consequently builds
on a broad range of biological constraints such as in-
trinsic neuronal parameters, cortical laminar cell densi-
ties, plausible delay distributions, and network connectiv-
ity. The model reproduces plausible postsynaptic poten-
tials (EPSPs, IPSPs) and abides by estimates of connec-
tion densities (i.e., in the associative pathways and pro-
jections within each patch), axonal conductance speeds,
typically accepted synaptic time constants for the vari-
ous receptor types (AMPA, NMDA, and GABA), with
commonly used neural and synaptic plasticity time con-
stants (i.e., adaptation, depression). We reproduce oscil-
latory dynamics in multiple frequency ranges, that were
previously studied in the same modular spiking network
implementations (Lundqvist et al., 2010, 2011; Herman
etal., 2013).

The model synthesizes a number of functionally
relevant processes, embedding different components to
model composite dynamics, hence, it is beyond this study
to perform a detailed sensitivity analysis for every pa-
rameter. Instead, we provide insightful observations for
previously unexplored parameters that may critically af-
fect semantization. Importantly, a highly related modular
cortical model already investigated sensitivity to impor-
tant short-term plasticity parameters (Fiebig and Lansner,
2017). After extensive simulation testing, we conclude
that the model is generally robust to a broad range of
parameter changes and degrades gracefully. Small net-
works like this are typically more sensitive to parameter
changes, so conversely, we expect even lower sensitivity
to parameter variations in a full scale system.

The P trace decay time constant, 7, of the BCPNN
model is critical for the learning dynamics modelled in
this study because it controls the speed of learning in as-
sociative connections. High values of 7, lead to slower
and more long-lasting learning. Varying 7, by +30%
does not change the main outcome, that is, episodicity
still deteriorates with a higher context variability. Slower
weight development may result in weaker associative
binding and overall lower recall though (and vice versa
for faster learning). To compensate for this loss of episod-
icity, an additional increase in the unspecific input is usu-
ally sufficient to trigger comparable recall rates. Alter-
natively, the recurrent excitatory gain can be amplified
to complete noisy inputs towards discrete embedded at-
tractors. Unspecific background input during recall plays
a critical role as well. We use a low such noise input to
model cue-association responses, however, when boosted
by +40%, the model operates in a free replay regime in-
stead, where cues become unnecessary as the network re-
trieves content without them by means of intrinsic back-
ground noise.
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This study also demonstrated how a selective tran-
sient increase of plasticity can counteract semantization.
The plasticity of the model can be modulated via the
parameter k¥ (Eq. 7, STARAMETHODS). Typically, k
is set to 1 (K=Kuormai)» Whereas we double plasticity
(K=Kpoost)» When modelling salient episodic encoding.
We noticed that by selectively tripling or quadrupling
plasticity (relative to baseline) during encoding of a spe-
cific pair whose item component forms many other as-
sociations, the source recall improves progressively (data
shown only for K=K, in Sect. 2.4).

Finally, in Section 2.3 we compared STDP and
BCPNN plasticity in a highly reduced model. We bind
items with contexts to form different number of associa-
tions and keep track of the weight development per time
step. STDP plasticity generated same magnitude item-
context binding regardless of how many associations an
item forms. A detailed parameter analysis for every criti-
cal synaptic parameter (£30%) did not yield any behav-
iorally significant changes to the converged weights.

3.4 Conclusions

We have presented a computational mesoscopic net-
work model to examine the interplay between episodic
and semantic memory with the grand objective to explain
mechanistically the semantization of episodic traces.
Compared to other models of episodic memory, which
are typically abstract, our model, built on various bi-
ological constraints (i.e., plausible postsynaptic poten-
tials, firing rates, etc.) accounting for neural processes
and synaptic mechanisms, emphasizes the role of synap-
tic plasticity in episodic forgetting. Hence it bridges mi-
cro and mesoscale mechanisms with macroscale behavior
and dynamics. In contrast to standard Hebbian learning,
our Bayesian version of Hebbian learning readily repro-
duced prominent traces of semantization.
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4 STAR-METHODS

4.1 KEY RESOURCES TABLE

Table 1

REAGENT or RESOURCE SOURCE

IDENTIFIER

Software and Algorithms

NEST simulator

Programming Language Python 2.7
BCPNN learning rule module

PDC High Performance Computing

(Gewaltig and Diesmann, 2007)

(Tully et al., 2014)

nest-simulator.org
python.org; SCR_008394
Zenodo

www.pdc.kth.se

4.2 METHODS DETAILS
4.2.1 Neuron and synapse model

We use adaptive exponential integrate-and-fire point
model neurons, which feature spike frequency adapta-
tion, enriching neural dynamics and spike patterns, espe-
cially for the pyramidal cells (Brette and Gerstner, 2005).
The neuron model offers a good phenomenological de-
scription of typical neural firing behavior, but it is limited
in predicting the precise time course of the sub-threshold
membrane voltage during and after a spike or the under-
lying biophysical causes of electrical activity (Gerstner
and Naud, 2009). We slightly modified it for compatibil-
ity with the BCPNN synapse model (Tully et al., 2014)
by integrating an intrinsic excitability current.

Development of the membrane potential V,,, and the
adaptation current I,, is described by the following equa-
tions:

av
mT:]:_gL(V EL)+8LATe e —Iw+lcxt+lsyn
(D
Ci]\y "'I\V
= —= 4+ bS(t—t 2
dt T, 6o ) @

Equation 1 describes the dynamics of the membrane
potential V,, including an exponential voltage dependent
activation term. A leak current is driven by the leak re-
versal potential £y through the conductance g; over the
neural surface with a capacity C,,. Additionally, V; is the
spiking threshold, and At shapes the spike slope factor.
After spike generation, membrane potential is reset to V.
Spike emission upregulates the adaptation current by b,
which recovers with time constant 7;, (Table S1). We
neglect subthreshold adaptation, which is part of some
AdEx models.

Besides a specific external input current /.y, model
neurons receive synaptic currents y,; from conductance
based glutamatergic and GABA-ergic synapses. Gluta-
matergic synapses feature both AMPA/NMDA receptor
gated channels with fast and slow conductance decay dy-
namic, respectively. Current contributions for synapses
are described as follows:

qyn Z ngyn V Esyn )
syn i (3)
I?MPA (l‘) + I;VMDA (l‘) +IJGABA (t)

14

The glutamatergic synapses are also subject to synap-
tic depression and augmentation with a decay factor 7p
and 74, respectively (Table S1), following the Tsodyks-
Markram formalism (Tsodyks and Markram, 1997). The
utilization factor U, encodes variations in the release
probability of available resources:

Uy o_ 2
dr 7—E+U(1—uij)§’5(t lyp—l,‘j) “4)
dx;;  1-—
d—t’ UxUZS —1ij) 3)

4.2.2 Spike-based BCPNN plasticity

We implement synaptic plasticity of AMPA and
NMDA connection components using the BCPNN learn-
ing rule (Lansner and Ekeberg, 1989; Wahlgren and
Lansner, 2001; Tully et al., 2014). BCPNN is derived
from Bayes rule, assuming a postsynaptic neuron em-
ploys some form of probabilistic inference to decide
whether to emit a spike or not. In general, it is considered
more complex than the standard STDP learning rule (Ca-
porale and Dan, 2008), and it reproduces the main fea-
tures of STDP plasticity. As other spiking synaptic learn-
ing rules, it is so far insufficiently validated against quan-
titative experimental data on biological synaptic plastic-
ity.

The BCPNN synapse continuously updates three
synaptic biophysically plausible local memory traces, P,
P; and P, implemented as exponentially moving aver-
ages (EMAs) of pre-, post- and co-activation, from which
the Bayesian bias and weights are calculated. EMAs pri-
oritize recent patterns, so that newly learned patterns
gradually replace old memories. Specifically, learning
implements a three-level procedure of exponential filters
which defines Z, E and P traces. E traces, which enable
delayed reward learning, are not used here because such
conditions are not applicable to the modelled task.

To begin with, BCPNN receives a binary sequence of
pre- and postsynaptic spiking events (S;, S;) to calculate
the traces Z; and Z;:

T azi S —Zi+¢

“ di f max? spike l (6)
T 92 _ Si Zi+¢€

“ dt f max? spike !
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fmax denotes the maximal neuronal spike rate, € is the
lowest attainable probability estimate, 7y, denotes the
spike duration while 7, = 7, are the pre and postsynaptic
time constants, respectively (5 ms for AMPA, and 100 ms
for NMDA components, Table S1).

P traces are then estimated from the Z traces as fol-
lows:

dP,
Tp dll = K'(Zi —Pi)
dP;
rpd—t] = k(Z;— P;) @)
dP;
T = K(ZiZ;— Py)

The parameter x adjusts the learning rate, reflect-
ing the action of endogenous modulators of learning ef-
ficacy (i.e., activation of a DIR-like receptor). Setting
k=0 freezes the network’s weights and biases, though
in our simulations the learning rate remains constant
(x=1) during encoding (Sect. 2.1, 2.2). However, we trig-
ger a transient increase of plasticity in specific scenar-
ios to model preferential retention, assuming encoding of
salient events (Sect. 2.4 and Table S1).

Finally, F;, P; and P;; are used to calculate intrinsic
excitability f8; and synaptic weights w;; with a scaling
factor Bgqin and w. respectively (Table S1):

gain
P::
— S 1
wij =w, . log
j gain Pin (8)

ﬁj = ﬁgain lOg(Pj)

4.2.3 Spike-based STDP learning rule

In our study, we examine the impact on semantiza-
tion when the STDP learning rule replaces BCPNN as-
sociative connectivity in the same episodic memory task.
Synapses under STDP are developed and modified by a
repeated pairing of pre- and postsynaptic spiking activ-
ity, while their relative time window shapes the degree of
modification (Ren et al., 2010). The amount of trace mod-
ification depends on the temporal difference (A,) between
the time point of the presynaptic action potential (¢;) and
the occurrence of the postsynaptic spike (¢;) incorporat-
ing a corresponding transmission delay from neuron i to
j (Ta):

Atztj—(t,'—l-fd) )

After processing At, STDP updates weights accord-
ingly:

A1 —w)k+el=1a1/T) if Ar > 1,

Awij(Ar) = { —dowh-eZ1Atl/T)if Ar < 1y (10)

Here, A corresponds to the learning rate, a reflects
a possible asymmetry between the scale of potentiation
and depression, 74 control the width of the time win-
dow, while uy € {0,1} allows to choose between dif-
ferent versions of STDP (i.e., additive, multiplicative),
(Morrison et al., 2008). Synapses are potentiated if the
synaptic event precedes the postsynaptic spike and get

nder, who has granted bioRxiv a license to display the preprint in
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depressed if the synaptic event follows the postsynaptic
spike (Van Rossum et al., 2000).

Associative weights w;; are initialized to wo, and their
maximum allowed values are constrained according to
Wmax to ensure that synaptic weights are always posi-
tive and between [wq, Wyax] (Table S3). The resulting as-
sociative weight distributions are generally comparable
in strength to the BCPNN model weights, but to make
them match, we adjust w;,,y in conjunction with a reason-
ably small learning rate A. To obtain a stable competitive
synaptic modification, the integral of Aw;; must be nega-
tive (Song et al., 2000). To ensure this, we choose a=1.2,
which introduces an asymmetry between the scale of po-
tentiation and depression along with a symmetric time
window resulting in a ratio of a7_/7,>1.0 (Ren et al.,
2010). We set p=1 resulting in multiplicative STDP (in-
between values lead to rules which have an intermediate
dependence on the synaptic strength). Pyramidal cells re-
ceive an unspecific background noise at 420 Hz during
recall.

4.2.4 Two-network architecture and connectivity

The network model includes two reciprocally con-
nected networks, the Item and Context networks. For
simplicity, we assumed that item and context informa-
tion engage different modalities and cortical areas and
thus the corresponding networks are located at a substan-
tial distance (Table S2). Both networks span a regular-
spaced grid of 12 HCs (Table S2), each with a diameter
of 500 um (Mountcastle, 1997). Our model employs dis-
tributed orthogonal representations with one active MC
per HC, approximating the exceedingly sparse neocorti-
cal activity patterns with marginal overlap. Each minicol-
umn is composed of 30 pyramidal cells with shared selec-
tivity, forming a functional (not strictly anatomical) col-
umn. In total, the 24 HCs of the model contain 7200 ex-
citatory and 480 inhibitory cells, significantly downsam-
pling the number of MC per HC (~100 MC per HC in
biological cortex). The high degree of recurrent connec-
tivity within MCs (Thomson et al., 2002; Yoshimura and
Callaway, 2005) and between them link coactive MCs
into larger cell assemblies (Eyal et al., 2018; Binzegger
et al., 2009; Muir et al., 2011; Stettler et al., 2002). Long-
range bidirectional inter-area connections (item-context
bindings or associative connections) are plastic (shown
in Fig. 1A only for MC1 in HC1 of the Context net-
work), binding items and contextual information (Ran-
ganath, 2010). Recurrent connectivity establishes 100 ac-
tive plastic synapses on average onto each pyramidal cell
from other pyramidals with the same selectivity, due to
a sparse inter-area connectivity (cppps) and denser local
connectivity (cppp, cpppr; connection probabilities are
indicated in Fig. 1A only for MC1 in HC1 of the Con-
text network). The model yields biologically plausible
excitatory postsynaptic potentials (EPSPs) for connec-
tions within HCs (0.45 4 0.13 mV), measured at resting
potential E; (Thomson et al., 2002). Densely recurrent
non-specific monosynaptic feedback inhibition mediated
by fast spiking inhibitory cells (Kirkcaldie, 2012) imple-
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ments a local winner-take-all structure (Binzegger et al.,
2009) amongst the functional columns. Inhibitory post-
synaptic potentials (IPSPs) have an amplitude of -1.160
mV (4+0.003) measured at -60 mV (Thomson et al.,
2002). These bidirectional connections between basket
and pyramidal cells within the local HCs are drawn with
a 70% connection probability. Notably, double bouquet
cells shown in Figure 1A, are not explicitly simulated,
but their effect is nonetheless expressed by the BCPNN
rule. A recent study based on the same basic model archi-
tecture demonstrated that learned mono-synaptic inhibi-
tion between competing attractors is functionally equiva-
lent to the disynaptic inhibition mediated by double bou-
quet and basket cells (Chrysanthidis et al., 2019). Param-
eters characterising other neural and synaptic properties
including BCPNN can be found in Table S1.

Figure 1B shows the weight distributions of em-
bedded distributed cell assemblies, representing different
memories stored in the Item and Context networks. At-
tractor projections can be further categorized into strong
local recurrent connectivity within HCs, and slightly
weaker long-range excitatory projections across HCs
(Fig. 10).

4.2.5 Axonal conduction delays

Conduction delays (#;;) between a presynaptic neuron
i and a postsynaptic neuron j are calculated based on their
Euclidean distance, d, and a conduction velocity V (Eq.
11). Delays are randomly drawn from a normal distribu-
tion with a mean according to distance and conduction
velocity, with a relative standard deviation of 30% of the
mean. In addition, a minimal delay of 1.5 ms ()7, Ta-
ble S2) is added to reflect synaptic delays due to effects
that are not explicitly modelled, e.g. diffusion of neuro-
transmitters over the synaptic cleft, dendritic branching,
thickness of the cortical sheet and the spatial extent of
columns. Associative inter-area projections have a ten-
fold faster conduction speed than those within each net-
work, reflecting axonal myelination.
d syn

FJ': v +tmin7

v (11)

tij NN(F]7 .30 E)

4.2.6 Stimulation Protocol

Noise input to pyramidal cells and fast spiking in-
hibitory basket cells is generated by two independent
Poisson generators with conductances of opposing signs.
Pyramidal cells coding for specific items and contexts are
stimulated with an additional specific excitation during
encoding and cued recall (all parameters in Table S2).
Item-context association encoding is preceded by a brief
period of background noise excitation to avoid initializa-
tion transients.
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4.2.7 Attractor activation detector

We detect and report cue-based activation of items or
contexts by utilizing an attractor activation detection al-
gorithm based on EMASs of spiking activity. Pattern-wise
EMAs are calculated using Equation 12, where the delta
function & denotes the spike events of a pattern-selective
neural population of 7,,,=30 pyramidal cells. The filter
time constant 7=40 ms is much larger than the sampling
time interval AT=1 ms.

AT 1
eg=0, ¢ = TQ—AT +6

(12)
Thpop

Pattern activations are detected by a simple threshold
(r;) at about tenfold the baseline activity with a small
caveat: To avoid premature offset detection due to syn-
chrony in fast spiking activity, we only count activations
as terminated if they do not cross the threshold again in
the next 40 ms. Despite the complications of nested os-
cillations, this method is highly robust due to the explo-
sive dynamics of recurrent spiking activity for activated
attractors in the network. Any attractor activation that
crosses this threshold for at least 40 ms is considered a
successful recall.
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Fig. S1 Excitatory postsynaptic potentials (EPSPs) for the bind-
ing between Item and Context networks. EPSPs were recorded (at
resting potential £ ) after item-context association encoding phase.
We stimulate individually all the neurons in HC1 of an item which
forms one, two, three or four associations and record the postsynap-
tic potential onto their associated context neurons. Means of the
EPSP distributions show significant statistical difference (p<0.05
for one vs two associations; p<0.001 for two vs three and three vs
four associations, Mann-Whitney, N=300).
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Fig. S2 Distributions of the AMPA component weights between
Item and Context networks. Slower NMDA receptor weights follow
a similar pattern of weakening for items which participate in mul-
tiple associations. Means of the weight distributions of one, two,
three, and four associations show significant statistical difference
(p<0.001, Mann-Whitney, N=2000).
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Fig. S3 Spike raster of pyramidal cells in HC1 of both the Item
and Context networks in the BCPNN model. Items and their corre-
sponding context representations are simultaneously cued in their
respective networks. The testing phase occurs 1 s after the encoding
and triggers activations via partial cues of contexts (50 ms cues).
Repetition of items across various contexts leads to progressive
item-context decoupling. Item-4 is repeated across four different
contexts, and while its associated context gets activated when cued
(context-B), item-4 is not retrieved.
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Fig. S4 Weight distribution of AMPA component weights of the
Item network including synaptic augmentation. The multiplicative
effect of synaptic augmentation on the consolidated Items features
stronger combined synaptic strength for items with higher context
variability. Slower NMDA receptor weights follow a similar pat-
tern. Means of the weight distributions of one, two, three, and four
associations show significant statistical difference (p<0.001, Mann-
Whitney, N=2000).
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Fig. S5 Cued recall under STDP after removing synaptic augmen-
tation. Average item-cued recall performance in the Context net-
work (20 trials). To compensate for the removal of augmentation,
we increased the stimulation rates and the synaptic gain leading to
comparable elicited spiking activity. Error bars represent standard
deviations of Bernoulli distributions.
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Fig. S6 Cued recall under STDP including intrinsic plasticity. A)
Average item-cued recall performance in the Context network (20
trials). B) Average item-cued recall performance in the Context
network. Episodic context retrieval is enhanced for high context
variability predominantly because of intrinsic excitability dynam-
ics and synaptic augmentation. We observe an opposite trend to the
decontextualization effect seen in Figure 3C. Error bars represent
standard deviations of Bernoulli distributions.
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Table S1 Model and BCPNN parameters

Parameter Symbol Value Parameter Symbol Value  Parameter Symbol Value
Adaptation current b 86 pA Utilization factor U 0.2 BCPNN AMPA gain wg%f A 0.76 nS
Adaptation decay time constant 7y, 280 ms  Augmentation decay time constant Tp 5s BCPNN NMDA gain whMDA0.07 nS
Membrane capacitance C 280 pF Depression decay time constant ™D 280 ms BCPNN bias current gain Bgain 40 pA
Leak reversal potential Ep -70.6 mV AMPA synaptic time constant TAMPA 5 g BCPNN lowest spiking rate fiin 0.2 Hz
Leak conductance gL 14 nS NMDA synaptic time constant 7NMDA 100 ms  BCPNN highest spiking rate  fimax 25Hz
Upstroke slope factor At 3mV GABA synaptic time constant 7OABA  5ms  BCPNN lowest probability & 0.01
Spike threshold Vi -55mV ~ AMPA reversal potential EAMPA 0 v BCPNN Spike event duration  #gpjke 1 ms
Spike reset potential v, -60mV  NMDA reversal potential ENMPA 0 mV P trace time constant T 155
Refractory period Tref 5 ms GABA reversal potential ECGABA .75 mV  Modulated plasticity Kpoost 2
Regular plasticity Knormal 1

Table S2 Network layout, connectivity and stimulation protocol

Layout Symbol Value Connectivity Symbol Value  Stimulation Symbol Value
Cortical patch size Cps 2.0x 1.5 mm Axonal Conduction Speed V 0.2 m/s Background noise PYR (encoding) rf:f{,nmﬁng 650 Hz
Simulated HCs npc 12 Myelinated axonal speed Vinyet 2 m/s Background noise PYR (recall) r/’;;fn,m” 450 Hz
Simulated MCs nyc 120 Minimal synaptic delay tﬁ:,’:, 1.5ms Background noise BA rf? 75 Hz
Simulated MCs per HC nﬁg 10 Hypercolumn diameter duc 0.5 mm Background conductance ngR'BA + 1.5nS
No. of items nITEM 4 (from 10)  Distance between networks dé’oﬁ,"f gxr 10mm  Stimulation duration tstim 250 ms
No. of contexts ncontexr 10 (from 10) PYR-PYR recurrent cp cppp 0.2 Stimulation rate Fstim 500 Hz
Layer 2/3 pyramidal per MC n;yCR’LB 30 PYR-PYR long-range cp cpppL 0.25 Cue stimulation length teue 50 ms
Basket cells per MC nﬁ"ék” 2 PYR-PYR associative cp cpprA 0.02 Cue stimulation rate Teue 400 Hz
MC grid size (Item + Context) G&%ML 24x 10 PYR-BA cp, BA-PYRcp  cppp,cppa 0.7 Stimulation and cue conductance  ggim +1.5nS
PYR-BA cc grB 3nS Interstimulus interval Tstim 500 ms
BA-PYR cc gBP -7nS Attractor detection threshold Tih 10 Hz

PYR, Pyramidal cell; BA, Basket cell.
cp, connection probability; cc, connection conductance.

Table S3 STDP synaptic model parameters

Parameter Symbol Value
Weight initialization wo 0nS
AMPA maximum allowed weight wiMPA 13508
NMDA maximum allowed weight wiMDA 3 518
Learning rate A 0.01
Asymmetry parameter o 1.2
Weight dependence exponent, potentiation Ly 1
Weight dependence exponent, depression  p_ 1
Symmetric time window Ty 20 ms
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