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Abstract Episodic memory is the recollection of past1

personal experiences associated with particular times2

and places. This kind of memory is commonly sub-3

ject to loss of contextual information or "semantiza-4

tion", which gradually decouples the encoded memory5

items from their associated contexts while transforming6

them into semantic or gist-like representations. Novel7

extensions to the classical Remember/Know behavioral8

paradigm attribute the loss of episodicity to multiple9

exposures of an item in different contexts. Despite re-10

cent advancements explaining semantization at a behav-11

ioral level, the underlying neural mechanisms remain12

poorly understood. In this study, we suggest and evalu-13

ate a novel hypothesis proposing that Bayesian-Hebbian14

synaptic plasticity mechanisms might cause semanti-15

zation of episodic memory. We implement a cortical16

spiking neural network model with a Bayesian-Hebbian17

learning rule called Bayesian Confidence Propagation18

Neural Network (BCPNN), which captures the semanti-19

zation phenomenon and offers a mechanistic explanation20

for it. Encoding items across multiple contexts leads to21

item-context decoupling akin to semantization. We com-22

pare BCPNN plasticity with the more commonly used23

spike-timing dependent plasticity (STDP) learning rule in24

the same episodic memory task. Unlike BCPNN, STDP25

does not explain the decontextualization process. We also26

examine how selective plasticity modulation of isolated27

salient events may enhance preferential retention and re-28
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sistance to semantization. Our model reproduces impor- 29

tant features of episodicity on behavioral timescales un- 30

der various biological constraints whilst also offering 31

a novel neural and synaptic explanation for semantiza- 32

tion, thereby casting new light on the interplay between 33

episodic and semantic memory processes. 34

Keywords Episodic memory · Semantic memory · 35

Semantization · Decontextualization · Bayesian-Hebbian 36

plasticity · BCPNN · STDP · Spiking cortical memory 37

model 38

1 INTRODUCTION 39

Remembering single episodes is a fundamental attribute 40

of human cognition. A memory, such as with whom you 41

celebrated your last birthday, is more vividly recreated 42

when we can recall contextual information, such as the 43

location of the event (Eichenbaum et al., 2007; Gillund, 44

2012). The term "episodic memory" was originally in- 45

troduced by Tulving (1972) to designate memories of 46

personal experiences. Retrieval from episodic memory 47

includes a feeling of mental time travel realized by "I 48

remember". In contrast, semantic memory retrieval en- 49

capsulates what is best described by "I know" (Tulving, 50

1985; Umanath and Coane, 2020). Unlike episodic mem- 51

ories, semantic memories refer to general knowledge 52

about words, items and concepts, lacking spatiotemporal 53

source information, possibly resulting from the accumu- 54

lation of episodic memories (Schendan, 2012; Gillund, 55

2012). 56

Initially, Tulving (1972) proposed that episodic and 57

semantic memory are distinct systems and compete in re- 58

trieval. Recent studies suggest, however, that the division 59

between episodic and semantic memory is rather vague 60

(McCloskey and Santee, 1981; Renoult et al., 2019), 61

as neural activity reveals interaction between episodic 62

and semantic systems during retrieval (Weidemann et al., 63

2019). According to Squire and Zola (1998) retrieval 64

of semantic memory depends on the acquisition of the 65

episode in which such information was experienced. Ap- 66

parently, there is a clear interdependence between the 67

two systems as the content of episodic memory invari- 68

ably involves semantic representations (Martin-Ordas 69
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et al., 2014), and consequently semantic similarity aids70

episodic retrieval (Howard and Kahana, 2002).71

Episodic memory traces are susceptible to transfor-72

mation and loss of information (Tulving, 1972), and73

this loss of episodicity can be attributed to semantiza-74

tion, which typically takes the form of a decontextual-75

ization process (Duff et al., 2020; Habermas et al., 2013;76

Viard et al., 2007). Meeter and Murre (2004) highlight77

and review the dynamical nature of memories and neu-78

ral interactions through the scope of Transformation the-79

ory, which suggests that all memories start as episodic80

representations that gradually transform into semantic81

or gist-like representations (Winocur and Moscovitch,82

2011; Petrican et al., 2010). Decontextualization can oc-83

cur over time as studies suggest that older adults report84

fewer episodic elements than younger adults (Petrican85

et al., 2010). Yet, could this item-context decoupling rely86

on accumulation of episodicity over multiple exposures87

of stimuli in various contexts over time? Baddeley (1988)88

hypothesized that semantic memory might represent the89

accumulated residue of multiple learning episodes, con-90

sisting of information which has been semanticized and91

detached from the associated episodic contextual de-92

tail. In fact, simple language vocabulary learning implies93

that learners encode words in several different contexts,94

which leads to semantization and definition-like knowl-95

edge of the studied word (Beheydt, 1987; Bolger et al.,96

2008).97

Retrieval from episodic memory has been studied98

extensively through the lens of the classical Remem-99

ber/Know (R/K) paradigm, in which participants are100

required to provide a Know or Remember response101

to stimulus-cues, judging whether they are able to re-102

call item-only information or additional details about103

episodic context, respectively (van den Bos et al., 2020).104

Extensions of the classical R/K behavioral experiment105

demonstrate that item-context decoupling can occur106

rapidly (Opitz, 2010). In these experiments, items are107

presented during an encoding phase either in a unique108

context, or across several contexts. Low context variabil-109

ity leads to greater recollection, whereas context overload110

results in decontextualization and a higher fraction of111

correctly classified Know responses (Opitz, 2010; Smith112

and Manzano, 2010; Smith and Handy, 2014). In the cur-113

rent study, we offer and evaluate a Bayesian-hypothesis114

about synaptic and network mechanisms underlying the115

memory semantization (item-context decoupling).116

In earlier works, we developed and investigated a117

modular spiking neural network model of cortical asso-118

ciative memory with respect to memory recall, includ-119

ing oscillatory dynamics in multiple frequency bands,120

and compared it to experimental data (Lundqvist et al.,121

2010, 2011; Herman et al., 2013). Recently we demon-122

strated that the same model, enhanced with a Bayesian-123

Hebbian learning rule (Bayesian Confidence Propagation124

Neural Network, BCPNN) to model synaptic and intrin-125

sic plasticity, was able to quantitatively reproduce key126

behavioral observations from human word-list learning127

experiments (Fiebig and Lansner, 2017), such as serial128

order effects during immediate recall. This model per-129

formed one-shot memory encoding and was further ex- 130

panded into a two-area cortical model used to explore 131

a novel indexing theory of working memory, based on 132

fast Hebbian synaptic plasticity (Fiebig et al., 2020). In 133

this context, it was suggested that the underlying naive 134

Bayes view of association would make the associative 135

binding between two items weaker if one of them is later 136

associated with additional items. Thus, if we conceive of 137

episodicity as an associative binding between item and 138

context, the BCPNN synaptic plasticity update rule might 139

provide a mechanism for semantization. In this work, we 140

test this hypothesis and examine to what extent the re- 141

sults match available behavioral data on semantization. 142

We further compare those outcomes of dynamic learn- 143

ing with a model featuring the more well-known spike- 144

timing dependent plasticity (STDP) learning rule. We 145

also demonstrate how selective plasticity modulations of 146

one-shot learning (tentatively modelling effects of atten- 147

tion, emotional salience, valence, surprise, etc. on plas- 148

ticity) may enhance episodicity and counteract semanti- 149

zation. 150

To our knowledge, there are no previous computa- 151

tional models of item-context decoupling akin to seman- 152

tization. Overall, there are rather few computational mod- 153

els of episodic memory (Norman and O’Reilly, 2003), 154

and those that exist are typically abstract, aimed at pre- 155

dicting behavioral outcomes without a specific focus on 156

underlying neural and synaptic mechanisms (Greve et al., 157

2010; Wixted, 2007). Our model bridges these perspec- 158

tives and explains semantization based on synaptic plas- 159

ticity, while it also reproduces important episodic mem- 160

ory phenomena on behavioral time scales under con- 161

strained network connectivity with plausible postsynaptic 162

potentials, firing rates, and other biological parameters. 163

2 RESULTS 164

2.1 Semantization of episodic representations in the 165

BCPNN model 166

The network model used here features two reciprocally 167

connected networks, the so-called Item and Context net- 168

works. The architecture of each network follows our pre- 169

vious spiking implementations of attractor memory net- 170

works (Lansner, 2009; Tully et al., 2014, 2016; Lundqvist 171

et al., 2011; Fiebig and Lansner, 2017; Chrysanthidis 172

et al., 2019; Fiebig et al., 2020), and is best understood 173

as a subsampled cortical layer 2/3 patch with nested hy- 174

percolumns (HCs) and minicolumns (MCs; Fig. 1A, see 175

STAR⋆METHODS for details). In our model, items are 176

embedded in the Item network, and context informa- 177

tion in the Context network as internal long-term mem- 178

ory representations, derived from prior Hebbian learning 179

(Fig. 1B,C, STAR⋆METHODS). Our episodic memory 180

task is designed to follow a seminal experimental study 181

by Opitz (2010). We stimulate some items in a single con- 182

text and others in a few different contexts establishing 183

multiple associations (Fig. 2). Stimulus duration during 184

2
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Fig. 1 Network architecture and connectivity of the Item (green) and Context (blue) networks. A) The model represents a subsampled
modular cortical layer 2/3 patch consisting of minicolumns (MCs) nested in hypercolumns (HCs). Both networks contain 12 HCs, each
comprising 10 MCs. We preload abstract long-term memories of item and context representations into the respective network, in the form of
distributed cell assemblies with weights establishing corresponding attractors. Associative plastic connections bind items with contexts. The
network features lateral inhibition via basket cells (purple and blue lines) resulting in a soft winner-take-all dynamics. Competition between
attractor memories arises from this local feedback inhibition together with disynaptic inhibition between HCs. B) Weight distribution of
plastic synapses targeting pyramidal cells. The attractor projection distribution is positive with a mean of 2.1, and the disynaptic inhibition
is negative with a mean of -0.3 (we show the fast AMPA weight components here, but the simulation also includes slower NMDA weight
components). C) Weight matrix between attractors and competing MCs across two sampled HCs. The matrix displays the mean of the
weight distribution between a presynaptic (MCpre) and postsynaptic minicolumn (MCpost ), within the same or different HC (black cross
separates grid into blocks of HCs, only two of which are shown here). Recurrent attractor connections within the same HC are stronger
(main diagonal, dark red) compared to attractor connections between HCs (off-diagonals, orange) while inhibition is overall balanced
between patterns (blue). Negative inter-pyramidal weights between competing MCs amounts to disynaptic inhibition mediated by double
bouquet cells.

 

 

Fig. 2 Trial structure of the two simulated variants of the episodic
memory task. Items are first associated with one or several contexts
(CNX) during the encoding phase in 250 ms cue episodes, with
an interstimulus interval of 500 ms. The colors of the co-activated
contexts are consistent with their corresponding associated item.
The recall phase occurs with a delay of 1 s and involves different
trials with either brief cues (50 ms) of the A) items, or B) contexts
presented during the item-context association encoding phase.

encoding is tstim=250 ms with a Tstim=500 ms interstimu- 185

lus interval, and a test phase occurs after a 1 s delay pe- 186

riod, which contains brief tcue=50 ms cues of previously 187

learned items (Table S2). 188

Figure 3A illustrates an item-context pair, established 189

by an associative binding through plastic bidirectional 190

BCPNN projections (dashed lines). Item and context at- 191

tractors (solid red lines) are embedded in each network 192

and remain fixed throughout the simulation, represent- 193

ing well-consolidated long-term memory. We show an 194

exemplary spike raster of pyramidal neurons in HC1 of 195

both the Item and Context networks reflecting a trial 196

simulation (Fig. 3B). Herein, item-3 (blue) establishes 197

a single association, whilst item-4 (yellow) is encoded 198

in four different contexts (Fig. 2A, 3B). We observe ev- 199

idence of item-context decoupling as the yellow item 200

(but not the blue) is successfully recognized when cued 201

but without any corresponding accompanying activation 202

in the Context network. Successful and complete item 203

recognition without any contextual information retrieval 204

accounts for a Know response, as opposed to Remem- 205

ber judgments, which are accompanied by successful 206
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Fig. 3 Semantization of episodic memory traces. A) Schematic of the Item (green) and Context (blue) networks. Attractor projections are
long-range connections across HCs in the same network and learned associative binding are connections between networks. B) Spike raster
of pyramidal neurons in HC1 of both the Item and Context networks. Items and their corresponding context representations are simultane-
ously cued in their respective networks (cf. Fig. 2A). Each item is drawn with a unique color, while contexts inherit their coactivated item’s
color in the raster (i.e., the yellow pattern in the Item network is repeated over four different contexts, forming four separate associations
marked with the same color). The testing phase occurs 1 s after the encoding. Brief 50 ms cues of already studied items trigger their acti-
vation. Following item activation, we detect evoked attractor activation in the Context network. C) Average cued recall performance in the
Context network (20 trials). The bar diagram reveals progressive loss of episodic context information (i.e., semantization) over the number
of context associations made by individual cued items (cf. Fig. 2A). D) Distribution of plastic connection weights between the Item and
Context networks (NMDA component shown here). Weights are noticeably weaker for items which participate in multiple associations.
The distributions of synaptic weights exhibit a broader range for the items with multiple context associations, as the sample size is larger.
E) The distribution of intrinsic excitability currents of pyramidal cells coding for specific context representations. The intrinsic excitability
distributions feature similar means because each context is activated exactly once, regardless of whether the associated item forms multiple
associations or not. F) Average cued recall performance in the Item network (20 trials). Decontextualization over the number of associations
is also observed when we briefly cue episodic contexts instead (cf. Fig. 2B, S3). G) Distribution of strength of plastic connections from the
contexts to their associated items. Analogously to D), synapses weaken once an item is encoded in another context. H) Intrinsic plasticity
distribution of cells in the Item network. Means of the intrinsic excitability distributions are higher for pyramidal cells coding for repeatedly
activated items. ***p<0.001 (Mann-Whitney, N=20 in C, F); Error bars in C, F represent standard deviations of Bernoulli distributions;
Means of distributions of one, two, three, and four associations in D, G, H show significant statistical difference (p<0.001, Mann-Whitney,
N=2000).

context recall. Cue-based activations are reported us-207

ing a detection algorithm (see STAR⋆METHODS). Fig-208

ure 3C demonstrates the performance of contextual re-209

trieval when items serve as cues. To elucidate this ob-210

served progressive loss of episodicity, we sample and211

analyze the learned weight distributions of item-context212

binding recorded after the association encoding period213

(Fig. 3D). The item-context weight distribution in the214

one-association case has a significantly higher mean than215

in the two-, three-, or four-association case (p<0.001,216

Mann-Whitney, N=2000). This progressive weakening of217

weights leads to significantly lower mean EPSP ampli-218

tudes for the associative projections (p<0.05 for one vs219

two associations; p<0.001 for two vs three and three vs 220

four associations, Mann-Whitney, N=300, Fig. S1). So, 221

we attribute the loss of episodicity to a statistically signif- 222

icant weakening of means of the associative weight dis- 223

tributions with the increasing number of associated con- 224

texts. The associative weight distributions shown here re- 225

fer to the NMDA component, while the weight distribu- 226

tions of the faster AMPA receptor connections display a 227

similar trend (Fig. S2). The gradual trace modification we 228

observe relies on the nature of Bayesian learning, which 229

normalizes and updates weights over estimated presynap- 230

tic (Bayesian-prior) as well as postsynaptic (Bayesian- 231

posterior) spiking activity (see Sect. 2.3 for details). 232

4
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Our simulation results are in line with related behav-233

ioral studies (Opitz, 2010; Smith and Manzano, 2010;234

Smith and Handy, 2014), which also reported item-235

context decoupling as the items were presented across236

multiple contexts. In agreement with our study, Opitz237

(2010) concluded that repetition of an item across differ-238

ent contexts (similar to high context variability) leads to239

item-context decoupling. Furthermore, Smith and Man-240

zano (2010) demonstrated in an episodic context variabil-241

ity task configuration, that episodicity deteriorates with242

context overload (number of words per context). Mean243

recall drops from ∼0.65 (one word per context) to 0.50244

(three words per context), reaching ∼0.33 in the most245

overloaded scenario (fifteen words per context).246

In Figure 3E we show the distribution of intrinsic ex-247

citability over units representing different contexts. Pyra-248

midal neurons in the Context network have a similar in-249

trinsic excitability, regardless of their selectivity because250

all the various contexts are encoded exactly once.251

Next, analogously to the previous analysis, we show252

that item-context decoupling emerges also when we253

briefly cue contexts rather than items during recall testing254

(Fig. 2B, Fig. S3). In agreement with experimental data255

(Smith and Manzano, 2010; Smith and Handy, 2014) we256

obtain evidence of semantization as items learned across257

several discrete contexts are hardly retrieved when one of258

their associated contexts serves as a cue (Fig. 3F). We fur-259

ther sample and present the underlying associative weight260

distribution, between the Context and the Item networks261

(Fig. 3G). The distributions again reflect the semantiza-262

tion effect in a significant weakening of the correspond-263

ing weights. In other words, an assembly of pyramidal264

neurons representing items encoded across multiple con-265

texts receive weaker projections from the Context net-266

work. Beyond four or more associations, the item-context267

binding becomes so weak that it fails to deliver sufficient268

excitatory current to trigger associated representations in269

the Item network. At the same time, intrinsic excitability270

of item neurons increases with the number of associated271

contexts corresponding to how much these neurons were272

active during the encoding phase [Fig. 3H; cf. Egorov273

et al. (2002), Tully et al. (2014)].274

2.2 Item-context interactions under STDP275

In this section, we contrast the results obtained276

with the BCPNN synaptic learning rule with those de-277

riving from the more commonly used STDP learning278

rule in the same episodic memory task (Fig. 2, see279

STAR⋆METHODS). The modular network architecture280

as well as neural properties and embedded memory pat-281

terns remain identical, but associative projections be-282

tween networks are now implemented using a standard283

STDP synaptic learning rule (Morrison et al., 2008). The284

parameters of the STDP model are summarized in Table285

S3.286

Figure 4A shows an exemplary spike raster of pyra-287

midal cells in HC1 of both the Item and the Context net-288

works, based on the first variant of the episodic memory 289

task described in Figure 2A. As earlier, items are encoded 290

in a single or in multiple different contexts and they are 291

briefly cued later during recall. A successful item acti- 292

vation may lead to a corresponding activation of its as- 293

sociated information in the Context network. We detect 294

these activations as before (see STAR⋆METHODS), and 295

report the cue-based recall score over the number of as- 296

sociations (Fig. 4B). 297

Unlike the BCPNN network, we observe no evi- 298

dence of semantization for high context variability. In- 299

stead, recollection is noticeably enhanced with an in- 300

creasing number of associations, which is in fact the op- 301

posite of what would be needed to explain item-context 302

decoupling. STDP generates similarly strong associative 303

binding regardless of context variability (Fig. 4C). The 304

enhanced recollection in high context variability cases 305

stems from the multiplicative effect of synaptic augmen- 306

tation in the Tsodyks-Makram model on the Hebbian 307

attractor weights. Items stimulated multiple times (e.g., 308

four times) have a higher likelihood of being encoded 309

near the end of the task, leading to more remaining aug- 310

mentation during testing, thus, effectively boosting cued 311

recall (see Fig. S4). This effect of the enhanced recall di- 312

minishes after removing synaptic augmentation from the 313

model (Fig. S5). As far as the context-cued variant of the 314

task is concerned, there are also no signs of item-context 315

decoupling for high context variability (Fig. 4D). The 316

associative projections between Context and Item net- 317

works again have distributions with comparable means 318

over context variability (Fig. 4E). An inclusion of intrin- 319

sic plasticity dynamics in the model does not explain de- 320

contextualization either (see Fig. S6). Overall, decontex- 321

tualization is not evident in either variant of the episodic 322

memory task under the STDP learning rule. 323
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Fig. 4 Network model where associative projections are implemented using standard STDP synaptic plasticity. A) Spike raster of pyramidal
neurons in HC1 of both the Item and Context networks. B) Average item-cued recall performance in the Context network (20 trials).
Episodic context retrieval is preserved even for high context variability (as opposed to BCPNN, cf. Fig. 3C). C) Distribution of NMDA
receptor mediated synaptic weights between the item and context neural assemblies following associative binding. The distributions of
item-context weights have comparable means at ∼0.065 nS regardless of how many context associations a given item forms. Bins merely
display a higher count for the four-association case as the total count of associative weights is more extensive compared to items with
fewer associations. D) Average cued recall performance in the Item network when episodic contexts are cued (20 trials). E) Distribution of
NMDA component weights between associated context and item assemblies. ***p<0.001 (Mann-Whitney, N=20 in B, D); Error bars in B,
D represent standard deviations of Bernoulli distributions.

2.3 BCPNN and STDP learning rule in a microcircuit324

model325

To better elucidate the emergent synaptic changes326

of the BCPNN and STDP model, we also apply these327

learning rules in a highly reduced microcircuit of spiking328

neurons. To this end, we now track the synaptic weight329

changes continuously.330

First, we apply the BCPNN learning rule to the mi-331

crocircuit model. We consider two separate item neu-332

rons (ID=1 and 2), which form two or three associa-333

tions with context neurons (ID=3,4, or 5,6,7), respec-334

tively (Fig. 5A). We display the synaptic strength de-335

velopment of the synapse between item neuron-1 and336

context neuron-3 (two associations, green), as well as337

the synapse between item neuron-2 and context neuron-5338

(three associations, red) over the course of training these339

associations via targeted stimulation. BCPNN synapses340

get strengthened when the item-context pairs are simul-341

taneously active and weaken when the item in question342

is activated with another context. Therefore, synapses of343

the item neuron that is encoded in three different con-344

texts converge on weaker weights (Fig. 5A, 12 s), than 345

those of the item neuron with two associated contexts. 346

Weight modifications in the microcircuit model reflect 347

the synaptic alterations observed in the large-scale net- 348

work. BCPNN weights are shaped by traces of activation 349

and co-activation (Eq. 7,8, STAR⋆METHODS), which 350

also get updated during the activation of an item within 351

another context. For example, the item neuron-1 and con- 352

text neuron-3 are not stimulated together between 6 s and 353

8 s, but neuron-1 and context neuron-4 are. Thus, the 354

traces of the item activation (Pi) increase, while the ones 355

linked to context-3 (Pj) decay with a time constant of 15 356

s (Table S1). Since the item and context neuron (ID=1, 3) 357

are not stimulated together, their coactivation traces (Pi j) 358

decay between 6 s and 8 s. Overall, this leads to a weak- 359

ening of the weight and hence, to a gradual decoupling 360

(Eq. 8, STAR⋆METHODS). 361

In the same manner, we keep track of weight change 362

in a microcircuit with the STDP learning rule (Fig. 5B). 363

Unlike the microcircuit with BCPNN presented in Figure 364

5A, the STDP weights corresponding to the associations 365

made by both item neurons converge to similar values, 366

6
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Fig. 5 Continuous weight recordings in a microcircuit model with
plastic synapses under the A) BCPNN or B) STDP learning rule.
Neural and synaptic parameters correspond to those in the scaled
model. In both cases, two item neurons (ID=1,2) are trained to form
two or three associations, respectively (dashed connections are sim-
ulated but their weight development is not shown here). During
training, neurons are stimulated to fire at 20 Hz for 2 s. We display
the developing synaptic weight between specific item-context pairs,
(ID=1 and 3 in the two-association scenario) and (ID=2 and 5 in the
three-association scenario), and compare the converged weight val-
ues between the two- and three-association case under both learning
rules, following a final readout spike at 11 s.

even though they are associated with different number of367

contexts. As before, the synapse between an item neuron368

and an associated context neuron strengthens when this369

pair is simultaneously active, but remains stable when370

the item neuron is encoded in another context. For in-371

stance, the synapse between item neuron-2 and context372

neuron-5 strengthens when this pair is encoded (0-2 s),373

yet remains unaffected when item neuron-2 is activated374

in another context (i.e., context neuron-6, 4-6 s). This375

synaptic behavior explains the observed differences be-376

tween the BCPNN and STDP large-scale model.377

2.4 Preferential retention378

Several studies propose that one-shot salient events379

promote learning, and that these memories can be re-380

tained on multiple time scales ranging from seconds to381

years (Petrican et al., 2010; Gruber et al., 2016; Frank-382

land et al., 2004; Panoz-Brown et al., 2016; Eichenbaum,383

2017; Sun et al., 2018). Hypothetical mechanisms behind384

these effects are dopamine release and activation of DR1385

like receptors, resulting in synapse-specific enhancement386

(Otmakhova and Lisman, 1996; Kuo et al., 2008), and387

systems consolidation (McClelland et al., 1995; Fiebig388

and Lansner, 2014). On the whole, salient or reward389

driven events may be encoded more strongly as the result390

of a transient plasticity modulation. Recall from long-391

term memory is often viewed as a competitive process392

in which a memory retrieval does not depend only on its 393

own synaptic strength but also on the strength of other 394

components (Shiffrin, 1970). In view of this, we study 395

the effects of plasticity modulation on encoding specific 396

items within particular contexts, with the aim of investi- 397

gating the role of enhanced learning for semantization in 398

our model. 399

 

 

Fig. 6 Plasticity modulation of a specific item-context pair en-
hances recollection and counteracts semantization. A) Context re-
call performance. One of the pairs (context-E, item-1) presented
in the episodic memory task (cf. Fig. 2A) is subjected to enhanced
plasticity during encoding, resulting in the boosted recall rate (3 as-
sociations, Normal vs Biased). B) Individual context retrieval con-
tribution in the overall recall (3 associations). Retrieval is similar
among the three contexts since plasticity modulation is balanced
(left: Normal, κ=κnormal , cf. Table S1). However, when context-E
is encoded with enhanced learning (with item-1), its recall increases
significantly (right: Biased, κ=κboost , cf. Table S1). C) Weight
distributions of the NMDA weight component. Encoding item-1
with context-E under modulated plasticity yields stronger synaptic
weights [3 association, α ,β (light red, highly overlapping distribu-
tions) vs γ (dark red)]. ***p<0.001 (Mann-Whitney, N=20 in A, B,
N=2000 in C); Error bars in A,B represent standard deviations of
Bernoulli distributions; Means of the weight distributions of one,
two, three-α ,-β , and four associations in C show significant statis-
tical difference (p<0.001, Mann-Whitney, N=2000).

Using the same network and episodic memory task 400

as before (Fig. 2A), we modulate plasticity during the 401

encoding of item-1 (red) in context-E via κ=κboost (Eq. 402

7, STAR⋆METHODS, Table S1). This results in an in- 403

creased cued recall probability for the item associated 404

with three episodic contexts relative to the unmodulated 405

control (Fig. 6A, Normal vs Biased scenario, 3 associ- 406

ations). Episodic retrieval improves from 0.6 (Normal, 407
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Fig. 6A, left) to 0.8 (Biased; modulated plasticity, Fig.408

6A, right) when item-1 is cued, which now performs409

more similarly to item with just two associated contexts.410

We further analyze and compare the recall of each con-411

text when its associated item-1 is cued (Fig. 6B, 3 as-412

sociations). The control scenario (Normal, Fig. 6B, left)413

without transient plasticity modulation shows that the414

three contexts (ID=A, E and J) are all recalled with sim-415

ilar probabilities (20 trials). In contrast, encoding a spe-416

cific pair with enhanced learning (upregulated κ=κboost)417

yields higher recall for the corresponding context. In par-418

ticular, the plasticity enhancement during associative en-419

coding of the context-E (with item-1) results in an in-420

creased recall score to 0.8 (0.25 control), while the other421

associated contexts, ID=A and J, are suppressed (Fig.422

6B), primarily due to soft winner-take-all competition be-423

tween contexts (Fig. 1A).424

We attribute these changes to the stronger weights425

due to enhanced learning (Fig. 6c, dark red distribution,426

γ). Weights between unmodulated item-context pairs427

(item-1 and context-A,-J) show mostly unaltered weight428

distributions (α ,β , light red), while the biased associa-429

tive weight distribution between item-1 and context-E is430

now comparable to the weight distribution of the one-431

association case. Performance does not exactly match432

that case though due to some remaining competition433

among the three contexts. Overall, these results demon-434

strate how a single salient episode may strengthen mem-435

ory traces and thus impart resistance to semantization436

(Rodríguez et al., 2016).437

3 DISCUSSION438

The primary objective of this work was to explore the439

interaction between synaptic plasticity and context vari-440

ability in the semantization process. To cast new light441

on the episodic-semantic interplay, we built a memory442

model of two spiking neural networks coupled with plas-443

tic connections, which collectively represent distributed444

cortical episodic memory. Our results suggest that some445

forms of plasticity offer a synaptic explanation for the446

cognitive phenomenon of semantization, thus bridging447

scales and linking network connectivity and dynamics448

with behavior. In particular, we demonstrated that with449

Bayesian-Hebbian (BCPNN) synaptic plasticity, but not450

with standard Hebbian STDP, the model can reproduce451

traces of semantization in the learning outcomes. No-452

tably, this was achieved with biologically constrained453

network connectivity, postsynaptic potential amplitudes,454

firing rates and oscillatory dynamics compatible with455

mesoscale recordings from cortex and earlier models.456

Nevertheless, our hypothesis of the episodic-semantic in-457

terplay at a neural level requires further experimental458

study of synaptic strength dynamics in particular. We also459

demonstrated how a transient plasticity modulation (re-460

flecting known isolation effects) may preserve episodic-461

ity, staving off decontextualization.462

Our study conforms to related behavioral experi- 463

ments reporting that high context variability or con- 464

text overload leads to item-context decoupling (Opitz, 465

2010; Smith and Manzano, 2010; Smith and Handy, 466

2014). These studies suggest that context-specific mem- 467

ory traces transform into semantic representations while 468

contextual information is progressively lost. Memory 469

traces remain intact but fail to retrieve their associated 470

context. Semantization is typically described as a de- 471

contextualization process that occurs over time. How- 472

ever, several experiments, including this study, proposed 473

that exposures of stimuli in different additional contexts 474

(rather than time itself) is the key mechanism advancing 475

semantization (Opitz, 2010; Smith and Manzano, 2010; 476

Smith and Handy, 2014). Admittedly, our hypothesis 477

cannot exclude other seemingly coexisting phenomena 478

that may benefit semantization over time (e.g., reconsol- 479

idation or systems consolidation due to sleep or aging). 480

To our knowledge, there is no other spiking bio- 481

physical computational model of comparable detail that 482

captures the semantization of episodic memory explored 483

here, whilst simultaneously offering a neurobiological 484

explanation of this phenomenon. Unlike other dual- 485

process episodic memory models, which require repeated 486

stimulus exposures to support recognition (Norman and 487

O’Reilly, 2003), our model is able to successfully recall 488

events learned in "one shot" (a distinctive hallmark of 489

episodicity). We note that the attractor-based theory pro- 490

posed in this study does not exclude the possibility of a 491

dual-process explanation for recollection and familiarity 492

(Yonelinas, 2002; Yonelinas et al., 2010). 493

3.1 Related models of familiarity and recollection 494

Perceptual or abstract single-trace dual-process com- 495

putational models based on signal detection theory ex- 496

plain episodic retrieval but the potential loss of contextual 497

information is only implied as it does not have its own 498

independent representation (Greve et al., 2010; Wixted, 499

2007). These computational models often aim to explain 500

traditional R/K behavioral studies. As discussed earlier, 501

participants in such studies are instructed to give a Know 502

response if the stimulus presented in the test phase is 503

known or familiar without any contextual detail about its 504

previous occurrence. Conversely, Remember judgments 505

are to be provided if the stimulus is recognized along with 506

some recollection of specific contextual information per- 507

taining to the study episode. This results in a strict cri- 508

terion for recollection, as it is possible for a subject to 509

successfully recall an item but fail to retrieve the source 510

information (Ryals et al., 2013). Numerous studies sug- 511

gest that recollection contaminates Know reports because 512

recalling source information sensibly assumes prior item 513

recognition (Wais et al., 2008; Johnson et al., 2009). 514

Mandler (1979, 1980), and Atkinson and Juola (1973) 515

treat familiarity as an activation of preexisting memory 516

representations. Our results are compatible with this no- 517

tion because our model proposes to treat item-only acti- 518

vations as Know judgments, while those accompanied by 519

the activation of context representations best correspond 520

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.07.18.452769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452769
http://creativecommons.org/licenses/by-nc-nd/4.0/


to a Remember judgment. Item activation is a faster pro-521

cess and precedes context retrieval (Yonelinas and Ja-522

coby, 1994), and our model reflects this finding by ne-523

cessity, as item activations are causal to context retrieval.524

To us, familiarity recognition is simply characterized525

by a lack of contextual information, yet the distinction526

we make between Context and Item networks is arbitrary.527

Any item can be a context and vice versa, so the networks528

are interchangeable. While sparse interconnection is suf-529

ficient for our model’s function, both networks may just530

as well be part of the same modality and cortical brain531

areas. A more specific scenario might assume that items532

and contexts share part of the same local network. In prin-533

ciple, our model should be capable of replicating similar534

results in a single modality scenario.535

3.2 Semantization on longer time scales536

Source recall is likely supported by multiple inde-537

pendent, parallel, interacting neural structures and pro-538

cesses since various parts of the medial temporal lobes,539

prefrontal cortex and parts of the parietal cortex all con-540

tribute to episodic memory retrieval including informa-541

tion about both where and when an event occurred (Diana542

et al., 2007; Gilboa, 2004; Watrous et al., 2013). A related543

classic idea on semantization is the view that it is in fact544

an emergent outcome of systems consolidation. Sleep-545

dependent consolidation in particular has been linked to546

advancing semantization of memories and the extraction547

of gist information. (Friedrich et al., 2015; Payne et al.,548

2009).549

Models of long-term consolidation suggest that richly550

contextualized memories, become more generic over551

time. Without excluding this possibility, we note that this552

is not always the case, as highly salient memories often553

retain contextual information (which our model speaks554

to). Instead, our model argues for a much more imme-555

diate neural and synaptic contribution to semantization556

that does not require slow multi-area systems level pro-557

cesses that have yet to be specified in sufficient detail558

to be tested in neural simulations. We have previously559

shown, however, that an abstract simulation network of560

networks with broader distributions of learning time con-561

stants can consolidate memories across several orders562

of magnitude in time, using the same Bayesian-Hebbian563

learning rule as used here (Fiebig and Lansner, 2014).564

That model included representations for prefrontal cor-565

tex, hippocampus, and wider neocortex, implementing an566

extended complementary learning systems theory (Mc-567

Clelland et al., 1995), which is itself an advancement of568

systems consolidation (Squire and Alvarez, 1995). We569

consequently expect that the principled mechanism of se-570

mantization explored here can be scaled along the tempo-571

ral axis to account for lifelong memory, provided that the572

plasticity involved is itself Bayesian-Hebbian. Our model573

does not advance any specific anatomical argument as574

to the location of the respective networks (Diana et al.,575

2007; Yonelinas, 2002).576

The model purposefully relies on a generic corti-577

cal architecture focused on a class of synaptic plastic-578

ity mechanisms which may well serve as a substrate of 579

a wider system across brain areas and time. 580

3.3 Biological plausibility and parameter sensitivity 581

We investigate and explain behavior and macroscale 582

system dynamics with respect to neural processes, bio- 583

logical parameters of network connectivity, and electro- 584

physiological evidence. Our model consequently builds 585

on a broad range of biological constraints such as in- 586

trinsic neuronal parameters, cortical laminar cell densi- 587

ties, plausible delay distributions, and network connectiv- 588

ity. The model reproduces plausible postsynaptic poten- 589

tials (EPSPs, IPSPs) and abides by estimates of connec- 590

tion densities (i.e., in the associative pathways and pro- 591

jections within each patch), axonal conductance speeds, 592

typically accepted synaptic time constants for the vari- 593

ous receptor types (AMPA, NMDA, and GABA), with 594

commonly used neural and synaptic plasticity time con- 595

stants (i.e., adaptation, depression). We reproduce oscil- 596

latory dynamics in multiple frequency ranges, that were 597

previously studied in the same modular spiking network 598

implementations (Lundqvist et al., 2010, 2011; Herman 599

et al., 2013). 600

The model synthesizes a number of functionally 601

relevant processes, embedding different components to 602

model composite dynamics, hence, it is beyond this study 603

to perform a detailed sensitivity analysis for every pa- 604

rameter. Instead, we provide insightful observations for 605

previously unexplored parameters that may critically af- 606

fect semantization. Importantly, a highly related modular 607

cortical model already investigated sensitivity to impor- 608

tant short-term plasticity parameters (Fiebig and Lansner, 609

2017). After extensive simulation testing, we conclude 610

that the model is generally robust to a broad range of 611

parameter changes and degrades gracefully. Small net- 612

works like this are typically more sensitive to parameter 613

changes, so conversely, we expect even lower sensitivity 614

to parameter variations in a full scale system. 615

The P trace decay time constant, τp, of the BCPNN 616

model is critical for the learning dynamics modelled in 617

this study because it controls the speed of learning in as- 618

sociative connections. High values of τp lead to slower 619

and more long-lasting learning. Varying τp by ±30% 620

does not change the main outcome, that is, episodicity 621

still deteriorates with a higher context variability. Slower 622

weight development may result in weaker associative 623

binding and overall lower recall though (and vice versa 624

for faster learning). To compensate for this loss of episod- 625

icity, an additional increase in the unspecific input is usu- 626

ally sufficient to trigger comparable recall rates. Alter- 627

natively, the recurrent excitatory gain can be amplified 628

to complete noisy inputs towards discrete embedded at- 629

tractors. Unspecific background input during recall plays 630

a critical role as well. We use a low such noise input to 631

model cue-association responses, however, when boosted 632

by +40%, the model operates in a free replay regime in- 633

stead, where cues become unnecessary as the network re- 634

trieves content without them by means of intrinsic back- 635

ground noise. 636
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This study also demonstrated how a selective tran-637

sient increase of plasticity can counteract semantization.638

The plasticity of the model can be modulated via the639

parameter κ (Eq. 7, STAR⋆METHODS). Typically, κ640

is set to 1 (κ=κnormal), whereas we double plasticity641

(κ=κboost), when modelling salient episodic encoding.642

We noticed that by selectively tripling or quadrupling643

plasticity (relative to baseline) during encoding of a spe-644

cific pair whose item component forms many other as-645

sociations, the source recall improves progressively (data646

shown only for κ=κboost in Sect. 2.4).647

Finally, in Section 2.3 we compared STDP and648

BCPNN plasticity in a highly reduced model. We bind649

items with contexts to form different number of associa-650

tions and keep track of the weight development per time651

step. STDP plasticity generated same magnitude item-652

context binding regardless of how many associations an653

item forms. A detailed parameter analysis for every criti-654

cal synaptic parameter (±30%) did not yield any behav-655

iorally significant changes to the converged weights.656

3.4 Conclusions657

We have presented a computational mesoscopic net-658

work model to examine the interplay between episodic659

and semantic memory with the grand objective to explain660

mechanistically the semantization of episodic traces.661

Compared to other models of episodic memory, which662

are typically abstract, our model, built on various bi-663

ological constraints (i.e., plausible postsynaptic poten-664

tials, firing rates, etc.) accounting for neural processes665

and synaptic mechanisms, emphasizes the role of synap-666

tic plasticity in episodic forgetting. Hence it bridges mi-667

cro and mesoscale mechanisms with macroscale behavior668

and dynamics. In contrast to standard Hebbian learning,669

our Bayesian version of Hebbian learning readily repro-670

duced prominent traces of semantization.671
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4 STAR⋆METHODS996

4.1 KEY RESOURCES TABLE997

Table 1

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

NEST simulator (Gewaltig and Diesmann, 2007) nest-simulator.org

Programming Language Python 2.7 python.org; SCR_008394

BCPNN learning rule module (Tully et al., 2014) Zenodo

PDC High Performance Computing www.pdc.kth.se

4.2 METHODS DETAILS998

4.2.1 Neuron and synapse model999

We use adaptive exponential integrate-and-fire point1000

model neurons, which feature spike frequency adapta-1001

tion, enriching neural dynamics and spike patterns, espe-1002

cially for the pyramidal cells (Brette and Gerstner, 2005).1003

The neuron model offers a good phenomenological de-1004

scription of typical neural firing behavior, but it is limited1005

in predicting the precise time course of the sub-threshold1006

membrane voltage during and after a spike or the under-1007

lying biophysical causes of electrical activity (Gerstner1008

and Naud, 2009). We slightly modified it for compatibil-1009

ity with the BCPNN synapse model (Tully et al., 2014)1010

by integrating an intrinsic excitability current.1011

Development of the membrane potential Vm and the1012

adaptation current Iw is described by the following equa-1013

tions:1014

Cm
dV m

dt
=−gL(V m−EL)+gL∆τe

Vm−V t
∆τ −Iw+Iext+Isyn

(1)dIw

dt
=

−Iw

τIw
+bδ (t − tsp) (2)

Equation 1 describes the dynamics of the membrane1015

potential Vm including an exponential voltage dependent1016

activation term. A leak current is driven by the leak re-1017

versal potential EL through the conductance gL over the1018

neural surface with a capacity Cm. Additionally, Vt is the1019

spiking threshold, and ∆ T shapes the spike slope factor.1020

After spike generation, membrane potential is reset to Vr.1021

Spike emission upregulates the adaptation current by b,1022

which recovers with time constant τIw (Table S1). We1023

neglect subthreshold adaptation, which is part of some1024

AdEx models.1025

Besides a specific external input current Iext , model1026

neurons receive synaptic currents Isyn j from conductance1027

based glutamatergic and GABA-ergic synapses. Gluta-1028

matergic synapses feature both AMPA/NMDA receptor1029

gated channels with fast and slow conductance decay dy-1030

namic, respectively. Current contributions for synapses1031

are described as follows:1032

Isyn j =∑
syn

∑
i

gsyn
i j (t)(V m−Esyn

i j )=

IAMPA
j (t)+ INMDA

j (t)+IGABA
j (t)

(3)

The glutamatergic synapses are also subject to synap- 1033

tic depression and augmentation with a decay factor τD 1034

and τA, respectively (Table S1), following the Tsodyks- 1035

Markram formalism (Tsodyks and Markram, 1997). The 1036

utilization factor U , encodes variations in the release 1037

probability of available resources: 1038

dui j

dt
=−

ui j

τA
+U(1−ui j)∑

sp
δ (t − t i

sp − ti j) (4)

dxi j

dt
=

1− xi j

τD
−Uxi j ∑

sp
δ (t − t i

sp − ti j) (5)

4.2.2 Spike-based BCPNN plasticity 1039

We implement synaptic plasticity of AMPA and 1040

NMDA connection components using the BCPNN learn- 1041

ing rule (Lansner and Ekeberg, 1989; Wahlgren and 1042

Lansner, 2001; Tully et al., 2014). BCPNN is derived 1043

from Bayes rule, assuming a postsynaptic neuron em- 1044

ploys some form of probabilistic inference to decide 1045

whether to emit a spike or not. In general, it is considered 1046

more complex than the standard STDP learning rule (Ca- 1047

porale and Dan, 2008), and it reproduces the main fea- 1048

tures of STDP plasticity. As other spiking synaptic learn- 1049

ing rules, it is so far insufficiently validated against quan- 1050

titative experimental data on biological synaptic plastic- 1051

ity. 1052

The BCPNN synapse continuously updates three 1053

synaptic biophysically plausible local memory traces, Pi, 1054

Pj and Pi j, implemented as exponentially moving aver- 1055

ages (EMAs) of pre-, post- and co-activation, from which 1056

the Bayesian bias and weights are calculated. EMAs pri- 1057

oritize recent patterns, so that newly learned patterns 1058

gradually replace old memories. Specifically, learning 1059

implements a three-level procedure of exponential filters 1060

which defines Z, E and P traces. E traces, which enable 1061

delayed reward learning, are not used here because such 1062

conditions are not applicable to the modelled task. 1063

To begin with, BCPNN receives a binary sequence of 1064

pre- and postsynaptic spiking events (Si, S j) to calculate 1065

the traces Zi and Z j: 1066
τzi

dZi

dt
=

Si

f maxtspike
−Zi + ε

τzj

dZj

dt
=

Sj

f maxtspike
−Zj + ε

(6)
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fmax denotes the maximal neuronal spike rate, ε is the1067

lowest attainable probability estimate, tspike denotes the1068

spike duration while τzi = τzj are the pre and postsynaptic1069

time constants, respectively (5 ms for AMPA, and 100 ms1070

for NMDA components, Table S1).1071

P traces are then estimated from the Z traces as fol-1072

lows:1073 
τp

dPi

dt
= κ(Zi −Pi)

τp
dPj

dt
= κ(Zj −Pj)

τp
dPij

dt
= κ(ZiZj −Pij)

(7)

The parameter κ adjusts the learning rate, reflect-1074

ing the action of endogenous modulators of learning ef-1075

ficacy (i.e., activation of a D1R-like receptor). Setting1076

κ=0 freezes the network’s weights and biases, though1077

in our simulations the learning rate remains constant1078

(κ=1) during encoding (Sect. 2.1, 2.2). However, we trig-1079

ger a transient increase of plasticity in specific scenar-1080

ios to model preferential retention, assuming encoding of1081

salient events (Sect. 2.4 and Table S1).1082

Finally, Pi, Pj and Pi j are used to calculate intrinsic1083

excitability β j and synaptic weights wi j with a scaling1084

factor βgain and wsyn
gain respectively (Table S1):1085 wij = wsyn

gain log
Pij

PiPj

β j = β gain log(Pj)

(8)

4.2.3 Spike-based STDP learning rule1086

In our study, we examine the impact on semantiza-1087

tion when the STDP learning rule replaces BCPNN as-1088

sociative connectivity in the same episodic memory task.1089

Synapses under STDP are developed and modified by a1090

repeated pairing of pre- and postsynaptic spiking activ-1091

ity, while their relative time window shapes the degree of1092

modification (Ren et al., 2010). The amount of trace mod-1093

ification depends on the temporal difference (∆t ) between1094

the time point of the presynaptic action potential (ti) and1095

the occurrence of the postsynaptic spike (t j) incorporat-1096

ing a corresponding transmission delay from neuron i to1097

j (τd):1098

∆ t = t j − (ti + τd) (9)

After processing ∆ t, STDP updates weights accord-1099

ingly:1100

∆wi j(∆ t) =
{

λ (1−w)µ+e(−|∆ t|/τ+) if ∆ t ≥ τd

−λαwµ−e(−|∆ t|/τ−) if ∆ t < τd
(10)

Here, λ corresponds to the learning rate, α reflects1101

a possible asymmetry between the scale of potentiation1102

and depression, τ± control the width of the time win-1103

dow, while µ± ∈ {0,1} allows to choose between dif-1104

ferent versions of STDP (i.e., additive, multiplicative),1105

(Morrison et al., 2008). Synapses are potentiated if the1106

synaptic event precedes the postsynaptic spike and get1107

depressed if the synaptic event follows the postsynaptic 1108

spike (Van Rossum et al., 2000). 1109

Associative weights wi j are initialized to w0, and their 1110

maximum allowed values are constrained according to 1111

wmax to ensure that synaptic weights are always posi- 1112

tive and between [w0,wmax] (Table S3). The resulting as- 1113

sociative weight distributions are generally comparable 1114

in strength to the BCPNN model weights, but to make 1115

them match, we adjust wmax in conjunction with a reason- 1116

ably small learning rate λ . To obtain a stable competitive 1117

synaptic modification, the integral of ∆wi j must be nega- 1118

tive (Song et al., 2000). To ensure this, we choose α=1.2, 1119

which introduces an asymmetry between the scale of po- 1120

tentiation and depression along with a symmetric time 1121

window resulting in a ratio of ατ−/τ+>1.0 (Ren et al., 1122

2010). We set µ±=1 resulting in multiplicative STDP (in- 1123

between values lead to rules which have an intermediate 1124

dependence on the synaptic strength). Pyramidal cells re- 1125

ceive an unspecific background noise at 420 Hz during 1126

recall. 1127

4.2.4 Two-network architecture and connectivity 1128

The network model includes two reciprocally con- 1129

nected networks, the Item and Context networks. For 1130

simplicity, we assumed that item and context informa- 1131

tion engage different modalities and cortical areas and 1132

thus the corresponding networks are located at a substan- 1133

tial distance (Table S2). Both networks span a regular- 1134

spaced grid of 12 HCs (Table S2), each with a diameter 1135

of 500 µm (Mountcastle, 1997). Our model employs dis- 1136

tributed orthogonal representations with one active MC 1137

per HC, approximating the exceedingly sparse neocorti- 1138

cal activity patterns with marginal overlap. Each minicol- 1139

umn is composed of 30 pyramidal cells with shared selec- 1140

tivity, forming a functional (not strictly anatomical) col- 1141

umn. In total, the 24 HCs of the model contain 7200 ex- 1142

citatory and 480 inhibitory cells, significantly downsam- 1143

pling the number of MC per HC (∼100 MC per HC in 1144

biological cortex). The high degree of recurrent connec- 1145

tivity within MCs (Thomson et al., 2002; Yoshimura and 1146

Callaway, 2005) and between them link coactive MCs 1147

into larger cell assemblies (Eyal et al., 2018; Binzegger 1148

et al., 2009; Muir et al., 2011; Stettler et al., 2002). Long- 1149

range bidirectional inter-area connections (item-context 1150

bindings or associative connections) are plastic (shown 1151

in Fig. 1A only for MC1 in HC1 of the Context net- 1152

work), binding items and contextual information (Ran- 1153

ganath, 2010). Recurrent connectivity establishes 100 ac- 1154

tive plastic synapses on average onto each pyramidal cell 1155

from other pyramidals with the same selectivity, due to 1156

a sparse inter-area connectivity (cpPPA) and denser local 1157

connectivity (cpPP, cpPPL; connection probabilities are 1158

indicated in Fig. 1A only for MC1 in HC1 of the Con- 1159

text network). The model yields biologically plausible 1160

excitatory postsynaptic potentials (EPSPs) for connec- 1161

tions within HCs (0.45 ± 0.13 mV), measured at resting 1162

potential EL (Thomson et al., 2002). Densely recurrent 1163

non-specific monosynaptic feedback inhibition mediated 1164

by fast spiking inhibitory cells (Kirkcaldie, 2012) imple- 1165
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ments a local winner-take-all structure (Binzegger et al.,1166

2009) amongst the functional columns. Inhibitory post-1167

synaptic potentials (IPSPs) have an amplitude of -1.1601168

mV (±0.003) measured at -60 mV (Thomson et al.,1169

2002). These bidirectional connections between basket1170

and pyramidal cells within the local HCs are drawn with1171

a 70% connection probability. Notably, double bouquet1172

cells shown in Figure 1A, are not explicitly simulated,1173

but their effect is nonetheless expressed by the BCPNN1174

rule. A recent study based on the same basic model archi-1175

tecture demonstrated that learned mono-synaptic inhibi-1176

tion between competing attractors is functionally equiva-1177

lent to the disynaptic inhibition mediated by double bou-1178

quet and basket cells (Chrysanthidis et al., 2019). Param-1179

eters characterising other neural and synaptic properties1180

including BCPNN can be found in Table S1.1181

Figure 1B shows the weight distributions of em-1182

bedded distributed cell assemblies, representing different1183

memories stored in the Item and Context networks. At-1184

tractor projections can be further categorized into strong1185

local recurrent connectivity within HCs, and slightly1186

weaker long-range excitatory projections across HCs1187

(Fig. 1C).1188

4.2.5 Axonal conduction delays1189

Conduction delays (ti j) between a presynaptic neuron1190

i and a postsynaptic neuron j are calculated based on their1191

Euclidean distance, d, and a conduction velocity V (Eq.1192

11). Delays are randomly drawn from a normal distribu-1193

tion with a mean according to distance and conduction1194

velocity, with a relative standard deviation of 30% of the1195

mean. In addition, a minimal delay of 1.5 ms (tsyn
min, Ta-1196

ble S2) is added to reflect synaptic delays due to effects1197

that are not explicitly modelled, e.g. diffusion of neuro-1198

transmitters over the synaptic cleft, dendritic branching,1199

thickness of the cortical sheet and the spatial extent of1200

columns. Associative inter-area projections have a ten-1201

fold faster conduction speed than those within each net-1202

work, reflecting axonal myelination.1203

ti j =
d
V
+ tsyn

min, ti j ∼ N (ti j, .30 ti j) (11)

4.2.6 Stimulation Protocol1204

Noise input to pyramidal cells and fast spiking in-1205

hibitory basket cells is generated by two independent1206

Poisson generators with conductances of opposing signs.1207

Pyramidal cells coding for specific items and contexts are1208

stimulated with an additional specific excitation during1209

encoding and cued recall (all parameters in Table S2).1210

Item-context association encoding is preceded by a brief1211

period of background noise excitation to avoid initializa-1212

tion transients.1213

4.2.7 Attractor activation detector 1214

We detect and report cue-based activation of items or 1215

contexts by utilizing an attractor activation detection al- 1216

gorithm based on EMAs of spiking activity. Pattern-wise 1217

EMAs are calculated using Equation 12, where the delta 1218

function δ denotes the spike events of a pattern-selective 1219

neural population of npop=30 pyramidal cells. The filter 1220

time constant τ=40 ms is much larger than the sampling 1221

time interval ∆T =1 ms. 1222

e0 = 0, et =
∆T
τ

et−∆T +δt
1

τnpop
(12)

Pattern activations are detected by a simple threshold 1223

(rth) at about tenfold the baseline activity with a small 1224

caveat: To avoid premature offset detection due to syn- 1225

chrony in fast spiking activity, we only count activations 1226

as terminated if they do not cross the threshold again in 1227

the next 40 ms. Despite the complications of nested os- 1228

cillations, this method is highly robust due to the explo- 1229

sive dynamics of recurrent spiking activity for activated 1230

attractors in the network. Any attractor activation that 1231

crosses this threshold for at least 40 ms is considered a 1232

successful recall. 1233
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5 SUPPLEMENTARY MATERIAL1234

 

 

Fig. S1 Excitatory postsynaptic potentials (EPSPs) for the bind-
ing between Item and Context networks. EPSPs were recorded (at
resting potential EL) after item-context association encoding phase.
We stimulate individually all the neurons in HC1 of an item which
forms one, two, three or four associations and record the postsynap-
tic potential onto their associated context neurons. Means of the
EPSP distributions show significant statistical difference (p<0.05
for one vs two associations; p<0.001 for two vs three and three vs
four associations, Mann-Whitney, N=300).

 

 

Fig. S2 Distributions of the AMPA component weights between
Item and Context networks. Slower NMDA receptor weights follow
a similar pattern of weakening for items which participate in mul-
tiple associations. Means of the weight distributions of one, two,
three, and four associations show significant statistical difference
(p<0.001, Mann-Whitney, N=2000).

 

 

Fig. S3 Spike raster of pyramidal cells in HC1 of both the Item
and Context networks in the BCPNN model. Items and their corre-
sponding context representations are simultaneously cued in their
respective networks. The testing phase occurs 1 s after the encoding
and triggers activations via partial cues of contexts (50 ms cues).
Repetition of items across various contexts leads to progressive
item-context decoupling. Item-4 is repeated across four different
contexts, and while its associated context gets activated when cued
(context-B), item-4 is not retrieved.

 

 

Fig. S4 Weight distribution of AMPA component weights of the
Item network including synaptic augmentation. The multiplicative
effect of synaptic augmentation on the consolidated Items features
stronger combined synaptic strength for items with higher context
variability. Slower NMDA receptor weights follow a similar pat-
tern. Means of the weight distributions of one, two, three, and four
associations show significant statistical difference (p<0.001, Mann-
Whitney, N=2000).

 

 

Fig. S5 Cued recall under STDP after removing synaptic augmen-
tation. Average item-cued recall performance in the Context net-
work (20 trials). To compensate for the removal of augmentation,
we increased the stimulation rates and the synaptic gain leading to
comparable elicited spiking activity. Error bars represent standard
deviations of Bernoulli distributions.

 

 

Fig. S6 Cued recall under STDP including intrinsic plasticity. A)
Average item-cued recall performance in the Context network (20
trials). B) Average item-cued recall performance in the Context
network. Episodic context retrieval is enhanced for high context
variability predominantly because of intrinsic excitability dynam-
ics and synaptic augmentation. We observe an opposite trend to the
decontextualization effect seen in Figure 3C. Error bars represent
standard deviations of Bernoulli distributions.
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Table S1 Model and BCPNN parameters

Parameter Symbol Value Parameter Symbol Value Parameter Symbol Value

Adaptation current b 86 pA Utilization factor U 0.2 BCPNN AMPA gain wAMPA
gain 0.76 nS

Adaptation decay time constant τIw 280 ms Augmentation decay time constant τA 5 s BCPNN NMDA gain wNMDA
gain 0.07 nS

Membrane capacitance Cm 280 pF Depression decay time constant τD 280 ms BCPNN bias current gain β gain 40 pA

Leak reversal potential EL -70.6 mV AMPA synaptic time constant τAMPA 5 ms BCPNN lowest spiking rate f min 0.2 Hz

Leak conductance gL 14 nS NMDA synaptic time constant τNMDA 100 ms BCPNN highest spiking rate f max 25 Hz

Upstroke slope factor ∆ T 3 mV GABA synaptic time constant τGABA 5 ms BCPNN lowest probability ε 0.01

Spike threshold Vt -55 mV AMPA reversal potential EAMPA 0 mV BCPNN Spike event duration tspike 1 ms

Spike reset potential Vr -60 mV NMDA reversal potential ENMDA 0 mV P trace time constant τp 15 s

Refractory period τ ref 5 ms GABA reversal potential EGABA -75 mV Modulated plasticity κboost 2

Regular plasticity κnormal 1

Table S2 Network layout, connectivity and stimulation protocol

Layout Symbol Value Connectivity Symbol Value Stimulation Symbol Value

Cortical patch size Cps 2.0 x 1.5 mm Axonal Conduction Speed V 0.2 m/s Background noise PYR (encoding) rPY R
bg−encoding 650 Hz

Simulated HCs nHC 12 Myelinated axonal speed Vmyel 2 m/s Background noise PYR (recall) rPY R
bg−recall 450 Hz

Simulated MCs nMC 120 Minimal synaptic delay tsyn
min 1.5 ms Background noise BA rBA

bg 75 Hz

Simulated MCs per HC nHC
MC 10 Hypercolumn diameter dHC 0.5 mm Background conductance gPY R,BA

bg ± 1.5 nS

No. of items nIT EM 4 (from 10) Distance between networks dIT EM
CONT EXT 10 mm Stimulation duration tstim 250 ms

No. of contexts nCONT EXT 10 (from 10) PYR-PYR recurrent cp cpPP 0.2 Stimulation rate rstim 500 Hz

Layer 2/3 pyramidal per MC nPY R−L23
MC 30 PYR-PYR long-range cp cpPPL 0.25 Cue stimulation length tcue 50 ms

Basket cells per MC nBasket
MC 2 PYR-PYR associative cp cpPPA 0.02 Cue stimulation rate rcue 400 Hz

MC grid size (Item + Context) GTOTAL
MC 24 x 10 PYR-BA cp, BA-PYR cp cpPB, cpBA 0.7 Stimulation and cue conductance gstim +1.5 nS

PYR-BA cc gPB 3 nS Interstimulus interval Tstim 500 ms

BA-PYR cc gBP -7 nS Attractor detection threshold rth 10 Hz

PYR, Pyramidal cell; BA, Basket cell.
cp, connection probability; cc, connection conductance.

Table S3 STDP synaptic model parameters

Parameter Symbol Value

Weight initialization w0 0 nS

AMPA maximum allowed weight wAMPA
max 13.5 nS

NMDA maximum allowed weight wNMDA
max 3.5 nS

Learning rate λ 0.01

Asymmetry parameter α 1.2

Weight dependence exponent, potentiation µ+ 1

Weight dependence exponent, depression µ− 1

Symmetric time window τ± 20 ms

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.07.18.452769doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.18.452769
http://creativecommons.org/licenses/by-nc-nd/4.0/

	INTRODUCTION
	RESULTS
	DISCUSSION
	STARMETHODS
	SUPPLEMENTARY MATERIAL

