

Traces of semantization - from episodic to semantic memory in a spiking cortical network model

Nikolaos Chrysanthidis¹ · Florian Fiebig¹ · Anders Lansner^{1,2} · Paweł Herman³

1 Abstract Episodic memory is the recollection of past personal experiences associated with particular times and places. This kind of memory is commonly subject to loss of contextual information or "semantization", which gradually decouples the encoded memory items from their associated contexts while transforming them into semantic or gist-like representations. Novel extensions to the classical Remember/Know behavioral paradigm attribute the loss of episodicity to multiple exposures of an item in different contexts. Despite recent advancements explaining semantization at a behavioral level, the underlying neural mechanisms remain poorly understood. In this study, we suggest and evaluate a novel hypothesis proposing that Bayesian-Hebbian synaptic plasticity mechanisms might cause semantization of episodic memory. We implement a cortical spiking neural network model with a Bayesian-Hebbian learning rule called Bayesian Confidence Propagation Neural Network (BCPNN), which captures the semantization phenomenon and offers a mechanistic explanation for it. Encoding items across multiple contexts leads to item-context decoupling akin to semantization. We compare BCPNN plasticity with the more commonly used spike-timing dependent plasticity (STDP) learning rule in the same episodic memory task. Unlike BCPNN, STDP does not explain the decontextualization process. We also examine how selective plasticity modulation of isolated salient events may enhance preferential retention and re-

sistance to semantization. Our model reproduces important features of episodicity on behavioral timescales under various biological constraints whilst also offering a novel neural and synaptic explanation for semantization, thereby casting new light on the interplay between episodic and semantic memory processes.

Keywords Episodic memory · Semantic memory · Semantization · Decontextualization · Bayesian-Hebbian plasticity · BCPNN · STDP · Spiking cortical memory model

1 INTRODUCTION

Remembering single episodes is a fundamental attribute of human cognition. A memory, such as with whom you celebrated your last birthday, is more vividly recreated when we can recall contextual information, such as the location of the event (Eichenbaum et al., 2007; Gillund, 2012). The term "episodic memory" was originally introduced by Tulving (1972) to designate memories of personal experiences. Retrieval from episodic memory includes a feeling of mental time travel realized by "I remember". In contrast, semantic memory retrieval encapsulates what is best described by "I know" (Tulving, 1985; Umanath and Coane, 2020). Unlike episodic memories, semantic memories refer to general knowledge about words, items and concepts, lacking spatiotemporal source information, possibly resulting from the accumulation of episodic memories (Schendan, 2012; Gillund, 2012).

Initially, Tulving (1972) proposed that episodic and semantic memory are distinct systems and compete in retrieval. Recent studies suggest, however, that the division between episodic and semantic memory is rather vague (McCloskey and Santee, 1981; Renault et al., 2019), as neural activity reveals interaction between episodic and semantic systems during retrieval (Weidemann et al., 2019). According to Squire and Zola (1998) retrieval of semantic memory depends on the acquisition of the episode in which such information was experienced. Apparently, there is a clear interdependence between the two systems as the content of episodic memory invariably involves semantic representations (Martin-Ordas

Nikolaos Chrysanthidis
E-mail: nchr@kth.se

Florian Fiebig
E-mail: fiebig@kth.se

Anders Lansner
E-mail: ala@kth.se

Paweł Herman
E-mail: paherman@kth.se

¹ School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

² Department of Mathematics, Stockholm University, 10691 Stockholm, Sweden

³ School of Electrical Engineering and Computer Science, and Digital Futures, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

70 et al., 2014), and consequently semantic similarity aids
71 episodic retrieval (Howard and Kahana, 2002).

72 Episodic memory traces are susceptible to transformation
73 and loss of information (Tulving, 1972), and this loss of episodicity can be attributed to semantization,
74 which typically takes the form of a decontextualization
75 process (Duff et al., 2020; Habermas et al., 2013;
76 Viard et al., 2007). Meeter and Murre (2004) highlight
77 and review the dynamical nature of memories and neural
78 interactions through the scope of Transformation theory,
79 which suggests that all memories start as episodic
80 representations that gradually transform into semantic
81 or gist-like representations (Winocur and Moscovitch,
82 2011; Petrican et al., 2010). Decontextualization can occur
83 over time as studies suggest that older adults report
84 fewer episodic elements than younger adults (Petrican
85 et al., 2010). Yet, could this item-context decoupling rely
86 on accumulation of episodicity over multiple exposures
87 of stimuli in various contexts over time? Baddeley (1988)
88 hypothesized that semantic memory might represent the
89 accumulated residue of multiple learning episodes, con-
90 sisting of information which has been semanticized and
91 detached from the associated episodic contextual detail.
92 In fact, simple language vocabulary learning implies
93 that learners encode words in several different contexts,
94 which leads to semantization and definition-like knowl-
95 edge of the studied word (Beheydt, 1987; Bolger et al.,
96 2008).

97 Retrieval from episodic memory has been studied
98 extensively through the lens of the classical Remember/Know
99 (R/K) paradigm, in which participants are
100 required to provide a Know or Remember response
101 to stimulus-cues, judging whether they are able to re-
102 call item-only information or additional details about
103 episodic context, respectively (van den Bos et al., 2020).
104 Extensions of the classical R/K behavioral experiment
105 demonstrate that item-context decoupling can occur
106 rapidly (Opitz, 2010). In these experiments, items are
107 presented during an encoding phase either in a unique
108 context, or across several contexts. Low context variabil-
109 ity leads to greater recollection, whereas context overload
110 results in decontextualization and a higher fraction of
111 correctly classified Know responses (Opitz, 2010; Smith
112 and Manzano, 2010; Smith and Handy, 2014). In the cur-
113 rent study, we offer and evaluate a Bayesian-hypothesis
114 about synaptic and network mechanisms underlying the
115 memory semantization (item-context decoupling).

116 In earlier works, we developed and investigated a
117 modular spiking neural network model of cortical asso-
118 ciative memory with respect to memory recall, includ-
119 ing oscillatory dynamics in multiple frequency bands,
120 and compared it to experimental data (Lundqvist et al.,
121 2010, 2011; Herman et al., 2013). Recently we demon-
122 strated that the same model, enhanced with a Bayesian-
123 Hebbian learning rule (Bayesian Confidence Propagation
124 Neural Network, BCPNN) to model synaptic and in-
125 trinsic plasticity, was able to quantitatively reproduce key
126 behavioral observations from human word-list learning
127 experiments (Fiebig and Lansner, 2017), such as serial
128 order effects during immediate recall. This model per-

129 formed one-shot memory encoding and was further ex-
130 panded into a two-area cortical model used to explore
131 a novel indexing theory of working memory, based on
132 fast Hebbian synaptic plasticity (Fiebig et al., 2020). In
133 this context, it was suggested that the underlying naive
134 Bayes view of association would make the associative
135 binding between two items weaker if one of them is later
136 associated with additional items. Thus, if we conceive of
137 episodicity as an associative binding between item and
138 context, the BCPNN synaptic plasticity update rule might
139 provide a mechanism for semantization. In this work, we
140 test this hypothesis and examine to what extent the re-
141 sults match available behavioral data on semantization.
142 We further compare those outcomes of dynamic learn-
143 ing with a model featuring the more well-known spike-
144 timing dependent plasticity (STDP) learning rule. We
145 also demonstrate how selective plasticity modulations of
146 one-shot learning (tentatively modelling effects of atten-
147 tion, emotional salience, valence, surprise, etc. on plas-
148 ticity) may enhance episodicity and counteract semanti-
149 zation.

150 To our knowledge, there are no previous computa-
151 tional models of item-context decoupling akin to seman-
152 tization. Overall, there are rather few computational mod-
153 els of episodic memory (Norman and O'Reilly, 2003), and those that exist are typically abstract, aimed at pre-
154 dicting behavioral outcomes without a specific focus on
155 underlying neural and synaptic mechanisms (Greve et al.,
156 2010; Wixted, 2007). Our model bridges these perspec-
157 tives and explains semantization based on synaptic plas-
158 ticity, while it also reproduces important episodic mem-
159 ory phenomena on behavioral time scales under con-
160 strained network connectivity with plausible postsynaptic
161 potentials, firing rates, and other biological parameters.

2 RESULTS

2.1 Semantization of episodic representations in the BCPNN model

164 The network model used here features two reciprocally
165 connected networks, the so-called Item and Context net-
166 works. The architecture of each network follows our pre-
167 vious spiking implementations of attractor memory net-
168 works (Lansner, 2009; Tully et al., 2014, 2016; Lundqvist
169 et al., 2011; Fiebig and Lansner, 2017; Chrysanthidis
170 et al., 2019; Fiebig et al., 2020), and is best understood
171 as a subsampled cortical layer 2/3 patch with nested hy-
172 percolumns (HCs) and minicolumns (MCs; Fig. 1A, see
173 **STAR METHODS** for details). In our model, items are
174 embedded in the Item network, and context informa-
175 tion in the Context network as internal long-term mem-
176 ory representations, derived from prior Hebbian learning
177 (Fig. 1B,C, **STAR METHODS**). Our episodic memory
178 task is designed to follow a seminal experimental study
179 by Opitz (2010). We stimulate some items in a single con-
180 text and others in a few different contexts establishing
181 multiple associations (Fig. 2). Stimulus duration during
182

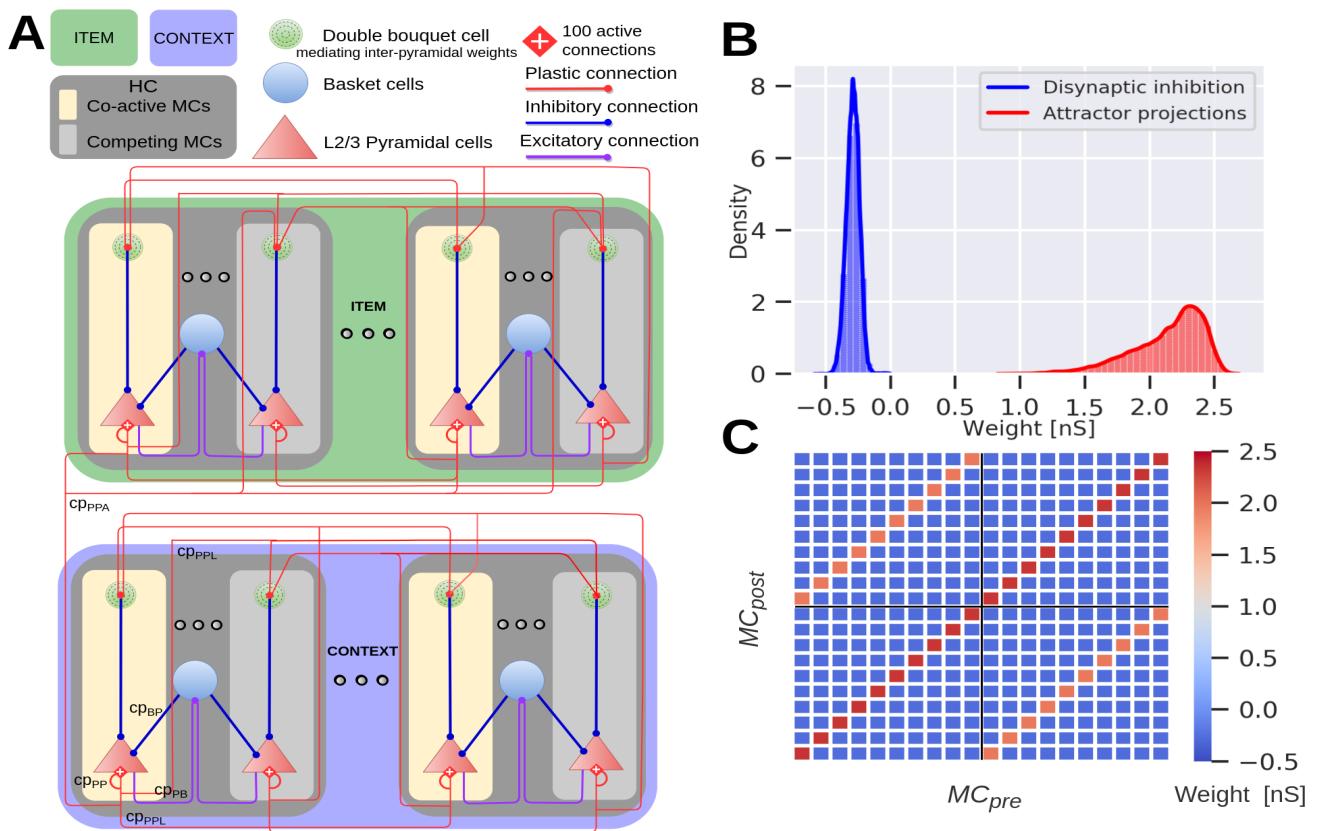


Fig. 1 Network architecture and connectivity of the Item (green) and Context (blue) networks. **A**) The model represents a subsampled modular cortical layer 2/3 patch consisting of minicolumns (MCs) nested in hypercolumns (HCs). Both networks contain 12 HCs, each comprising 10 MCs. We preload abstract long-term memories of item and context representations into the respective network, in the form of distributed cell assemblies with weights establishing corresponding attractors. Associative plastic connections bind items with contexts. The network features lateral inhibition via basket cells (purple and blue lines) resulting in a soft winner-take-all dynamics. Competition between attractor memories arises from this local feedback inhibition together with disynaptic inhibition between HCAs. **B**) Weight distribution of plastic synapses targeting pyramidal cells. The attractor projection distribution is positive with a mean of 2.1, and the disynaptic inhibition is negative with a mean of -0.3 (we show the fast AMPA weight components here, but the simulation also includes slower NMDA weight components). **C**) Weight matrix between attractors and competing MCs across two sampled HCAs. The matrix displays the mean of the weight distribution between a presynaptic (MC_{pre}) and postsynaptic minicolumn (MC_{post}), within the same or different HC (black cross separates grid into blocks of HCAs, only two of which are shown here). Recurrent attractor connections within the same HC are stronger (main diagonal, dark red) compared to attractor connections between HCAs (off-diagonals, orange) while inhibition is overall balanced between patterns (blue). Negative inter-pyramidal weights amounts to disynaptic inhibition mediated by double bouquet cells.

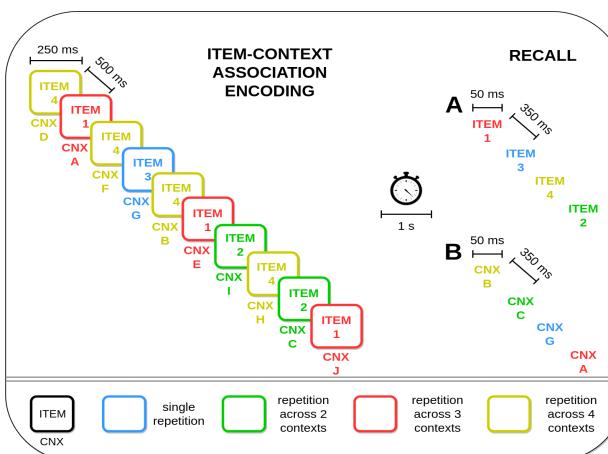


Fig. 2 Trial structure of the two simulated variants of the episodic memory task. Items are first associated with one or several contexts (CNX) during the encoding phase in 250 ms cue episodes, with an interstimulus interval of 500 ms. The colors of the co-activated contexts are consistent with their corresponding associated item. The recall phase occurs with a delay of 1 s and involves different trials with either brief cues (50 ms) of the **A**) items, or **B**) contexts presented during the item-context association encoding phase.

encoding is $t_{stim}=250$ ms with a $T_{stim}=500$ ms interstimulus interval, and a test phase occurs after a 1 s delay period, which contains brief $t_{cue}=50$ ms cues of previously learned items (Table S2).

Figure 3A illustrates an item-context pair, established by an associative binding through plastic bidirectional BCPNN projections (dashed lines). Item and context attractors (solid red lines) are embedded in each network and remain fixed throughout the simulation, representing well-consolidated long-term memory. We show an exemplary spike raster of pyramidal neurons in HC1 of both the Item and Context networks reflecting a trial simulation (Fig. 3B). Herein, item-3 (blue) establishes a single association, whilst item-4 (yellow) is encoded in four different contexts (Fig. 2A, 3B). We observe evidence of item-context decoupling as the yellow item (but not the blue) is successfully recognized when cued but without any corresponding accompanying activation in the Context network. Successful and complete item recognition without any contextual information retrieval accounts for a Know response, as opposed to Remember judgments, which are accompanied by successful

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

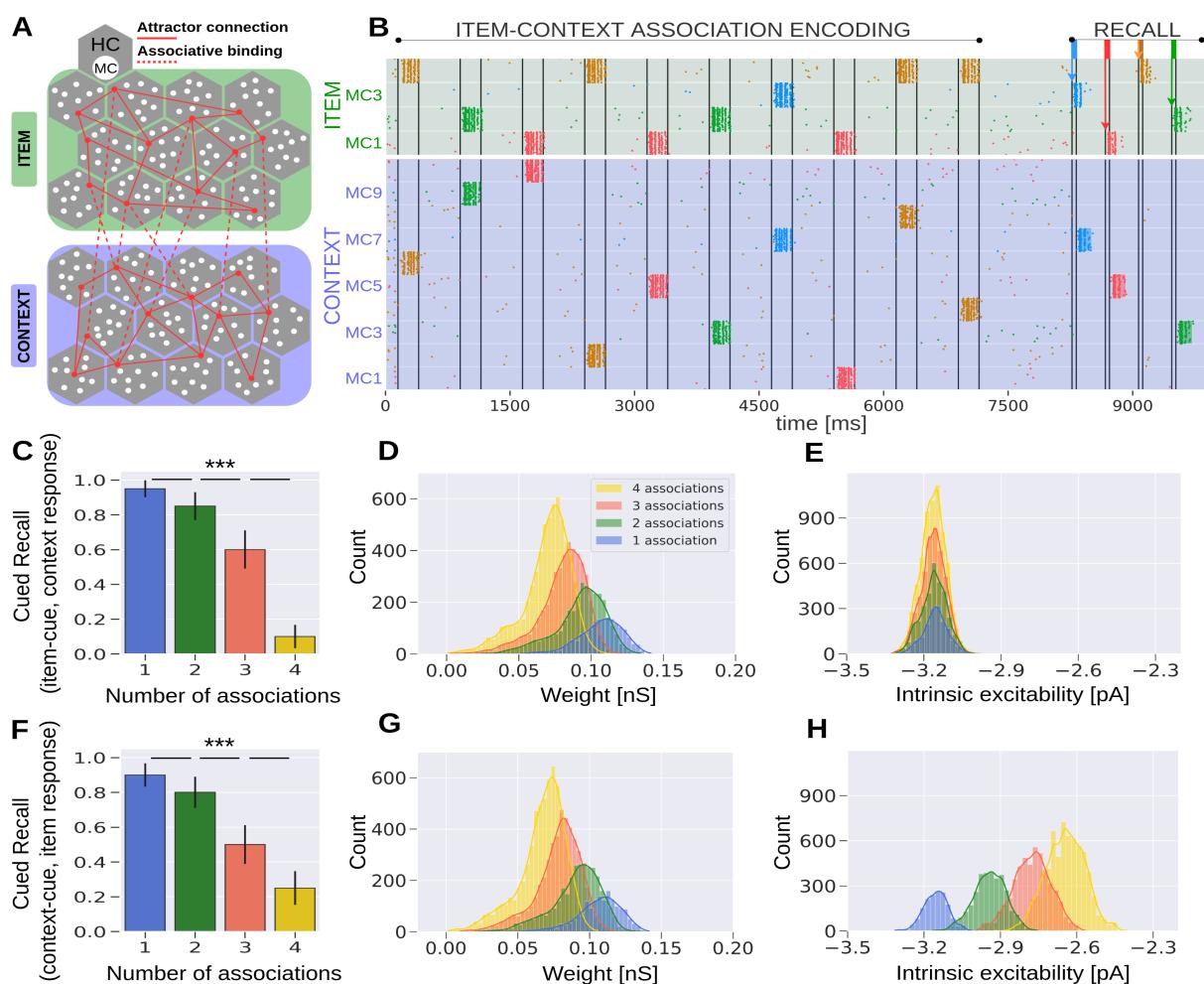


Fig. 3 Semantization of episodic memory traces. **A)** Schematic of the Item (green) and Context (blue) networks. Attractor projections are long-range connections across HCs in the same network and learned associative binding are connections between networks. **B)** Spike raster of pyramidal neurons in HC1 of both the Item and Context networks. Items and their corresponding context representations are simultaneously cued in their respective networks (cf. Fig. 2A). Each item is drawn with a unique color, while contexts inherit their coactivated item's color in the raster (i.e., the yellow pattern in the Item network is repeated over four different contexts, forming four separate associations marked with the same color). The testing phase occurs 1 s after the encoding. Brief 50 ms cues of already studied items trigger their activation. Following item activation, we detect evoked attractor activation in the Context network. **C)** Average cued recall performance in the Context network (20 trials). The bar diagram reveals progressive loss of episodic context information (i.e., semantization) over the number of context associations made by individual cued items (cf. Fig. 2A). **D)** Distribution of plastic connection weights between the Item and Context networks (NMDA component shown here). Weights are noticeably weaker for items which participate in multiple associations. The distributions of synaptic weights exhibit a broader range for the items with multiple context associations, as the sample size is larger. **E)** The distribution of intrinsic excitability currents of pyramidal cells coding for specific context representations. The intrinsic excitability distributions feature similar means because each context is activated exactly once, regardless of whether the associated item forms multiple associations or not. **F)** Average cued recall performance in the Item network (20 trials). Decontextualization over the number of associations is also observed when we briefly cue episodic contexts instead (cf. Fig. 2B, S3). **G)** Distribution of strength of plastic connections from the contexts to their associated items. Analogously to **D**, synapses weaken once an item is encoded in another context. **H)** Intrinsic plasticity distribution of cells in the Item network. Means of the intrinsic excitability distributions are higher for pyramidal cells coding for repeatedly activated items. ***p<0.001 (Mann-Whitney, N=20 in C, F); Error bars in C, F represent standard deviations of Bernoulli distributions; Means of distributions of one, two, three, and four associations in D, G, H show significant statistical difference (p<0.001, Mann-Whitney, N=2000).

207 context recall. Cue-based activations are reported using
208 a detection algorithm (see STAR METHODS). Figure
209 3C demonstrates the performance of contextual
210 retrieval when items serve as cues. To elucidate this
211 observed progressive loss of episodicity, we sample and
212 analyze the learned weight distributions of item-context
213 binding recorded after the association encoding period
214 (Fig. 3D). The item-context weight distribution in the
215 one-association case has a significantly higher mean than
216 in the two-, three-, or four-association case ($p<0.001$,
217 Mann-Whitney, $N=2000$). This progressive weakening of
218 weights leads to significantly lower mean EPSP amplitudes
219 for the associative projections ($p<0.05$ for one vs

220 two associations; $p<0.001$ for two vs three and three vs
221 four associations, Mann-Whitney, $N=300$, Fig. S1). So,
222 we attribute the loss of episodicity to a statistically signifi-
223 cant weakening of means of the associative weight dis-
224 tributions with the increasing number of associated con-
225 texts. The associative weight distributions shown here re-
226 fer to the NMDA component, while the weight distribu-
227 tions of the faster AMPA receptor connections display a
228 similar trend (Fig. S2). The gradual trace modification we
229 observe relies on the nature of Bayesian learning, which
230 normalizes and updates weights over estimated presynap-
231 tic (Bayesian-prior) as well as postsynaptic (Bayesian-
232 posterior) spiking activity (see Sect. 2.3 for details).

233 Our simulation results are in line with related behav-
234 ioral studies (Opitz, 2010; Smith and Manzano, 2010;
235 Smith and Handy, 2014), which also reported item-
236 context decoupling as the items were presented across
237 multiple contexts. In agreement with our study, Opitz
238 (2010) concluded that repetition of an item across different
239 contexts (similar to high context variability) leads to
240 item-context decoupling. Furthermore, Smith and Man-
241 zano (2010) demonstrated in an episodic context variabil-
242 ity task configuration, that episodicity deteriorates with
243 context overload (number of words per context). Mean
244 recall drops from ~ 0.65 (one word per context) to 0.50
245 (three words per context), reaching ~ 0.33 in the most
246 overloaded scenario (fifteen words per context).

247 In Figure 3E we show the distribution of intrinsic ex-
248 citability over units representing different contexts. Pyra-
249 midal neurons in the Context network have a similar in-
250 trinsic excitability, regardless of their selectivity because
251 all the various contexts are encoded exactly once.

252 Next, analogously to the previous analysis, we show
253 that item-context decoupling emerges also when we
254 briefly cue contexts rather than items during recall testing
255 (Fig. 2B, Fig. S3). In agreement with experimental data
256 (Smith and Manzano, 2010; Smith and Handy, 2014) we
257 obtain evidence of semantization as items learned across
258 several discrete contexts are hardly retrieved when one of
259 their associated contexts serves as a cue (Fig. 3F). We fur-
260 ther sample and present the underlying associative weight
261 distribution, between the Context and the Item networks
262 (Fig. 3G). The distributions again reflect the semantiza-
263 tion effect in a significant weakening of the correspond-
264 ing weights. In other words, an assembly of pyramidal
265 neurons representing items encoded across multiple con-
266 texts receive weaker projections from the Context net-
267 work. Beyond four or more associations, the item-context
268 binding becomes so weak that it fails to deliver sufficient
269 excitatory current to trigger associated representations in
270 the Item network. At the same time, intrinsic excitability
271 of item neurons increases with the number of associated
272 contexts corresponding to how much these neurons were
273 active during the encoding phase [Fig. 3H; cf. Egorov
274 et al. (2002), Tully et al. (2014)].

275 2.2 Item-context interactions under STDP

276 In this section, we contrast the results obtained
277 with the BCPNN synaptic learning rule with those de-
278 riving from the more commonly used STDP learning
279 rule in the same episodic memory task (Fig. 2, see
280 STAR+METHODS). The modular network architecture
281 as well as neural properties and embedded memory pat-
282 terns remain identical, but associative projections be-
283 tween networks are now implemented using a standard
284 STDP synaptic learning rule (Morrison et al., 2008). The
285 parameters of the STDP model are summarized in Table
286 S3.

287 Figure 4A shows an exemplary spike raster of pyra-
288 midal cells in HC1 of both the Item and the Context net-

289 works, based on the first variant of the episodic memory
290 task described in Figure 2A. As earlier, items are encoded
291 in a single or in multiple different contexts and they are
292 briefly cued later during recall. A successful item acti-
293 vation may lead to a corresponding activation of its as-
294 sociated information in the Context network. We detect
295 these activations as before (see STAR+METHODS), and
296 report the cue-based recall score over the number of as-
297 sociations (Fig. 4B).

298 Unlike the BCPNN network, we observe no evi-
299 dence of semantization for high context variability. In-
300 stead, recollection is noticeably enhanced with an in-
301 creasing number of associations, which is in fact the op-
302 posite of what would be needed to explain item-context
303 decoupling. STDP generates similarly strong associative
304 binding regardless of context variability (Fig. 4C). The
305 enhanced recollection in high context variability cases
306 stems from the multiplicative effect of synaptic augmen-
307 tation in the Tsodyks-Makram model on the Hebbian
308 attractor weights. Items stimulated multiple times (e.g.,
309 four times) have a higher likelihood of being encoded
310 near the end of the task, leading to more remaining aug-
311 mentation during testing, thus, effectively boosting cued
312 recall (see Fig. S4). This effect of the enhanced recall di-
313 minishes after removing synaptic augmentation from the
314 model (Fig. S5). As far as the context-cued variant of the
315 task is concerned, there are also no signs of item-context
316 decoupling for high context variability (Fig. 4D). The
317 associative projections between Context and Item net-
318 works again have distributions with comparable means
319 over context variability (Fig. 4E). An inclusion of in-
320 trinsic plasticity dynamics in the model does not explain de-
321 contextualization either (see Fig. S6). Overall, decon-
322 textualization is not evident in either variant of the episodic
323 memory task under the STDP learning rule.

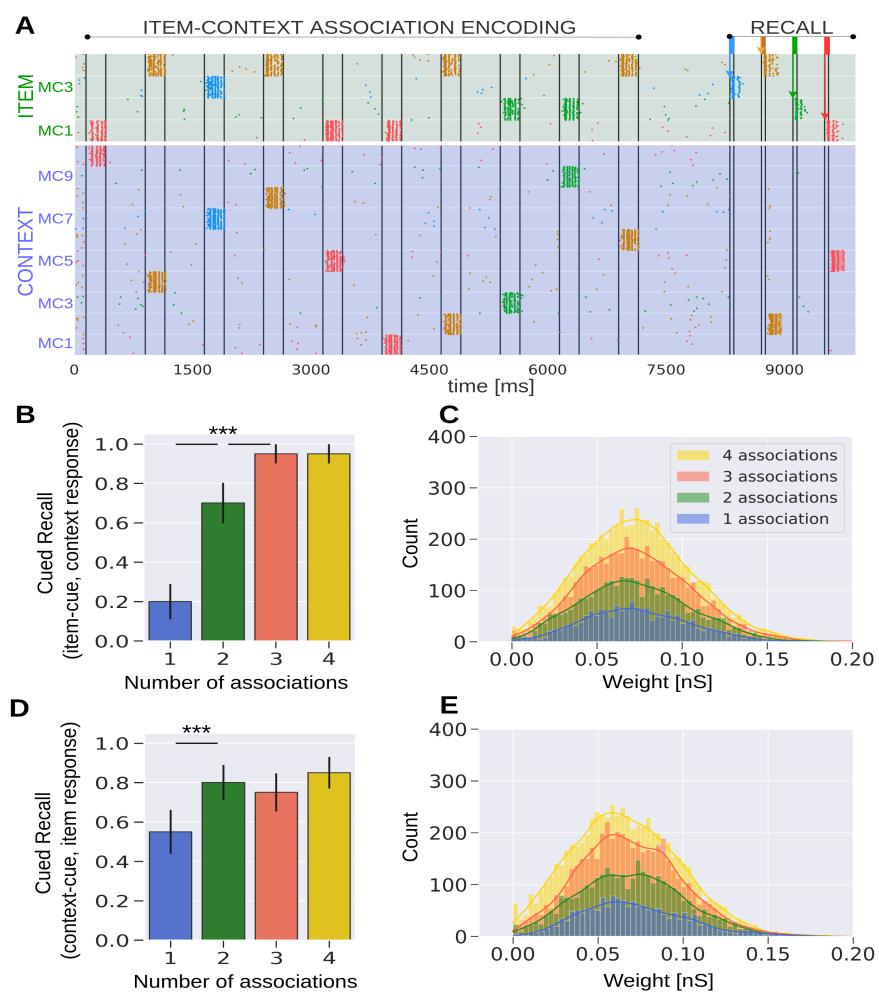


Fig. 4 Network model where associative projections are implemented using standard STDP synaptic plasticity. **A)** Spike raster of pyramidal neurons in HC1 of both the Item and Context networks (20 trials). **B)** Average item-cued recall performance in the Context network (20 trials). Episodic context retrieval is preserved even for high context variability (as opposed to BCPNN, cf. Fig. 3C). **C)** Distribution of NMDA receptor mediated synaptic weights between the item and context neural assemblies following associative binding. The distributions of item-context weights have comparable means at ~ 0.065 nS regardless of how many context associations a given item forms. Bins merely display a higher count for the four-association case as the total count of associative weights is more extensive compared to items with fewer associations. **D)** Average cued recall performance in the Item network when episodic contexts are cued (20 trials). **E)** Distribution of NMDA component weights between associated context and item assemblies. *** $p < 0.001$ (Mann-Whitney, $N=20$ in **B, D**); Error bars in **B, D** represent standard deviations of Bernoulli distributions.

324 2.3 BCPNN and STDP learning rule in a microcircuit 325 model

326 To better elucidate the emergent synaptic changes
327 of the BCPNN and STDP model, we also apply these
328 learning rules in a highly reduced microcircuit of spiking
329 neurons. To this end, we now track the synaptic weight
330 changes continuously.

331 First, we apply the BCPNN learning rule to the mi-
332 crocircuit model. We consider two separate item neu-
333 rons (ID=1 and 2), which form two or three associa-
334 tions with context neurons (ID=3,4, or 5,6,7), respec-
335 tively (Fig. 5A). We display the synaptic strength de-
336 velopment of the synapse between item neuron-1 and
337 context neuron-3 (two associations, green), as well as
338 the synapse between item neuron-2 and context neuron-5
339 (three associations, red) over the course of training these
340 associations via targeted stimulation. BCPNN synapses
341 get strengthened when the item-context pairs are sim-
342 ultaneously active and weaken when the item in question
343 is activated with another context. Therefore, synapses of
344 the item neuron that is encoded in three different con-

345 texts converge on weaker weights (Fig. 5A, 12 s), than
346 those of the item neuron with two associated contexts.
347 Weight modifications in the microcircuit model reflect
348 the synaptic alterations observed in the large-scale net-
349 work. BCPNN weights are shaped by traces of activation
350 and co-activation (Eq. 7.8, STARMETHODS), which
351 also get updated during the activation of an item within
352 another context. For example, the item neuron-1 and con-
353 text neuron-3 are not stimulated together between 6 s and
354 8 s, but neuron-1 and context neuron-4 are. Thus, the
355 traces of the item activation (P_i) increase, while the ones
356 linked to context-3 (P_j) decay with a time constant of 15
357 s (Table S1). Since the item and context neuron (ID=1, 3)
358 are not stimulated together, their coactivation traces (P_{ij})
359 decay between 6 s and 8 s. Overall, this leads to a weak-
360 ening of the weight and hence, to a gradual decoupling
361 (Eq. 8, STARMETHODS).

362 In the same manner, we keep track of weight change
363 in a microcircuit with the STDP learning rule (Fig. 5B).
364 Unlike the microcircuit with BCPNN presented in Figure
365 5A, the STDP weights corresponding to the associations
366 made by both item neurons converge to similar values,

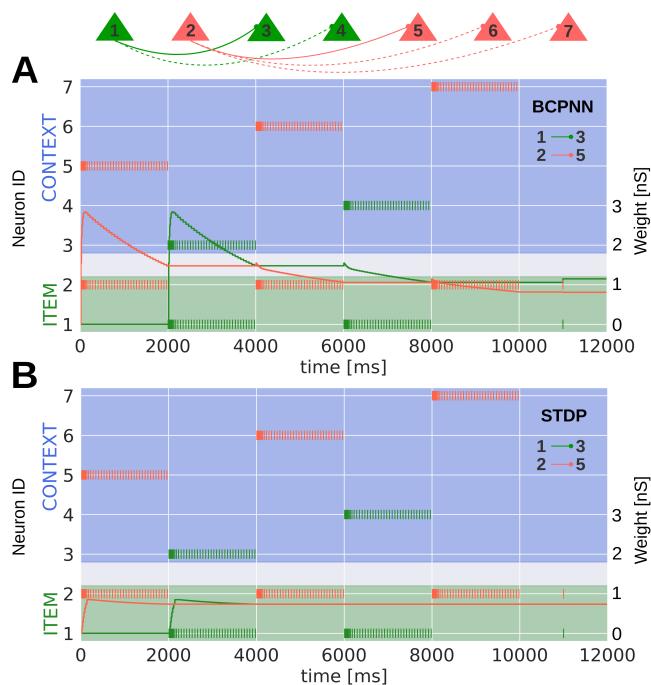


Fig. 5 Continuous weight recordings in a microcircuit model with plastic synapses under the **A)** BCPNN or **B)** STDP learning rule. Neural and synaptic parameters correspond to those in the scaled model. In both cases, two item neurons (ID=1,2) are trained to form two or three associations, respectively (dashed connections are simulated but their weight development is not shown here). During training, neurons are stimulated to fire at 20 Hz for 2 s. We display the developing synaptic weight between specific item-context pairs, (ID=1 and 3 in the two-association scenario) and (ID=2 and 5 in the three-association scenario), and compare the converged weight values between the two- and three-association case under both learning rules, following a final readout spike at 11 s.

367 even though they are associated with different number of
 368 contexts. As before, the synapse between an item neuron
 369 and an associated context neuron strengthens when this
 370 pair is simultaneously active, but remains stable when
 371 the item neuron is encoded in another context. For in-
 372 stance, the synapse between item neuron-2 and context
 373 neuron-5 strengthens when this pair is encoded (0-2 s),
 374 yet remains unaffected when item neuron-2 is activated
 375 in another context (i.e., context neuron-6, 4-6 s). This
 376 synaptic behavior explains the observed differences be-
 377 tween the BCPNN and STDP large-scale model.

378 2.4 Preferential retention

379 Several studies propose that one-shot salient events
 380 promote learning, and that these memories can be re-
 381 tained on multiple time scales ranging from seconds to
 382 years (Petrican et al., 2010; Gruber et al., 2016; Frank-
 383 land et al., 2004; Panoz-Brown et al., 2016; Eichenbaum,
 384 2017; Sun et al., 2018). Hypothetical mechanisms behind
 385 these effects are dopamine release and activation of DR1
 386 like receptors, resulting in synapse-specific enhancement
 387 (Otmakhova and Lisman, 1996; Kuo et al., 2008), and
 388 systems consolidation (McClelland et al., 1995; Fiebig
 389 and Lansner, 2014). On the whole, salient or reward
 390 driven events may be encoded more strongly as the result
 391 of a transient plasticity modulation. Recall from long-
 392 term memory is often viewed as a competitive process

393 in which a memory retrieval does not depend only on its
 394 own synaptic strength but also on the strength of other
 395 components (Shiffrin, 1970). In view of this, we study
 396 the effects of plasticity modulation on encoding specific
 397 items within particular contexts, with the aim of investi-
 398 gating the role of enhanced learning for semantization in
 399 our model.

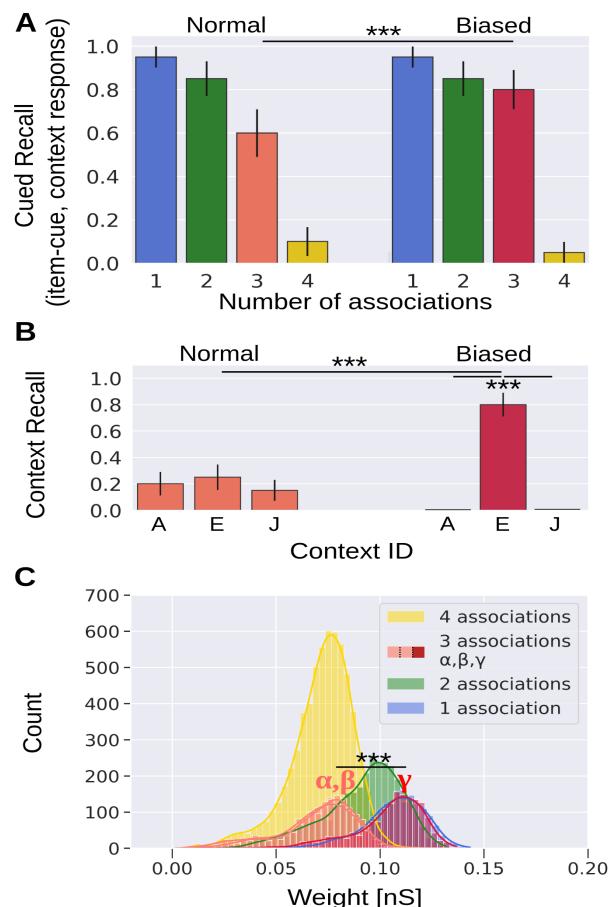


Fig. 6 Plasticity modulation of a specific item-context pair enhances recollection and counteracts semantization. **A)** Context recall performance. One of the pairs (context-E, item-1) presented in the episodic memory task (cf. Fig. 2A) is subjected to enhanced plasticity during encoding, resulting in the boosted recall rate (3 associations, Normal vs Biased). **B)** Individual context retrieval contribution in the overall recall (3 associations). Retrieval is similar among the three contexts since plasticity modulation is balanced (left: Normal, $\kappa=\kappa_{normal}$, cf. Table S1). However, when context-E is encoded with enhanced learning (with item-1), its recall increases significantly (right: Biased, $\kappa=\kappa_{boost}$, cf. Table S1). **C)** Weight distributions of the NMDA weight component. Encoding item-1 with context-E under modulated plasticity yields stronger synaptic weights [3 association, α, β (light red, highly overlapping distributions) vs γ (dark red)]. ***p<0.001 (Mann-Whitney, N=20 in A, B, N=2000 in C); Error bars in A, B represent standard deviations of Bernoulli distributions; Means of the weight distributions of one, two, three- α, β , and four associations in C show significant statistical difference (p<0.001, Mann-Whitney, N=2000).

400 Using the same network and episodic memory task
 401 as before (Fig. 2A), we modulate plasticity during the
 402 encoding of item-1 (red) in context-E via $\kappa=\kappa_{boost}$ (Eq.
 403 7, STAR+METHODS, Table S1). This results in an in-
 404 creased cued recall probability for the item associated
 405 with three episodic contexts relative to the unmodulated
 406 control (Fig. 6A, Normal vs Biased scenario, 3 associ-
 407 ations). Episodic retrieval improves from 0.6 (Normal,
 408

408 Fig. 6A, left) to 0.8 (Biased; modulated plasticity, Fig. 463
409 6A, right) when item-1 is cued, which now performs 464
410 more similarly to item with just two associated contexts. 465
411 We further analyze and compare the recall of each 466
412 context when its associated item-1 is cued (Fig. 6B, 3 467
413 associations). The control scenario (Normal, Fig. 6B, left) 468
414 without transient plasticity modulation shows that the 469
415 three contexts (ID=A, E and J) are all recalled with 470
416 similar probabilities (20 trials). In contrast, encoding a 471
417 specific pair with enhanced learning (upregulated $\kappa=\kappa_{boost}$) 472
418 yields higher recall for the corresponding context. In 473
419 particular, the plasticity enhancement during associative 474
420 encoding of the context-E (with item-1) results in an 475
421 increased recall score to 0.8 (0.25 control), while the other 476
422 associated contexts, ID=A and J, are suppressed (Fig. 477
423 6B), primarily due to soft winner-take-all competition 478
424 between contexts (Fig. 1A). 479
425

426 We attribute these changes to the stronger weights 480
427 due to enhanced learning (Fig. 6c, dark red distribution, 481
428 γ). Weights between unmodulated item-context pairs 482
429 (item-1 and context-A,-J) show mostly unaltered weight 483
430 distributions (α,β , light red), while the biased associative 484
431 weight distribution between item-1 and context-E is 485
432 now comparable to the weight distribution of the one- 486
433 association case. Performance does not exactly match 487
434 that case though due to some remaining competition 488
435 among the three contexts. Overall, these results demon- 489
436 strate how a single salient episode may strengthen mem- 490
437 ory traces and thus impart resistance to semantization 491
(Rodríguez et al., 2016). 492

438 3 DISCUSSION

439 The primary objective of this work was to explore the 495
440 interaction between synaptic plasticity and context vari- 496
441 ability in the semantization process. To cast new light 497
442 on the episodic-semantic interplay, we built a memory 498
443 model of two spiking neural networks coupled with plas- 499
444 tic connections, which collectively represent distributed 500
445 cortical episodic memory. Our results suggest that some 501
446 forms of plasticity offer a synaptic explanation for the 502
447 cognitive phenomenon of semantization, thus bridging 503
448 scales and linking network connectivity and dynamics 504
449 with behavior. In particular, we demonstrated that with 505
450 Bayesian-Hebbian (BCPNN) synaptic plasticity, but not 506
451 with standard Hebbian STDP, the model can reproduce 507
452 traces of semantization in the learning outcomes. Not- 508
453 ably, this was achieved with biologically constrained 509
454 network connectivity, postsynaptic potential amplitudes, 510
455 firing rates and oscillatory dynamics compatible with 511
456 mesoscale recordings from cortex and earlier models. 512
457 Nevertheless, our hypothesis of the episodic-semantic 513
458 interplay at a neural level requires further experimental 514
459 study of synaptic strength dynamics in particular. We also 515
460 demonstrated how a transient plasticity modulation (re- 516
461 reflecting known isolation effects) may preserve episodic- 517
462 ity, staving off decontextualization. 518

463 Our study conforms to related behavioral exper- 464
464 iments reporting that high context variability or con- 465
465 text overload leads to item-context decoupling (Opitz, 466
466 2010; Smith and Manzano, 2010; Smith and Handy, 467
467 2014). These studies suggest that context-specific mem- 468
468 ory traces transform into semantic representations while 469
469 contextual information is progressively lost. Memory 470
470 traces remain intact but fail to retrieve their associated 471
471 context. Semantization is typically described as a de- 472
472 contextualization process that occurs over time. How- 473
473 ever, several experiments, including this study, proposed 474
474 that exposures of stimuli in different additional contexts 475
475 (rather than time itself) is the key mechanism advancing 476
476 semantization (Opitz, 2010; Smith and Manzano, 2010; 477
477 Smith and Handy, 2014). Admittedly, our hypothesis 478
478 cannot exclude other seemingly coexisting phenomena 479
479 that may benefit semantization over time (e.g., reconsol- 480
480 idation or systems consolidation due to sleep or aging). 481

482 To our knowledge, there is no other spiking bio- 483
483 physical computational model of comparable detail that 484
484 captures the semantization of episodic memory explored 485
485 here, whilst simultaneously offering a neurobiological 486
486 explanation of this phenomenon. Unlike other dual- 487
487 process episodic memory models, which require repeated 488
488 stimulus exposures to support recognition (Norman and 489
489 O'Reilly, 2003), our model is able to successfully recall 490
490 events learned in "one shot" (a distinctive hallmark of 491
491 episodicity). We note that the attractor-based theory pro- 492
492 posed in this study does not exclude the possibility of a 493
493 dual-process explanation for recollection and familiarity 494
(Yonelinas, 2002; Yonelinas et al., 2010). 495

494 3.1 Related models of familiarity and recollection

495 Perceptual or abstract single-trace dual-process com- 496
496 putational models based on signal detection theory ex- 497
497 plain episodic retrieval but the potential loss of contextual 498
498 information is only implied as it does not have its own 499
499 independent representation (Greve et al., 2010; Wixted, 500
500 2007). These computational models often aim to explain 501
501 traditional R/K behavioral studies. As discussed earlier, 502
502 participants in such studies are instructed to give a Know 503
503 response if the stimulus presented in the test phase is 504
504 known or familiar without any contextual detail about its 505
505 previous occurrence. Conversely, Remember judgments 506
506 are to be provided if the stimulus is recognized along with 507
507 some recollection of specific contextual information per- 508
508 taining to the study episode. This results in a strict cri- 509
509 terion for recollection, as it is possible for a subject to 510
510 successfully recall an item but fail to retrieve the source 511
511 information (Ryals et al., 2013). Numerous studies sug- 512
512 gest that recollection contaminates Know reports because 513
513 recalling source information sensibly assumes prior item 514
514 recognition (Wais et al., 2008; Johnson et al., 2009). 515
515 Mandler (1979, 1980), and Atkinson and Juola (1973) 516
516 treat familiarity as an activation of preexisting memory 517
517 representations. Our results are compatible with this no- 518
518 tion because our model proposes to treat item-only activa- 519
519 tions as Know judgments, while those accompanied by 520
520 the activation of context representations best correspond

521 to a Remember judgment. Item activation is a faster process and precedes context retrieval (Yonelinas and Ja-
522 coby, 1994), and our model reflects this finding by ne-
523 cessity, as item activations are causal to context retrieval.
524

525 To us, familiarity recognition is simply characterized
526 by a lack of contextual information, yet the distinction
527 we make between Context and Item networks is arbitrary.
528 Any item can be a context and vice versa, so the networks
529 are interchangeable. While sparse interconnection is suf-
530 ficient for our model's function, both networks may just
531 as well be part of the same modality and cortical brain
532 areas. A more specific scenario might assume that items
533 and contexts share part of the same local network. In prin-
534 ciple, our model should be capable of replicating similar
535 results in a single modality scenario.

536 3.2 Semantization on longer time scales

537 Source recall is likely supported by multiple inde-
538 pendent, parallel, interacting neural structures and pro-
539 cesses since various parts of the medial temporal lobes,
540 prefrontal cortex and parts of the parietal cortex all con-
541 tribute to episodic memory retrieval including informa-
542 tion about both where and when an event occurred (Diana
543 et al., 2007; Gilboa, 2004; Watrous et al., 2013). A related
544 classic idea on semantization is the view that it is in fact
545 an emergent outcome of systems consolidation. Sleep-
546 dependent consolidation in particular has been linked to
547 advancing semantization of memories and the extraction
548 of gist information. (Friedrich et al., 2015; Payne et al.,
549 2009).

550 Models of long-term consolidation suggest that richly
551 contextualized memories, become more generic over
552 time. Without excluding this possibility, we note that this
553 is not always the case, as highly salient memories often
554 retain contextual information (which our model speaks
555 to). Instead, our model argues for a much more imme-
556 diate neural and synaptic contribution to semantization
557 that does not require slow multi-area systems level pro-
558 cesses that have yet to be specified in sufficient detail
559 to be tested in neural simulations. We have previously
560 shown, however, that an abstract simulation network of
561 networks with broader distributions of learning time con-
562 stants can consolidate memories across several orders
563 of magnitude in time, using the same Bayesian-Hebbian
564 learning rule as used here (Fiebig and Lansner, 2014).
565 That model included representations for prefrontal cor-
566 tex, hippocampus, and wider neocortex, implementing an
567 extended complementary learning systems theory (Mc-
568 Clelland et al., 1995), which is itself an advancement of
569 systems consolidation (Squire and Alvarez, 1995). We
570 consequently expect that the principled mechanism of se-
571 mantization explored here can be scaled along the tempo-
572 ral axis to account for lifelong memory, provided that the
573 plasticity involved is itself Bayesian-Hebbian. Our model
574 does not advance any specific anatomical argument as
575 to the location of the respective networks (Diana et al.,
576 2007; Yonelinas, 2002).

577 The model purposefully relies on a generic cortical
578 architecture focused on a class of synaptic plastic-

579 ity mechanisms which may well serve as a substrate of
580 a wider system across brain areas and time.

581 3.3 Biological plausibility and parameter sensitivity

582 We investigate and explain behavior and macroscale
583 system dynamics with respect to neural processes, bio-
584 logical parameters of network connectivity, and electro-
585 physiological evidence. Our model consequently builds
586 on a broad range of biological constraints such as in-
587trinsic neuronal parameters, cortical laminar cell densi-
588 ties, plausible delay distributions, and network connectiv-
589 ity. The model reproduces plausible postsynaptic poten-
590 tials (EPSPs, IPSPs) and abides by estimates of connec-
591 tion densities (i.e., in the associative pathways and pro-
592 jections within each patch), axonal conductance speeds,
593 typically accepted synaptic time constants for the vari-
594 ous receptor types (AMPA, NMDA, and GABA), with
595 commonly used neural and synaptic plasticity time con-
596 stants (i.e., adaptation, depression). We reproduce oscil-
597 latory dynamics in multiple frequency ranges, that were
598 previously studied in the same modular spiking network
599 implementations (Lundqvist et al., 2010, 2011; Herman
600 et al., 2013).

601 The model synthesizes a number of functionally
602 relevant processes, embedding different components to
603 model composite dynamics, hence, it is beyond this study
604 to perform a detailed sensitivity analysis for every pa-
605 rameter. Instead, we provide insightful observations for
606 previously unexplored parameters that may critically af-
607 fect semantization. Importantly, a highly related modular
608 cortical model already investigated sensitivity to impor-
609 tant short-term plasticity parameters (Fiebig and Lansner,
610 2017). After extensive simulation testing, we conclude
611 that the model is generally robust to a broad range of
612 parameter changes and degrades gracefully. Small net-
613 works like this are typically more sensitive to parameter
614 changes, so conversely, we expect even lower sensitivity
615 to parameter variations in a full scale system.

616 The P trace decay time constant, τ_p , of the BCPNN
617 model is critical for the learning dynamics modelled in
618 this study because it controls the speed of learning in as-
619 sociative connections. High values of τ_p lead to slower
620 and more long-lasting learning. Varying τ_p by $\pm 30\%$
621 does not change the main outcome, that is, episodicity
622 still deteriorates with a higher context variability. Slower
623 weight development may result in weaker associative
624 binding and overall lower recall though (and vice versa
625 for faster learning). To compensate for this loss of episod-
626 icity, an additional increase in the unspecific input is usu-
627 ally sufficient to trigger comparable recall rates. Alter-
628 natively, the recurrent excitatory gain can be amplified
629 to complete noisy inputs towards discrete embedded at-
630 tractors. Unspecific background input during recall plays
631 a critical role as well. We use a low such noise input to
632 model cue-association responses, however, when boosted
633 by $+40\%$, the model operates in a free replay regime in-
634 stead, where cues become unnecessary as the network re-
635 trievies content without them by means of intrinsic back-
636 ground noise.

637 This study also demonstrated how a selective transient
638 increase of plasticity can counteract semantization.
639 The plasticity of the model can be modulated via the
640 parameter κ (Eq. 7, STAR METHODS). Typically, κ
641 is set to 1 ($\kappa=\kappa_{normal}$), whereas we double plasticity
642 ($\kappa=\kappa_{boost}$), when modelling salient episodic encoding.
643 We noticed that by selectively tripling or quadrupling
644 plasticity (relative to baseline) during encoding of a specific
645 pair whose item component forms many other associations,
646 the source recall improves progressively (data shown only for $\kappa=\kappa_{boost}$ in Sect. 2.4).

647 Finally, in Section 2.3 we compared STDP and
648 BCPNN plasticity in a highly reduced model. We bind
649 items with contexts to form different number of associations
650 and keep track of the weight development per time
651 step. STDP plasticity generated same magnitude item-
652 context binding regardless of how many associations an
653 item forms. A detailed parameter analysis for every critical
654 synaptic parameter ($\pm 30\%$) did not yield any behaviorally
655 significant changes to the converged weights.

657 3.4 Conclusions

658 We have presented a computational mesoscopic network
659 model to examine the interplay between episodic and
660 semantic memory with the grand objective to explain
661 mechanistically the semantization of episodic traces.
662 Compared to other models of episodic memory, which
663 are typically abstract, our model, built on various bi-
664 ological constraints (i.e., plausible postsynaptic potentials,
665 firing rates, etc.) accounting for neural processes
666 and synaptic mechanisms, emphasizes the role of synaptic
667 plasticity in episodic forgetting. Hence it bridges micro-
668 and mesoscale mechanisms with macroscale behavior
669 and dynamics. In contrast to standard Hebbian learning,
670 our Bayesian version of Hebbian learning readily repro-
671 duced prominent traces of semantization.

672 **Acknowledgments:** This research was supported by
673 Vetenskapsrådet 2018-05360 and 2016-05871, the
674 Swedish e-Science Research Centre (SeRC), Digital Futi-
675 res, and European Commission H2020 program. The
676 simulations were performed on resources provided by
677 Swedish National Infrastructure for Computing (SNIC)
678 at the PDC Center for High Performance Computing,
679 KTH Royal Institute of Technology.

680 STAR METHODS

681 Detailed methods are provided in the online version of
682 this paper and include the following:

- 683 • KEY RESOURCES TABLE

- 684 • METHODS DETAILS

- 685 • Spike-based BCPNN plasticity
- 686 • Spike-based STDP learning rule
- 687 • Two-network architecture and connectivity
- 688 • Axonal conduction delays
- 689 • Stimulation Protocol
- 690 • Attractor activation detector
- 691 • Simulation Tools

References

692

Atkinson RC, Juola JF (1973) Factors influencing speed
693 and accuracy of word recognition. *Attention and*
694 *performance IV* pp 583–612

695

Baddeley A (1988) Cognitive psychology and human
696 memory. *Trends in neurosciences* 11(4):176–181

697

Beheydt L (1987) The semantization of vocabulary in
698 foreign language learning. *System* 15(1):55–67

699

Binzegger T, Douglas RJ, Martin KA (2009) Topology
700 and dynamics of the canonical circuit of cat v1. *Neural*
701 *Networks* 22(8):1071–1078

702

Bolger DJ, Balass M, Landen E, Perfetti CA (2008) Con-
703 text variation and definitions in learning the mean-
704 ings of words: An instance-based learning approach.
705 *Discourse processes* 45(2):122–159

706

van den Bos LM, Benjamins JS, Postma A (2020) Episodic
707 and semantic memory processes in the
708 boundary extension effect: An investigation using
709 the remember/know paradigm. *Acta Psychologica*
710 211:103190

711

Brette R, Gerstner W (2005) Adaptive exponential
712 integrate-and-fire model as an effective description
713 of neuronal activity. *Journal of neurophysiology*
714 94(5):3637–3642

715

Caporale N, Dan Y (2008) Spike timing-dependent plas-
716 ticity: a hebbian learning rule. *Annu Rev Neurosci*
717 31:25–46

718

Chrysanthidis N, Fiebig F, Lansner A (2019) Introduc-
719 ing double bouquet cells into a modular cortical as-
720 sociative memory model. *Journal of computational*
721 *neuroscience* 47(2):223–230

722

Diana RA, Yonelinas AP, Ranganath C (2007) Imaging
723 recollection and familiarity in the medial temporal
724 lobe: a three-component model. *Trends in cognitive*
725 *sciences* 11(9):379–386

726

Duff MC, Covington NV, Hilverman C, Cohen NJ (2020)
727 Semantic memory and the hippocampus: revisiting,
728 reaffirming, and extending the reach of their criti-
729 cal relationship. *Frontiers in human neuroscience*
730 13:471

731

Egorov AV, Hamam BN, Fransén E, Hasselmo ME,
732 Alonso AA (2002) Graded persistent activity in en-
733 torhinal cortex neurons. *Nature* 420(6912):173–178

734

Eichenbaum H (2017) Prefrontal–hippocampal interac-
735 tions in episodic memory. *Nature Reviews Neuro-
736 science* 18(9):547–558

737

Eichenbaum H, Yonelinas AP, Ranganath C (2007)
738 The medial temporal lobe and recognition memory.
739 *Annu Rev Neurosci* 30:123–152

740

Eyal G, Verhoog MB, Testa-Silva G, Deitcher Y,
741 Benavides-Piccione R, DeFelipe J, De Kock CP,
742 Mansvelder HD, Segev I (2018) Human cortical
743 pyramidal neurons: from spines to spikes via mod-
744 els. *Frontiers in cellular neuroscience* 12:181

745

Fiebig F, Lansner A (2014) Memory consolidation from
746 seconds to weeks: a three-stage neural network
747 model with autonomous reinstatement dynamics.
748 *Frontiers in computational neuroscience* 8:64

749

750 Fiebig F, Lansner A (2017) A spiking working mem- 810
751 ory model based on hebbian short-term potentiation. 811
752 *Journal of Neuroscience* 37(1):83–96 812
753 Fiebig F, Herman P, Lansner A (2020) An indexing 813
754 theory for working memory based on fast hebbian 814
755 plasticity. *eneuro* 7(2) 815
756 Frankland PW, Josselyn SA, Anagnostaras SG, Kogan 816
757 JH, Takahashi E, Silva AJ (2004) Consolidation of 817
758 cs and us representations in associative fear condi- 818
759 tioning. *Hippocampus* 14(5):557–569 819
760 Friedrich M, Wilhelm I, Born J, Friederici AD (2015) 820
761 Generalization of word meanings during infant 821
762 sleep. *Nature communications* 6(1):1–9 822
763 Gerstner W, Naud R (2009) How good are neuron 823
764 models? *Science* 326(5951):379–380 824
765 Gewaltig MO, Diesmann M (2007) Nest (neural simu- 825
766 lation tool). *Scholarpedia* 2(4):1430 826
767 Gilboa A (2004) Autobiographical and episodic 827
768 memoryone and the same?: Evidence from prefrontal 828
769 activation in neuroimaging studies. *Neuropsychologia* 829
770 42(10):1336–1349 830
771 Gillund G (2012) Episodic memory. In: Ramachandran 831
772 V (ed) *Encyclopedia of Human Behavior* (Second 832
773 Edition), second edition edn, Academic Press, San 833
774 Diego, pp 68–72 834
775 Greve A, Donaldson DI, Van Rossum MC (2010) A 835
776 single-trace dual-process model of episodic mem- 836
777 ory: A novel computational account of familiarity 837
778 and recollection. *Hippocampus* 20(2):235–251 838
779 Gruber MJ, Ritchey M, Wang SF, Doss MK, Ranganath 839
780 C (2016) Post-learning hippocampal dynamics pro- 840
781 mote preferential retention of rewarding events. 841
782 *Neuron* 89(5):1110–1120 842
783 Habermas T, Diel V, Welzer H (2013) Lifespan trends 843
784 of autobiographical remembering: Episodicity and 844
785 search for meaning. *Consciousness and Cognition* 845
786 22(3):1061–1073 846
787 Herman PA, Lundqvist M, Lansner A (2013) Nested 847
788 theta to gamma oscillations and precise spatiotem- 848
789 poral firing during memory retrieval in a simulated 849
790 attractor network. *Brain Research* 1536:68–87 850
791 Howard MW, Kahana MJ (2002) When does semantic 851
792 similarity help episodic retrieval? *Journal of Mem- 852
793 ory and Language* 46(1):85–98 853
794 Johnson JD, McDuff SG, Rugg MD, Norman KA (2009) 854
795 Recollection, familiarity, and cortical reinstatement: 855
796 a multivoxel pattern analysis. *Neuron* 63(5):697– 856
797 708 857
798 Kirkcaldie MT (2012) Neocortex. In: *The Mouse Nervous 858
799 System*, Elsevier, pp 52–111 859
800 Kuo MF, Paulus W, Nitsche MA (2008) Boosting focally- 860
801 induced brain plasticity by dopamine. *Cerebral cor- 861
802 tex* 18(3):648–651 862
803 Lansner A (2009) Associative memory models: from the 863
804 cell-assembly theory to biophysically detailed cor- 864
805 tex simulations. *Trends in neurosciences* 32(3):178– 865
806 186 866
807 Lansner A, Ekeberg Ö (1989) A one-layer feedback arti- 867
808 ficial neural network with a bayesian learning rule. 868
809 *International journal of neural systems* 1(01):77–87 869
810 Lundqvist M, Compte A, Lansner A (2010) Bistable, ir- 811
811 regular firing and population oscillations in a mod- 812
812 ular attractor memory network. *PLoS Comput Biol* 813
813 6(6):e1000803 814
814 Lundqvist M, Herman P, Lansner A (2011) Theta and 815
815 gamma power increases and alpha/beta power de- 816
816 creases with memory load in an attractor net- 817
817 work model. *Journal of cognitive neuroscience* 818
818 23(10):3008–3020 819
819 Mandler G (1979) Organization and repetition: Organiza- 820
820 tional principles with special reference to rote learn- 821
821 ing 822
822 Mandler G (1980) Recognizing: The judgment of previ- 823
823 ous occurrence. *Psychological review* 87(3):252 824
824 Martin-Ordua G, Atance CM, Caza JS (2014) How 825
825 do episodic and semantic memory contribute to 826
826 episodic foresight in young children? *Frontiers in 827
827 Psychology* 5:732 828
828 McClelland JL, McNaughton BL, O'Reilly RC (1995) 829
829 Why there are complementary learning systems 830
830 in the hippocampus and neocortex: insights from 831
831 the successes and failures of connectionist mod- 832
832 els of learning and memory. *Psychological review* 833
833 102(3):419 834
834 McCloskey M, Santee JL (1981) Are semantic memory 835
835 and episodic memory distinct systems? 836
836 Meeter M, Murre JM (2004) Consolidation of long-term 837
837 memory: evidence and alternatives. *Psychological 838
838 Bulletin* 130(6):843 839
839 Morrison A, Diesmann M, Gerstner W (2008) Phe- 840
840 nomenological models of synaptic plasticity based 841
841 on spike timing. *Biological cybernetics* 98(6):459– 842
842 478 843
843 Mountcastle VB (1997) The columnar organization 844
844 of the neocortex. *Brain: a journal of neurology* 845
845 120(4):701–722 846
846 Muir DR, Da Costa NM, Girardin CC, Naaman S, Omer 847
847 DB, Ruesch E, Grinvald A, Douglas RJ (2011) Em- 848
848 bedding of cortical representations by the superficial 849
849 patch system. *Cerebral Cortex* 21(10):2244–2260 850
850 Norman KA, O'Reilly RC (2003) Modeling hippocampal 851
851 and neocortical contributions to recognition mem- 852
852 ory: a complementary-learning-systems approach. 853
853 *Psychological review* 110(4):611 854
854 Opitz B (2010) Context-dependent repetition effects 855
855 on recognition memory. *Brain and Cognition* 856
856 73(2):110–118 857
857 Otmakhova NA, Lisman JE (1996) D1/d5 dopamine 858
858 receptor activation increases the magnitude of 859
859 early long-term potentiation at ca1 hippocampal 860
860 synapses. *Journal of Neuroscience* 16(23):7478– 861
861 7486 862
862 Panoz-Brown D, Corbin HE, Dalecki SJ, Gentry M, 863
863 Brotheridge S, Sluka CM, Wu JE, Crystal JD (2016) 864
864 Rats remember items in context using episodic 865
865 memory. *Current Biology* 26(20):2821–2826 866
866 Payne JD, Schacter DL, Propper RE, Huang LW, Wams- 867
867 ley EJ, Tucker MA, Walker MP, Stickgold R (2009) 868
868 The role of sleep in false memory formation. *Neuro- 869
869 robiology of learning and memory* 92(3):327–334 870

870 Petrican R, Gopie N, Leach L, Chow TW, Richards B, the national academy of sciences 94(2):719–723
871 Moscovitch M (2010) Recollection and familiarity 930
872 for public events in neurologically intact older 931
873 adults and two brain-damaged patients. *Neuropsychologia* 48(4):945–960 932
874
875 Ranganath C (2010) Binding items and contexts: The 933
876 cognitive neuroscience of episodic memory. *Current 934
877 Directions in Psychological Science* 19(3):131–137 935
878
879 Ren Q, Kolwankar KM, Samal A, Jost J (2010) Stdp- 936
880 driven networks and the *C. elegans* neuronal 937
881 network. *Physica A: Statistical Mechanics and its 938
882 Applications* 389(18):3900–3914 939
883
884 Renoult L, Irish M, Moscovitch M, Rugg MD (2019) 940
885 From knowing to remembering: the semantic- 941
886 episodic distinction. *Trends in cognitive sciences* 942
887 23(12):1041–1057 943
888
889 Rodríguez TM, Galán AS, Flores RR, Jordán MT, 944
890 Montes JB (2016) Behavior and emotion in dementia. *Update on Dementia* p 449 945
891
892 Ryals AJ, Cleary AM, Seger CA (2013) Recall versus 946
893 familiarity when recall fails for words and scenes: 947
894 The differential roles of the hippocampus, perirhinal 948
895 cortex, and category-specific cortical regions. *Brain 949
896 research* 149(2):72–91 950
897
898 Schendan H (2012) Semantic memory. In: Ramachandran V (ed) *Encyclopedia of Human Behavior* (Second 951
899 Edition), second edition edn, Academic Press, 952
900 San Diego, pp 350–358 953
901
902 Shiffrin RM (1970) Memory search. *Models of human 954
903 memory* pp 375–447 955
904
905 Smith SM, Handy JD (2014) Effects of varied and 956
906 constant environmental contexts on acquisition and 957
907 retention. *Journal of Experimental Psychology: 958
908 Learning, Memory, and Cognition* 40(6):1582 959
909
910 Smith SM, Manzano I (2010) Video context-dependent 960
911 recall. *Behavior Research Methods* 42(1):292–301 961
912
913 Song S, Miller KD, Abbott LF (2000) Competitive 962
914 hebbian learning through spike-timing-dependent 963
915 synaptic plasticity. *Nature neuroscience* 3(9):919– 964
916 926 965
917 Squire LR, Alvarez P (1995) Retrograde amnesia and 966
918 memory consolidation: a neurobiological perspective. *Current opinion in neurobiology* 5(2):169–177 967
919
920 Squire LR, Zola SM (1998) Episodic memory, semantic 968
921 memory, and amnesia. *Hippocampus* 8(3):205–211 969
922
923 Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral 970
924 connectivity and contextual interactions in macaque 971
925 primary visual cortex. *Neuron* 36(4):739–750 972
926
927 Sun Q, Gu S, Yang J (2018) Context and time matter: 973
928 Effects of emotion and motivation on episodic memory 974
929 overtime. *Neural plasticity* 2018 975
930
931 Thomson AM, West DC, Wang Y, Bannister AP (2002) 976
932 Synaptic connections and small circuits involving 977
933 excitatory and inhibitory neurons in layers 2–5 978
934 of adult rat and cat neocortex: triple intracellular 979
935 recordings and biocytin labelling in vitro. *Cerebral 980
936 cortex* 12(9):936–953 981
937
938 Tsodyks MV, Markram H (1997) The neural code between 982
939 neocortical pyramidal neurons depends on 983
940 neurotransmitter release probability. *Proceedings of 984
941 the national academy of sciences* 94(2):719–723 985
942
943 Tully PJ, Hennig MH, Lansner A (2014) Synaptic and 986
944 nonsynaptic plasticity approximating probabilistic 987
945 inference. *Frontiers in synaptic neuroscience* 6:8 988
946
947 Tully PJ, Lindén H, Hennig MH, Lansner A (2016) 989
948 Spike-based bayesian-hebbian learning of temporal 990
949 sequences. *PLoS computational biology* 12(5):e1004954 991
950
951 Tulving E (1972) 12. episodic and semantic memory. *Organization of memory*/Eds E Tulving, W Donaldson, NY: Academic Press pp 381–403 992
952
953 Tulving E (1985) Memory and consciousness. *Canadian 993
954 Psychology/Psychologie canadienne* 26(1):1 995
955
956 Umanath S, Coane JH (2020) Face validity of remembering 996
957 and knowing: Empirical consensus and disagreement 997
958 between participants and researchers. *Perspectives on Psychological Science* 15(6):1400– 998
959 1422 999
960
961 Van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable 999
962 hebbian learning from spike timing-dependent plasticity. *Journal of neuroscience* 20(23):8812–8821 999
963
964 Viard A, Piolino P, Desgranges B, Chételat G, Lebreton K, Landeau B, Young A, De La Sayette V, Eustache F (2007) Hippocampal activation for autobiographical memories over the entire lifetime in healthy aged subjects: an fmri study. *Cerebral Cortex* 17(10):2453–2467 999
965
966 Wahlgren N, Lansner A (2001) Biological evaluation of 999
967 a hebbian–bayesian learning rule. *Neurocomputing* 999
968 38:433–438 999
969
970 Wais PE, Mickes L, Wixted JT (2008) Remember/know 999
971 judgments probe degrees of recollection. *Journal of 999
972 cognitive neuroscience* 20(3):400–405 999
973
974 Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD (2013) Frequency-specific network connectivity 999
975 increases underlie accurate spatiotemporal memory 999
976 retrieval. *Nature neuroscience* 16(3):349 999
977
978 Weidemann CT, Kragel JE, Lega BC, Worrell GA, Sperling MR, Sharan AD, Jobst BC, Khadjevand F, Davis KA, Wanda PA, et al. (2019) Neural activity reveals interactions between episodic and semantic 999
979 memory systems during retrieval. *Journal of Experimental Psychology: General* 148(1):1 999
980
981 Winocur G, Moscovitch M (2011) Memory transformation and systems consolidation. *Journal of the International Neuropsychological Society: JINS* 999
982 17(5):766 999
983
984 Wixted JT (2007) Dual-process theory and signal-detection theory of recognition memory. *Psychological review* 114(1):152 999
985
986 Yonelinas AP (2002) The nature of recollection and familiarity: A review of 30 years of research. *Journal of memory and language* 46(3):441–517 999
987
988 Yonelinas AP, Jacoby LL (1994) Dissociations of processes in recognition memory: effects of interference and of response speed. *Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale* 48(4):516 999
989
990 Yonelinas AP, Aly M, Wang WC, Koen JD (2010) 999
991 Recollection and familiarity: Examining controversy 999
992

990 sial assumptions and new directions. *Hippocampus*
991 20(11):1178–1194

992 Yoshimura Y, Callaway EM (2005) Fine-scale specificity
993 of cortical networks depends on inhibitory cell type
994 and connectivity. *Nature neuroscience* 8(11):1552–
995 1559

996 4 STAR METHODS

997 4.1 KEY RESOURCES TABLE

Table 1

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Software and Algorithms		
NEST simulator	(Gewaltig and Diesmann, 2007)	nest-simulator.org
Programming Language Python 2.7		python.org; SCR_008394
BCPNN learning rule module	(Tully et al., 2014)	Zenodo
PDC High Performance Computing		www.pdc.kth.se

998 4.2 METHODS DETAILS

999 4.2.1 Neuron and synapse model

1000 We use adaptive exponential integrate-and-fire point
 1001 model neurons, which feature spike frequency adaptation,
 1002 enriching neural dynamics and spike patterns, especially
 1003 for the pyramidal cells (Brette and Gerstner, 2005).
 1004 The neuron model offers a good phenomenological
 1005 description of typical neural firing behavior, but it is limited
 1006 in predicting the precise time course of the sub-threshold
 1007 membrane voltage during and after a spike or the underlying
 1008 biophysical causes of electrical activity (Gerstner
 1009 and Naud, 2009). We slightly modified it for compatibility
 1010 with the BCPNN synapse model (Tully et al., 2014) by
 1011 integrating an intrinsic excitability current.

1012 Development of the membrane potential V_m and the
 1013 adaptation current I_w is described by the following equations:

$$C_m \frac{dV_m}{dt} = -g_L(V_m - E_L) + g_L \Delta \tau e^{\frac{V_m - V_t}{\Delta \tau}} - I_w + I_{ext} + I_{syn} \quad (1)$$

$$\frac{dI_w}{dt} = \frac{-I_w}{\tau_{I_w}} + b \delta(t - t_{sp}) \quad (2)$$

1015 Equation 1 describes the dynamics of the membrane
 1016 potential V_m including an exponential voltage dependent
 1017 activation term. A leak current is driven by the leak re-
 1018 versal potential E_L through the conductance g_L over the
 1019 neural surface with a capacity C_m . Additionally, V_t is the
 1020 spiking threshold, and $\Delta \tau$ shapes the spike slope factor.
 1021 After spike generation, membrane potential is reset to V_r .
 1022 Spike emission upregulates the adaptation current by b ,
 1023 which recovers with time constant τ_{I_w} (Table S1). We
 1024 neglect subthreshold adaptation, which is part of some
 1025 AdEx models.

1026 Besides a specific external input current I_{ext} , model
 1027 neurons receive synaptic currents I_{syn_j} from conductance
 1028 based glutamatergic and GABA-ergic synapses. Gluta-
 1029 matergic synapses feature both AMPA/NMDA receptor
 1030 gated channels with fast and slow conductance decay dy-
 1031 namic, respectively. Current contributions for synapses
 1032 are described as follows:

$$I_{syn_j} = \sum_{syn} \sum_i g_{ij}^{syn}(t) (V_m - E_{ij}^{syn}) = I_j^{AMPA}(t) + I_j^{NMDA}(t) + I_j^{GABA}(t) \quad (3)$$

1033 The glutamatergic synapses are also subject to synap-
 1034 tic depression and augmentation with a decay factor τ_D
 1035 and τ_A , respectively (Table S1), following the Tsodyks-
 1036 Markram formalism (Tsodyks and Markram, 1997). The
 1037 utilization factor U , encodes variations in the release
 1038 probability of available resources:

$$\frac{du_{ij}}{dt} = -\frac{u_{ij}}{\tau_A} + U(1 - u_{ij}) \sum_{sp} \delta(t - t_{sp}^i - t_{ij}) \quad (4)$$

$$\frac{dx_{ij}}{dt} = \frac{1 - x_{ij}}{\tau_D} - U x_{ij} \sum_{sp} \delta(t - t_{sp}^i - t_{ij}) \quad (5)$$

4.2.2 Spike-based BCPNN plasticity

1039 We implement synaptic plasticity of AMPA and
 1040 NMDA connection components using the BCPNN learn-
 1041 ing rule (Lansner and Ekeberg, 1989; Wahlgren and
 1042 Lansner, 2001; Tully et al., 2014). BCPNN is derived
 1043 from Bayes rule, assuming a postsynaptic neuron em-
 1044 ploys some form of probabilistic inference to decide
 1045 whether to emit a spike or not. In general, it is considered
 1046 more complex than the standard STDP learning rule (Ca-
 1047 porale and Dan, 2008), and it reproduces the main fea-
 1048 tures of STDP plasticity. As other spiking synaptic learn-
 1049 ing rules, it is so far insufficiently validated against quan-
 1050 titative experimental data on biological synaptic plastic-
 1051 ity.

1052 The BCPNN synapse continuously updates three
 1053 synaptic biophysically plausible local memory traces, P_i ,
 1054 P_j and P_{ij} , implemented as exponentially moving aver-
 1055 ages (EMAs) of pre-, post- and co-activation, from which
 1056 the Bayesian bias and weights are calculated. EMAs pri-
 1057 oritize recent patterns, so that newly learned patterns
 1058 gradually replace old memories. Specifically, learning
 1059 implements a three-level procedure of exponential filters
 1060 which defines Z, E and P traces. E traces, which enable
 1061 delayed reward learning, are not used here because such
 1062 conditions are not applicable to the modelled task.

1063 To begin with, BCPNN receives a binary sequence of
 1064 pre- and postsynaptic spiking events (S_i, S_j) to calculate
 1065 the traces Z_i and Z_j :

$$\begin{cases} \tau_{z_i} \frac{dZ_i}{dt} = \frac{S_i}{f_{max} t_{spike}} - Z_i + \epsilon \\ \tau_{z_j} \frac{dZ_j}{dt} = \frac{S_j}{f_{max} t_{spike}} - Z_j + \epsilon \end{cases} \quad (6)$$

1067 f_{max} denotes the maximal neuronal spike rate, ε is the
 1068 lowest attainable probability estimate, t_{spike} denotes the
 1069 spike duration while $\tau_{z_i} = \tau_{z_j}$ are the pre and postsynaptic
 1070 time constants, respectively (5 ms for AMPA, and 100 ms
 1071 for NMDA components, Table S1).

1072 P traces are then estimated from the Z traces as fol-
 1073 lows:

$$\begin{cases} \tau_p \frac{dP_i}{dt} = \kappa(Z_i - P_i) \\ \tau_p \frac{dP_j}{dt} = \kappa(Z_j - P_j) \\ \tau_p \frac{dP_{ij}}{dt} = \kappa(Z_i Z_j - P_{ij}) \end{cases} \quad (7)$$

1074 The parameter κ adjusts the learning rate, reflect-
 1075 ing the action of endogenous modulators of learning ef-
 1076 ficacy (i.e., activation of a D1R-like receptor). Setting
 1077 $\kappa=0$ freezes the network's weights and biases, though
 1078 in our simulations the learning rate remains constant
 1079 ($\kappa=1$) during encoding (Sect. 2.1, 2.2). However, we trig-
 1080 ger a transient increase of plasticity in specific scenar-
 1081 os to model preferential retention, assuming encoding of
 1082 salient events (Sect. 2.4 and Table S1).

1083 Finally, P_i , P_j and P_{ij} are used to calculate intrinsic
 1084 excitability β_j and synaptic weights w_{ij} with a scaling
 1085 factor β_{gain} and w_{gain}^{syn} respectively (Table S1):

$$\begin{cases} w_{ij} = w_{gain}^{syn} \log \frac{P_{ij}}{P_i P_j} \\ \beta_j = \beta_{gain} \log(P_j) \end{cases} \quad (8)$$

1086 4.2.3 Spike-based STDP learning rule

1087 In our study, we examine the impact on semantiza-
 1088 tion when the STDP learning rule replaces BCPNN as-
 1089 sociative connectivity in the same episodic memory task.
 1090 Synapses under STDP are developed and modified by a
 1091 repeated pairing of pre- and postsynaptic spiking activ-
 1092 ity, while their relative time window shapes the degree of
 1093 modification (Ren et al., 2010). The amount of trace mod-
 1094 ification depends on the temporal difference (Δ_t) between
 1095 the time point of the presynaptic action potential (t_i) and
 1096 the occurrence of the postsynaptic spike (t_j) incorporat-
 1097 ing a corresponding transmission delay from neuron i to
 1098 j (τ_d):

$$\Delta t = t_j - (t_i + \tau_d) \quad (9)$$

1099 After processing Δt , STDP updates weights accord-
 1100 ingly:

$$\Delta w_{ij}(\Delta t) = \begin{cases} \lambda(1-w)^{\mu_+} e^{(-|\Delta t|/\tau_+)} & \text{if } \Delta t \geq \tau_d \\ -\lambda \alpha w^{\mu_-} e^{(-|\Delta t|/\tau_-)} & \text{if } \Delta t < \tau_d \end{cases} \quad (10)$$

1101 Here, λ corresponds to the learning rate, α reflects
 1102 a possible asymmetry between the scale of potentiation
 1103 and depression, τ_{\pm} control the width of the time win-
 1104 dows, while $\mu_{\pm} \in \{0,1\}$ allows to choose between dif-
 1105 ferent versions of STDP (i.e., additive, multiplicative),
 1106 (Morrison et al., 2008). Synapses are potentiated if the
 1107 synaptic event precedes the postsynaptic spike and get

1108 depressed if the synaptic event follows the postsynaptic
 1109 spike (Van Rossum et al., 2000).

1110 Associative weights w_{ij} are initialized to w_0 , and their
 1111 maximum allowed values are constrained according to
 1112 w_{max} to ensure that synaptic weights are always posi-
 1113 tive and between $[w_0, w_{max}]$ (Table S3). The resulting as-
 1114 sociative weight distributions are generally comparable
 1115 in strength to the BCPNN model weights, but to make
 1116 them match, we adjust w_{max} in conjunction with a reason-
 1117 ably small learning rate λ . To obtain a stable competitive
 1118 synaptic modification, the integral of Δw_{ij} must be nega-
 1119 tive (Song et al., 2000). To ensure this, we choose $\alpha=1.2$,
 1120 which introduces an asymmetry between the scale of po-
 1121 tentiation and depression along with a symmetric time
 1122 window resulting in a ratio of $\alpha \tau_- / \tau_+ > 1.0$ (Ren et al.,
 1123 2010). We set $\mu_{\pm}=1$ resulting in multiplicative STDP (in-
 1124 between values lead to rules which have an intermediate
 1125 dependence on the synaptic strength). Pyramidal cells re-
 1126 ceive an unspecific background noise at 420 Hz during
 1127 recall.

1128 4.2.4 Two-network architecture and connectivity

1129 The network model includes two reciprocally con-
 1130 nected networks, the Item and Context networks. For
 1131 simplicity, we assumed that item and context infor-
 1132 mation engage different modalities and cortical areas and
 1133 thus the corresponding networks are located at a substan-
 1134 tial distance (Table S2). Both networks span a regular-
 1135 spaced grid of 12 HCs (Table S2), each with a diameter
 1136 of 500 μm (Mountcastle, 1997). Our model employs dis-
 1137 tributed orthogonal representations with one active MC
 1138 per HC, approximating the exceedingly sparse neocorti-
 1139 cal activity patterns with marginal overlap. Each minicol-
 1140 umn is composed of 30 pyramidal cells with shared selec-
 1141 tivity, forming a functional (not strictly anatomical) col-
 1142 umn. In total, the 24 HCs of the model contain 7200 ex-
 1143 citatory and 480 inhibitory cells, significantly downsam-
 1144 pling the number of MC per HC (~ 100 MC per HC in
 1145 biological cortex). The high degree of recurrent connec-
 1146 tivity within MCs (Thomson et al., 2002; Yoshimura and
 1147 Callaway, 2005) and between them link coactive MCs
 1148 into larger cell assemblies (Eyal et al., 2018; Binzegger
 1149 et al., 2009; Muir et al., 2011; Stettler et al., 2002). Long-
 1150 range bidirectional inter-area connections (item-context
 1151 bindings or associative connections) are plastic (shown
 1152 in Fig. 1A only for MC1 in HC1 of the Context net-
 1153 work), binding items and contextual information (Ran-
 1154 ganath, 2010). Recurrent connectivity establishes 100 ac-
 1155 tive plastic synapses on average onto each pyramidal cell
 1156 from other pyramids with the same selectivity, due to
 1157 a sparse inter-area connectivity (cp_{PPA}) and denser local
 1158 connectivity (cp_{PP} , cp_{PPL} ; connection probabilities are
 1159 indicated in Fig. 1A only for MC1 in HC1 of the Con-
 1160 text network). The model yields biologically plausible
 1161 excitatory postsynaptic potentials (EPSPs) for connec-
 1162 tions within HCs (0.45 ± 0.13 mV), measured at resting
 1163 potential E_L (Thomson et al., 2002). Densely recurrent
 1164 non-specific monosynaptic feedback inhibition mediated
 1165 by fast spiking inhibitory cells (Kirkcaldie, 2012) imple-
 1166

1166 ments a local winner-take-all structure (Binzegger et al.,
1167 2009) amongst the functional columns. Inhibitory post-
1168 synaptic potentials (IPSPs) have an amplitude of -1.160
1169 mV (± 0.003) measured at -60 mV (Thomson et al.,
1170 2002). These bidirectional connections between basket
1171 and pyramidal cells within the local HCs are drawn with
1172 a 70% connection probability. Notably, double bouquet
1173 cells shown in Figure 1A, are not explicitly simulated,
1174 but their effect is nonetheless expressed by the BCPNN
1175 rule. A recent study based on the same basic model archi-
1176 tecture demonstrated that learned mono-synaptic inhibi-
1177 tion between competing attractors is functionally equiva-
1178 lent to the disynaptic inhibition mediated by double bou-
1179 quet and basket cells (Chrysanthidis et al., 2019). Param-
1180 eters characterising other neural and synaptic properties
1181 including BCPNN can be found in Table S1.

1182 Figure 1B shows the weight distributions of em-
1183 bedded distributed cell assemblies, representing different
1184 memories stored in the Item and Context networks. At-
1185 tractor projections can be further categorized into strong
1186 local recurrent connectivity within HCs, and slightly
1187 weaker long-range excitatory projections across HCs
1188 (Fig. 1C).

1189 4.2.5 Axonal conduction delays

1190 Conduction delays (t_{ij}) between a presynaptic neuron
1191 i and a postsynaptic neuron j are calculated based on their
1192 Euclidean distance, d , and a conduction velocity V (Eq.
1193 11). Delays are randomly drawn from a normal distribu-
1194 tion with a mean according to distance and conduction
1195 velocity, with a relative standard deviation of 30% of the
1196 mean. In addition, a minimal delay of 1.5 ms (t_{min}^{syn} , Ta-
1197 ble S2) is added to reflect synaptic delays due to effects
1198 that are not explicitly modelled, e.g. diffusion of neuro-
1199 transmitters over the synaptic cleft, dendritic branching,
1200 thickness of the cortical sheet and the spatial extent of
1201 columns. Associative inter-area projections have a ten-
1202 fold faster conduction speed than those within each net-
1203 work, reflecting axonal myelination.

$$\bar{t}_{ij} = \frac{d}{V} + t_{min}^{syn}, \quad t_{ij} \sim N(\bar{t}_{ij}, .30 \bar{t}_{ij}) \quad (11)$$

1204 4.2.6 Stimulation Protocol

1205 Noise input to pyramidal cells and fast spiking in-
1206 hibitory basket cells is generated by two independent
1207 Poisson generators with conductances of opposing signs.
1208 Pyramidal cells coding for specific items and contexts are
1209 stimulated with an additional specific excitation during
1210 encoding and cued recall (all parameters in Table S2).
1211 Item-context association encoding is preceded by a brief
1212 period of background noise excitation to avoid initializa-
1213 tion transients.

1214 4.2.7 Attractor activation detector

1215 We detect and report cue-based activation of items or
1216 contexts by utilizing an attractor activation detection al-
1217 gorithm based on EMAs of spiking activity. Pattern-wise
1218 EMAs are calculated using Equation 12, where the delta
1219 function δ denotes the spike events of a pattern-selective
1220 neural population of $n_{pop}=30$ pyramidal cells. The filter
1221 time constant $\tau=40$ ms is much larger than the sampling
1222 time interval $\Delta T=1$ ms.

$$e_0 = 0, \quad e_t = \frac{\Delta T}{\tau} e_{t-\Delta T} + \delta_t \frac{1}{\tau n_{pop}} \quad (12)$$

1223 Pattern activations are detected by a simple threshold
1224 (r_{th}) at about tenfold the baseline activity with a small
1225 caveat: To avoid premature offset detection due to syn-
1226 chrony in fast spiking activity, we only count activations
1227 as terminated if they do not cross the threshold again in
1228 the next 40 ms. Despite the complications of nested os-
1229 cillations, this method is highly robust due to the explo-
1230 sive dynamics of recurrent spiking activity for activated
1231 attractors in the network. Any attractor activation that
1232 crosses this threshold for at least 40 ms is considered a
1233 successful recall.

1234 **5 SUPPLEMENTARY MATERIAL**

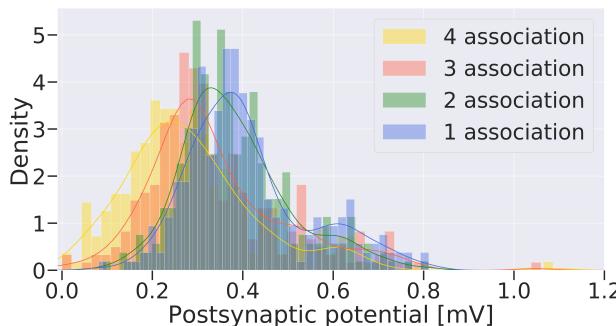


Fig. S1 Excitatory postsynaptic potentials (EPSPs) for the binding between Item and Context networks. EPSPs were recorded (at resting potential E_L) after item-context association encoding phase. We stimulate individually all the neurons in HC1 of an item which forms one, two, three or four associations and record the postsynaptic potential onto their associated context neurons. Means of the EPSP distributions show significant statistical difference ($p<0.05$ for one vs two associations; $p<0.001$ for two vs three and three vs four associations, Mann-Whitney, $N=300$).

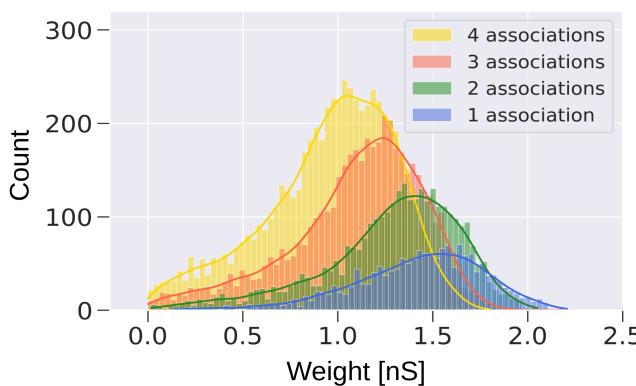


Fig. S2 Distributions of the AMPA component weights between Item and Context networks. Slower NMDA receptor weights follow a similar pattern of weakening for items which participate in multiple associations. Means of the weight distributions of one, two, three, and four associations show significant statistical difference ($p<0.001$, Mann-Whitney, $N=2000$).

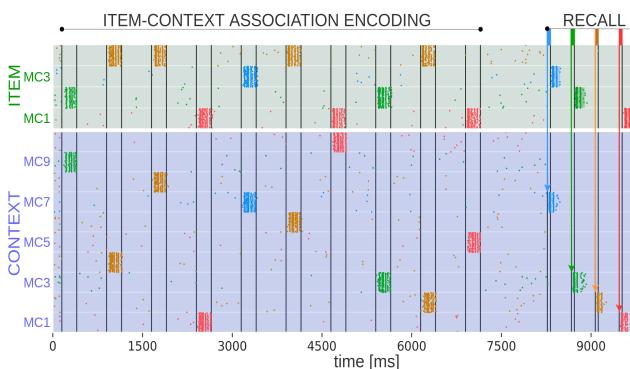


Fig. S3 Spike raster of pyramidal cells in HC1 of both the Item and Context networks in the BCPNN model. Items and their corresponding context representations are simultaneously cued in their respective networks. The testing phase occurs 1 s after the encoding and triggers activations via partial cues of contexts (50 ms cues). Repetition of items across various contexts leads to progressive item-context decoupling. Item-4 is repeated across four different contexts, and while its associated context gets activated when cued (context-B), item-4 is not retrieved.

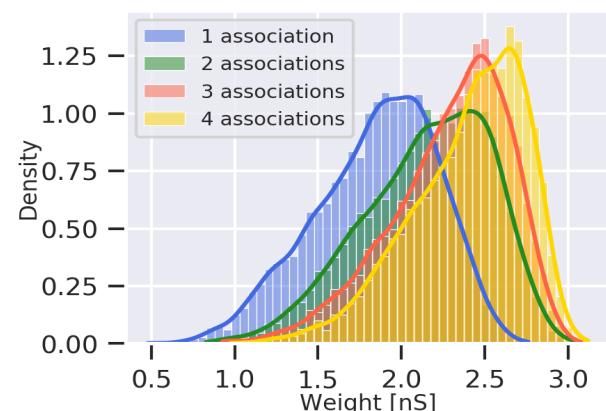


Fig. S4 Weight distribution of AMPA component weights of the Item network including synaptic augmentation. The multiplicative effect of synaptic augmentation on the consolidated Items features stronger combined synaptic strength for items with higher context variability. Slower NMDA receptor weights follow a similar pattern. Means of the weight distributions of one, two, three, and four associations show significant statistical difference ($p<0.001$, Mann-Whitney, $N=2000$).

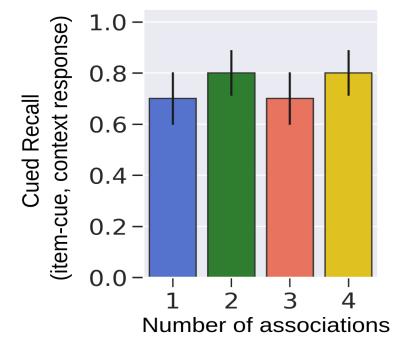


Fig. S5 Cued recall under STDP after removing synaptic augmentation. Average item-cued recall performance in the Context network (20 trials). To compensate for the removal of augmentation, we increased the stimulation rates and the synaptic gain leading to comparable elicited spiking activity. Error bars represent standard deviations of Bernoulli distributions.

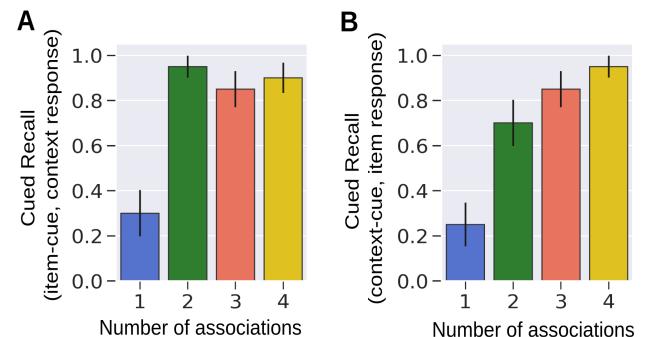


Fig. S6 Cued recall under STDP including intrinsic plasticity. **A)** Average item-cued recall performance in the Context network (20 trials). **B)** Average item-cued recall performance in the Context network. Episodic context retrieval is enhanced for high context variability predominantly because of intrinsic excitability dynamics and synaptic augmentation. We observe an opposite trend to the decontextualization effect seen in Figure 3C. Error bars represent standard deviations of Bernoulli distributions.

Table S1 Model and BCPNN parameters

Parameter	Symbol	Value	Parameter	Symbol	Value	Parameter	Symbol	Value
Adaptation current	b	86 pA	Utilization factor	U	0.2	BCPNN AMPA gain	w_{gain}^{AMPA}	0.76 nS
Adaptation decay time constant	τ_{I_w}	280 ms	Augmentation decay time constant	τ_A	5 s	BCPNN NMDA gain	w_{gain}^{NMDA}	0.07 nS
Membrane capacitance	C_m	280 pF	Depression decay time constant	τ_D	280 ms	BCPNN bias current gain	β_{gain}	40 pA
Leak reversal potential	E_L	-70.6 mV	AMPA synaptic time constant	τ^{AMPA}	5 ms	BCPNN lowest spiking rate	f_{min}	0.2 Hz
Leak conductance	g_L	14 nS	NMDA synaptic time constant	τ^{NMDA}	100 ms	BCPNN highest spiking rate	f_{max}	25 Hz
Upstroke slope factor	Δ_T	3 mV	GABA synaptic time constant	τ^{GABA}	5 ms	BCPNN lowest probability	ϵ	0.01
Spike threshold	V_t	-55 mV	AMPA reversal potential	E^{AMPA}	0 mV	BCPNN Spike event duration	t_{spike}	1 ms
Spike reset potential	V_r	-60 mV	NMDA reversal potential	E^{NMDA}	0 mV	P trace time constant	τ_p	15 s
Refractory period	τ_{ref}	5 ms	GABA reversal potential	E^{GABA}	-75 mV	Modulated plasticity	κ_{boost}	2
			Regular plasticity	κ_{normal}	1			

Table S2 Network layout, connectivity and stimulation protocol

Layout	Symbol	Value	Connectivity	Symbol	Value	Stimulation	Symbol	Value
Cortical patch size	C_{ps}	2.0 x 1.5 mm	Axonal Conduction Speed	V	0.2 m/s	Background noise PYR (encoding)	$r_{bg_encoding}^{PYR}$	650 Hz
Simulated HCs	n_{HC}	12	Myelinated axonal speed	V_{myel}	2 m/s	Background noise PYR (recall)	$r_{bg_recall}^{PYR}$	450 Hz
Simulated MCs	n_{MC}	120	Minimal synaptic delay	t_{min}^{syn}	1.5 ms	Background noise BA	r_{bg}^{BA}	75 Hz
Simulated MCs per HC	n_{MC}^{HC}	10	Hypercolumn diameter	d_{HC}	0.5 mm	Background conductance	$g_{bg}^{PYR,BA}$	± 1.5 nS
No. of items	n_{ITEM}	4 (from 10)	Distance between networks	$d_{CONTEXT}^{ITEM}$	10 mm	Stimulation duration	t_{stim}	250 ms
No. of contexts	$n_{CONTEXT}$	10 (from 10)	PYR-PYR recurrent cp	cp_{pp}	0.2	Stimulation rate	r_{stim}	500 Hz
Layer 2/3 pyramidal per MC	$n_{MC}^{PYR-L23}$	30	PYR-PYR long-range cp	cp_{ppl}	0.25	Cue stimulation length	t_{cue}	50 ms
Basket cells per MC	n_{MC}^{Basket}	2	PYR-PYR associative cp	cp_{ppa}	0.02	Cue stimulation rate	r_{cue}	400 Hz
MC grid size (Item + Context)	G_{MC}^{TOTAL}	24 x 10	PYR-BA cp, BA-PYR cp	cp_{pb}, cp_{ba}	0.7	Stimulation and cue conductance	g_{stim}	+1.5 nS
			PYR-BA cc	g_{pb}	3 nS	Interstimulus interval	T_{stim}	500 ms
			BA-PYR cc	g_{bp}	-7 nS	Attractor detection threshold	r_{th}	10 Hz

PYR, Pyramidal cell; BA, Basket cell.

cp, connection probability; cc, connection conductance.

Table S3 STDP synaptic model parameters

Parameter	Symbol	Value
Weight initialization	w_0	0 nS
AMPA maximum allowed weight	w_{max}^{AMPA}	13.5 nS
NMDA maximum allowed weight	w_{max}^{NMDA}	3.5 nS
Learning rate	λ	0.01
Asymmetry parameter	α	1.2
Weight dependence exponent, potentiation	μ_+	1
Weight dependence exponent, depression	μ_-	1
Symmetric time window	τ_{\pm}	20 ms