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Abstract 
Triple-negative breast cancer, the poorest-prognosis breast cancer subtype, lacks clinically 
approved biomarkers for patient risk stratification and treatment management. Prior literature has 
shown that interrogation of the tumor-immune microenvironment may be a promising approach 
for the discovery of methods to fill these gaps. Recently developed high-dimensional tissue 
imaging technology, such as multiplexed ion beam imaging, provide spatial context to protein 
expression in the microenvironment, allowing in-depth characterization of cellular processes. We 
demonstrate that profiling the functional proteins involved in cell-to-cell interactions in the 
microenvironment can predict recurrence and overall survival. We highlight the immunological 
relevance of the immunoregulatory proteins PD-1, PD-L1, IDO, and Lag3 by tying interactions 
involving them to recurrence and survival. Multivariate analysis reveals that our methods 
provide additional prognostic information compared to clinical variables. In this work, we 
present a computational pipeline for the examination of the tumor-immune microenvironment 
using multiplexed ion-beam imaging that produces interpretable results, and is generalizable to 
other cancer types. 

Introduction 
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is negative for estrogen 
receptor, progesterone receptor, and human epidermal growth factor receptor 2. Representing an 
estimated 10-20% of breast cancers, it is characterized by aggressive behavior, including earlier 
onset, larger tumor size, and a more advanced grade1,2. TNBC is the subtype of breast cancer 
with the poorest prognosis3, having a lower chance of survival4,5 and higher risk of recurrence, 
especially within a short timeframe6,7. The absence of common breast cancer hormonal targets 
and high heterogeneity among TNBC tumors makes treatment management difficult, creating a 
need for more advanced interrogation of cellular processes within TNBC tumors8. Currently 
administered treatments, such as checkpoint inhibitors, only provide benefit to a small proportion 
of treated patients and are associated with high cost and toxicity9. Their effectiveness is limited, 
necessitating further interrogation of cancer-cell cues, factors in the tumor microenvironment, 
and host-related influences10. Currently, physicians are unable to separate patients with low risk 
of recurrence from patients with a high risk of recurrence, making it difficult to deescalate 
treatments for those who may not need it and pursue more aggressive treatments for those who 
do11,12. To risk-stratify for overall survival, the American Joint Committee on Cancer staging 
system is the most commonly used technique in clinical practice; it is based on variables such as 
tumor size, nodal status, and the presence of distant metastasis. However, its survival estimates 
vary considerably because other prognostically relevant factors are excluded13. There is a need to 
identify additional biomarkers of TNBC to aid prognosis 14–16. Identifying predictors of 
recurrence and survival in TNBC patients would allow improved patient stratification and 
targeted treatment plans, which would lead to better outcomes and spare patients from 
unnecessary aggressive therapies17.  
 
The tumor-immune microenvironment (TIME) is a dynamic system comprising cancer cells, 
immune cells, and the surrounding extracellular matrix and vasculature18. The TIME is 
modulated by the expression and secretion of proteins that contribute to angiogenesis, immune 
suppression, and the coordination of the immune response19. Previous research has sought to 
discover the features of the TIME that are tumor-promoting or tumor-rejecting using 
transcriptomic and proteomic data20–23.  
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However, until recently, conventional histological techniques lacked the ability to measure the 
expression of a multitude of proteins at subcellular resolution while preserving spatial 
information24,25. Advancements in high-dimensional multiplexed imaging, such as multiplexed 
ion beam imaging (MIBI), have allowed for more direct interrogation of the TIME26 while 
boosting standardization and reproducibility of results27. MIBI uses secondary ion mass 
spectrometry to image antibodies tagged with isotopically pure elemental reporters28. It is 
compatible with formalin-fixed paraffin-embedded (FFPE) tissue samples, the foremost 
preservation method of solid tissue in routine clinical pathology. MIBI enables in-depth analysis 
of the TIME, measuring the expression of more than 40 proteins simultaneously while preserving 
spatial information29 and avoiding spectral overlap30 and autofluorescence31.  
 
This study builds on the work of Keren et al.25, who found structure in the composition and 
spatial organization of the TIME. TIME architecture was broadly classified as immune cold, 
mixed, or compartmentalized, based on the amount of immune infiltration into the tumor. 
Immune architecture was associated with patient survival. 
 
However, previous research did not test the association between single-cell features of the TIME 
and clinical outcomes such as recurrence/survival. Although previous work has identified macro-
level features associated with survival, there is still a need to study more granular features of the 
TIME at subcellular resolution, such as the expression patterns of individual proteins, which can 
add prognostically relevant information32, and the characteristics of cell-to-cell interactions33. 
 
In this work, we aim to uncover features of the TIME that are associated with recurrence and 
overall survival by analyzing MIBI scans of TNBC tissue25,28. The primary focus is to profile the 
proteins involved in cell-to-cell interactions and establish a link between the spatial organization 
of cells with varying expression patterns and clinical outcomes. We examine interactions 
involving functional proteins and immunoregulatory proteins in particular. As corollary aims, we 
demonstrate an association between protein co-expression patterns and recurrence/survival, 
examine proteins whose overall expression is associated with recurrence/survival, and test 
associations between immune composition and recurrence/survival. 
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Results 
 
Patient Population 
Our study examines 38 TNBC patients with no neoadjuvant treatment, a subset of the 41 patients 
examined by Keren et al.25 FFPE slides of breast tissue were taken from patients, scanned using 
MIBI, and subsequently segmented to demarcate cell boundaries.25 Patient data regarding age, 
tumor grade, stage, cancer site, and clinical outcome – recurrence and overall survival (OS) -- 
were also gathered (Table 1). We additionally gathered MIBI images of breast tissue of 8 healthy 
patients, a subset of the patients examined by Risom et al.34 
 

Characteristic  All 
Patients, no.  38 
Age, mean (SD)  54 (15) 
CS Tumor Size, mean (SD)  38 (39) 
Tumor Grade, no. (%) 1 1 (3%) 
 2 5 (13%) 
 3 29 (76%) 
 4 2 (5%) 
 Unknown 1 (3%) 
TNM Classification, no. (%) 1 4 (11%) 
 2 1 (3%) 
 2A 7 (19%) 
 2B 3 (8%) 
 3 1 (3%) 
 3A 1 (3%) 
 3B 1 (3%) 
 3C 2 (5%) 
 Unknown 17 (45%) 
Cells per image, mean (SD)  5006 (1527) 

Table 1. Patient cohort characteristics. SD refers to standard deviation. No. refers to the number, or count. 
 
Dataset 
MIBI scans produce images of protein expression from FFPE tissue, where each image has 44 
channels; each channel conveys the expression of a certain marker on the tissue sample (Figure 
1a). Cellular segmentations for both TNBC and healthy patients’ images were provided by Keren 
et al. and Risom et al., who utilized DeepCell, a deep learning technique for identifying 
individual cells from MIBI data25,34,35. Cell type assignment for TNBC patients’ images was also 
performed by Keren et al. through a hierarchical methodology (Figure 1b) (Methods). 
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Figure 1. Overview of the computational pipeline. a Drawing of the layered structure of MIBI scans. Each MIBI 
image has dimensions of 2048x2048 pixels with 44 channels, where each channel represents expression for each 
protein; i.e., each pixel in the image at each channel conveys the concentration of that protein at that location. b 
Color-mapped image of cell segmentation performed on a MIBI image. The cell segmentation map has one channel 
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with dimensions of 2048x2048. Each cell has its own cell type represented in colors referenced in the color bar on 
the right. From these cell segmentation maps and the original MIBI images, we extract cell counts, measure protein 
expression, and quantify co-expression. c Voronoi tessellation diagram of the cell segmentation map. Each polygon 
corresponds to a cell in the original segmentation, such that each point in the area of the polygon is closer to the 
centroid of the corresponding cell than any other cell. Each polygon borders a finite number of other polygons, 
simulating adjacencies between cells. d Using Voronoi diagrams, we analyze interactions between neighboring 
cells. e An interaction matrix is computed for each patient, with the entry at row A and column B representing the 
number of times a cell positive for protein A was adjacent to a cell positive for protein B (top). The top half triangle 
of the matrix, split across the diagonal, is selected, as shown with the purple rectangles. These rectangles are then 
flattened to form one feature vector, i.e., interaction features, for each patient. f Interaction features are used to 
cluster patients (top), and the two patient clusters are compared with regard to recurrence/survival using Kaplan-
Meier plots and the log-rank test (bottom). 
 
Immune composition of cells is not associated with recurrence or survival. 
We examined whether the prevalence of certain cell populations in the TIME was associated 
with recurrence and survival. We measured the number of cells of each cell type in each patient 
and represented that number as a proportion of the total number of cells in that patient’s sample. 
We then performed univariate Cox regression and performed a two-sided t-test of the variable 
coefficient to determine whether each cell type’s prevalence was related to recurrence and 
overall survival. 
 
After performing Benjamini-Hochberg correction to account for multiple comparisons36, there 
were no cell types whose coefficients were significant for either recurrence (Table 2a) or overall 
survival (Table 2b). 
 

Cell Type Coefficient Hazard Ratio Coefficient P BH-Corrected FDR 

Monocyte/Neutrophil -0.372 0.689 0.093 0.647 
CD8+ T -0.072 0.93 0.154 0.647 
Macrophage -0.053 0.949 0.182 0.647 
Mesenchyme 0.037 1.038 0.183 0.647 
CD4+ T -0.07 0.933 0.244 0.647 
Tumor 0.011 1.011 0.286 0.647 
Natural Killer -0.867 0.42 0.329 0.647 
Dendritic/Monocyte -0.118 0.888 0.345 0.647 
Endothelial 0.103 1.109 0.46 0.767 
B -0.013 0.988 0.68 0.899 
Neutrophil -0.046 0.955 0.682 0.899 
Dendritic 0.022 1.022 0.739 0.899 
CD3+ T 0.039 1.04 0.779 0.899 
Other 0.004 1.004 0.942 0.971 
Regulatory T -0.009 0.991 0.971 0.971 
     

Table 2a. Immune composition Cox regression results for recurrence. There is no association between immune 
composition and recurrence in the cohort; no cell types had significant coefficients after correction. 

 
 

Cell Type Coefficient Hazard Ratio Coefficient P BH-Corrected FDR 

Dendritic/Monocyte -0.292 0.747 0.076 0.435 
Tumor 0.018 1.018 0.100 0.435 
Monocyte/Neutrophil -0.331 0.718 0.121 0.435 
Other -0.159 0.853 0.124 0.435 
Macrophage -0.066 0.936 0.145 0.435 
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Mesenchyme -0.047 0.954 0.308 0.647 
CD3+ T -0.169 0.845 0.315 0.647 
Dendritic 0.048 1.05 0.41 0.647 
Neutrophil -0.119 0.888 0.429 0.647 
Natural Killer 0.357 1.43 0.431 0.647 
Endothelial 0.102 1.107 0.505 0.689 
CD4+ T -0.022 0.978 0.628 0.692 
B -0.015 0.985 0.644 0.692 
Regulatory T -0.129 0.879 0.646 0.692 
CD8+ T 0.006 1.006 0.88 0.880 

Table 2b. Immune composition Cox regression results for survival. There is no association between immune 
composition and survival in the cohort; no cell types had significant coefficients after correction. 
 
Single-cell expression levels of functional proteins are not associated with recurrence or 
survival. 
We examined whether the expression of functional proteins in the cells of the tissue samples was 
associated with recurrence and survival (Figure 2a). We calculated the per-pixel expression 
levels of each protein in each patient. The histograms of expression for several proteins are 
shown in Figure 2b, and the histograms for all proteins are shown in Supplementary Figure 1. 
For this analysis, we included only functional proteins, which stand in contrast to proteins used 
solely for lineage assignment; their expression is modulated according to the functional state of 
the cell. Proteins whose expression had been implicated by previous literature as having an 
important role in tumor progression were designated “functional,” whereas those with less 
relevant roles were deemed “lineage.”  We counted 18 markers in the “functional” category and 
18 in the “lineage” category (Supplementary Table 1). 
 
There were no functional proteins whose coefficients had significant p-values after Benjamini-
Hochberg correction for either recurrence (Supplementary Table 2a) or overall survival 
(Supplementary Table 2b). Keratin6 (coefficient=0.025, HR=1.025, p=0.034) and HLA-DR 
(coefficient=-0.018, HR=0.982, p=0.045) were significantly associated with survival before 
correction. We placed Keratin6 and HLA-DR in a multivariate model to assess their relative 
prognostic relevance; Keratin6 remained significant (p=0.04), whereas HLA-DR did not 
(p=0.06). Expression of Keratin6 has been associated with poor survival outcome in previous 
work37, which our finding loosely corroborates. CD45RO (coefficient=-0.019, HR=0.981, 
p=0.051) was nearly significantly associated with recurrence before correction. CD45RO has 
previously been discussed in the literature for its role in anti-tumor immunity, especially with 
regards to its expression in memory T cells38,39. Our findings loosely corroborate this, as 
CD45RO expression was associated with favorable recurrence outcomes. 
 
Within this cohort, the expression levels of functional proteins did not hold reliable prognostic 
relevance. As such, we decided to move away from macro-level interrogation of the TIME, 
opting to add spatial context to our analysis by quantifying protein co-expression and cell-to-cell 
interactions. 
 
Co-expression of functional proteins in patients’ cells is associated with recurrence and 
survival. 
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We sought to develop a computational pipeline to test the association between localized 
coordination of immune activity and recurrence/survival. We calculated the number of times that 
pairs of functional proteins were co-expressed across all cells of a patient, summarizing this 
information in a “co-expression matrix.” (Figure 2c) 
 
The co-expression matrices provide information regarding the phenotypes of the cells present in 
each patient, placing the expression of proteins in a single-cell context. We used the co-
expression information as features to describe each patient. Patients were grouped by 
hierarchical clustering, and the tree was cut to form two patient clusters (Figure 2d). Our choice 
to select two clusters in this analysis, as well as all hierarchical clustering analyses, was 
motivated by silhouette score analysis40, which showed that division into two clusters would 
maximize inter-cluster dissimilarity (Supplementary Table 3). The recurrence/survival outcomes 
of the two patient clusters were compared using two-sided log-rank tests. They diverged 
according to recurrence (χ2(1, N=38) = 3.75, p=0.053), and survival (χ2(1, N=38) = 2.80, 
p=0.094) (Figure 2e). We also tested patient stratification when three clusters were chosen 
(Supplementary Figure 2). The log-rank test p-value for recurrence was 0.093 and 0.222 for 
survival. 
 
We assessed the relative importance of individual co-expression features using random forest 
variable importance. The four most important co-expression features were CD45RO + 
H3K27me3 (score=0.822), CD45RO + H3K9ac (score=0.767), CD45RO + HLA Class 1 
(score=0.646), and HLA-DR + IDO (score=0.604). These results show that calculating the co-
expression of proteins, namely the combinations listed above, can aid patient stratification. 
CD45RO’s co-expression with HLA Class 1, an antigen used to promote cytotoxic T cell 
activation, is aligned with existing literature on melanoma41, and may evidence coordination 
between memory T cells and cytotoxic T cells in cancer.   
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Figure 2. Quantification and analysis of protein expression. a Drawing showing how protein expression is 
calculated. The black squares each represent one pixel in the image. Expression levels are measured for each pixel in
the cell and then summed across all pixels in the cell. The resulting number is divided by the size of the cell (in 
pixels), resulting in the average per-pixel expression level of the cell for each protein. b Histograms showing the 
distributions of log per-pixel expression levels for several relevant proteins. Per-pixel expression in the background 

 in 
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channel (the positivity threshold) is shown with the vertical dotted line. c Heatmaps showing the cube root of co-
expression of pairs of functional proteins in two different patients. The color bar also shows the cube root, so color 
value 16 indicates 163 instances of co-expression. d Clustermap shows flattened features for all 38 patients. Two 
clusters were chosen from the dendrogram. The red line shows the way that the two clusters were separated. e 
Kaplan-Meier curves comparing clusters formed from co-expression features for recurrence (left) and overall 
survival (right). Two-sided log-rank test p-values are shown in the plot legend. 
 
Cell-to-cell interactions contain prognostically relevant information. 
We examined cell-to-cell interactions by creating Voronoi tessellation diagrams out of the 
segmented MIBI images (Figure 1c). Voronoi diagrams have been used previously to define 
spatial organization and cellular morphology31,42. Each cell’s Voronoi polygon is created from 
the location of its centroid; its polygon will border some number of polygons from other cells43. 
These borders can be used to model cell-to-cell interactions (Figure 1d); cells whose polygons 
share a border can be considered adjacent (Figure 3a). Due to the geometry of the Voronoi 
tessellation algorithm, polygons will only border their immediate neighbors, which restricts the 
area of influence of a certain cell to the cells that are closest nearby. 
 
We created an interaction matrix for each patient to describe the characteristics of the patient’s 
cell-to-cell interactions by counting the number of times that specific pairs of proteins were 
involved in interactions. The entry in the matrix at row A and column B represents the number of 
times a cell positive for protein A was adjacent to a cell positive for protein B (Figure 3b). 
 
Data for interactions involving functional proteins were used as features for hierarchical 
clustering, resulting in two clusters, with 17 patients in Cluster 1 and 21 patients in Cluster 2 
(Figure 3c). The Kaplan-Meier curves comparing the clinical outcomes of the two patient 
clusters diverged according to recurrence (χ2(1, N=38) = 3.39, p=0.065) and diverged 
significantly according to survival (χ2(1, N=38) = 4.55, p=0.033) (Figure 3d). 
 
Our method of quantifying cell-to-cell interactions reveals that the spatial proximity of functional 
proteins contains valuable prognostic information; the proteins involved in interactions can be 
used as features to cluster patients into groups with significantly different outcomes. 
 
By contrast, quantifying interactions involving lineage proteins does not hold prognostic 
relevance. Hierarchical clustering on features of lineage protein interactions did not result in 
clusters that differed in recurrence and survival outcome significantly (Supplementary Figure 3). 
 
A drawing comparing the clusters formed from clustering on functional protein interaction 
features to the morphology distinction performed by Keren et al. is shown in Supplementary 
Figure 4. 
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Figure 3. Analysis of cell-to-cell interactions. a Drawing shows how interactions are analyzed to find which 
combinations of proteins are involved in the interaction. The interaction is characterized by the adjacency of the two 
Voronoi polygons. Each cell involved in the interaction has a unique protein expression pattern, resulting in 
complex interactions. b Heatmaps showing the cube root of the number of interactions between pairs of functional 
proteins in two patients. The entry at row A and column B in the heatmap represents the cube root of the number of 
times that a cell positive for protein A was adjacent to a cell positive for protein B in that patient’s MIBI image. 
Pairs who had zero interactions are excluded from the plot. c Clustermap of patients’ functional protein interaction 
features. d Kaplan-Meier curves of recurrence (left) and overall survival (right) comparing clusters formed from 
interaction features. Two-sided log-rank test p-values are shown in the plot legend.  
 

 

o 
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Interactions involving immunoregulatory proteins predict recurrence and survival. 
We further examined a subset of functional proteins, the immunoregulatory proteins PD-1, PD-
L1, IDO, and Lag3, which are in consideration as immunotherapy targets9,44–48. Prior research 
did not answer whether interactions involving these four proteins are associated with recurrence 
and survival, information that would be valuable in understanding their roles in TNBC 
progression. 
 
To answer this question, we quantified spatial interactions between cells expressing 
immunoregulatory proteins, excluding all other proteins from the analysis (Figure 4a). We 
reasoned that interactions between cells positive for these proteins were associated with 
recurrence or survival, the result would point to the prognostic relevance of these proteins. 
Similar to previous analysis, the counts of interactions were used as features to cluster patients 
(Figure 4b). The Kaplan-Meier curves of the clusters formed from this analysis diverged 
significantly according to recurrence (χ2(1, N=38) = 7.60, p=0.0058) (Figure 4c). We also tested 
patient stratification when three clusters were chosen (Supplementary Figure 5). The three 
clusters diverged significantly with regards to recurrence (χ2(1, N=38) = 5.40, p=0.020), 
demonstrating that the efficacy of risk-stratification was robust to the number of clusters chosen. 
 
Ablation analyses reveal prognostically relevant groups of features. 
We further examined the cell-to-cell interaction data by performing multiple ablation analyses. 
 
First, we examined individual functional proteins one-at-a-time, including only the interactions 
that involved this protein as features (Figure 4d). For example, when examining the interactions 
involving PD-1, we constructed feature vectors to include PD-1/Lag3 interactions, PD-1/Ki67 
interactions, PD-1/PD-L1 interactions, and so on. There were several proteins whose interactions 
were significantly associated with recurrence: IDO (p=0.008), HLA Class 1 (p=0.011), 
H3K27me3 (p=0.011), and Beta Catenin (p=0.023). Phospho-S6’s interactions were significantly 
associated with survival (p=0.041). 
 
We also examined “homotypic” interactions – interactions involving the same protein. 
Homotypic interactions are found in the diagonal of the interaction matrix – they represent the 
number of times in a patient that a cell positive for protein A was adjacent to a cell positive for 
protein A (Figure 4e). This information communicates the spatial proximity of cells with similar 
expression patterns. We used all of the homotypic interactions of functional proteins (the entire 
diagonal) as features for each patient and repeated the clustering analysis. The Kaplan-Meier 
curves diverged according to recurrence, χ2(1, N=38) = 3.43, p=0.064, and diverged significantly 
according to survival, χ2(1, N=38) = 4.90, p=0.027, indicating that the frequency of homotypic 
interactions is relevant information for survival prognosis. 
 
We calculated the importance of interaction features by fitting a random forest model with 
interactions as predictors and cluster assignments as the response variable. Feature importance 
was scored using the mean decrease in Gini Index. The highest-importance feature was the Beta 
Catenin + CD45RO interaction feature (score=0.794), followed by CD45RO + HLA-DR 
(score=0.738), PD-1 + CD45RO (score=0.716), PD-1 + H3k27me3 (score=0.709), Lag3 + 
CD45RO (score=0.706), IDO + PD-1 (score=0.694), and Lag3 + PD-1 (score=0.647). CD45RO 
was present in 4 of the 7 most important interactions, PD-1 was present in 4, and Lag3 was 
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present in 2. These results point to interactions involving these proteins as being particularly 
useful for patient stratification; they contributed the most to clustering, and the resulting clusters 
differed significantly in terms of recurrence and survival.  
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Figure 4. Analysis of subsets of interactions. a Heatmaps of the interaction matrices of immunoregulatory proteins 
(IDO, Lag3, PD-L1, PD-1) for two patients, whose outcomes are shown above the heatmaps. b Clustermap of 
patient’s immunoregulatory protein interaction features. The place at which the dendrogram was split is indicated 
with a red line. c Kaplan-Meier curves for recurrence (left) and survival (right) comparing clusters formed from 
immunoregulatory protein interactions. Two-sided log-rank test p-values are shown in the plot legends. d Diagram 
showing how the interactions of individual proteins are evaluated through ablation analysis one-at-a-time. The only 
interactions included as features are the ones that involve a specific protein. The diagram gives the example of 
CD63. e Diagram showing the set of homotypic interactions. As shown by the red boxes, only the entries in the 
diagonal are included as features. 
 
Extracted features differ between healthy samples and TNBC samples. 
To confirm the validity of the features we extracted, we tested whether they differed between 
healthy tissue samples and TNBC tissue samples. The healthy tissue used in our analysis came 
from a different study, which profiled a different set of markers. There were 6 proteins common 
between the healthy images and TNBC images: FoxP3, IDO, Ki67, PD-1, PD-L1, and phospho-
S6. 
 
We calculated expression levels for the healthy tissue and compared them against the TNBC 
tissue using a two-sided Wilcoxon rank-sum test. Five out of the six proteins were significantly 
different across tissue: FoxP3 (W=2.06, p=0.040), Ki67 (W=3.06, p=0.022), PD-1 (W=3.622, 
p=0.0003), PD-L1 (W=2.42, p=0.020), and phospho-S6 (W=4.00, p=6.35e-05). Bar plots 
comparing healthy and TNBC tissue for each protein are shown in Supplementary Figure 6a. 
 
We also validated our method of profiling cell-to-cell interactions on the healthy tissue by 
subjecting it to our computational pipeline and testing whether the cell-to-cell interaction 
features of healthy tissue would be different from TNBC tissue. We reduced the interaction 
features for healthy and TNBC patients to two dimensions using UMAP (Uniform Manifold 
Approximation and Projection)49 and plotted the reduced features for visualization. The resulting 
scatterplot showed separation between healthy and TNBC tissue (Supplementary Figure 6b). 
 
These results suggest that our computational pipeline succeeded in extracting tumor-specific 
single-cell spatial features that are prognostic for recurrence and overall survival. Additionally, 
they demonstrate that our computational pipeline is applicable to a variety of MIBI datasets, as 
we applied the same methods to the two distinct datasets. 
 
Multivariate analysis reveals features with independent prognostic relevance for 
recurrence and survival. 
To assess the prognostic importance of the features we identified, we fitted three multivariate 
Cox regression models, each of which included one of the cluster variables, two clinical 
variables (grade and age), and the immune architecture distinction described by Keren et al. We 
obtained coefficients and hazard ratios to determine whether the cluster variables added 
prognostic information. 
 
Both of the clusters formed from cell-to-cell interaction features contained additional prognostic 
information for at least one clinical outcome. The immunoregulatory proteins interaction cluster 
contained independent prognostic information for recurrence (coefficient=-1.32, HR=0.27, 
p=0.02). The functional proteins interaction cluster contained independent prognostic 
information for survival (coefficient=-1.24, HR=0.29, p=0.04). These results suggest that our 
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computational pipeline was able to extract additional prognostically relevant features and use 
them to risk-stratify patients. 
 
Next, we assessed the relative prognostic relevance between each of the cluster variables. To do 
this, we fit random forests with six predictors: the three cluster variables, two clinical variables 
(tumor grade and age), and the immune architecture distinction defined by Keren et al. We then 
measured variable importance by calculating SHAP (Shapley Additive Explanations) values50 
and overall goodness-of-fit using Harrell’s c-index51. 
 
The random forest analysis corroborated our results from the multivariate Cox regression 
analysis. The immunoregulatory protein interactions cluster was the most relevant feature for 
recurrence (Figure 5a), and the functional protein interactions cluster was the most relevant 
feature for survival (Figure 5b). These features were more important than tumor grade, age, and 
tumor architecture. The c-index for the recurrence model was 0.718, and the c-index for the 
survival model was 0.731, indicating a good fit. 

Figure 5. Random forest variable importance. a Bar plot showing the mean SHAP value for each variable in a 
random forest predicting recurrence. SHAP (Shapley Additive Explanations) values are a measure of variable 
importance that quantify how the expected model prediction would change when conditioning on a certain variable. 
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They are more aligned with human intuition than other feature attribution methods. b Bar plot showing the mean 
SHAP value for each variable in a random forest predicting survival. 

Discussion 
TNBC is the most aggressive breast cancer subtype, with a higher risk of recurrence and lower 
probability of survival. It lacks clinically approved biomarkers for patient risk stratification, 
making treatment planning and management difficult. Previous research involving TNBC and 
multiplexed imaging did not analyze the prognostic relevance of protein co-expression patterns 
and cell-to-cell interactions. In this study, we aimed to examine the association between these 
features and recurrence/survival in TNBC patients by constructing a computational pipeline for 
the analysis of MIBI. 
 
Our contributions are threefold. First, we identify possible predictors of recurrence and overall 
survival in TNBC, demonstrating that the information contained within cell-to-cell interactions 
and protein co-expression patterns can aid patient stratification and therapeutic design, as proven 
through evaluation of patient groups, statistical tests, and predictive modeling. Second, we 
demonstrate that the immune composition of the TIME does not always hold prognostic 
relevance, and should therefore be examined with caution. Third, we present a computational 
pipeline for the interrogation of the TIME that produces interpretable and conclusive results, 
making it potentially viable in a clinical setting.  
 
Our primary focus was to examine cell-to-cell interactions in the TIME for the purpose of patient 
risk stratification and treatment management. Our findings show that the type and number of 
cell-to-cell interactions involving functional proteins quantified by our pipeline were associated 
with both recurrence and survival in our cohort, and could possibly serve as a tool for prognosis. 
The two most important interaction pairs were CD45RO + Beta Catenin and CD45RO + HLA-
DR, a finding that corroborates underlying biology. CD45RO marks memory T cells, which have 
been shown to mediate anti-tumor immunity38,39. Beta Catenin is expressed on tumor cells 
primarily52,53, so its interaction with CD45RO evidences the anti-tumor actions of memory T 
cells. HLA-DR is expressed on antigen-presenting cells54, so its interaction with CD45RO+ cells 
evidences coordination between different immune cells to suppress tumor growth. The biology 
behind these interactions demonstrates that computational analysis of cell-to-cell interactions can 
elucidate immunological mechanisms playing a role in patients’ tumors. The biological 
significance of the proteins involved in these interactions could be further investigated through 
biological analysis of animals or clinical trials. Further, we found that “homotypic” interactions – 
interactions involving the same protein – hold predictive power. This finding indicates a 
coordinated immune response characterized by the localized enrichment of functional proteins.  
 
Multivariate analysis revealed that the interactions of functional proteins contained independent 
prognostic information for survival, even when compared to clinical variables like tumor grade, 
age, and the architecture distinction determined by Keren et al., pointing to the potential efficacy 
of this technique for patient stratification and treatment management of TNBC. We also profiled 
the cell-to-cell interactions of healthy tissue. The interaction features of the healthy tissue were 
distinct from the interaction features of TNBC tissue in our cohort, indicating that profiling cell-
to-cell interactions may also be able to convey information regarding the pathological state of 
tissue. However, further research with a larger sample size is necessary to confirm this. 
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We further analyzed four immunoregulatory proteins – IDO, Lag3, PD-1, and PD-L1 – which 
are in consideration as immunotherapy targets9,44–48. We found that the expression profiles of 
these proteins were prognostically relevant, suggesting that these proteins can play a role in 
modulating tumor progression. A host of literature has described the importance of these proteins 
in TIME processes9,32,44,55, but only a small subset of such literature examines them in the 
context of paired cellular interactions. Interestingly, the individual expression levels of these 
proteins were not prognostically relevant; after Benjamini-Hochberg correction, none of the 
proteins had expression levels significantly associated with recurrence or survival. However, the 
cluster variable formed from their interactions was highly predictive of recurrence, as shown by 
multivariate analysis. Profiling the cell-to-cell interactions involving immunoregulatory proteins 
revealed independent prognostic information when compared to tumor grade, age, and the 
architecture distinction determined by Keren et al. 
 
Our methods differ from the previous analysis of these data in several ways. Keren et al. 
calculated interaction matrices by defining a distance of 39 micrometers to establish adjacent 
cells25; however, the features within these interaction matrices did not result in patient clusters 
that differed significantly with respect to clinical outcome. This may suggest that using a set 
distance for adjacency is of insufficient spatial resolution to differentiate microenvironments. 
Our analysis also used a much lower threshold for cell protein positivity. This lower threshold 
may have improved the detection of important interactions. Voronoi diagrams and Delaunay 
triangulation have been used previously to define and examine cellular neighborhoods in 
colorectal cancer31,56. In contrast, we use Voronoi diagrams to examine protein expression in 
pairwise cellular interactions, rather than larger neighborhoods. We then use these pairwise 
cellular interactions to explain higher levels of abstraction, building interaction matrices to 
summarize patients’ TIME overall. 
 
We found that the co-expression profile of functional proteins in patients’ cells is associated with 
recurrence and survival. The four most important co-expression pairs were CD45RO + 
H3K27me3, CD45RO + H3K9ac, CD45RO + HLA Class 1, and HLA-DR + IDO. These results 
point to highly specific cellular phenotypes, a trademark of a complex TIME25,57,58. Our 
computational pipeline presents an efficient, interpretable way to identify co-expression patterns 
and use them to risk-stratify patients. 
 
Our methodology allowed for analysis of the cell types present in the TIME as a whole, 
providing a macro-level view of immune coordination. Our findings indicate that caution should 
be exercised when using the immune composition as a biomarker in clinical settings. After 
Benjamini-Hochberg adjustment, there were no cell types with significant prognostic value. This 
does not corroborate existing literature regarding the prognostic relevance of certain cell types, 
including the monocyte/neutrophil cell type59, the dendritic cell/monocyte cell type60, natural 
killer cells61,62, CD8+ T cells27,63,64, macrophages65, B cells66, CD4+ T cells67,68, and CD3+ T 
cells69.  
 
The subcellular resolution achieved by MIBI allowed us to quantify the expression of individual 
molecules on a single-cell basis. After Benjamini-Hochberg correction, there were no proteins 
significantly associated with either recurrence or survival. Keratin6 and HLA-DR were 
associated with survival before adjustment, and Keratin6 remained significantly associated with 
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survival when placed in a multivariate model with HLA-DR. This aligns with some existing 
literature. CD45RO was almost significantly associated with recurrence before adjustment, but 
its prognostic relevance was more clearly highlighted through its cell-to-cell interactions and co-
expression patterns. This suggests that adding spatial context to the TIME can reveal otherwise 
hidden prognostically relevant information, a potential benefit of our developed computational 
pipeline for MIBI analysis. 
 
A limitation of our work is that our results are derived from a sample of 38 TNBC patients that 
were treated at Stanford hospital from 2002 to 2015 – further work is needed to validate these 
results on a larger cohort of patients. Although it was known that the patients had not undergone 
neoadjuvant treatment, further data regarding treatments pursued was not available; future 
research is necessary to examine associations across treatment types. In addition, this study was 
retrospective and performed with patients at a single institution. Our cell type classifications 
were found computationally, derived only from the expression of molecules that were a part of 
our chosen assay – future work should repeat this analysis using other biologically relevant 
molecules.  
 
Nonetheless, this study presents a computational pipeline for the robust interrogation of multiple 
features of the TIME. We demonstrate the potential for cell-to-cell interactions and protein co-
expression to improve prognosis and patient stratification. We found several statistically 
significant results within a limited cohort, suggesting that they may have large effect sizes and 
merit further exploration. Our methods produce interpretable results, which may make them 
beneficial in therapeutic design70. Furthermore, they can be applied to other cancer types, as they 
are generalizable to any MIBI scan. 

 

Methods 
 
Patient Population and Dataset 
Our study examined 38 TNBC patients who were treated at Stanford Hospital from 2002-2015, a 
subset of the cohort examined by Keren et al.25 None of the 38 patients had undergone 
neoadjuvant treatment. Although the original cohort contained 41 TNBC patients, 3 of the 
patients were unusable for our analysis. Patients 22 and 38 lacked recurrence outcomes, and 
Patient 30’s images were corrupted. These patients had no special type, with estrogen receptor 
and progesterone receptor positivity less than 1% and HER2 unamplified. 1mm cores were taken 
from each patient and H&E stained. All samples were then stained with an antibody mix and 
scanned using MIBI-TOF. A computational pipeline converted the output of MIBI-TOF into 
images. 
 
The dataset included two separate sets of 2048 x 2048 pixel images, representing a region of 
8002 square micrometers. The first set of images are 44-channel TIFFs that represent protein 
expression levels, where each patient has one TIFF. Each channel in the TIFF corresponds to one 
of the 44 molecules profiled in the study. Of the 44 molecules, 36 were biological 
macromolecules, such as double-stranded DNA or IDO, and 8 were elemental reporters. Each 
pixel in the image has a value representing the expression of the protein in that location. The 
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second image set contained 38 grayscale segmentations of cells in the patient’s sample. Patient 
data regarding age, tumor grade, stage, and recurrence and survival outcomes were also gathered. 
 
The cellular segmentation and cell lineage clustering were performed by Keren et al.25 To 
perform nuclear segmentation, the authors utilized DeepCell, a deep learning-based method for 
segmentation of MIBI data35. The model was trained using manual segmentations of patients 1 
and 2 and run on the images of all patients. Cell boundaries were defined as a 3-pixel radial 
expansion around the nuclei. Cells were clustered hierarchically. First, they were clustered into 
“Immune” and “non-immune” using the expression levels of CD45, FoxP3, CD4, CD8, CD3, 
CD20, CD16, CD68, MPO, HLA-DR, Pan-Keratin, Keratin17, Keratin6, p53, Beta catenin, and 
EGFR. Non-immune cells were clustered into Epithelial, Mesenchyme, Endothelial, and 
Unidentified using Vimentin, SMA, CD31, Beta-catenin, EGFR, Keratin16, Keratin6, and Pan-
Keratin. Immune cells were further clustered into 12 groups (Figure 1b) using CD4, CD16, 
CD56, CD209, CD11c, CD68, CD8, CD3, CD20, HLA-DR, CD11b, MPO, and FoxP3. 
 
We additionally gathered 8 MIBI images of breast tissue of healthy patients. These MIBI images 
were originally collected for a different study, and they profiled a different set of markers. Six 
proteins overlapped between the TNBC samples and healthy samples: FoxP3, IDO, Ki67, PD-1, 
PD-L1, and phospho-S6. 
 
The cellular segmentation of MIBI images of healthy patients was performed by Risom et al.34 
using DeepCell. Two distinct segmentations were performed. The first applied a three-pixel 
radial expansion and a stringent threshold for splitting cells. The second applied a one-pixel 
radial expansion and a lenient threshold. A post-processing step gave preference to the lenient 
threshold when the two segmentations were combined. 
 
The authors complied with all ethical regulations involving human clinical data. Informed 
consent was obtained for all participants by previous studies. The study protocol was approved 
by the Stanford University Institutional Review Board. 
 
Analysis of Cell Prevalence 
We examined whether the cellular composition of the TIME was associated with recurrence and 
survival. We quantified the number of cells of each cell type in each patient. To isolate specific 
cell types at a time, we created binary masks of each grayscale value to isolate each cell type. 
Then, we found the number of connected components in each mask, which provided the number 
of cells of each cell type. After noticing a large variation in the total number of cells per patient, 
we divided each patient’s cell type count by the total number of cells in their TIME to control for 
this lurking variable. Univariate Cox regression was then performed for each cell type to assess 
its association with recurrence and survival. Regression coefficients were examined using two-
sided t-tests. P-values were adjusted using the Benjamini-Hochberg method36.  
 
Single-Cell Protein Expression 
We examined whether the expression levels of functional proteins within patients’ TIME were 
associated with recurrence and survival. For this analysis, we analyzed functional proteins, 
which modulate the activity of the cells in the TIME. These proteins stand in contrast to proteins 
used solely for lineage assignment; their expression is related to the functional state of the cell.  
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We labeled connected components and created a binary mask of each component to isolate the 
space taken up by each cell. We then applied this mask to the MIBI protein expression images, 
summing the value in each channel of the TIFF for each pixel in the mask. This created a 44-
length vector of protein expression per cell. We realized that per-cell expression levels are 
dependent on cell size, so we divided the 44-length expression vector by the size (in pixels) of 
the cell. This left a 44-length vector representing average per-pixel protein expression for a 
certain cell. 
 
We calculated protein positivity thresholds from the expression levels of the image background, 
which lacks cells and therefore can act as a negative control. We calculated total protein 
expression in all background pixels in all patients and divided these values by the total number of 
background pixels across all patients (~67,000,000 pixels). We used each protein’s threshold 
value to determine whether a cell was positive for a certain protein. Then, we counted the 
number of cells in each patient that were positive for each protein and divided the number by the 
total number of cells in the patient. The result was the proportion of cells in the patient that were 
positive for this protein. For example, 100% of a patient’s cells would be positive for DNA, but 
only 30% might be positive for PD-1. Univariate Cox regression was used to determine the 
association between protein expression proportions and clinical outcomes. Regression 
coefficients were examined using two-sided t-tests. P-values were adjusted using the Benjamini-
Hochberg method. 
 
Functional Protein Co-expression 
The co-expression of functional proteins in a single cell reveals functional status and immune 
coordination. We assessed the association between co-expression of functional proteins and 
recurrence and survival. We had previously measured single-cell protein expression and 
determined a threshold to designate cells as “positive” for each protein. We defined co-
expression as an instance in which an individual cell is positive for a pair of proteins. For 
example, if a particular cell is positive for IDO, Lag3, and PD-1, it would have 3 instances of co-
expression: IDO/Lag3, IDO/PD-1, and Lag3/PD-1. We constructed an 18x18 co-expression 
matrix for each patient to summarize the number of cells in the patient that co-expressed each 
pair of proteins. Because these matrices were symmetrical (a co-expression of IDO/Lag3 is the 
same as a co-expression of Lag3/IDO), we divided the matrix in two across the diagonal and 
flattened the top half to create a feature vector for each patient. To control for lurking variables, 
we standard scaled features across patients. We then performed hierarchical clustering to 
segment patients according to these features. 
  
Silhouette analysis40 revealed that choosing two clusters would lead to the optimal segmentation, 
so we cut the dendrogram into two distinct clusters and compared the two groups using a two-
sided log-rank test. Then, to assess the importance of individual co-expression features, we fit a 
random forest with all of the co-expression pairs as predictors and the cluster assignment as the 
response. We assessed variable importance using a mean decrease in the Gini index. 
 
Voronoi Tessellation 
Analyzing cell-to-cell interactions requires a method of defining cell adjacencies. We used 
Voronoi tessellation diagrams to model cellular adjacencies within the TIME. Voronoi 
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tessellation divides a planar space into a number of regions such that each point in the plane has 
its own region in the tessellation43. The sides of each Voronoi polygon are constructed to bisect 
two input points. Therefore, each line segment in the Voronoi tessellation represents the borders 
between two input points. Voronoi diagrams have been applied to single-cell imaging technology 
in the past, specifically for visualizing the spatial organization of colorectal cancer cells31,42. Due 
to the geometry of the Voronoi tessellation algorithm, polygons will only border their immediate 
neighbors. 
 
We labeled connected components from the cell segmentation images to find each cell’s 
centroid, which was then used to create Voronoi diagrams for each centroid. Therefore, every 
cell in the original cell segmentation images has a corresponding Voronoi diagram. We 
considered cells with bordering Voronoi regions to be adjacent, and therefore interacting. This 
created a reliable foundation for upstream analysis. 
 
Cell-to-cell Interaction Analysis 
We used the borders created by Voronoi diagrams to iterate over all cell adjacencies in each 
MIBI image. Each adjacency represented an individual interaction between two cells. We 
constructed two lists: List 1 contained the names of the proteins that Cell 1 was positive for, and 
List 2 contained the names of the proteins that Cell 2 was positive for. We took the Cartesian 
product of the two lists to find all of the combinations of proteins present in this interaction. For 
example, if Cell 1 was positive for PD-L1 and Lag3, and Cell 2 was positive for PD-1 and IDO, 
then we would count the following: PD-L1 + PD-1, PD-L1 + IDO, Lag3 + PD-1, and Lag3 + 
IDO. These pairs would be tallied in the overall interaction matrix for each patient, in which the 
value at row A and column B represents the number of times a cell positive for protein A was 
adjacent to a cell positive for protein B. For this analysis, we only counted interactions between 
functional proteins, excluding proteins used for lineage assignment. 
 
We selected the top half of the symmetric matrix and flattened it to create feature vectors for 
each patient. Hierarchical clustering was performed and the dendrogram was cut to produce two 
clusters based on silhouette score analysis. These two clusters were compared using Kaplan-
Meier curves, a two-sided log-rank test, and Cox regression. To assess the importance of 
individual interactions, we fit a random forest with all interactions as predictors and the cluster 
assignment as the response. We measured variable importance using the mean decrease in the 
Gini index. 
 
Healthy Tissue Analysis 
We applied our computational pipeline to a set of 8 MIBI images of healthy tissue to validate our 
methods. We examined 6 proteins: FoxP3, IDO, Ki67, PD-1, PD-L1, and phospho-S6. We 
calculated the expression levels of the proteins in an identical fashion to the previous analysis of 
the TNBC images. We performed a two-sided Wilcoxon rank-sum test to compare expression 
levels between TNBC tissue and healthy tissue.  
 
We also profiled cell-to-cell interactions in the healthy tissue in an identical manner to previous 
analysis. After obtaining interaction features, we performed dimensionality reduction using 
Uniform Manifold Approximation and Projection (UMAP)49. The resulting reduced features 
were compared to UMAP-reduced features of TNBC images. 
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Multivariate Analysis 
To assess whether the features identified by our computational pipeline contained independent 
prognostic information, we performed multivariate Cox regression. We fit three Cox 
Proportional Hazard models, each of which contained one of the three cluster variables identified 
by our study (protein co-expression, functional protein interactions, immunoregulatory protein 
interactions), two clinical variables (tumor grade and age), and the immune architecture 
distinction determined by Keren et al. We found the hazard ratio of each cluster variable and 
hypothesis tested the coefficient of each cluster variable to determine whether the variables 
contained additional prognostic information. 
 
We also fit random forests to measure relative variable importance. We included all six variables 
in the random forests and calculated SHAP (Shapley Additive Explanations)50 values to get 
stable estimates of variable importance. SHAP values quantify the change in model prediction 
that would result from conditioning on a certain feature. They have been shown to be more 
aligned with human intuition regarding feature importance and attribution. We measured overall 
goodness-of-fit using Harrell’s c-index. 
 
Statistical Analysis 
Primary statistical analyses were performed using Python (v3.7.3, Python Software Foundation, 
https://www.python.org/) with the lifelines (v0.24.0), scipy (v1.4.1), seaborn (v0.10.1), and 
pysurvival (v0.1.2) packages. 
 
Pseudocode explaining the major steps of pipeline is shown in Supplementary Figure 7. 
 

Data Availability 
MIBI images and other raw data for TNBC patients can be found at https://mibi-
share.ionpath.com/. The link comes with an easy-to-use interface that allows for easy 
examination of the data upon registration. MIBI images for healthy patients will soon be made 
available on a Human Tumor Atlas Network public repository. The data produced by 
intermediary steps in the computational pipeline can be found at github.com/aalokpatwa/rasp-
mibi/ in the intermediate_data/ folder. 
 

Code Availability 
The computational pipeline used to produce the findings in this study can be found at 
github.com/aalokpatwa/rasp-mibi/blob/main/rasp_mibi_pipeline.ipynb. The pipeline is included 
in a Jupyter notebook with the output produced, as well as in separate .py files with instructions 
included. 
 
Pseudocode describing the developed computational pipeline, including individual algorithms 
and techniques used, is shown in Supplementary Figure 7. 
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