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Abstract

Triple-negative breast cancer, the poorest-prognosis breast cancer subtype, lacks clinically
approved biomarkers for patient risk stratification and treatment management. Prior literature has
shown that interrogation of the tumor-immune microenvironment may be a promising approach
for the discovery of methods to fill these gaps. Recently devel oped high-dimensional tissue
imaging technology, such as multiplexed ion beam imaging, provide spatial context to protein
expression in the microenvironment, allowing in-depth characterization of cellular processes. We
demonstrate that profiling the functional proteinsinvolved in cell-to-cell interactionsin the
microenvironment can predict recurrence and overall survival. We highlight the immunol ogical
relevance of the immunoregulatory proteins PD-1, PD-L1, IDO, and Lag3 by tying interactions
involving them to recurrence and survival. Multivariate analysis reveal s that our methods
provide additional prognostic information compared to clinical variables. In this work, we
present a computational pipeline for the examination of the tumor-immune microenvironment
using multiplexed ion-beam imaging that produces interpretable results, and is generalizable to
other cancer types.

I ntroduction

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is negative for estrogen
receptor, progesterone receptor, and human epidermal growth factor receptor 2. Representing an
estimated 10-20% of breast cancers, it is characterized by aggressive behavior, including earlier
onset, larger tumor size, and a more advanced grade*?. TNBC is the subtype of breast cancer
with the poorest prognosis®, having alower chance of survival*® and higher risk of recurrence,
especially within a short timeframe®’. The absence of common breast cancer hormonal targets
and high heterogeneity among TNBC tumors makes treatment management difficult, creating a
need for more advanced interrogation of cellular processes within TNBC tumors®. Currently
administered treatments, such as checkpoint inhibitors, only provide benefit to a small proportion
of treated patients and are associated with high cost and toxicity®. Their effectivenessis limited,
necessitating further interrogation of cancer-cell cues, factors in the tumor microenvironment,
and host-related influences™. Currently, physicians are unable to separate patients with low risk
of recurrence from patients with a high risk of recurrence, making it difficult to deescalate
treatments for those who may not need it and pursue more aggressive treatments for those who
do™*2. To risk-stratify for overall survival, the American Joint Committee on Cancer staging
system is the most commonly used technique in clinical practice; it is based on variables such as
tumor size, nodal status, and the presence of distant metastasis. However, its survival estimates
vary considerably because other prognostically relevant factors are excluded™. Thereis aneed to
identify additional biomarkers of TNBC to aid prognosis ***°. Identifying predictors of
recurrence and survival in TNBC patients would allow improved patient stratification and
targeted treatment plans, which would lead to better outcomes and spare patients from
unnecessary aggressive therapies'’.

The tumor-immune microenvironment (TIME) is a dynamic system comprising cancer cells,
immune cells, and the surrounding extracel lular matrix and vasculature™®. The TIME is
modulated by the expression and secretion of proteinsthat contribute to angiogenesis, immune
suppression, and the coordination of the immune response™. Previous research has sought to
discover the features of the TIME that are tumor-promoting or tumor-rejecting using
transcriptomic and proteomic data® .
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However, until recently, conventional histological techniques lacked the ability to measure the
expression of a multitude of proteins at subcellular resolution while preserving spatial
information®*%°. Advancements in high-dimensional multiplexed imaging, such as multiplexed
ion beam imaging (M1BI), have allowed for more direct interrogation of the TIME? while
boosting standardization and reproducibility of results®’. MBI uses secondary ion mass
spectrometry to image antibodies tagged with isotopically pure elemental reporters®. It is
compatible with formalin-fixed paraffin-embedded (FFPE) tissue samples, the foremost
preservation method of solid tissue in routine clinical pathology. MIBI enables in-depth analysis
of the TIME, measuring the expression of more than 40 proteins simultaneously while preserving
spatial information® and avoiding spectral overlap® and autofluorescence™.

This study builds on the work of Keren et al.%, who found structure in the composition and
gpatial organization of the TIME. TIME architecture was broadly classified asimmune cold,
mixed, or compartmentalized, based on the amount of immune infiltration into the tumor.
Immune architecture was associated with patient survival.

However, previous research did not test the association between single-cell features of the TIME
and clinical outcomes such as recurrence/survival. Although previous work has identified macro-
level features associated with survival, thereis still a need to study more granular features of the
TIME at subcellular resolution, such as the expression patterns of individual proteins, which can
add prognostically relevant information®, and the characteristics of cell-to-cell interactions™.

In thiswork, we aim to uncover features of the TIME that are associated with recurrence and
overall survival by analyzing MIBI scans of TNBC tissue®®?, The primary focusisto profile the
proteinsinvolved in cell-to-cell interactions and establish a link between the spatial organization
of cells with varying expression patterns and clinical outcomes. We examine interactions
involving functional proteins and immunoregulatory proteinsin particular. As corollary aims, we
demonstrate an association between protein co-expression patterns and recurrence/survival,
examine proteins whose overall expression is associated with recurrence/survival, and test
associations between immune composition and recurrence/survival.
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Results

Patient Population

Our study examines 38 TNBC patients with no neoadjuvant treatment, a subset of the 41 patients
examined by Keren et al.* FFPE slides of breast tissue were taken from patients, scanned using
MIBI, and subsequently segmented to demarcate cell boundaries.®® Patient data regarding age,
tumor grade, stage, cancer site, and clinical outcome — recurrence and overall survival (OS) --
were also gathered (Table 1). We additionally gathered MIBI images of breast tissue of 8 healthy
patients, a subset of the patients examined by Risom et al.**

Characteristic All
Patients, no. 38
Age, mean (SD) 54 (15)
CS Tumor Size, mean (SD) 38(39)
Tumor Grade, no. (%) 1 1(3%)

2 5 (13%)
3 29 (76%)
4 2 (5%)
Unknown 1(3%)
TNM Classification, no. (%) 1 4 (11%)
2 1(3%)
2A 7 (19%)
2B 3(8%)
3 1(3%)
3A 1(3%)
3B 1(3%)
3C 2 (5%)
Unknown 17 (45%)
Célls per image, mean (SD) 5006 (1527)

Table 1. Patient cohort characteristics. SD refers to standard deviation. No. refers to the number, or count.

Dataset

MIBI scans produce images of protein expression from FFPE tissue, where each image has 44
channels; each channel conveys the expression of a certain marker on the tissue sample (Figure
1a). Cellular segmentations for both TNBC and healthy patients’ images were provided by Keren
et al. and Risom et al., who utilized DeepCell, a deep learning technique for identifying
individual cells from MIBI data®™>***. Cell type assignment for TNBC patients’ images was also
performed by Keren et a. through a hierarchical methodology (Figure 1b) (Methods).
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Figure 1. Overview of the computational pipeline. a Drawing of the layered structure of MIBI scans. Each MIBI
image has dimensions of 2048x2048 pixels with 44 channels, where each channel represents expression for each
protein; i.e., each pixel intheimage at each channel conveys the concentration of that protein at that location. b
Color-mapped image of cell segmentation performed on a MIBI image. The cell segmentation map has one channel
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with dimensions of 2048x2048. Each cell hasits own cell type represented in colors referenced in the color bar on
the right. From these cell segmentation maps and the original MIBI images, we extract cell counts, measure protein
expression, and quantify co-expression. ¢ Voronoi tessellation diagram of the cell segmentation map. Each polygon
corresponds to acell in the original segmentation, such that each point in the area of the polygon is closer to the
centroid of the corresponding cell than any other cell. Each polygon borders afinite number of other polygons,
simulating adjacencies between cells. d Using Voronoi diagrams, we analyze interactions between neighboring
cells. e An interaction matrix is computed for each patient, with the entry at row A and column B representing the
number of times acell positive for protein A was adjacent to a cell positive for protein B (top). Thetop half triangle
of the matrix, split acrossthe diagonal, is selected, as shown with the purple rectangles. These rectangles are then
flattened to form one feature vector, i.e., interaction features, for each patient. f Interaction features are used to
cluster patients (top), and the two patient clusters are compared with regard to recurrence/survival using Kaplan-
Meier plots and the log-rank test (bottom).

I mmune composition of cellsis not associated with recurrenceor survival.

We examined whether the prevalence of certain cell populationsin the TIM E was associated
with recurrence and survival. We measured the number of cells of each cell type in each patient
and represented that number as a proportion of the total number of cellsin that patient’s sample.
We then performed univariate Cox regression and performed a two-sided t-test of the variable
coefficient to determine whether each cell type's prevalence was related to recurrence and
overall survival.

After performing Benjamini-Hochberg correction to account for multiple comparisons™®, there
were no cell types whose coefficients were significant for either recurrence (Table 2a) or overall
survival (Table 2b).

Cél Type Coefficient Hazard Ratio Coefficient P BH-Corrected FDR
M onocyte/Neutr ophil -0.372 0.689 0.093 0.647
CD8+T -0.072 0.93 0.154 0.647
M acrophage -0.053 0.949 0.182 0.647
M esenchyme 0.037 1.038 0.183 0.647
CD4+T -0.07 0.933 0.244 0.647
Tumor 0.011 1.011 0.286 0.647
Natural Killer -0.867 0.42 0.329 0.647
Dendritic/M onocyte -0.118 0.888 0.345 0.647
Endothdial 0.103 1.109 0.46 0.767
B -0.013 0.988 0.68 0.899
Neutr ophil -0.046 0.955 0.682 0.899
Dendritic 0.022 1.022 0.739 0.899
CD3+T 0.039 1.04 0.779 0.899
Other 0.004 1.004 0.942 0.971
Regulatory T -0.009 0.991 0.971 0.971

Table 2a. Immune composition Cox regression resultsfor recurrence. Thereis no association between immune
composition and recurrence in the cohort; no cell types had significant coefficients after correction.

Cell Type Coefficient Hazard Ratio Coefficient P BH-Corrected FDR
Dendritic/Monocyte -0.292 0.747 0.076 0.435
Tumor 0.018 1.018 0.100 0.435
M onocyte/Neutr ophil -0.331 0.718 0.121 0.435
Other -0.159 0.853 0.124 0.435
M acrophage -0.066 0.936 0.145 0.435
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M esenchyme -0.047 0.954 0.308 0.647
CD3+T -0.169 0.845 0.315 0.647
Dendritic 0.048 1.05 0.41 0.647
Neutr ophil -0.119 0.888 0.429 0.647
Natural Killer 0.357 1.43 0.431 0.647
Endothelial 0.102 1.107 0.505 0.689
CD4+T -0.022 0.978 0.628 0.692
B -0.015 0.985 0.644 0.692
Regulatory T -0.129 0.879 0.646 0.692
CD8+T 0.006 1.006 0.88 0.880

Table 2b. Immune composition Cox regression resultsfor survival. There is no association between immune
composition and survival in the cohort; no cell types had significant coefficients after correction.

Single-cell expression levels of functional proteins are not associated with recurrence or
survival.

We examined whether the expression of functional proteinsin the cells of the tissue samples was
associated with recurrence and survival (Figure 2a). We calculated the per-pixel expression
levels of each protein in each patient. The histograms of expression for several proteins are
shown in Figure 2b, and the histograms for all proteins are shown in Supplementary Figure 1.
For thisanalysis, we included only functional proteins, which stand in contrast to proteins used
solely for lineage assignment; their expression is modulated according to the functional state of
the cell. Proteins whose expression had been implicated by previous literature as having an
important role in tumor progression were designated “functional,” whereas those with less
relevant roles were deemed “lineage.” We counted 18 markers in the “functional” category and
18 inthe*“lineage” category (Supplementary Table 1).

There were no functional proteins whose coefficients had significant p-values after Benjamini-
Hochberg correction for either recurrence (Supplementary Table 2a) or overall survival
(Supplementary Table 2b). Keratin6 (coefficient=0.025, HR=1.025, p=0.034) and HLA-DR
(coefficient=-0.018, HR=0.982, p=0.045) were significantly associated with survival before
correction. We placed Keratiné and HLA-DR in a multivariate model to assesstheir relative
prognostic relevance; Kerating remained significant (p=0.04), whereas HLA-DR did not
(p=0.06). Expression of Keratin6 has been associated with poor survival outcome in previous
work®, which our finding loosely corroborates. CD45RO (coefficient=-0.019, HR=0.981,
p=0.051) was nearly significantly associated with recurrence before correction. CD45R0O has
previously been discussed in the literature for its role in anti-tumor immunity, especially with
regards to its expression in memory T cells*®*. Our findings |oosely corroborate this, as
CD45R0 expression was associated with favorable recurrence outcomes.

Within this cohort, the expression levels of functional proteins did not hold reliable prognostic
relevance. As such, we decided to move away from macro-level interrogation of the TIME,
opting to add spatial context to our analysis by quantifying protein co-expression and cell-to-cell
interactions.

Co-expression of functional proteinsin patients cellsisassociated with recurrence and
survival.
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We sought to devel op a computationa pipeline to test the association between localized
coordination of immune activity and recurrence/survival. We calculated the number of times that
pairs of functional proteins were co-expressed across all cells of a patient, summarizing this
information in a “co-expression matrix.” (Figure 2c)

The co-expression matrices provide information regarding the phenotypes of the cells present in
each patient, placing the expression of proteinsin asingle-cell context. We used the co-
expression information as features to describe each patient. Patients were grouped by
hierarchical clustering, and the tree was cut to form two patient clusters (Figure 2d). Our choice
to select two clustersin thisanalysis, aswell as all hierarchical clustering analyses, was
motivated by silhouette score analysis™, which showed that division into two clusters would
maximize inter-cluster dissmilarity (Supplementary Table 3). The recurrence/survival outcomes
of the two patient clusters were compared using two-sided log-rank tests. They diverged
according to recurrence (x*(1, N=38) = 3.75, p=0.053), and survival (x*(1, N=38) = 2.80,
p=0.094) (Figure 2€). We also tested patient stratification when three clusters were chosen
(Supplementary Figure 2). The log-rank test p-value for recurrence was 0.093 and 0.222 for
survival.

We assessed the relative importance of individual co-expression features using random forest
variable importance. The four most important co-expression features were CD45R0O +
H3K27me3 (score=0.822), CD45R0 + H3K9ac (score=0.767), CD45R0O + HLA Class 1
(score=0.646), and HLA-DR + IDO (score=0.604). These results show that calculating the co-
expression of proteins, namely the combinations listed above, can aid patient stratification.
CD45RO0O'’ s co-expression with HLA Class 1, an antigen used to promote cytotoxic T cell
activation, is aligned with existing literature on melanoma**, and may evidence coordination
between memory T cells and cytotoxic T cellsin cancer.
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Figure 2. Quantification and analysis of protein expression. a Drawing showing how protein expression is
calculated. The black squares each represent one pixel in the image. Expression levels are measured for each pixel in
the cell and then summed across al pixelsin the cell. The resulting number is divided by the size of the cell (in
pixels), resulting in the average per-pixel expression level of the cell for each protein. b Histograms showing the
distributions of log per-pixel expression levels for several relevant proteins. Per-pixel expression in the background
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channel (the positivity threshold) is shown with the vertical dotted line. ¢ Heatmaps showing the cube root of co-
expression of pairs of functional proteinsin two different patients. The color bar also shows the cube root, so color
value 16 indicates 16° instances of co-expression. d Clustermap shows flattened features for all 38 patients. Two
clusters were chosen from the dendrogram. The red line shows the way that the two clusters were separated. e
Kaplan-Meier curves comparing clusters formed from co-expression features for recurrence (left) and overall
survival (right). Two-sided log-rank test p-values are shown in the plot legend.

Céell-to-cdll interactions contain prognostically relevant infor mation.

We examined cell-to-cell interactions by creating Voronoi tessellation diagrams out of the
segmented MIBI images (Figure 1c). Voronoi diagrams have been used previously to define
spatial organization and cellular morphology®-*%. Each cell’s Voronoi polygon is created from
the location of its centroid:; its polygon will border some number of polygons from other cells®™,
These borders can be used to model cell-to-cell interactions (Figure 1d); cells whose polygons
share aborder can be considered adjacent (Figure 3a). Due to the geometry of the VVoronoi
tessellation algorithm, polygons will only border their immediate neighbors, which restricts the
area of influence of acertain cell to the cells that are closest nearby.

We created an interaction matrix for each patient to describe the characteristics of the patient’s
cell-to-cell interactions by counting the number of times that specific pairs of proteins were
involved in interactions. The entry in the matrix at row A and column B represents the number of
times acell positive for protein A was adjacent to a cell positive for protein B (Figure 3b).

Datafor interactions involving functional proteins were used as features for hierarchical
clustering, resulting in two clusters, with 17 patientsin Cluster 1 and 21 patientsin Cluster 2
(Figure 3c). The Kaplan-Meier curves comparing the clinical outcomes of the two patient
clusters diverged according to recurrence (x(1, N=38) = 3.39, p=0.065) and diverged
significantly according to survival (x*(1, N=38) = 4.55, p=0.033) (Figure 3d).

Our method of quantifying cell-to-cell interactions reveals that the spatial proximity of functional
proteins contains valuable prognostic information; the proteinsinvolved in interactions can be
used as features to cluster patients into groups with significantly different outcomes.

By contrast, quantifying interactions involving lineage proteins does not hold prognostic
relevance. Hierarchical clustering on features of lineage protein interactions did not result in
clusters that differed in recurrence and survival outcome significantly (Supplementary Figure 3).

A drawing comparing the clusters formed from clustering on functional protein interaction

features to the morphology distinction performed by Keren et al. is shown in Supplementary
Figure 4.
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Figure 3. Analysis of cell-to-cell interactions. a Drawing shows how interactions are analyzed to find which
combinations of proteins are involved in the interaction. The interaction is characterized by the adjacency of the two
Voronoi polygons. Each cell involved in the interaction has a unique protein expression pattern, resulting in
complex interactions. b Heatmaps showing the cube root of the number of interactions between pairs of functional
proteins in two patients. The entry at row A and column B in the heatmap represents the cube root of the number of
times that a cell positive for protein A was adjacent to a cell positive for protein B in that patient’s MIBI image.
Pairs who had zero interactions are excluded from the plot. ¢ Clustermap of patients’ functional protein interaction
features. d Kaplan-Meier curves of recurrence (left) and overall survival (right) comparing clusters formed from
interaction features. Two-sided log-rank test p-values are shown in the plot legend.
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I nter actions involving immunor egulatory proteins predict recurrence and survival.

We further examined a subset of functional proteins, the immunoregulatory proteins PD-1, PD-
L1, IDO, and Lag3, which arein consideration asimmunotherapy targets™**. Prior research
did not answer whether interactions involving these four proteins are associated with recurrence
and survival, information that would be valuable in understanding their rolesin TNBC
progression.

To answer this question, we quantified spatial interactions between cells expressing
immunoregulatory proteins, excluding all other proteins from the analysis (Figure 4a). We
reasoned that interactions between cells positive for these proteins were associated with
recurrence or survival, the result would point to the prognostic relevance of these proteins.
Similar to previous analysis, the counts of interactions were used as features to cluster patients
(Figure 4b). The Kaplan-Meier curves of the clusters formed from this analysis diverged
significantly according to recurrence (x*(1, N=38) = 7.60, p=0.0058) (Figure 4c). We also tested
patient stratification when three clusters were chosen (Supplementary Figure 5). The three
clusters diverged significantly with regards to recurrence (*(1, N=38) = 5.40, p=0.020),
demonstrating that the efficacy of risk-stratification was robust to the number of clusters chosen.

Ablation analysesreveal prognostically relevant groups of features.
We further examined the cell-to-cell interaction data by performing multiple ablation analyses.

First, we examined individual functional proteins one-at-a-time, including only the interactions
that involved this protein as features (Figure 4d). For example, when examining the interactions
involving PD-1, we constructed feature vectors to include PD-1/Lag3 interactions, PD-1/Ki67
interactions, PD-1/PD-L1 interactions, and so on. There were several proteins whose interactions
were significantly associated with recurrence: IDO (p=0.008), HLA Class 1 (p=0.011),
H3K27me3 (p=0.011), and Beta Catenin (p=0.023). Phospho-S6' s interactions were significantly
associated with survival (p=0.041).

We also examined “homotypic” interactions — interactions involving the same protein.
Homotypic interactions are found in the diagonal of the interaction matrix — they represent the
number of timesin a patient that a cell positive for protein A was adjacent to a cell positive for
protein A (Figure 4e). Thisinformation communicates the spatial proximity of cells with similar
expression patterns. We used all of the homotypic interactions of functional proteins (the entire
diagonal) as features for each patient and repeated the clustering analysis. The Kaplan-Meier
curves diverged according to recurrence, y*(1, N=38) = 3.43, p=0.064, and diverged significantly
according to survival, Xz(l, N=38) = 4.90, p=0.027, indicating that the frequency of homotypic
interactionsis relevant information for survival prognosis.

We calculated the importance of interaction features by fitting arandom forest model with
interactions as predictors and cluster assignments as the response variable. Feature importance
was scored using the mean decrease in Gini Index. The highest-importance feature was the Beta
Catenin + CD45RO interaction feature (score=0.794), followed by CD45RO + HLA-DR
(score=0.738), PD-1 + CD45R0 (score=0.716), PD-1 + H3k27me3 (score=0.709), Lag3 +
CD45RO0 (score=0.706), IDO + PD-1 (score=0.694), and Lag3 + PD-1 (score=0.647). CD45RO
was present in 4 of the 7 most important interactions, PD-1 was present in 4, and Lag3 was
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present in 2. These results point to interactions involving these proteins as being particularly
useful for patient stratification; they contributed the most to clustering, and the resulting clusters
differed significantly in terms of recurrence and survival.
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Figure 4. Analysis of subsets of interactions. a Heatmaps of the interaction matrices of immunoregulatory proteins
(IDO, Lag3, PD-L1, PD-1) for two patients, whose outcomes are shown above the heatmaps. b Clustermap of
patient’s immunoregulatory protein interaction features. The place at which the dendrogram was split is indicated
with ared line. ¢ Kaplan-Meier curves for recurrence (left) and survival (right) comparing clusters formed from
immunoregulatory protein interactions. Two-sided log-rank test p-values are shown in the plot legends. d Diagram
showing how the interactions of individual proteins are evaluated through ablation analysis one-at-a-time. The only
interactions included as features are the ones that involve a specific protein. The diagram gives the example of
CD63. e Diagram showing the set of homotypic interactions. As shown by the red boxes, only the entries in the
diagonal are included as features.

Extracted features differ between healthy samples and TNBC samples.

To confirm the validity of the features we extracted, we tested whether they differed between
healthy tissue samples and TNBC tissue samples. The healthy tissue used in our analysis came
from a different study, which profiled a different set of markers. There were 6 proteins common
between the healthy images and TNBC images: FoxP3, IDO, Ki67, PD-1, PD-L1, and phospho-
6.

We calculated expression levels for the healthy tissue and compared them against the TNBC
tissue using atwo-sided Wilcoxon rank-sum test. Five out of the six proteins were significantly
different across tissue: FoxP3 (W=2.06, p=0.040), Ki67 (W=3.06, p=0.022), PD-1 (W=3.622,
p=0.0003), PD-L1 (W=2.42, p=0.020), and phospho-S6 (W=4.00, p=6.35e-05). Bar plots
comparing healthy and TNBC tissue for each protein are shown in Supplementary Figure 6a.

We also validated our method of profiling cell-to-cell interactions on the healthy tissue by
subjecting it to our computational pipeline and testing whether the cell-to-cell interaction
features of healthy tissue would be different from TNBC tissue. We reduced the interaction
features for healthy and TNBC patients to two dimensions using UMAP (Uniform Manifold
Approximation and Projection)™ and plotted the reduced features for visualization. The resulting
scatterplot showed separation between healthy and TNBC tissue (Supplementary Figure 6b).

These results suggest that our computational pipeline succeeded in extracting tumor-specific
single-cell spatial features that are prognostic for recurrence and overall survival. Additionally,
they demonstrate that our computational pipeline is applicable to a variety of MIBI datasets, as
we applied the same methods to the two distinct datasets.

Multivariate analysisrevealsfeatureswith independent prognostic relevance for
recurrence and survival.

To assess the prognostic importance of the features we identified, we fitted three multivariate
Cox regression models, each of which included one of the cluster variables, two clinical
variables (grade and age), and the immune architecture distinction described by Keren et al. We
obtained coefficients and hazard ratios to determine whether the cluster variables added
prognostic information.

Both of the clusters formed from cell-to-cell interaction features contained additional prognostic
information for at least one clinical outcome. The immunoregulatory proteins interaction cluster
contained independent prognostic information for recurrence (coefficient=-1.32, HR=0.27,
p=0.02). The functional proteinsinteraction cluster contained independent prognostic
information for survival (coefficient=-1.24, HR=0.29, p=0.04). These results suggest that our
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computational pipeline was able to extract additional prognostically relevant features and use
them to risk-stratify patients.

Next, we assessed the relative prognostic relevance between each of the cluster variables. To do
this, we fit random forests with six predictors: the three cluster variables, two clinical variables
(tumor grade and age), and the immune architecture distinction defined by Keren et al. We then
measured variable importance by calculating SHAP (Shapley Additive Explanations) values™
and overall goodness-of-fit using Harrell’s c-index™".

The random forest analysis corroborated our results from the multivariate Cox regression
analysis. The immunoregulatory protein interactions cluster was the most relevant feature for
recurrence (Figure 5a), and the functional protein interactions cluster was the most relevant
feature for survival (Figure 5b). These features were more important than tumor grade, age, and
tumor architecture. The c-index for the recurrence model was 0.718, and the c-index for the
survival model was 0.731, indicating a good fit.
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Figure 5. Random forest variable importance. a Bar plot showing the mean SHAP value for each variable in a
random forest predicting recurrence. SHAP (Shapley Additive Explanations) values are ameasure of variable
importance that quantify how the expected model prediction would change when conditioning on a certain variable.
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They are more aligned with human intuition than other feature attribution methods. b Bar plot showing the mean
SHAP value for each variable in arandom forest predicting survival.

Discussion

TNBC isthe most aggressive breast cancer subtype, with a higher risk of recurrence and lower
probability of survival. It lacks clinically approved biomarkers for patient risk stratification,
making treatment planning and management difficult. Previous research involving TNBC and
multiplexed imaging did not analyze the prognostic relevance of protein co-expression patterns
and cell-to-cell interactions. In this study, we aimed to examine the association between these
features and recurrence/survival in TNBC patients by constructing a computational pipeline for
the analysis of MIBI.

Our contributions are threefold. First, we identify possible predictors of recurrence and overall
survival in TNBC, demonstrating that the information contained within cell-to-cell interactions
and protein co-expression patterns can aid patient stratification and therapeutic design, as proven
through evaluation of patient groups, statistical tests, and predictive modeling. Second, we
demonstrate that the immune composition of the TIME does not always hold prognostic
relevance, and should therefore be examined with caution. Third, we present a computational
pipeline for the interrogation of the TIME that produces interpretable and conclusive results,
making it potentially viablein aclinical setting.

Our primary focus was to examine cell-to-cell interactionsin the TIME for the purpose of patient
risk stratification and treatment management. Our findings show that the type and number of
cell-to-cell interactionsinvolving functional proteins quantified by our pipeline were associated
with both recurrence and survival in our cohort, and could possibly serve as atool for prognosis.
The two most important interaction pairs were CD45R0 + Beta Catenin and CD45RO + HLA-
DR, afinding that corroborates underlying biology. CD45R0O marks memory T cdlls, which have
been shown to mediate anti-tumor immunity®**. Beta Catenin is expressed on tumor cells
primarily®*3, so its interaction with CD45RO evidences the anti-tumor actions of memory T
cells. HLA-DR is expressed on antigen-presenting cells™, so its interaction with CD45RO+ cells
evidences coordination between different immune cells to suppress tumor growth. The biology
behind these interactions demonstrates that computational analysis of cell-to-cell interactions can
elucidate immunological mechanisms playing arole in patients’ tumors. The biological
significance of the proteinsinvolved in these interactions could be further investigated through
biologica analysis of animals or clinical trials. Further, we found that “homotypic” interactions —
interactionsinvolving the same protein — hold predictive power. Thisfinding indicates a
coordinated immune response characterized by the localized enrichment of functional proteins.

Multivariate analysis revealed that the interactions of functional proteins contained independent
prognostic information for survival, even when compared to clinical variables like tumor grade,
age, and the architecture distinction determined by Keren et al., pointing to the potential efficacy
of thistechnique for patient stratification and treatment management of TNBC. We also profiled
the cell-to-cell interactions of healthy tissue. The interaction features of the healthy tissue were
distinct from the interaction features of TNBC tissue in our cohort, indicating that profiling cell-
to-cell interactions may also be able to convey information regarding the pathological state of
tissue. However, further research with alarger sample size is necessary to confirm this.
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We further analyzed four immunoregulatory proteins— IDO, Lag3, PD-1, and PD-L1 —which
arein consideration asimmunotherapy targets”**8. We found that the expression profiles of
these proteins were prognostically relevant, suggesting that these proteins can play arolein
modulating tumor progression. A host of literature has described the importance of these proteins
in TIME processes”***** but only a small subset of such literature examines them in the
context of paired cdllular interactions. Interestingly, the individual expression levels of these
proteins were not prognostically relevant; after Benjamini-Hochberg correction, none of the
proteins had expression levels significantly associated with recurrence or survival. However, the
cluster variable formed from their interactions was highly predictive of recurrence, as shown by
multivariate analysis. Profiling the cell-to-cell interactions involving immunoregulatory proteins
revealed independent prognostic information when compared to tumor grade, age, and the
architecture distinction determined by Keren et al.

Our methods differ from the previous analysis of these datain several ways. Keren et al.
calculated interaction matrices by defining a distance of 39 micrometers to establish adjacent
cells?; however, the features within these interaction matrices did not result in patient clusters
that differed significantly with respect to clinical outcome. This may suggest that using a set
distance for adjacency is of insufficient spatial resolution to differentiate microenvironments.
Our analysis also used a much lower threshold for cell protein positivity. This lower threshold
may have improved the detection of important interactions. Voronoi diagrams and Delaunay
triangulation have been used previously to define and examine cellular neighborhoods in
colorectal cancer®>*. In contrast, we use VVoronoi diagrams to examine protein expression in
pairwise cellular interactions, rather than larger neighborhoods. We then use these pairwise
cellular interactions to explain higher levels of abstraction, building interaction matrices to
summarize patients TIME overall.

We found that the co-expression profile of functional proteinsin patients cellsis associated with
recurrence and survival. The four most important co-expression pairs were CD45R0 +
H3K27me3, CD45R0 + H3K9ac, CD45R0O + HLA Class 1, and HLA-DR + IDO. These results
point to highly specific cellular phenotypes, a trademark of acomplex TIME®>"*%, Our
computational pipeline presents an efficient, interpretable way to identify co-expression patterns
and use them to risk-stratify patients.

Our methodology allowed for analysis of the cell types present in the TIME as awhole,
providing a macro-level view of immune coordination. Our findings indicate that caution should
be exercised when using the immune composition as a biomarker in clinical settings. After
Benjamini-Hochberg adjustment, there were no cell types with significant prognostic value. This
does not corroborate existing literature regarding the prognostic relevance of certain cell types,
including the monocyte/neutrophil cell type™, the dendritic cell/monocyte cell type®, natural
killeggcellsm’ez, CD8+ T cells?” %% macrophages™, B cells®, CD4+ T cells®”® and CD3+ T
cels™.

The subcellular resolution achieved by MIBI alowed us to quantify the expression of individual
molecules on asingle-cell basis. After Benjamini-Hochberg correction, there were no proteins
significantly associated with either recurrence or survival. Keratiné and HLA-DR were
associated with survival before adjustment, and Keratin6 remained significantly associated with
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survival when placed in a multivariate model with HLA-DR. This aligns with some existing
literature. CD45R0O was almost significantly associated with recurrence before adjustment, but
its prognostic relevance was more clearly highlighted through its cell-to-cell interactions and co-
expression patterns. This suggests that adding spatial context to the TIME can reveal otherwise
hidden prognostically relevant information, a potential benefit of our developed computational
pipelinefor MIBI analysis.

A limitation of our work isthat our results are derived from a sample of 38 TNBC patients that
were treated at Stanford hospital from 2002 to 2015 — further work is needed to validate these
results on alarger cohort of patients. Although it was known that the patients had not undergone
neoadjuvant treatment, further data regarding treatments pursued was not available; future
research is necessary to examine associ ations across treatment types. In addition, this study was
retrospective and performed with patients at a single ingtitution. Our cell type classifications
were found computationally, derived only from the expression of molecules that were a part of
our chosen assay — future work should repeat this analysis using other biologically relevant
molecules.

Nonetheless, this study presents a computational pipeline for the robust interrogation of multiple
features of the TIME. We demonstrate the potential for cell-to-cell interactions and protein co-
expression to improve prognosis and patient stratification. We found several statistically
significant results within alimited cohort, suggesting that they may have large effect sizes and
merit further exploration. Our methods produce i nterpretable results, which may make them
beneficial in therapeutic design. Furthermore, they can be applied to other cancer types, as they
are generalizable to any MIBI scan.

M ethods

Patient Population and Dataset

Our study examined 38 TNBC patients who were treated at Stanford Hospital from 2002-2015, a
subset of the cohort examined by Keren et al.*® None of the 38 patients had undergone
neoadjuvant treatment. Although the original cohort contained 41 TNBC patients, 3 of the
patients were unusable for our analysis. Patients 22 and 38 lacked recurrence outcomes, and
Patient 30’ s images were corrupted. These patients had no special type, with estrogen receptor
and progesterone receptor positivity less than 1% and HER2 unamplified. 1mm cores were taken
from each patient and H& E stained. All samples were then stained with an antibody mix and
scanned using MIBI-TOF. A computational pipeline converted the output of MIBI-TOF into
images.

The dataset included two separate sets of 2048 x 2048 pixel images, representing a region of
8007 square micrometers. The first set of images are 44-channel TIFFs that represent protein
expression levels, where each patient has one TIFF. Each channdl in the TIFF corresponds to one
of the 44 molecules profiled in the study. Of the 44 molecules, 36 were biological
macromolecules, such as double-stranded DNA or IDO, and 8 were elemental reporters. Each
pixel in the image has a value representing the expression of the protein in that location. The
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second image set contained 38 grayscale segmentations of cellsin the patient’ s sample. Patient
data regarding age, tumor grade, stage, and recurrence and survival outcomes were also gathered.

The cellular segmentation and cell lineage clustering were performed by Keren et a.* To
perform nuclear segmentation, the authors utilized DeepCell, a deep learning-based method for
segmentation of MIBI data®. The model was trained using manual segmentations of patients 1
and 2 and run on the images of all patients. Cell boundaries were defined as a 3-pixd radia
expansion around the nuclei. Cells were clustered hierarchically. First, they were clustered into
“Immune’ and “non-immune” using the expression levels of CD45, FoxP3, CD4, CD8, CD3,
CD20, CD16, CD68, MPO, HLA-DR, Pan-Keratin, Keratinl7, Keratin6, p53, Beta catenin, and
EGFR. Non-immune cells were clustered into Epithelial, Mesenchyme, Endothelial, and
Unidentified using Vimentin, SMA, CD31, Beta-catenin, EGFR, Keratinl6, Kerating, and Pan-
Keratin. Immune cells were further clustered into 12 groups (Figure 1b) usng CD4, CD16,
CD56, CD209, CD11c, CD68, CD8, CD3, CD20, HLA-DR, CD11b, MPO, and FoxP3.

We additionally gathered 8 MIBI images of breast tissue of healthy patients. These MIBI images
were originally collected for adifferent study, and they profiled a different set of markers. Six
proteins overlapped between the TNBC samples and healthy samples: FoxP3, IDO, Ki67, PD-1,
PD-L1, and phospho-S6.

The cellular segmentation of MIBI images of healthy patients was performed by Risom et al.**
using DeepCell. Two distinct segmentations were performed. The first applied a three-pixel
radial expansion and a stringent threshold for splitting cells. The second applied a one-pixel
radial expansion and alenient threshold. A post-processing step gave preference to the lenient
threshold when the two segmentations were combined.

The authors complied with all ethical regulations involving human clinical data. Informed
consent was obtained for all participants by previous studies. The study protocol was approved
by the Stanford University Institutional Review Board.

Analysisof Cell Prevalence

We examined whether the cellular composition of the TIME was associated with recurrence and
survival. We quantified the number of cells of each cell type in each patient. To isolate specific
cell types at atime, we created binary masks of each grayscale value to isolate each cell type.
Then, we found the number of connected components in each mask, which provided the number
of cells of each cdll type. After noticing a large variation in the total number of cells per patient,
we divided each patient’s cell type count by the total number of cellsin their TIME to control for
this lurking variable. Univariate Cox regression was then performed for each cell type to assess
its association with recurrence and survival. Regression coefficients were examined using two-
sided t-tests. P-values were adjusted using the Benjamini-Hochberg method™.

Single-Cell Protein Expression

We examined whether the expression levels of functional proteins within patients TIME were
associated with recurrence and survival. For thisanalysis, we analyzed functional proteins,
which modulate the activity of the cellsin the TIME. These proteins stand in contrast to proteins
used solely for lineage assignment; their expression is related to the functional state of the cell.
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We labeled connected components and created a binary mask of each component to isolate the
space taken up by each cell. We then applied this mask to the MIBI protein expression images,
summing the value in each channel of the TIFF for each pixel in the mask. This created a 44-
length vector of protein expression per cell. We realized that per-cell expression levels are
dependent on cell size, so we divided the 44-length expression vector by the size (in pixels) of
the cell. Thisleft a44-length vector representing average per-pixel protein expression for a
certain cell.

We calculated protein positivity thresholds from the expression levels of the image background,
which lacks cells and therefore can act as a negative control. We calculated total protein
expression in al background pixelsin al patients and divided these values by the total number of
background pixels across all patients (~67,000,000 pixels). We used each protein’s threshold
value to determine whether a cell was positive for a certain protein. Then, we counted the
number of cellsin each patient that were positive for each protein and divided the number by the
total number of cellsin the patient. The result was the proportion of cellsin the patient that were
positive for this protein. For example, 100% of a patient’s cells would be positive for DNA, but
only 30% might be positive for PD-1. Univariate Cox regression was used to determine the
association between protein expression proportions and clinical outcomes. Regression
coefficients were examined using two-sided t-tests. P-values were adjusted using the Benjamini-
Hochberg method.

Functional Protein Co-expression

The co-expression of functional proteinsin asingle cell reveals functional status and immune
coordination. We assessed the association between co-expression of functional proteins and
recurrence and survival. We had previously measured single-cell protein expression and
determined a threshold to designate cells as “ positive” for each protein. We defined co-
expression as an instance in which an individual cell ispositive for a pair of proteins. For
example, if aparticular cell is positive for IDO, Lag3, and PD-1, it would have 3 instances of co-
expression: IDO/Lag3, IDO/PD-1, and Lag3/PD-1. We constructed an 18x18 co-expression
matrix for each patient to summarize the number of cellsin the patient that co-expressed each
pair of proteins. Because these matrices were symmetrical (a co-expression of IDO/Lag3 isthe
same as a co-expression of Lag3/IDO), we divided the matrix in two across the diagonal and
flattened the top half to create a feature vector for each patient. To control for lurking variables,
we standard scaled features across patients. We then performed hierarchical clustering to
segment patients according to these features.

Silhouette analysis® revealed that choosing two clusters would lead to the optimal segmentation,
so we cut the dendrogram into two distinct clusters and compared the two groups using a two-
sided log-rank test. Then, to assess the importance of individual co-expression features, wefit a
random forest with all of the co-expression pairs as predictors and the cluster assignment as the
response. We assessed variable importance using a mean decrease in the Gini index.

Voronoi Tessalation

Analyzing cell-to-cell interactions requires a method of defining cell adjacencies. We used
Voronoi tessellation diagrams to model cellular adjacencies within the TIME. Voronoi
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tessellation divides a planar space into a number of regions such that each point in the plane has
its own region in the tessellation®. The sides of each VVoronoi polygon are constructed to bisect
two input points. Therefore, each line segment in the Voronoi tessellation represents the borders
between two input points. Voronoi diagrams have been applied to single-cell imaging technology
in the past, specifically for visualizing the spatial organization of colorectal cancer cells™*. Due
to the geometry of the Voronoi tessellation algorithm, polygons will only border their immediate
neighbors.

We labeled connected components from the cell segmentation images to find each cell’s
centroid, which was then used to create VVoronoi diagrams for each centroid. Therefore, every
cell in the original cell segmentation images has a corresponding VVoronoi diagram. We
considered cells with bordering Voronoi regionsto be adjacent, and therefore interacting. This
created areliable foundation for upstream analysis.

Cell-to-cell Interaction Analysis

We used the borders created by Voronoi diagramsto iterate over all cell adjacenciesin each
MIBI image. Each adjacency represented an individual interaction between two cells. We
constructed two lists: List 1 contained the names of the proteinsthat Cell 1 was positive for, and
List 2 contained the names of the proteins that Cell 2 was positive for. We took the Cartesian
product of the two liststo find all of the combinations of proteins present in this interaction. For
example, if Cell 1 was positive for PD-L1 and Lag3, and Cell 2 was positive for PD-1 and IDO,
then we would count the following: PD-L1 + PD-1, PD-L1 + IDO, Lag3 + PD-1, and Lag3 +
IDO. These pairs would betallied in the overall interaction matrix for each patient, in which the
value at row A and column B represents the number of times a cell positive for protein A was
adjacent to a cell positive for protein B. For thisanalysis, we only counted interactions between
functional proteins, excluding proteins used for lineage assignment.

We selected the top half of the symmetric matrix and flattened it to create feature vectors for
each patient. Hierarchical clustering was performed and the dendrogram was cut to produce two
clusters based on silhouette score analysis. These two clusters were compared using Kaplan-
Meier curves, atwo-sided log-rank test, and Cox regression. To assess the importance of
individual interactions, we fit a random forest with all interactions as predictors and the cluster
assignment as the response. We measured variable importance using the mean decrease in the
Gini index.

Healthy Tissue Analysis

We applied our computational pipeline to a set of 8 MIBI images of healthy tissue to validate our
methods. We examined 6 proteins. FoxP3, IDO, Ki67, PD-1, PD-L1, and phospho-S6. We
calculated the expression levels of the proteinsin an identical fashion to the previous analysis of
the TNBC images. We performed a two-sided Wilcoxon rank-sum test to compare expression
levels between TNBC tissue and healthy tissue.

We also profiled cell-to-cell interactionsin the healthy tissue in an identical manner to previous
analysis. After obtaining interaction features, we performed dimensionality reduction using
Uniform Manifold Approximation and Projection (UMAP)*. The resulting reduced features
were compared to UMAP-reduced features of TNBC images.
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Multivariate Analysis

To assess whether the features identified by our computational pipeline contained independent
prognostic information, we performed multivariate Cox regression. Wefit three Cox

Proportional Hazard models, each of which contained one of the three cluster variablesidentified
by our study (protein co-expression, functional protein interactions, immunoregulatory protein
interactions), two clinical variables (tumor grade and age), and the immune architecture
digtinction determined by Keren et al. We found the hazard ratio of each cluster variable and
hypothesis tested the coefficient of each cluster variable to determine whether the variables
contained additional prognostic information.

We also fit random forests to measure relative variable importance. We included all six variables
in the random forests and calculated SHAP (Shapley Additive Explanations)™ values to get
stable estimates of variable importance. SHAP values quantify the change in model prediction
that would result from conditioning on a certain feature. They have been shown to be more
aligned with human intuition regarding feature importance and attribution. We measured overall
goodness-of-fit using Harrell’ s c-index.

Statistical Analysis

Primary statistical analyses were performed using Python (v3.7.3, Python Software Foundation,
https://www.python.org/) with the lifelines (v0.24.0), scipy (v1.4.1), seaborn (v0.10.1), and
pysurvival (v0.1.2) packages.

Pseudocode explaining the mgor steps of pipelineisshown in Supplementary Figure 7.

Data Availability

MIBI images and other raw data for TNBC patients can be found at https.//mibi-
share.ionpath.com/. The link comes with an easy-to-use interface that allows for easy
examination of the data upon registration. MIBI images for healthy patients will soon be made
available on a Human Tumor Atlas Network public repository. The data produced by
intermediary steps in the computational pipeline can be found at github.com/aal okpatwal/rasp-
mibi/ in the intermediate_data/ folder.

Code Availability

The computational pipeline used to produce the findings in this study can be found at
github.com/aal okpatwa/rasp-mibi/blob/main/rasp_mibi_pipeline.ipynb. The pipdineisincluded
in a Jupyter notebook with the output produced, as well asin separate .py files with instructions
included.

Pseudocode describing the developed computational pipeline, including individual algorithms
and techniques used, is shown in Supplementary Figure 7.
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