

1 **Monitoring fish communities through environmental DNA metabarcoding in the fish pass**
2 **system of the second largest hydropower plant in the world**

3 Giorgi Dal Pont^{1,2£}, Camila Duarte Ritter^{1,2,3*£}, Andre Olivotto Agostinis¹, Paula Valeska Stica^{1,2},
4 Aline Horodesky^{1,2}, Nathieli Cozer^{1,2}, Eduardo Balsanelli⁴, Otto Samuel Mäder Netto², Caroline
5 Henn⁵, Antonio Ostrensky^{1,2}, Marcio Roberto Pie^{1,2}

6 ¹ Grupo Integrado de Aquicultura e Estudos Ambientais, Departamento de Zootecnia,
7 Universidade Federal do Paraná, Rua dos Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR,
8 Brazil.

9 ² ATGC Genética Ambiental LTDA. Rua dos Funcionários 1540, Juvevê, Curitiba, PR Brazil,
10 80035-050

11 ³ Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen,
12 Universitätsstrasse 5, D-45141 Essen, Germany.

13 ⁴ Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Rua dos
14 Funcionários, 1540, Juvevê, 80035-050 Curitiba, PR, Brazil.

15 ⁵ Itaipu Binacional. Divisão de Reservatório - MARR.CD, Avenida Tancredo Neves, 6731, Foz
16 do Iguaçu, Paraná, CEP 85866-900, Brazil

17

18 *Corresponding author: Camila D. Ritter, kmicaduarte@gmail.com. Phone: +55 48991434597.
19 Postal address: Eukaryotic Microbiology, Faculty of Biology, University of Duisburg-Essen,
20 Universitätsstrasse 5, S05 R04 H83, D-45141 Essen, Germany.

21 £ Joint first authorship

22

23

24 **Abstract:** The Itaipu Hydroelectric Power Plant is the second largest in the world in power
25 generation. The artificial barrier created by its dam imposes an obstacle for fish migration. Thus,
26 in 2002, a fish pass system, named Piracema Channel, was built to allow fish to access areas
27 upstream of the reservoir. We tested the potential of environmental DNA metabarcoding to
28 monitor the impact of both the dam and associated fish pass system in the Paraná River fish
29 communities and to compare it with traditional monitoring methods. Using a fragment of the 12S
30 gene, we characterized richness and community composition based on amplicon sequence
31 variants, operational taxonomic units, and zero-radius OTUs. We combined GenBank and in-
32 house data for taxonomic assignment. We found that different bioinformatics approaches showed
33 similar results. Also, we found a decrease in fish diversity from 2019 to 2020 probably due to the
34 recent extreme drought experienced in southeastern Brazil. The highest alpha diversity was
35 recorded in the mouth of the fish pass system, located in a protected valley with the highest
36 environmental heterogeneity. Despite the clear indication that the reference databases need to be
37 continuously improved, our results demonstrate the analytical efficiency of the metabarcoding to
38 monitor fish species.

39 **Keywords:** Environmental monitoring, Dam, Fish passage, Neotropical ichthyofauna.

40 **Background:**

41 The Itaipu Hydroelectric Power Plant, built at the border between Brazil and Paraguay, is the
42 second largest in the world in power generation¹, second only to the Three Gorges Power Plant
43 in China. With the formation and filling of its reservoir, in 1982², the natural barrier to the
44 migration of fishes of the middle section of the Paraná River (Sete Quedas falls) was replaced by
45 the artificial barrier of the Itaipu dam, located 170 km downstream. This artificial barrier (196 m
46 high) caused impacts on the adjacent fish assemblages, such as the reduction in reproductive
47 activity in the first kilometers downstream of the dam³. To allow for fish migration and mitigate
48 the environmental impact of the dam, a fish passage system known as the Piracema Channel was
49 created in 2002, linking the Paraná River to Itaipu's Reservoir⁴. However, the real contribution to
50 the reproductive success of the long-distance migratory species is still under investigation, and
51 this channel also allowed for the dispersal of species originally restricted to the lower Paraná
52 River upstream and species originally restricted to the upper Paraná River downstream⁵. These
53 potential impacts are continuous and can interact with natural disturbance, such as several
54 droughts as which happened in 2020. In this context, monitoring the impact of both dam and fish
55 pass system in the Paraná River fish communities is essential.

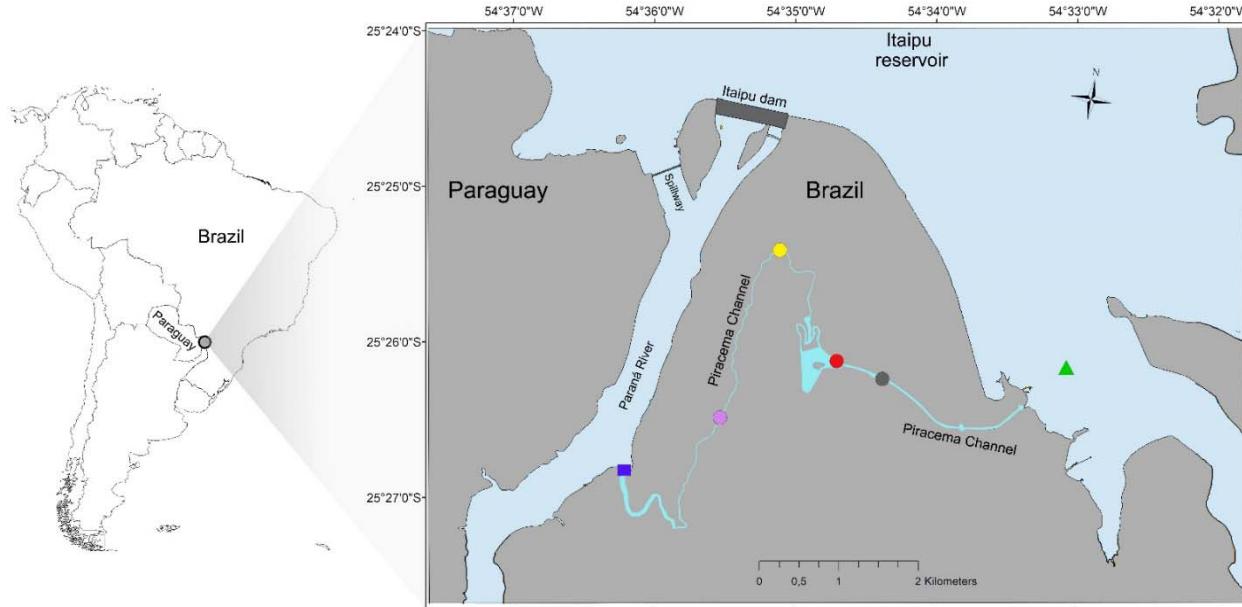
56 Fish diversity estimates in Brazilian freshwater are still imprecise due to the scarcity of complete
57 inventories⁵⁻⁷. Many species are described every year and several groups are in need of
58 taxonomic revision^{5,8}. Furthermore, traditional assessment methods for fish diversity surveys are
59 costly and time consuming, given that they depend on capture (e.g. netting, trawling) or
60 observation^{9,10} and expertise for taxonomic identification¹¹. In this sense, designing methods for
61 cost-effective monitoring fish diversity and community composition is an urgent task. Most
62 sampling efforts in Brazil have historically been primarily funded by the hydroelectric sector,
63 focusing particularly on rivers where power dams were built¹². The areas of the dam construction
64 have some of the most comprehensive knowledge of fish assemblage composition in comparison
65 with other Brazilian regions and therefore offer an ideal opportunity to compare taxonomic
66 surveys with molecular approaches.

67 A promising alternative to traditional taxonomic surveys and biomonitoring methods is the use
68 of environmental DNA (eDNA), combined with a high-throughput sequencing approach, as in
69 the case of metabarcoding¹³. This technique has the advantage of obtaining DNA from

70 environmental samples, such as water, without first isolating the target organism and therefore
71 can sample entire communities¹⁴. Metabarcoding is a powerful tool for biodiversity assessment
72 that has been widely used for several purposes and different taxonomic groups¹⁵⁻¹⁷, and is
73 considered a transformative technology for the entire field¹⁸. However, some limitations, such as
74 the relative scarcity of DNA sequences for several species, which is even more problematic in
75 highly diverse regions such as the Neotropics¹⁹, may create constraints that hamper its full
76 application^{20,21}.

77 The absence of a comprehensive DNA reference database may lead to a misidentification of
78 several species. Therefore, putting together a curated and complete DNA reference database is
79 fundamental for species identification through a metabarcoding approach⁷. But, even with an
80 incomplete DNA reference database, the use of molecular units, such taxonomic units clustered
81 by similarity (operational taxonomic units - OTUs²²) or unique sequences (e.g. amplicon
82 sequence variants - ASVs²³, or zero-radius OTUs - ZOTUs²⁴) allows for diversity monitoring in
83 the context of biodiversity assessment in megadiverse biomes. Such estimates without
84 comprehensive species identification limit ecological conclusions but allowed for monitoring of
85 natural and artificial impacts^{16,25}. The metabarcoding approach has been successfully used for
86 molecular identification of several vertebrate groups in temperate regions^{26,27}, monitoring of
87 endangered species such as freshwater fish in Australia²⁸ and turtles in the United States²⁹, and to
88 describe biodiversity even with limited taxonomic identification³⁰.

89 In this context, our goal here is to describe an effective survey protocol for detecting fish
90 assemblages through eDNA metabarcoding in an ecologically complex and highly diverse
91 freshwater system, the Piracema channel, that connects the Paraná River with Itaipu Reservoir.
92 For this, we used an in-house molecular database of fishes occurring in the channel
93 complemented with GenBank sequences. We also describe fish alpha diversity and community
94 structure in the Piracema channel system. Additionally, we compare our metabarcoding results
95 with the traditional sampling campaigns made between 2017- 2021.


97 **Material and Methods:**

98 *Study area* – Our study was conducted at the Piracema channel (Fig. 1), a fish pass system
99 connecting the Paraná River with the Upper Paraná River floodplain (main reservoir). For the
100 traditional taxonomic survey, we sampled three points at mouth of channel at Paraná River (Fig.
101 1, blue square), the main lake at the Piracema channel (Fig. 1, red circle), and the reservoir near
102 the water intake to the Channel (Fig. 1, green triangle) between 2017 to 2021. Fish were
103 collected monthly during the fish reproductive period (October to March), and once during the
104 winter (July or August), employing active and passive methods (Table 1).

105 **Table 1.** Fish sampling methods at the Piracema Channel

Fish sampling method	Quantitative and qualitative aspects
Gill nets	Mesh sizes: 1 a 10 cm (adjacent knots), each one 10m long and 1 to 1,5m high
Longlines	30 hooks, 10 of each size: /10, /8 and /6, fish pieces as bait
Cast nets	Mesh sizes: 3 e 6 cm (adjacent knots)
Electrofishing	Smith-Root, backpack electrofisher, 600V, 30Hz DC

106
107 For each point, gill nets and longlines were set out in the afternoon (16:00 h) and inspected every
108 4 hours during a 24 h cycle; cast nets were operated 3 times each mesh, after every gear
109 inspection. Boarded electrofishing was operated two times in each point, at dawn and at dusk,
110 covering 100m of the environment margin each time. Fish were euthanized by immersion in
111 benzocaine solution, following current legislation³¹, and identified accordingly Britski et al.³²,
112 Ota et al.³³ and Neris et al.³⁴. Fragments of muscle were collected with a scalpel, placed into 2 ml
113 tubes filled with 99.8% ethanol and stored at 4°C until processing. Voucher specimens are
114 housed in the Nupelia-UEM fish collection.

116 **Figure 1. Sampling location.** The map shows the sampling location of each collection point. We
117 sampled one point at mouth of channel at Paraná River (blue square), four points along the
118 Piracema Channel (circles; Bela Vista River 1 = purple, Bela Vista 2 = yellow, Brasilia stream =
119 gray, and lake = red), and one point at Itaipu's reservoir (green triangle). Up at figure is possible
120 to visualize the Itaipus' dam that created the reservoir. Inset panel shows the location of Itaipu's
121 dam in relation to South America. Map was created in QGIS v.3.6.2 software⁸⁸.

122
123 For metabarcoding, we sampled one site at the mouth of channel at Paraná River (Fig. 1, blue
124 square), four sites along the Piracema Channel (Fig. 1, circles), and one site at Itaipu Reservoir
125 (Fig. 1, green triangle). Each sampling point was collected in sextuplicate. All six sites were
126 sampled in 2019 and three sites (mouth of channel at Paraná River, lake at Piracema channel [red
127 circle], and the reservoir) were sampled again in 2020, totaling 54 samples. All sampling sites
128 were provided with GPS coordinates.

129 *Sampling design for molecular analysis* – We collected water by partially submerging a one litter
130 polypropylene bottle. The objective was to sample water at the air/water interface. After water
131 collection, bottles were closed and cleaned with a 10% sodium hypochlorite solution, following
132 by rinsing with distilled water. We used gloves which were changed in between each new
133 sampling replicate to reduce the risk of cross-sample contamination.

134 After the collection and cleaning steps, the bottles were stored in polystyrene boxes containing
135 artificial ice to maintain the temperature of the samples at 4 to 10 °C. The samples were filtered,
136 on the same day of collection, using nitrocellulose membranes (0.45 µm pore) with the aid of a
137 vacuum pump. Filters were kept in 100% ethanol under refrigerated conditions until molecular
138 analysis was performed. All filters were processed at the ATGC laboratory at the Universidade
139 Federal do Paraná (UFPR).

140 *DNA extraction* – For total DNA extraction, we kept the collected filters at room temperature to
141 allow the residual ethanol to dry completely. After dried we extract the DNA using magnetic
142 beads (microspheres surrounded by magnetite and carboxyl), which bind to DNA (carboxyl bond
143 - DNA) by the process of Solid Phase Reversible Immobilization (SPRI). The DNA extract was
144 stored at –20 °C until the amplification. The extraction and quantification processes were carried
145 out in separate rooms, as suggested by Pie et al.³⁵. We checked the DNA concentration using
146 both a spectroscope (Nanodrop, Thermo, USA) and a fluorimeter (Qubit, Invitrogen, USA).

147 *PCR amplification* – We targeted the 12S rRNA gene using the MiFish forward (5'-
148 GTCGGTAAAAC TCGTGCCAGC-3') and reverse (5'-
149 CATA GTGGGTAT CTAAT CCCAGTTG-3') primers designed by Miya et al.³⁶ to yield 163–
150 185 bases long fragments. Amplification was performed in a total volume of 20 µl in GoTaqG2
151 system (Promega, USA), 500 nM of forward and reverse primers, and 20 ng of DNA template.
152 The PCR conditions consisted of an initial denaturation step of 2 min at 95 °C and then 25 cycles
153 of denaturation at 94 °C for 30 s, hybridization at 55 °C for 45 s, and elongation at 72 °C for 30
154 s, followed by a final elongation at 72 °C for 5 min and finishing at 4 °C. To avoid PCR
155 inhibition BSA (0.5 µg/µl) was added to the reaction as suggested by Boeger et al³⁷. The quality
156 of amplification was verified on a 1.5% agarose gel in TBE buffer (9 mM TRIS, 9 mM boric
157 acid, 1 mM EDTA), stained with SYBR Safe DNA Gel Stain (ThermoFisher Scientific,
158 Country). All replicates from each sampling point were amplified to increase the chance of
159 detecting rare species. The PCR product was then diluted (20x) and used as a template for the
160 addition of adapters in the second PCR. Indexing was performed for Illumina MiSeq sequencing
161 (Illumina, USA), using the above PCR system with Nextera indexes (Illumina) in a total volume
162 of 10 µl. PCR conditions were an initial step of 95 °C for 3 min, following by 12 cycles of
163 denaturation at 94 °C for 30 s, hybridization at 55 °C for 45 s, and elongation at 72 °C for 30 s,

164 followed by a final elongation at 72 °C for 5 min and finishing at 4 °C. We checked the DNA
165 concentration in a Qubit® fluorimeter (Invitrogen, USA), normalized and pooled the PCR
166 products following the Illumina protocol. The samples were sequenced at GoGenetic (Curitiba,
167 Brazil) using Illumina MiSeq Reagent 600V3 (PE 300b). Three negative controls (distilled
168 water) were used as control for extraction, amplification, and sequencing. The raw sequences are
169 deposited in GenBank under Bioproject PRJNA750895 (biosamples SAMN20500524 –
170 SAMN20500577).

171 *Sequence analyses and taxonomic assessment* – For the amplicon sequence variants (ASVs)
172 approach, we used the Cutadapt package³⁸ in Python v.3.3³⁹ to remove primers. We then used the
173 DADA2 package²³ in R v. 4.0.2⁴⁰ to quality filter reads, merge sequences, remove chimeras, and
174 to infer ASVs. We excluded reads with ambiguous bases (maxN=0). Based on the quality scores
175 of the forward and reverse sequences, each read was required to have <3 or <5 errors,
176 respectively (maxEE=c (3,5), truncQ=2). Therefore, ASVs were inferred for forward and reverse
177 reads for each sample using the run-specific error rates. To assemble paired-end reads, we
178 considered a minimum of 12 base pairs of overlap and excluded reads with mismatches in the
179 overlapping region. Chimeras were removed using the consensus method of
180 "removeBimeraDenovo" implemented in DADA2.

181 For operational taxonomic units (OTUs) and zero-radios OTU (ZOTUs) analyses, we used the
182 USEARCH/UPARSE v.11.0.667 Illumina paired reads pipeline⁴¹ to primer remove, quality
183 filtering, dereplicate and sort reads by abundance, to infer OTUs and ZOTUs, and to remove
184 singletons. We filtered the sequences to discard chimeras and clustered sequences into OTUs at a
185 minimum similarity of 97% using a ‘greedy’ algorithm that performs chimera filtering and OTU
186 clustering simultaneously and the UNOISE algorithm to denoised sequence as zero-radios OTUs
187 to create or ZOTUs table^{41,42}.

188 We build a reference dataset of DNA sequences for the 205 fish taxa that have been historically
189 recorded in the Itaipu system using the following steps. First, we looked for 12S sequences of
190 these species in GenBank by searching for their corresponding names. We were able to find
191 sequences for 126 species in our reference database. Additionally, we created an in-house
192 database which included sequences for 42 additional species to the 79 species previously
193 identified as present on Itaipu system but not available on GenBank. Sequences for the in-house

194 database were obtained via Sanger sequencing of tissue samples and were uploaded to GenBank
195 (accession numbers MZ778813- MZ778856). We manually blasted all sequences against the
196 NCBI GenBank database to verify misidentification or problematic sequences (e.g. blasted in the
197 different family). In total, our reference database included 168 (82%) sequences from the 205
198 taxa recorded in the Itaipu system. Finally, we blasted the ASVs, OTUs, and ZOTUs sequences
199 with our reference database to verify the taxonomic composition using the “Blastn” function of
200 the program Blast+⁴³ with an e-value of 0.001. We kept ASVs, OTUs, and ZOTUs that have
201 matched with a fish species at minimum level of 75% similarity (as these sequences are probably
202 fishes species not present in our reference database), and considered identified species just
203 ASVs, OTUs, and ZOTUs that matched in a minimum level of 97% similarity. We summed
204 reads for each ASVs, ZOTUs, and OTUs present in the three negative controls and divided by
205 the total reads of each ASVs, ZOTUs, and OTUs. All ASVs, ZOTUs and OTUs with a
206 proportion > 0.01% of reads in negative controls were discarded (13 ASVs, 2 ZOTU, and 7
207 OTUs).

208 *Statistical analysis* – We conducted all analyses in R using RStudio⁴⁴. We used the tidyverse
209 package v. 1.3.0⁴⁵ for data curation and ggplot2 v. 3.3.2⁴⁶, ggrepel v. 0.4.11⁴⁷, gridExtra v.
210 2.3⁴⁸, and ggpubr v. 0.4.0⁴⁹ for data visualization (scripts in Appendix 1).

211 For analysis of alpha and beta diversity with metabarcoding data, we made the analysis at ASVs,
212 OTUs, and ZOTUs level. Since the number of observed ASVs, ZOTUs, and OTUs is dependent
213 on the number of reads, we rarefied all samples to the lowest number of reads obtained from any
214 one plot (157 for ASVs, 147 for ZOTUs, and 219 for OTUs; Fig. S1) using the “rarefy” function
215 with the vegan v.2.5.7⁵⁰ R package. Because in the ZOTUs table the minimum reads of a plot
216 was nine, we used the second lower value to avoid having to downsize the other samples to such
217 a low number of reads⁵¹. Because rarefying of counts is considered inappropriate for detection of
218 differentially abundant species⁵¹, even more with so different sampling depth as in our case, we
219 also calculated true effective number of ASVs, ZOTUs, and OTUs of order $q=1$, which is
220 equivalent to the exponential of the Shannon entropy⁵², using the function “AlphaDiversity” of
221 the Entropart v.1.6.7⁵³ R package. The effective number is more robust against biases arising
222 from uneven sampling depth than the simple counts of ASVs, ZOTUs, and OTUs^{51,54}.
223 Additionally, for alpha diversity, we also calculated the ASV, OTU, and ZOTU richness (the

224 number of ASV, OTU, and ZOTU per point), Chao1, and Fisher's alpha diversity (i.e., the
225 relationship between the number of ASV, OTU, and ZOTU in any given point and the number of
226 reads of each ASV, OTU, and ZOTU) using the phyloseq v.1.34.0⁵⁵ R package.

227 For beta diversity, we also used rarefaction (with “rrarefy” function of vegan package) and hill
228 number (with “varianceStabilizingTransformation” function in DESeq2 v.1.28.1⁵⁶ R package) to
229 normalize our data. While rarefaction normalizes data by random subsampling without
230 replacement, the hill number transformation normalizes the count data with respect to sample
231 size (number of reads in each sample) and variances, based on fitted dispersion-mean
232 relationships⁵⁶. We then constructed two-dimensional Principal Coordination Analysis (PCoA)
233 ordinations of the abundance (reads) and presence/absence data for both rarefied and hill
234 numbered data. We used the ‘cmdscale’ function and Bray-Curtis distances in the vegan package
235 to assess community dissimilarity among all samples in the PCoA. We used the “envfit” method
236 in vegan to fit sampling localities and sample year onto the PCoA ordination as a measure of the
237 correlation among the sampling localities with the PCoA axes.

238 For traditional survey data, we calculated the alpha diversity using the observed richness, Chao1,
239 and ACE with the function “estimate”, and Shannon index with the function “diversity” both
240 with vegan package. We also constructed two-dimensional PCoA ordinations of the abundance
241 (reads) and presence/absence data, and used the “envfit” to fit sampling localities and sample
242 year onto the PCoA ordination.

243

244 **Results:**

245 For the traditional surveys, 4,447 fishes were collected, for a total 122 species. Most specimens
246 were collected at the mouth of channel at Paraná River, with 2,240 (51%) fishes belonging to
247 105 species. The reservoir showed the lowest number of collected specimens: 1,034 (23%) and a
248 total of 64 species. Of these, 29 species (24%) were identified with metabarcoding approach,
249 while 93 species (76%) were only identified with traditional surveys (Table 2). Other 27 species
250 were identified at > 97% of similarity only with the metabarcoding approach (Table 2).

251 For metabarcoding data, we obtained a total of 17,616,032 reads. After all cleaning steps, we
252 kept a total of 2,280,447 sequences belonging to 7,096 ASVs. Of these, 1,015,157 (44% of the
253 total) sequences belonging to 190 ASVs were classified into species corresponding to our
254 reference database in the level of 75% similarity. Of these, 7,591 reads (0.75% of the total) were
255 recorded in the sum of the three negative controls (Appendix 3). A total of 13 ASVs with a
256 proportion of reads > 0.01% of the total reads were removed from the analysis. A total of 121
257 ASVs (64%) were classified in 35 species matches at a level > 97% of similarity (Table 2),
258 which is certainly an underestimation of the real number of species, since the other 69 ASVs
259 should belong to species do not present in our database.

260 For the OTU and ZOTU analyses, after all cleaning steps, we obtained 1,157,738 and 1,145,129
261 reads belonging to 796 OTUs and 207 ZOTUs, respectively. Of these, 1,002,883 (87%) and
262 1,002,335 (87%) reads belonging to 136 OTUs and 94 ZOTUs, respectively, were classified into
263 species corresponding to our reference database at the level of 75% similarity. Of these, 7,493
264 and 7,494 reads (0.75% of total) were registered in the sum of the three negative controls in the
265 OTUs and ZOTUs tables, respectively (Appendix 4 for OTUs and 5 for ZOTUs) and 2 ZOTU
266 and 7 OTUs with a proportion of reads > 0.01% of the total reads were removed from the

267 analysis. As the OTUs analysis already classified the sequences by 97% similarity, the 131
268 OTUs (all matched with fishes less the 5 present in the negative controls) probably correspond to
269 the number of species present in our samples (more than all species sampled in five years with
270 traditional surveys). Yet, only 37 species belonging to 42 OTUs and 34 species belonging to 46
271 ZOTUs at > 97% similarity were assigned in both analyses. Eighty-one (66%) OTUs and 41
272 (47%) ZOTUs were identified as a fish species with a similarity lower than 97%, representing
273 species not present in our reference database.

274

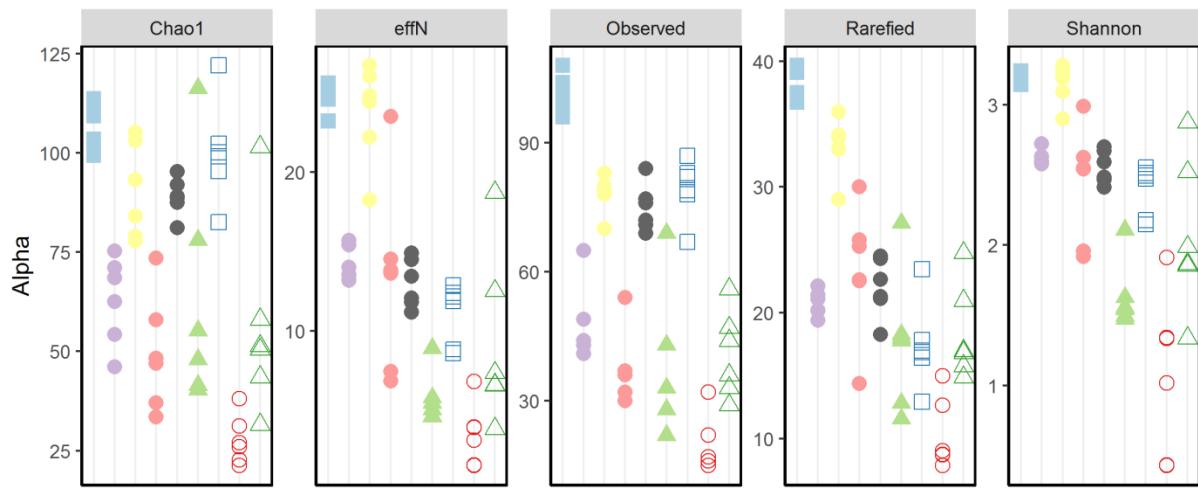
275 **Table 2.** Number of specimens sampled with traditional surveys (N. specimen trad.), species
276 identified at level of > 97% similarity, the number of ASVs, ZOTUs, OTUs identified per
277 species (possible intra-specific variation) and the number of reads per species after correction.
278 Rows in green are species identified in both traditional surveys and metabarcoding (29 in total),
279 red are species just identified by traditional surveys (93 in total), and gray species just identified
280 by metabarcoding approach (27 in total). In bold species that was not registered in one of the
281 pipelines. *Leporinus elongatus* is now *Megaleporinus obtusidens*, but as both species names are
282 in GenBank and different ASVs, ZOTUs, and OTUs match each sequence, we keep both and
283 marked with an asterisk (*).

Species	Number of ASVs	Reads of ASVs	Number of ZOTUs	Reads of ZOTUs	Number of OTUs	Reads of OTUs	Number specimen trad.
<i>Abramites hypselonotus</i>	0	0	0	0	0	0	2
<i>Acestrorhynchus lacustris</i> MG755503.1	1	9151	1	2201	1	2201	66
<i>Acestrorhynchus sp.</i>	0	0	0	0	0	0	80
<i>Ancistrus sp.</i>	0	0	0	0	0	0	1
<i>Apareiodon affinis</i> NC_015834.1	5	44738	1	44852	1	44852	617
<i>Apteronotus ellisi</i>	0	0	0	0	0	0	1
<i>Astyanax altiparanae</i>	12	109217	2	108603	5	108551	163
<i>Astyanax aff. fasciatus</i>	0	0	0	0	0	0	17
<i>Astyanax sp.</i>	0	0	0	0	0	0	10

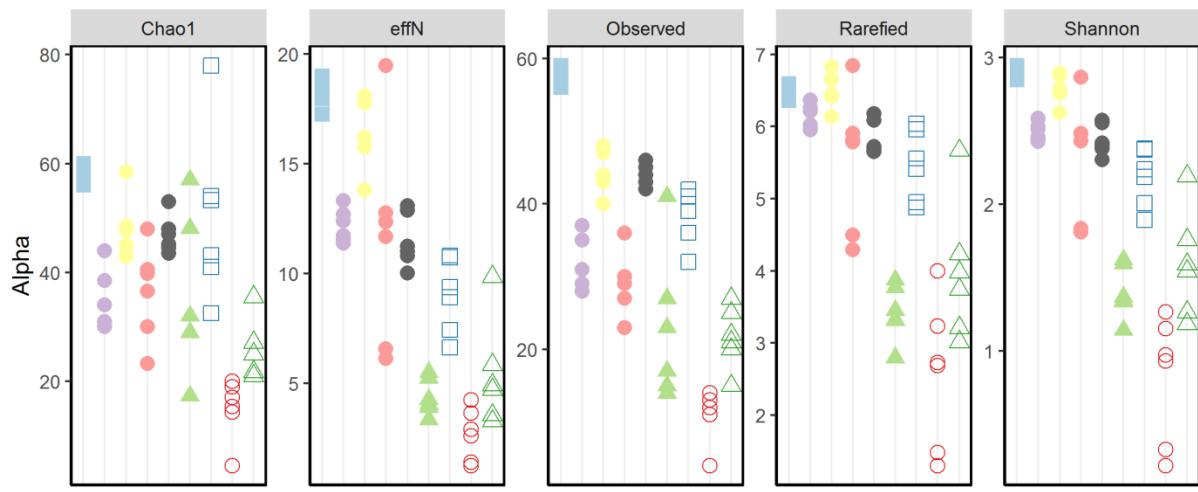
<i>Auchenipterus osteomystax</i>	0	0	0	0	0	0	2
<i>Brycon orbignyanus</i>	0	0	0	0	0	0	10
<i>Bryconamericus exodon</i>	0	0	0	0	0	0	463
<i>Bryconamericus</i> sp.	0	0	0	0	0	0	23
Characidae	16	129645	7	128540	8	128576	0
<i>Characidium</i> sp.	3	6357	2	6389	1	6389	0
LC036706.1							
Characidium aff. zebra	0	0	0	0	0	0	4
<i>Cichla kelberi</i>	3	2738	1	799	1	799	30
<i>Cichla</i> ocellaris	0	0	1	2019	1	2019	0
LC069581.1							
<i>Cichla</i> sp.	0	0	0	0	0	0	29
<i>Corydoras</i> sp.	0	0	0	0	0	0	2
<i>Crenicichla britiskii</i>	2	14565	0	0	0	0	2
<i>Crenicichla jaguarensis</i>	0	0	0	0	0	0	4
<i>Crenicichla</i> sp.	4	28044	2	27982	4	28004	115
<i>Crenicichla</i> sp.	0	0	1	14350	1	14350	0
LC069598.1							
<i>Curimatella dorsalis</i>	0	0	0	0	0	0	5
<i>Cyphocharax modestus</i>	0	0	0	0	0	0	47
<i>Cyphocharax nagelii</i>	0	0	0	0	0	0	1
<i>Cyphocharax</i> sp.	0	0	0	0	0	0	10
<i>Diapoma guarani</i>	0	0	0	0	0	0	581
<i>Eigenmannia</i> limbata	3	2431	2	97	1	97	0
MH263669.1							
<i>Eigenmannia trilineata</i>	0	0	0	0	0	0	1
<i>Eigenmannia virescens</i>	0	0	0	0	0	0	1
<i>Eigenmannia</i> sp.	0	0	0	0	0	0	2
<i>Farlowella hahni</i>	0	0	0	0	0	0	1
<i>Galeocharax gulo</i>	0	0	0	0	0	0	113

<i>Galeocharax</i> sp.	0	0	0	0	0	0	2
<i>Geophagus brasiliensis</i> C_031181.1	4	10888	2	10351	2	10351	0
<i>Geophagus sveni</i>	0	0	0	0	0	0	100
<i>Gymnotus carapo</i> AP011979.1	3	10408	3	10057	2	13415	0
<i>Gymnotus inaequilabiatus</i>	0	0	0	0	0	0	2
<i>Gymnotus paraguensis</i>	0	0	0	0	0	0	1
<i>Gymnotus sylvius</i> MN583179.1	1	3517	1	3412	3	45	0
<i>Gymnotus</i> sp.	0	0	0	0	0	0	1
<i>Hemigrammus erythrozonus</i> MT484070.1	3	1153	0	0	0	0	0
<i>Hemigrammus marginatus</i> MG755550.1	3	7335	1	7352	1	7352	3
<i>Hemiodus orthonops</i>	4	2695	1	2478	1	2478	212
<i>Hemisorubim platyrhynchos</i> JF898664.1	2	1727	1	1687	1	1687	1
<i>Hoplias intermedius</i> KU523584.1	2	11902	1	11274	1	11274	0
<i>Hoplias mbigua</i>	8	46648	5	46823	3	46869	6
<i>Hoplias intermedius</i>	3	4876	2	4915	2	4915	19
<i>Hypseobrycon amandae</i> MT484069.1	1	1010	0	0	0	0	0
<i>Hypostomus affinis</i> KT239013.1	4	14468	2	15871	2	338	0
<i>Hypostomus albopunctatus</i>	11	89735	2	93752	7	94997	12
<i>Hypostomus ancistroides</i>	3	5240	3	5239	2	19725	2
<i>Hypostomus cochliodon</i>	0	0	0	0	0	0	7
<i>Hypostomus commersoni</i>	2	10371	2	10395	2	10396	12
<i>Hypostomus gymnorhynchus</i>	3	4110	1	3196	1	3195	0

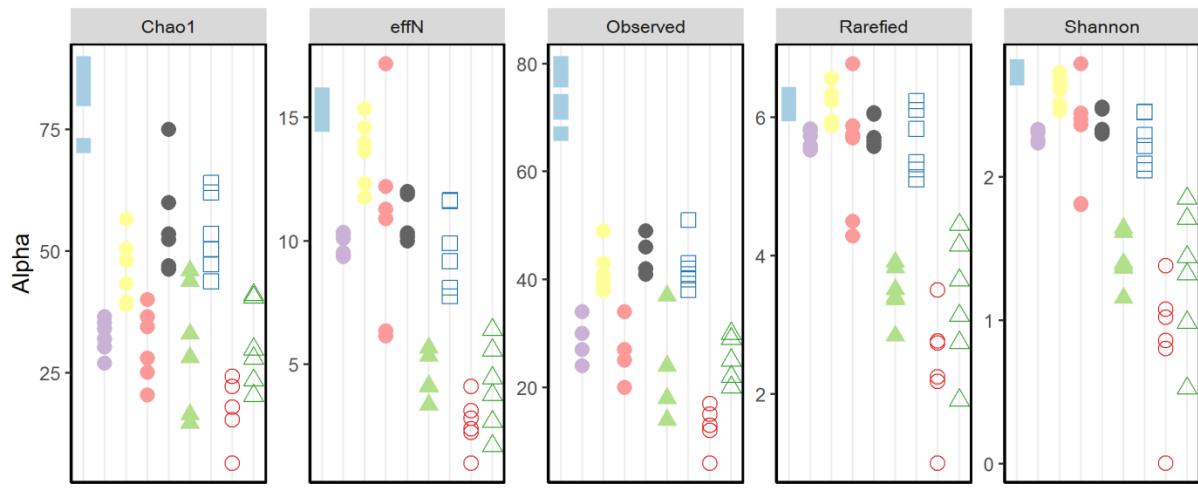
JN855752.1							
<i>Hypostomus margaritifer</i>	0	0	0	0	0	0	2
<i>Hypostomus microstomus</i>	0	0	0	0	0	0	1
<i>Hypostomus regani</i>	0	0	0	0	0	0	1
<i>Hypostomus</i> cf. <i>strigaticeps</i>	0	0	0	0	0	0	199
<i>Hypostomus</i> sp.	0	0	0	0	0	0	151
<i>Iheringichthys labrosus</i>	0	0	0	0	0	0	28
<i>Leporellus</i> vittatus LC104399.1	1	1728	1	1654	1	1654	23
<i>Leporinus</i> elongatus* NC_034281.1	1	1375	1	1319	1	1319	0
<i>Leporinus friderici</i>	0	0	0	0	0	0	74
<i>Leporinus lacustris</i>	1	3010	1	2973	1	2973	2
<i>Leporinus octofasciatus</i>	7	112049	3	113810	12	113954	41
<i>Leporinus striatus</i>	0	0	0	0	0	0	7
<i>Leporinus tigrinus</i>	0	0	0	0	0	0	5
<i>Leporinus</i> sp.	0	0	0	0	0	0	1
<i>Loricaria prolixa</i>	0	0	0	0	0	0	1
<i>Loricaria</i> sp Mato Grosso KR478070.1	1	78	1	71	0	0	0
<i>Loricaria</i> sp Orinoco KR478071.1	0	0	1	17	1	17	0
<i>Loricariichthys platymetopon</i>	0	0	0	0	0	0	3
<i>Loricariichthys rostratus</i>	0	0	0	0	0	0	15
<i>Loricariichthys</i> sp.	0	0	0	0	0	0	3
<i>Lycengraulis grossidens</i>	0	0	0	0	0	0	23
<i>Megalancistrus parananus</i>	0	0	0	0	0	0	5
<i>Megaleporinus macrocephalus</i>	0	0	0	0	0	0	4
<i>Megaleporinus</i>	2	8293	1	8228	1	8228	45


<i>obtusidens</i> * NC_034945.1							
<i>Megaleporinus piavussu</i>	0	0	0	0	0	0	9
<i>Metynnис lippincottianus</i>	0	0	0	0	0	0	19
<i>Moenkhausia cf. gracilima</i>	0	0	0	0	0	0	23
<i>Moenkhausia</i> aff. <i>intermedia</i>	0	0	0	0	0	0	63
<i>Moenkhausia</i> <i>sanctaefilomenae</i>	0	0	0	0	0	0	2
<i>Moenkhausia</i> sp.	0	0	0	0	0	0	3
<i>Myloplus tiete</i>	1	915	1	865	1	865	5
<i>Oligosarcus</i> sp LC145855.1	6	17868	2	18059	1	18034	0
<i>Oreochromis</i> <i>niloticus</i> MN255618.1	8	9673	4	9799	5	10110	0
<i>Otocinclus vittatus</i>	0	0	0	0	0	0	2
<i>Pachyurus bonariensis</i>	0	0	0	0	0	0	16
<i>Pamphorichthys hollandi</i>	0	0	0	0	0	0	13
<i>Parauchenipterus</i> <i>galeatus</i>	0	0	0	0	0	0	34
<i>Parodon nasus</i>	0	0	0	0	0	0	3
<i>Piabarchus stramineus</i>	0	0	0	0	0	0	3
<i>Piaractus mesopotamicus</i> NC_024940.1	0	0	1	291	3	325	6
<i>Pimelodella</i> <i>avanhandavae</i>	0	0	0	0	0	0	1
<i>Pimelodella</i> cristata MH286807.1	3	5080	2	4922	3	4924	0

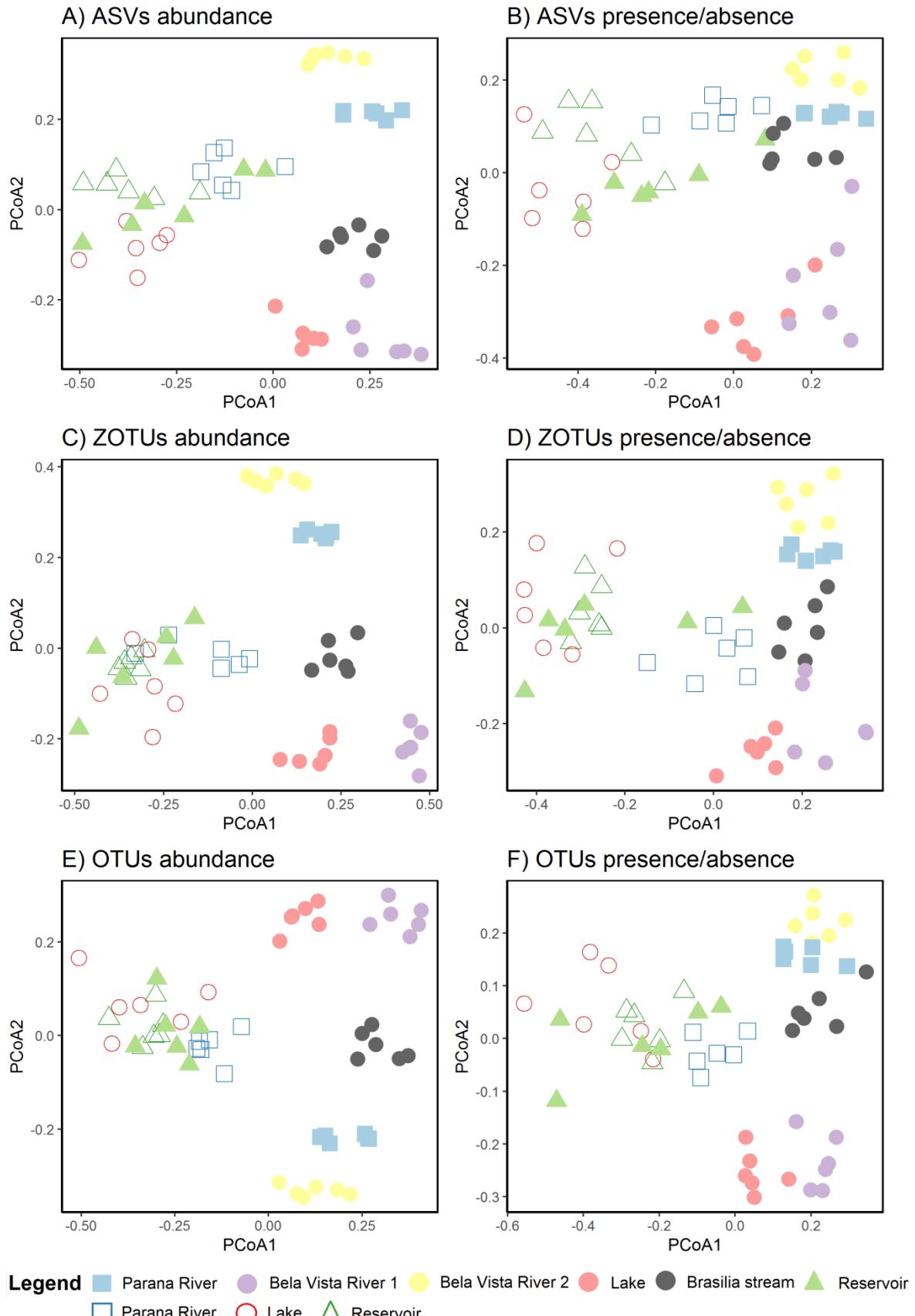
284


285 All the alpha diversity measures of ASVs, OTUs, and ZOTUs per sampling point varied, with
286 the point at mouth of the channel at Paraná River, in 2019, showing the highest diversity for all
287 molecular units and the lake at Piracema Channel in 2020 the lowest (Fig. 2). For the traditional

288 surveys, the variation was more random, but the mouth of channel at Paraná River also had the
289 highest diversity (Fig. S2).



A) ASVs

B) ZOTUs


C) OTUs

291 **Figure 2.** Alpha diversity estimation for A) ASVs, B) ZOTUs, C) OTUS. Alpha diversity varied
292 by location and by sampling year. Each point is one of the replicates sampled. Colors and
293 symbols represent collection points (mouth of channel at Paraná River = blue square, Itaipu's
294 reservoir = green triangle, and Piracema Channel = circles [Bela Vista River 1 = purple, Bela
295 Vista 2 = yellow, Brasilia stream = gray, and lake = red]), and fill represent year of collection
296 (filled = 2019, empty = 2020).

297

298 Fish communities varied among sampled sites. For the abundance based in hill numbers, the first
299 axis of the PCoA separated the samples by year (envfit: $R^2 = 0.30$ [ZOTUs], 0.34 [ASVs], and
300 0.36 [OTUs], $p < 0.001$), except for the Itaipu's reservoir, with the positive values associated
301 with 2019 and the negative values associated with 2020 (Fig. 3). The second axis separated the
302 samples by locality with some overlap (envfit: $R^2 = 0.95$ [ZOTUs] - 0.96 [ASVs and OTUs], $p <$
303 0.001; Fig. 3). For the presence/absence data also based in hill numbers, the overlap was higher
304 but yet the separation by year (envfit: $R^2 = 0.30$ [ZOTUs], 0.32 [OTUs], and 0.41 [ASVs], $p <$
305 0.001) and locality (envfit: $R^2 = 0.91$ [ZOTUs] - 0.92 [ASVs and OTUs], $p < 0.001$) was similar
306 to the abundance data (Fig.3). The results of rarefied data were similar with more overlap among
307 sampling points (Appendix 1, Fig. S3). For traditional surveys, the points are clustered by
308 localities (envfit: $R^2 = 0.60$ for abundance and 0.87 for presence/absence data, $p < 0.001$), but not
309 by year ($p > 0.05$, Fig. S4).

311 **Figure 3.** Principal Coordinates Analysis (PCoA) of fishes' communities from Itaipu based in
312 hill numbers for A) ASVs abundance, B) ASVs presence/absence, C) ZOTUs abundance, D)
313 ZOTUs presence/absence, E) OTUs abundance, and F) OTUs presence/absence. The axis 1
314 separated mainly the samples by year, while the axis 2 separated samples mainly by locality.
315 Each point is one of the replicates sampled. Colors and symbols represent collection points
316 (mouth of channel at Paraná River = blue square, Itaipu's reservoir = green triangle, and
317 Piracema Channel = circles [Bela Vista River 1 = purple, Bela Vista 2 = yellow, Brasilia stream
318 = gray, and lake = red]), and filled represent year of collection (fill = 2019, empty = 2020).

319

320 **Discussion:**

321 Our results support mounting evidence that eDNA analysis provides a cost-effective alternative
322 to characterize fish biodiversity. We also demonstrate that different bioinformatic approaches
323 show similar results in terms of alpha and beta diversity, supporting the use of molecular
324 approaches to monitor biodiversity even with incomplete taxonomic identification. However, a
325 serious caveat for using these molecular methods for biodiversity assessments is the scarcity of
326 comprehensive taxonomic reference databases, especially for the tropical regions of the globe.
327 Here, we also highlight these caveats for the Neotropical fish database, which are taxonomically
328 limited, limiting the identification of several species. With a complete reference database, eDNA
329 could detect mostly fish community and also fish species that are poorly or non-represented by
330 conventional methods, as suggested by our results.

331 We identified 35 species with ASVs, 37 with OTUs, and 34 with ZOTUs approaches at >97%
332 similarity. However, many other ASVs, OTUs, and ZOTUs were identified at <97% similarity,
333 representing species not present in our database. Considering that 76 species sampled with
334 traditional survey had no available sequences, many of these species may be present in our
335 metabarcoding data but blasted as another species. We produced our reference database based on
336 the historical taxonomic survey of Piracema Channel that may prevent identification of species
337 that had not been recorded by conventional fish survey methods. However, the use of a database
338 without curatorship can include spurious species identifications, such as species unlikely to be
339 physically present at sampling sites¹⁰. That occurs because when the database does not contain
340 the sequence of a certain species, the sequences will match with the closest species in that
341 database, which can occur in a completely different environment (e.g. marine), beyond other
342 factors that also contribute to registering spurious species, such as misannotated sequences⁵⁷ or
343 low variability in the target sequenced region¹⁰ that will sign any species with such similar
344 sequence. For instance, our sequence for *Prochilodus lineatus* is identical to other *Prochilodus*
345 species, such as *P. harttii* and *P. costatus*. Furthermore, there are many species undescribed,
346 making it impossible to identify them. A recent compilation to list Paraná state fish species
347 included 42 undescribed species⁵, and this number may be underestimated due to the presence of
348 crypt species and sampling biases.

349 Even with the previously mentioned limitations, the use of molecular units such as ASVs⁵⁸,
350 OTUs²², and ZOTUs²⁴ allows for assessing of genetic diversity and enables comparison among
351 multiple sites⁵⁹, space-time dynamics¹⁶ and evaluate natural and anthropogenic impacts⁶⁰. For
352 instance, vertebrate populations from freshwater ecosystems are declining at alarming rates (83%
353 decline since 1970)⁶¹, and their conservation and management are a priority for global
354 biodiversity⁶². The Neotropical region harbors one of the largest freshwater biodiversity, with an
355 estimated 9,000 described fish species (around 30% of total freshwater species)¹¹. The increasing
356 construction of dams is threatening fish populations over the entire planet^{63–65} but specially in
357 Neotropical countries such as Brazil^{5,66,67}, and effective ways to monitor fish biodiversity to
358 understand its impact is essential.

359 As observed with the use of conventional ichthyofauna monitoring methods⁶⁸, the number of
360 species, ASVs, OTUs, ZOTUs, or 12S gene sequence readouts identified in our study showed a
361 variation between the two sampling occasions (2019 and 2020). Such variations in fish
362 assemblages can be related to a series of factors, both biotic (ecological characteristics of the
363 species, for example) and abiotic (variations in water quality, and other environmental factors).
364 In addition, physical characteristics of the environment such as total water volume and
365 hydrological characteristics can also play a key role in the ecology and occurrence of fish
366 species⁶⁸. For instance, the recent extreme drought experienced in southeastern Brazil⁶⁹ may
367 have impacted fish assemblages. Our results showed a decrease of alpha diversity in 2020 in both
368 mouth of channel at Paraná River (blue squares) and the lake (red circles; Fig. 2). In addition to
369 the direct effects caused by this type of climatic phenomenon, such as the reduction in the
370 volume of water, indirect effects such as reduced oxygen concentration in the water and food
371 availability can cause severe impacts on fish's communities^{68,70,71}. Such effects were more
372 evident at the mouth of channel at Paraná River, where the water level dropped 7 m from 2019 to
373 2020. At the reservoir, alpha diversity did not vary as water level fluctuation was less evident as
374 a result of a stable environment due to the large size of this water body (green triangles; Fig. 2).
375 However, the traditional survey in Piracema Channel was unable to significantly detect the
376 diversity variation throughout the period of the study (Fig. S2), highlighting the high sensibility
377 of eDNA metabarcoding for monitoring.

378 Among sampling points, the highest alpha diversity was recorded in those collected in mouth of
379 channel at Paraná River, while the lowest alpha diversity was registered in the lake (Fig. 2).
380 Habitat heterogeneity is recognized as a main factor supporting functional and phylogenetic
381 diversity, which is often reflected in the taxonomic richness of the fish communities⁷². Mouth of
382 channel at Paraná River, the entrance of the Piracema Channel, is in a protected valley, where the
383 riparian vegetation is conserved, allowing the colonization by a diversified flora and fauna.
384 Besides this, the confluence with the Paraná River produces adjacent lotic and lentic
385 microhabitats, supporting a higher alpha diversity when compared to the main lake or the water
386 intake of the Channel, which are lentic and uniform environments. Such pattern of fish diversity /
387 limnologic gradients meets the patterns previously assessed for the reservoir tributaries⁷³.

388 The beta diversity showed that in 2020, with the event of the extreme drought, a homogenization
389 of fish assemblage happened (Fig. 3). Both samples from the mouth of channel at Paraná River
390 (blue squares) and the lake (red circles) cluster together with the reservoir in both years. The
391 Itaipu's Reservoir was filled in 1982 and the Piracema Channel (a fish pass), connecting the
392 region just downstream from Itaipu Dam to the Itaipu Reservoir, was opened 38 years later. Both
393 events allowed the dispersion of species (including non-native species) in both directions
394 promoting the homogenization of communities from upper and lower Paraná River^{5,74,75}. Our
395 results show the importance of the closest rivers and streams for system diversity and resilience,
396 as the mostly community variation was found in the Boa Vista River and Brasilia Stream (Fig.
397 3).

398 Although eDNA metabarcoding is a powerful tool for biodiversity, as it has been widely used for
399 different purposes and different taxonomic groups, including identification and quantification of
400 Neotropical ichthyofauna^{16,76,77}, many issues can hamper the metabarcoding results^{7,10,78,79}. Shaw
401 et al.¹⁰ drew attention to methodological considerations related to the eDNA sampling process
402 for freshwater fishes. According to them, the number of replicates is extremely important to
403 obtain accurate data. Specifically, they demonstrated that the collection of two eDNA replicates
404 per point were insufficient to detect less abundant taxa; however, adopting five replicates must
405 have a 100% detection rate. In addition, sampling water column was more effective in detecting
406 fish communities than sampling sediment¹⁰. Here, we collected six replicates per sampling point
407 on the water surface. Furthermore, the rarefaction curves clearly show that many individual

408 samples have a very low sequencing depth, but considering the replicates all our sampled
409 localities reach the asymptote (Fig. S1), although samples from the lake in 2020 just reach the
410 asymptote considering OTUs analyses and the reservoir in 2020 had not reached the asymptote
411 considering ZOTUs analyses (Fig. S1).

412 The bioinformatic methodological choices can also affect the metabarcoding results. Here, we
413 used three pipelines that showed the best results compared with other approaches⁸⁰. We used
414 both OTU-level clustering at 97% level, with UPARSE⁴¹, and the unique sequences with zero-
415 radius ZOTU-level denoising, with UNOISE3²⁴, and ASV-level Divisive Amplicon Denoising
416 Algorithm 2, with DADA2²³. Both the OTUs and the ZOTUs are created using in USEARCH⁸¹.
417 The initial steps as merging, filtering, and deduplicating are the same for both approaches, with
418 just the last step been different. The third approach generated ASVs through a parametric model,
419 based in Q-scores to calculate a substitution model, estimating a probability for each possible
420 base substitution, to infer true biological sequences from reads as implemented in DADA2²³.
421 Although we recorded some variation in the number of reads and "species" registered in each
422 pipeline, the results are very similar, highlighting their robustness.

423 Another potential bias in the results is data treatment. Here we used several data normalizations
424 for both alpha and beta diversity. Although historically more used, rarefied data is biased to
425 detect differentially abundant species⁵¹ and the hill numbers are considered the best approach for
426 metabarcoding data⁵⁴. Also, due to PCR biases, variation in the copy number of 12S genes per
427 cell/genome, as well as differences in size and biomass across the targeted organisms can
428 compromise a straightforward interpretation of OTU reads as an abundance measure⁸²⁻⁸⁴.
429 However, rare (low abundant) ASVs, ZOTUs and OTUs are more likely to be an artefact (both
430 erroneous sequence or because of cross-talk⁸⁵) and the true sequences are more stochastically
431 distributed due to the intrinsic low occurrence and detection probability^{86,87}. Therefore, analyses
432 that weight more the most abundant molecular units could be preferable. As each method has its
433 own biases, we present here both approaches.

434 Finally, it is important to highlight that, in general, molecular data derived from "environmental
435 sequencing" should be seen as complementary to, rather than as competing with, traditional
436 taxonomic studies. Indeed, a confluence of both lines of evidence is highly warranted, as it will

437 be necessary to overcome their respective shortcomings. For instance, we have shown here that
438 many species occurring in the Itaipu fish pass system have no genetic data to allow their
439 identification. Even so, other 47 species with sequences available were only identified with
440 traditional surveys. This difference can be related to species density but also to primers biases.
441 To improve the species detection with metabarcoding it is crucial to enhance the genetic
442 reference database through traditional and to test if the primers used in metabarcoding studies are
443 able to amplify species present in the studied system. Indeed, the metabarcoding approach is an
444 intricate web of feedback loops with the species taxonomy and ecology.

445 **Conclusion:**

446 Despite the clear indication that the reference databases need to be continuously fed with
447 additional information on species that occur in the region, our results demonstrate the analytical
448 efficiency of the metabarcoding approach for monitoring fish species in the Itaipu's fish pass
449 system. In addition, the methodology allowed, even when the specific identity of the ASVs,
450 OTUs, and ZOTUs were below 97% similarity with the species in our database, to carry out
451 estimates of species alpha and beta diversity. The use of such a methodology enables the
452 monitoring of the fish community with sufficient sensitivity to detect changes due to some
453 natural or anthropogenic event.

454 **Acknowledgements:**

455 Funding was provided by Itaipu Binacional to AON (grant #4500049847). We thank Itaipu
456 Binacional for providing postdoctoral fellow grants to GDP and NC and the Alexander van
457 Humboldt foundation for providing a postdoctoral fellow grant to CDR. We also thank Conselho
458 Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for awarding AO and MRP with
459 research fellowship grants (grants #304633/2017-8 and #302904/2020-4, respectively).

460 **Ethics statement:**

461 We confirm that all methods were carried out in accordance with relevant guidelines and
462 regulations and in compliance with the ARRIVE guidelines. We confirm that all experimental
463 protocols were in accordance with the precepts of Law nº 11.794, of 8 October 2008, of Decree
464 nº 6.899, of 15 July 2009, and with the edited rules from Conselho Nacional de Controle da

465 Experimentação Animal (CONCEA), and it was approved by the ANIMAL USE ETHICS
466 COMMITTEE OF THE AGRICULTURAL SCIENCES CAMPUS OF THE FEDERAL
467 UNIVERSITY OF PARANA, BRAZIL, with degree 1 of invasiveness, on March 22th, 2021.

468

469 **References:**

- 470 1. de Souza Dias, V., Pereira da Luz, M., Medero, G. M. & Tarley Ferreira Nascimento, D.
471 An overview of hydropower reservoirs in Brazil: Current situation, future perspectives and
472 impacts of climate change. *Water* **10**, 592 (2018).
- 473 2. Patias, J., Zuquette, L. V. & Rodrigues-Carvalho, J. A. Piezometric variations in the
474 basaltic massif beneath the Itaipu hydroelectric plant (Brazil/Paraguay border): Right
475 Buttress Dam. *Bull. Eng. Geol. Environ.* **74**, 207–231 (2015).
- 476 3. Agostinho, A. A. Pesquisas, monitoramento e manejo da fauna aquática em
477 empreendimentos hidrelétricos. in *SEMINÁRIO SOBRE FAUNA AQUÁTICA E O SETOR*
478 *ELÉTRICO BRASILEIRO* 38–59 (Brasil, 1994).
- 479 4. Makrakis, S., Gomes, L. C., Makrakis, M. C., Fernandez, D. R. & Pavanelli, C. S. The
480 Canal da Piracema at Itaipu Dam as a fish pass system. *Neotrop. Ichthyol.* **5**, 185–195
481 (2007).
- 482 5. Dos Reis, R. B., Frota, A., Depra, G. D. C., Ota, R. Rú. & Da Graca, W. J. Freshwater
483 fishes from Paraná State, Brazil: an annotated list, with comments on biogeographic
484 patterns, threats, and future perspectives. *Zootaxa* **4868**, 451–494 (2020).
- 485 6. Becker, R. A., Sales, N. G., Santos, G. M., Santos, G. B. & Carvalho, D. C. DNA
486 barcoding and morphological identification of neotropical ichthyoplankton from the
487 Upper Paraná and São Francisco. *J. Fish Biol.* **87**, 159–168 (2015).
- 488 7. Milan, D. T. *et al.* New 12S metabarcoding primers for enhanced Neotropical freshwater
489 fish biodiversity assessment. *Sci. Rep.* **10**, 1–12 (2020).
- 490 8. Agostinho, A. A., Pelicice, F. M. & Gomes, L. C. Dams and the fish fauna of the
491 Neotropical region: impacts and management related to diversity and fisheries. *Brazilian*
492 *J. Biol.* **68**, 1119–1132 (2008).

- 493 9. Bonar, S. A., Hubert, W. A. & Willis, D. W. Standard methods for sampling North
494 American freshwater fishes. (2009).
- 495 10. Shaw, J. L. A. *et al.* Comparison of environmental DNA metabarcoding and conventional
496 fish survey methods in a river system. *Biol. Conserv.* **197**, 131–138 (2016).
- 497 11. Reis, R. E. *et al.* Fish biodiversity and conservation in South America. *J. Fish Biol.* **89**,
498 12–47 (2016).
- 499 12. Baumgartner, G. *et al.* *Peixes do baixo rio Iguaçu*. (Eduem, 2012).
- 500 13. Taberlet, P., Bonin, A., Coissac, E. & Zinger, L. *Environmental DNA: For biodiversity*
501 *research and monitoring*. (Oxford University Press, 2018).
- 502 14. Taberlet, P., Coissac, E., Pompanon, F., Christian, B. & Willerslev., E. Towards next-
503 generation biodiversity assessment using DNA metabarcoding. **33**, 2045–2050 (2012).
- 504 15. Ritter, C. D. *et al.* The pitfalls of biodiversity proxies: Differences in richness patterns of
505 birds, trees and understudied diversity across Amazonia. *Sci. Rep.* **9**, (2019).
- 506 16. Sales, N. G. *et al.* Space-time dynamics in monitoring neotropical fish communities using
507 eDNA metabarcoding. *Sci. Total Environ.* **754**, 142096 (2021).
- 508 17. Zinger, L. *et al.* Body size determines soil community assembly in a tropical forest. *Mol.*
509 *Ecol.* **28**, 528–543 (2019).
- 510 18. Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: a new paradigm in ecosystem
511 assessment made possible by next-generation DNA sequencing. *Mol. Ecol.* **21**, 2039–
512 2044 (2012).
- 513 19. Zinger, L. *et al.* Advances and prospects of environmental DNA in neotropical rainforests.
514 *Adv. Ecol. Res.* **62**, 331–373 (2020).
- 515 20. Cilleros, K. *et al.* Unlocking biodiversity and conservation studies in high-diversity
516 environments using environmental DNA (eDNA): A test with Guianese freshwater fishes.
517 *Mol. Ecol. Resour.* **19**, 27–46 (2019).
- 518 21. Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation
519 methods, sample medium and sampling time on eDNA recovery in a neotropical river.

- 520 *Environ. DNA* **1**, (2019).
- 521 22. Blaxter, M. *et al.* Defining operational taxonomic units using DNA barcode data. 1935–
522 1943 (2005). doi:10.1098/rstb.2005.1725
- 523 23. Callahan, B. J. *et al.* DADA2: high-resolution sample inference from Illumina amplicon
524 data. *Nat. Methods* **13**, 581–583 (2016).
- 525 24. Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon
526 sequencing. *BioRxiv* 81257 (2016).
- 527 25. Muha, T. P., Rodriguez-Barreto, D., O'Rorke, R., Garcia de Leaniz, C. & Consuegra, S.
528 Using eDNA metabarcoding to monitor changes in fish community composition after
529 barrier removal. *Front. Ecol. Evol.* **9**, 28 (2021).
- 530 26. Kitano, T., Umetsu, K., Tian, W. & Osawa, M. Two universal primer sets for species
531 identification among vertebrates. *Int. J. Legal Med.* **121**, 423–427 (2007).
- 532 27. Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects
533 seasonal fish abundance and habitat preference in an urban estuary. *PLoS One* **12**,
534 e0175186 (2017).
- 535 28. Bylemans, J. *et al.* An environmental DNA-based method for monitoring spawning
536 activity: A case study, using the endangered Macquarie perch (*Macquaria australasica*).
537 *Methods Ecol. Evol.* **8**, 646–655 (2017).
- 538 29. De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA
539 (eDNA) detection probability is influenced by seasonal activity of organisms. *PLoS One*
540 **11**, e0165273 (2016).
- 541 30. Ritter, C. D. *et al.* Locality or habitat? Exploring predictors of biodiversity in Amazonia.
542 *Ecography (Cop.)*. **42**, 321–333 (2019).
- 543 31. *CFMV- Resolução nº 1000 de 11 de maio de 2012 - Dispõe sobre procedimentos e*
544 *métodos de eutanásia em animais e dá outras providências.* (2012).
- 545 32. Britski, H. A., de Silimon, K. Z. de S. & Lopes, B. S. Peixes do Pantanal: manual de
546 identificação, ampl. *Brasília, DF, Embrapa Informação Tecnológica* (2007).

- 547 33. Ota, R. R., Deprá, G. de C., Graça, W. J. da & Pavanelli, C. S. Peixes da planície de
548 inundaçāo do alto rio Paraná e áreas adjacentes: revised, annotated and updated. *Neotrop.*
549 *Ichthyol.* **16**, (2018).
- 550 34. Neris, N., Villalba, F., Kamada, D. & Viré, S. Guía de peces del Paraguay/Guide of fishes
551 of Paraguay. (2010).
- 552 35. Pie, M. R. *et al.* Development of a real-time PCR assay for the detection of the golden
553 mussel (*Limnoperna fortunei*, Mytilidae) in environmental samples. *An. Acad. Bras.*
554 *Cienc.* **89**, 1041–1045 (2017).
- 555 36. Miya, M. *et al.* MiFish, a set of universal PCR primers for metabarcoding environmental
556 DNA from fishes: detection of more than 230 subtropical marine species. *R. Soc. open Sci.*
557 **2**, 150088 (2015).
- 558 37. Boeger, W. A. *et al.* Testing a molecular protocol to monitor the presence of golden
559 mussel larvae (*Limnoperna fortunei*) in plankton samples. *J. Plankton Res.* **29**, 1015–1019
560 (2007).
- 561 38. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
562 *EMBnet. J.* **17**, 10–12 (2011).
- 563 39. Van Rossum, G. & Drake, F. L. Python 3 References Manual. Scotts Valley CA:
564 CreateSpace. (2009).
- 565 40. R Core Team. R: the R project for statistical computing. 2019. URL: <https://www.r-project.org/> [accessed 2020-03-30] (2020).
- 567 41. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads.
568 *Nat. Methods* **10**, 996–998 (2013).
- 569 42. Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-
570 generation sequencing reads. *Bioinformatics* **31**, 3476–3482 (2015).
- 571 43. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421
572 (2009).
- 573 44. Team, Rs. RStudio: integrated development for R. *RSStudio, Inc., Boston, MA* URL

- 574 <http://www.rstudio.com> **42**, 84 (2015).

575 45. Wickham, H. *tidyverse: Easily Install and Load “Tidyverse” Packages* (Version R
576 package version 1.1. 1). (2017).

577 46. Wickham, H. *ggplot2: elegant graphics for data analysis*. (Springer, 2016).

578 47. Tang, Y., Horikoshi, M. & Li, W. *ggfortify: unified interface to visualize statistical results*
579 of popular R packages. *R J.* **8**, 474 (2016).

580 48. Auguie, B. & Antonov, A. *gridExtra: Miscellaneous functions for “grid” graphics*
581 (Version 2.2. 1)[Computer software]. (2016).

582 49. Kassambara, A. & Kassambara, M. A. Package ‘*ggpubr*’. (2020).

583 50. Oksanen, J. *et al.* *Vegan: community ecology package*. R package version 1.17-4.
584 <http://cran.r-project.org>. Acesso em **23**, 2010 (2010).

585 51. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is
586 inadmissible. *PLoS Comput. Biol.* **10**, e1003531 (2014).

587 52. Jost, L. Entropy and diversity. *Oikos* **113**, 363–375 (2006).

588 53. Marcon, E., Herault, B. & Marcon, M. E. Package ‘*entropart*’. (2021).

589 54. Mächler, E., Walser, J.-C. & Altermatt, F. Decision making and best practices for
590 taxonomy-free eDNA metabarcoding in biomonitoring using Hill numbers. *BioRxiv*
591 (2020).

592 55. McMurdie, P. J. & Holmes, S. *phyloseq: an R package for reproducible interactive*
593 *analysis and graphics of microbiome census data*. *PLoS One* **8**, e61217 (2013).

594 56. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
595 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

596 57. León, A., Reyes, J., Burriel, V. & Valverde, F. Data quality problems when integrating
597 genomic information. in *International Conference on Conceptual Modeling* 173–182
598 (Springer, 2016).

599 58. Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace

- 600 operational taxonomic units in marker-gene data analysis. *ISME J.* **11**, 2639–2643 (2017).
- 601 59. Stahlhut, J. K. *et al.* DNA barcoding reveals diversity of hymenoptera and the dominance
602 of parasitoids in a sub-arctic environment. *BMC Ecol.* **13**, (2013).
- 603 60. Gillet, B. *et al.* Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year
604 survey significantly improves number of fish detected around a South East Asian
605 reservoir. *PLoS One* **13**, e0208592 (2018).
- 606 61. Barrett, M. *et al.* Living planet report 2018: Aiming higher. (2018).
- 607 62. Díaz, S. M. *et al.* The global assessment report on biodiversity and ecosystem services:
608 Summary for policy makers. (2019).
- 609 63. Dudgeon, D. Asian river fishes in the Anthropocene: threats and conservation challenges
610 in an era of rapid environmental change. *J. Fish Biol.* **79**, 1487–1524 (2011).
- 611 64. Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. *Curr.*
612 *Biol.* **29**, R960–R967 (2019).
- 613 65. He, F. *et al.* Disappearing giants: a review of threats to freshwater megafauna. *Wiley*
614 *Interdiscip. Rev. Water* **4**, e1208 (2017).
- 615 66. Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the
616 floodplain of the Upper Paraná River: effects of hydrological regulation by dams. (2018).
- 617 67. Santana, M. L., Carvalho, F. R. & Teresa, F. B. Broad and fine-scale threats on threatened
618 Brazilian freshwater fish: variability across hydrographic regions and taxonomic groups.
619 *Biota Neotrop.* **21**, (2021).
- 620 68. Matthews, W. J. *Patterns in freshwater fish ecology*. (Springer Science & Business Media,
621 2012).
- 622 69. de Oliveira Bueno, E., Alves, G. J. & Mello, C. R. Hydroelectricity water footprint in
623 Parana hydrograph region, Brazil. *Renew. Energy* **162**, 596–612 (2020).
- 624 70. Camacho Guerreiro, A. I., Amadio, S. A., Fabre, N. N. & da Silva Batista, V. Exploring
625 the effect of strong hydrological droughts and floods on populational parameters of
626 *Semaprochilodus insignis* (Actinopterygii: Prochilodontidae) from the Central Amazonia.

- 627 *Environ. Dev. Sustain.* **23**, (2021).
- 628 71. Jespersen, H., Rasmussen, G. & Pedersen, S. Severity of summer drought as predictor for
629 smolt recruitment in migratory brown trout (*Salmo trutta*). *Ecol. Freshw. Fish* **30**, 115–
630 124 (2021).
- 631 72. Pool, T. K., Grenouillet, G. & Villéger, S. Species contribute differently to the taxonomic,
632 functional, and phylogenetic alpha and beta diversity of freshwater fish communities.
633 *Divers. Distrib.* **20**, 1235–1244 (2014).
- 634 73. Oliveira, E. F. de, Goulart, E. & Minte-Vera, C. V. Fish diversity along spatial gradients
635 in the Itaipu Reservoir, Paraná, Brazil. *Brazilian J. Biol.* **64**, 447–458 (2004).
- 636 74. Daga, V. S. *et al.* Homogenization dynamics of the fish assemblages in Neotropical
637 reservoirs: comparing the roles of introduced species and their vectors. *Hydrobiologia*
638 **746**, 327–347 (2015).
- 639 75. Vitule, J. R. S. Introdução de peixes em ecossistemas continentais brasileiros: revisão,
640 comentários e sugestões de ações contra o inimigo quase invisível. *Neotrop. Biol.*
641 *Conserv.* **4**, 111–122 (2009).
- 642 76. Mariac, C. *et al.* Species-level ichthyoplankton dynamics for 97 fishes in two major river
643 basins of the Amazon using quantitative metabarcoding. *Mol. Ecol.* (2021).
- 644 77. Jackman, J. M. *et al.* eDNA in a bottleneck: obstacles to fish metabarcoding studies in
645 megadiverse freshwater systems. *Environ. DNA* (2021).
- 646 78. Bessey, C. *et al.* Maximizing fish detection with eDNA metabarcoding. *Environ. DNA* **2**,
647 493–504 (2020).
- 648 79. Evans, N. T. *et al.* Fish community assessment with eDNA metabarcoding: effects of
649 sampling design and bioinformatic filtering. *Can. J. Fish. Aquat. Sci.* **74**, 1362–1374
650 (2017).
- 651 80. Prodan, A. *et al.* Comparing bioinformatic pipelines for microbial 16S rRNA amplicon
652 sequencing. *PLoS One* **15**, e0227434 (2020).
- 653 81. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.

- 654 *Bioinformatics* **26**, 2460–2461 (2010).
- 655 82. Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species
656 abundance? Testing primer bias and biomass—sequence relationships with an innovative
657 metabarcoding protocol. *PLoS One* **10**, e0130324 (2015).
- 658 83. Pawluczyk, M. *et al.* Quantitative evaluation of bias in PCR amplification and next-
659 generation sequencing derived from metabarcoding samples. *Anal. Bioanal. Chem.* **407**,
660 1841–1848 (2015).
- 661 84. Holman, L. E., Chng, Y. & Rius, M. How does eDNA decay affect metabarcoding
662 experiments? *Environ. DNA* (2021).
- 663 85. Edgar, R. C. UNCROSS2: identification of cross-talk in 16S rRNA OTU tables. *BioRxiv*
664 400762 (2018).
- 665 86. MacArthur, R. H. *Geographical ecology: patterns in the distribution of species*.
666 (Princeton University Press, 1984).
- 667 87. Leray, M. & Knowlton, N. Random sampling causes the low reproducibility of rare
668 eukaryotic OTUs in Illumina COI metabarcoding. *PeerJ* **5**, e3006 (2017).
- 669 88. Team, Q. D. QGIS geographic information system. *Open Source Geospatial Found. Proj.*
670 Versão **2**, (2015).