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Abstract .
Pyramidal neurons in neocortex have complex input-output relationships that depend on their 2
morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated s
by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as 4
resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal 5

functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic ¢
impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in 7
resonance and impedance phase with respect to the soma. We therefore investigated how well several s

biophysically-detailed multi-compartment models of neocortical layer 5 pyramidal tract neurons 9
reproduce the location-dependent impedance profiles observed experimentally. Each model tested here 10
exhibited location-dependent impedance profiles, but most captured either the observed impedance 11
amplitude or phase, not both. The only model that captured features from both incorporates HCN 12
channels and a shunting current, like that produced by Twik-related acid-sensitive K™ (TASK) 13
channels. TASK-like channel activity in this model was dependent on local peak HCN channel 14
conductance (I,). We found that while this shunting current alone is insufficient to produce resonance 1s
or realistic phase response, it modulates all features of dendritic impedance, including resonance 16
frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored 17
how the interaction of I, and a TASK-like shunting current shape synaptic potentials and produce 18
degeneracy in dendritic impedance profiles, wherein different combinations of I, and shunting current 19
can produce the same impedance profile. 20
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Abbreviations 23
PC: pyramidal cell; L5: layer 5; PT: pyramidal tract neuron; TASK channel: Twik-related 2%
acid-sensitive K+ channel; ZAP: impedance amplitude profile; ZPP: impedance phase profile; Iy: 25
h-current; HCN channel: hyperpolarization-activated cyclic nucleotide—gated; AMPA: 2
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; IT: intratelencephalic; CT: corticothalamic; 27
EPSP: excitatory post-synaptic potential 28
New & Noteworthy 29
We simulated chirp current stimulation in the apical dendrites of 5 biophysically-detailed 30
multi-compartment models of neocortical pyramidal tract neurons and found that a combination of 31
HCN channels and TASK-like channels produced the best fit to experimental measurements of 32
dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic 33
impedance as well as the voltage response to synaptic currents. 34
Introduction 3
The pyramidal cells (PCs) found in layer 5 (L5) of neocortex generate the main outputs of cortical 36
circuits: spike trains propagating along axons that project to various cortical and subcortical 37

&

structures, exerting top down control over other brain areas and motor function [3,21,22,40,50,77]. In s
order to produce their outputs, L5 PCs integrate inputs from other cortical layers, other cortical areas, 3o
and thalamus [2,43,47,55,59,80]. There is great diversity among PCs in L5, not just in their a0
morphologies and projections, but also in their spiking activity, with some PCs having high a
spontaneous firing rates while others’ firing rates are closely correlated with the activity of neurons in
the surrounding population [43]. The balance of excitatory and inhibitory inputs and the electrotonic 43
structure of PCs are key in understanding how they generate their outputs and exert top-down control s
over other parts of the nervous system. 45

In this study we focused on pyramidal tract neurons (PTs; also called thick-tufted cells), one of the 4
3 major classes of cortical PCs. 1. PTs project to subcortical structures and include corticospinal, a7
corticobulbar, and corticopontine cells as well as projections to the medullary pyramids [13,21]. They s
also send collateral projections to thalamus. 2. Intratelencephalic neurons (ITs), also called thin-tufted

or commissural cells, include corticostriatal and corticocortical cells and project to other cortical 50
areas [56]. 3. Corticothalamic neurons (CTs) project to ipsilateral thalamus [77]. A major 51
physiological factor distinguishing PTs from ITs and CTs is the high expression of the 52

hyperpolarization-activated cyclic nucleotide—gated (HCN) channel, a nonselective voltage-gated cation s
channel responsible for the h-current (I,) [13,56,68]. High expression of HCN channels profoundly 54

affects the subthreshold filtering properties of neuronal membrane. 55

The electrical properties of the passive neuronal membrane are very similar to those of a parallel 56
RC circuit, with the response of membrane potential to currents dropping off at frequencies above the sz
"natural frequency” at 1/27RC Hz (low-pass filtering). Under the right circumstances, however, 58

voltage-gated ion channels can produce a ”phenomenological inductance” [7,8] that can, like a physical  so
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inductor in an RLC circuit, generate resonance: an enhanced voltage response over an intermediate 60
range of frequencies [45,46]. Phenomenological inductance is most likely to be seen when channels with &
slow gating are present, such as HCN channels and delayed rectifier K channels [29, 58, 71]. Resonance 2
becomes apparent when currents through these channels are prominent enough and lag sufficiently far 3
behind fluctuations of membrane potential [30]. 64

The filtering properties of the neuronal membrane have been characterized as impedance profiles 65

measured at subthreshold voltages [10,12,57,58]. A common experimental method for probing 66
neuronal impedance is to stimulate the neuron by injecting a chirp current waveform: a 67
constant-amplitude, sinusoidal waveform whose instantaneous frequency increases from low to high 68
over time [12,57]. In this study, we use a linear chirp stimulus whose instantaneous frequency increases oo
linearly from 0.5-20 Hz over 20s [13,75]. Impedance amplitude (|Z]|) characterizes voltage response 70
with respect to stimulus frequency. The resonant peak (resonant frequency, f,.s) is found at the 71
frequency where the constant amplitude current stimulus causes the greatest peak-to-peak changes in 7
membrane potential. I,-mediated resonance has been observed in a wide variety of species and 73
neuronal cell types [30,75,82], and is proposed to impart neurons with the ability to discriminate 7
inputs by frequency [4,12,29]. In addition to responding more strongly at certain frequencies 75
(resonance), Iy, also provides another property characteristic of inductive circuits: a shift of response 7
phase (®). Given a sinusoidal current stimulus, the peaks of Vemp may occur before (lead), after 77
(lag), or synchronous with peaks in the stimulating current [52]. The frequency at which a peaks in the 7
stimulating current and peaks in Ve, is referred to as the synchronous frequency [13]. The 79
phenomenological inductance produced by I, opposes capacitive delay imparted by the neuronal 80

membrane and produces phase lead at some frequencies. I}, has thus been proposed as a mechanism for s
compensating location-dependent capacitive delays of dendritic inputs seen at the soma, ensuring that s
simultaneous synaptic inputs dispersed across the dendritic arbor are coincident in the soma [76]. 83

To illustrate these effects, we modified the standard passive neuronal model by adding an inductive ss

circuit which mimics some of the properties of I, (Fig. 1A). The resistor (R) stands in for the 8
conductance of I,; the battery (E), its reversal potential; and the inductance (L), the 86
phenomenological inductance it generates. We used an extremely high inductance of 10 kH to show 87
obvious effects. Adding the inductive circuit changes the low-pass filter properties of the passive 88
neuron (Fig. 1B, dashed lines) to those of a resonator (solid lines). The inductance also increases 89
impedance phase, even creating phase lead at low frequencies, where the impedance phase profile 90

(ZPP) is greater than zero (Fig. 1C). The inductance that shapes the impedance amplitude profile o1
(ZAP) and ZPP also influences synaptic potentials In dendrites equipped with inductance, the EPSP o

becomes faster (peak occurs sooner) and narrower (half width decreases) Fig. 1D. Resonance in the 93
ZAP is associated with narrowing the shape of the EPSP, which is consistent with the effects of HCN o4
channels in dendrites [34,81]. Higher impedance phase in the ZPP is associated with earlier peak 95
Vimemb in the EPSP, even showing synaptic phase lead with peak somatic Vyemp preceding peak 9
synaptic current in the dendrite. While the phenomenological inductance produced by HCN channels o7
is not sufficient for phase lead in synaptic potentials, we will see that increased impedance phase 98
compensates for membrane capacitance and reduces the delay between peak synaptic conductance in o
the dendrites and peak Vi,emp at the soma. 100

I;, has other dramatic effects on the intrinsic dynamics and excitability of neurons. It acts as a 101
pacemaker current, supporting regular- and burst-firing modes [64]. It mediates the sag potential 102
observed during hyperpolarization and spike-frequency adaptation during suprathreshold 103

depolarization [56,64]. 1), supports coincidence detection, affects temporal summation [11,14,39], and 104
has been suggested to determine the frequency response of neuronal membrane potential (Viyemp) in 105
response to weak alternating electric fields, like that produced by transcranial current stimulation [73]. 106
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Additionally, HCN channels have been shown to have paradoxical effects on excitatory post-synaptic 107
potentials (EPSPs), enhancing spiking in response to EPSPs when the spike threshold is low and 108
inhibiting spiking in response to EPSPs when the spike threshold is high [19]. Recent modeling studies 109
have suggested that this dual role could be attributed to interactions between HCN channels and a 110
shunting current, most likely that produced by Twik-related acid-sensitive K™ (TASK) channels [16,48]. 1

The relatively high expression of HCN in PTs endows them with resonance, giving the properties of 11
a band-pass filter [13,30,75]. We here report that five previously developed, biophysically-detailed 113
multi-compartment models of neocortical PTs exhibit dendrite-location-dependent impedance profiles 114
with resonant frequencies and synchronous frequencies increasing with distance from the 115
soma [16,18,23,38,54]. Four of the five models have resonant frequencies in line with experimental 116
findings, ranging from 4-9 Hz [13,75], while the fifth produced resonant frequencies above this range. 117
Two of the five models have synchronous frequencies in line with experimental data, ranging from 3.5-7 118
Hz [13], while the other three produced synchronous frequencies below this range. Only one PT model, 119
which includes both I}, and a TASK-like shunting current, produced realistic impedance amplitude and 120
phase profiles. We added TASK-like channels to one of the PT models that originally only produced 12

resonant frequencies matching experimental findings. This addition produced realistic impedance 122
amplitude and phase profiles with resonant and synchronous frequencies withing the experimental 123
range. We also examined how I, and the TASK-like shunting current interact to produce and 124
modulate dendritic resonance, inductive phase, and the properties of EPSPs. 125
Methods 126
The biophysically-detailed models studied here were developed for and published in previous 127
studies. [1,16,23,38,54] All simulations presented here were performed using NEURON version 128
7.8.0 [25,26]. The code developed for simulation, data analysis, and visualization was written in 120
Python, and it is available on GitHub and ModelDB. 130
Models 131

The simplified neuron model presented in Fig. 1 had a single-compartment, spherical soma with radius 13
5 um, and a single three-compartment dendrite 75 ym long and 10 ym in diameter. All compartments 133
had a membrane capacitance of 1 uF/cm?, passive conductance 0.2 mS/cm?, and passive reversal 134
potential of -70 mV. To demonstrate the effects of inductance on impedance and Ve dynamics, the 135
cell was connected to an inductor (L = 10 kH), resistor (R = 25 M), and a battery (E =-70 mV) 13
placed in series and connected to ground (Fig. 1A). 137

We focused our study on 5 biophysically-detailed, multi-compartment models: three models of rat 138

PTs and two models of mouse PTs (Table 1). Model 1 is based on data from neocortex of Wistar 130
rats, postnatal day (P) 36 [23]. The model was fit to perisomatic and backpropagating spiking activity. 140
Dendritic channels were uniformly distributed with the exceptions of HCN channels and high- and 141
low-voltage activated Ca?+ channels. I, was uniform in the basal dendrites, while in the apical 142
dendrites I, channels were distributed using a density function that increased exponentially with 143
distance from the soma [37,53]. The density of Ca?+ channels was increased near the nexus of the 144
apical tufts forming a "hot-zone” [23]. Model 2 was based on data from frontal cortex of 145

Sprague-Dawley rats, P21-33, fit using voltage-sensitive dye imaging data with a focus on reproducing 16
dendritic plateau potentials and their propagation toward the soma, dendritic sodium spikelets, and 1
backpropagating action potentials in the basal dendrites [1,18]. The distribution of Ij, channels was 148
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constant in the basal dendrites and increased exponentially with distance from the soma in the apical 19

dendrites. Model 3 was based on data from somatosensory cortex of Wistar rats [38]. Channel 150
densities were adjusted primarily to account for perisomatic spiking activity, particularly fast action 15
potential repolarization and large amplitude afterhyperpolarization in the axon initial segment. Iy 152

channels were distributed throughout the dendritic arbor with an exponential increase in density with 153
distance from the soma [37]. It also had M-type K™ channels distributed uniformly throughout the 154

dendritic arbor. Model 4 was based on data from primary motor cortex (M1) of C57B1/6J mice, 155
P21 [54] . The model was fit based on perisomatic spiking activity and validated by simulating 156
subthreshold somatic resonance. I, conductance was constant in the basal dendrites, increased 157

exponentially with distance from the soma along the apical trunk until the nexus with apical dendrite 1ss
tufts, beyond which the I, conductance plateaued at 0.006 S/cm? [20]. Model 5 was based on Model 150
4; they had identical morphologies [16]. It was modified to include a TASK-like shunting current whose 10
conductivity was coupled to peak Ij, conductivity as described by Migliore & Migliore (2012), along 161

with small changes to fast sodium channel conductance, membrane capacitance, and passive 162
conductance [16]. These changes preserved the perisomatic firing characteristics of the original model 163
and fit experimental data from PT cells in primary motor cortex while also reproducing additional 164
I5-dependent phenomena observed experimentally [16,19,54,68]. More detailed information regarding 1es
the parameters and properties of the models studied here may be found in their original 166
publications [16, 18,23, 38, 54]. 167
Chirp and impedance 168

We generated impedance profiles for each of these models by stimulating each compartment along the 160
apical trunk with a chirp current waveform and measuring changes in V,,¢mp at the soma. We used a 170
linear chip stimulus where current ([;;,) is defined as: 171

Iin(t) = Asin [%(%ﬂ + fot)] (1)

where ¢ = (fi-fo) / T, fo is the initial frequency, fi is the final frequency, and T is the duration of the 17
frequency sweep. A, the stimulus amplitude, was chosen such that excursions in V,emp about Vg 173
were symmetrical to within 0.01 mV. The instantaneous frequency of I;;,(t) increases linearly with time. 174
When computing impedance in the biophysically-detailed PT models, we used fo = 0.5 Hz, fi = 20Hz, 1
and T = 20 s. It should be noted that commonly used scientific computing software packages like 176
SciPy and MATLAB’s Signal Processing Toolbox include chirp functions that use cosine rather than 177
sine, and a phase shift of -90 degrees must be used to ensure smooth transitions in V,,emp when using  17s
these functions to generate stimuli appropriate for impedance analysis [44, 78]. 179

We focused specifically on the transfer impedance between the stimulated dendrite and the soma, 1s0

which was computed as: 181
_ FFT(V:Soma(t)) (2)
©  FFT(I;n())
Z. is a complex valued function where FFT(I;;,) is the Fourier transform of the injected current 182
waveform and FFT(V,,) is the Fourier transform of the change in membrane potential at the soma. 1
From the impedance we extract the real valued resistance (R) and the imaginary valued reactance (X). 1ss
From R and X we compute the transfer impedance amplitude as a function of input frequency: 185

1Ze(f)] = V R? + X? (3)

Transfer frequency, firansfer, is defined as the frequency at which |Z.| between the stimulation site and  1s6
the soma is maximized [13]. In other words, firansfer is the resonant frequency (fres) of the transfer — 1e7
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impedance. Transfer resonance strength (S.) is a dimensionless quantity defined as: 188

. ‘Zc(ftransfer) |

%= 1205 (4)

This quantity has been used in previous publications and referred to as ”Q factor” or ”Q”, but this 189
measure differs entirely the generally accepted definition of Q factor used in the context of resonant 10

electrical circuits [36,74]. We therefore simply refer to the quantity in Equation (4) as resonance 101
strength. 102
Transfer impedance phase (®.), which quantifies the temporal relationship between I(t) and Viyemp 193
at the soma, is defined as: 104
X
O.(f) = arctan(ﬁ) (5)

Synchronous frequency between the dendrite and soma is defined as the frequency at which &, =0 and 195
peaks in I;,(t) and Vgom, are synchronized. When @, > 0, the peaks in Vo, precede I(t), which is 16
referred to as leading or inductive phase. Total inductive phase [52] is defined as: 107

- ()
o, [D el (6)

— the area of the ®. curve above zero. If there is no inductive phase and ®. < 0 for all frequencies, we 10
set the synchronous frequency to zero. 199

Because the chirp waveform is not stationary (its instantaneous frequency increases over time), and 200

the discrete Fourier transforms used in Equation 2 to compute impedance assume the signal is 201
stationary, we validated the use of chirp to generate impedance profiles. We compared impedance 202
profiles generated using chirp with impedance profiles generated by stimulating the cell with stationary 203
sinusoidal current waveforms at a single frequency for 5 s, computing the impedance phase and 204

amplitude at that frequency, and repeating for each frequency of interest. We found that impedance 205
amplitudes are nearly identical between the two methods, but there are differences impedance phase 206
(Supplemental Fig. S1 https://doi.org/10.6084/m9.figshare.13322588.v1). For instance, when 207
using chirp to compute impedance in one of the biophysically-detailed models, impedance phase is is 208
practically indistinguishable from 0.5 - 13 Hz using both methods, but phase begins to diverge beyond 209
13 Hz. We also see in the simplified models that the errors in impedance phase increase at higher 210
frequencies. Since important impedance phase features like synchronous frequency and ®;, occur below 2u1
13 Hz in PTs, the chirp waveform is suitable for computing impedance phase. However, we recommend 212

caution if one is using chirp to compute impedance phase at higher frequencies. Therefore, when 213
computing impedance for the simple models seen in Fig. 1, we used a 5 s sinusoid at each frequency 214
(0.5 - 1000 Hz in 0.5 Hz increments) rather than chirp. 215
Simulations 216
We ran over 4000 single-cell simulations during the course of this study. For simulating chirp 217
stimulation of the biophysically-detailed PT models, 1 second of simulation-time took roughly 40 218

seconds of clock-time in NEURON on a Linux system using 2.40 GHz quad-core Intel Xeon CPUs. We 210
simulated chirp current stimulation of each compartment along the apical trunks of each PT model and 22
computed the transfer impedance between the stimulated compartment and the soma. By determining 22
the transfer resonance frequencies and synchronous frequencies along the apical trunk, we observed the 22
location-dependence of the impedance profiles in these PT cell models. For comparisons between the 223
models and experimental data, transfer frequency and synchronous frequency observations were 24
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extracted from published data [13,75] using WebPlotDigitizer [65] and pooled together. Since each 225

observation was made from a different neuron, and it is not indicated how far each measurement is 26
relative to the apical trunk length, we normalized all position data to the farthest observation from the 227
soma. 28

All synaptic stimulation simulations were performed using NEURON’s AlphaSynapse with a time 229
constant of 1 ms to mimic a unitary, excitatory AMPA synapse [25]. Maximal synaptic conductance 230
was chosen to produce a ~1 mV depolarization in somatic Vyemp in each model or condition for all 231

synaptic stimulation simulations. 232
Results 233
Impedance profiles of model PT neurons 234

Since location-dependent gradients in resonance and impedance phase were not investigated previously 23
in PT models [17,35], we explore how both impedance amplitude and phase change with distance from 23
the soma in morphologically and biophysically detailed PT models. We measured the impedance 237
profiles of 5 biophysically-detailed multi-compartment models of L5 PTs using a set of simulated 20 s 238
subthreshold chirp-waveform current injections with instantaneous frequency of 0.5 - 20 Hz (Fig. 2A). 230
We simulated stimulation with a subthreshold chirp-waveform at various locations along the apical 240
trunk (Fig. 2B). Changes in membrane potential in response to chirp stimuli were recorded from the 2x
stimulated compartments (Fig. 2C, E, G) and at the soma (Fig. 2D, F, G). We computed transfer 242

impedance (Z.) and associated measures from each of the recorded somatic membrane potential 243
waveforms via Equations 2-4 (Fig. 2I-K). In an example PT model, we see location-dependent changes 2:
in the impedance profiles with transfer frequencies, resonance strength, total inductive phase, and 245

synchronous frequencies all increasing along the apical trunk with distance from the soma (Fig. 2J, K). 246
The peaks and contours of the ZAP and ZPP shift to the right in frequency with distance from the 247

soma (Fig. 2J, K). 248

All of the PT cell models exhibit location-dependent impedance profiles with transfer frequencies 249
and synchronous frequencies increasing with distance from the soma (Fig. 3) [13,75]. They varied, 250
however, in how well they replicated the full range of experimental data. Model 3 overestimated the 251
transfer frequency along the apical trunk but exhibited synchronous frequencies within the 252
experimental range. Models 1, 2, & 4 exhibited realistic transfer frequencies along the apical trunk 2ss
but underestimated the synchronous frequencies. Models 1 & 2 even showed no inductive phase, 254
with ®. < 0 at all frequencies (5), for large proximal portions of their apical trunks (Fig. 3B). Only 25
model 5 captured both the transfer and synchronous frequencies observed in experiments. 256

Model 5 produced greater total inductive phase along its apical trunk than any of the other 257
models (Fig. 4). @1, (6) between the distal end of the apical trunk and the soma was roughly 7x higher 2ss
in model 5 with the both HCN and TASK-like channels compared to its earlier incarnation (see 259

Methods, Table 1) model 4 (Fig. 4A). As an example, we present ZPPs from the same segment in 260
models 4 & 5, roughly half the length of the apical trunk (136.4 pum) from the soma (Fig. 4B). Peak 26
®. in model 5 is more than double that in model 4, and ®. remains higher in model 5 than model 2
4 for all frequencies probed. The optimal frequency for leading phase remained around 2 Hz in both 263
models however. In the time domain, this means that V,emp at the soma leads a 2 Hz sinusoidal 264
stimulating current halfway along the apical trunk by roughly 17 ms in model 5, whereas they are 265
practically synchronous in model 4 (Fig. 4B, inset). Although the increased ®;, is not sufficient to 266
produce phase lead in the EPSP, increased ®. partially compensates for the capacitive delay in EPSP 267
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arrival time at the soma (Fig. 4C). When synaptic stimulation halfway along the apical trunk produces 2es

a 1 mV amplitude EPSP in the soma, peak Vy,emp occurs roughly 1 ms sooner in model 5 than in 260

model 4. This difference is consistent across a range of EPSP amplitudes (0.5 - 2 mV, data not 270
shown), and we expect it to remain consistent within the subthreshold range. 71
I,, TASK-like shunting current, and dendritic impedance o2
A combination of I, and TASK-like shunting current produced the best approximation of 273
experimentally observed dendritic impedance profiles in PTs (Fig. 5). Model 5 was the only PT 274

model which included a TASK-like shunting current that was coupled to peak I, conductivity [48]. We 275
repeated our simulations on model 5 with different models of the HCN channel that do not include an 276
additional shunting current in order to determine what produced its biologically realistic impedance 277
profiles. We computed transfer and synchronous frequencies along the apical trunk using models of 278
HCN from Kole et al. (2006) and Harnett et al. (2015). While using the other two HCN models 279
reduced the transfer frequencies along the apical trunk, these remained well within the observed range 280
(Fig. 5A). The different models of HCN had dramatic effects on the phase response however. The 281
Harnett et al. (2015) model reduced synchronous frequency by roughly one half across the apical trunk. 2s
The Kole et al. (2006) model produced zero inductive phase along more than half the length of apical s

trunk (Fig. 5B). 284

HCN mediates dendritic resonance and leading phase response in PTs, but TASK-like shunting 285
current can modulate them (Fig. 6). By simulating the chirp stimulation along the apical trunk of 286
model 5 while blocking either I}, or the TASK-like shunting current across the entire neuron, we 287
observed the independent effects of HCN and TASK-like channels on the impedance profile. Blocking 2ss
I, while leaving the shunting current intact increased impedance amplitude across frequencies but 289
eliminated resonance and inductive phase, as expected from experiments [13,30,75]. Instead, both 200
impedance amplitude and phase fell off with frequency as in a simple, passive parallel RC circuit 201
model. Blocking the shunting current dramatically increased impedance amplitude, more so than 202

blocking Ij,, but reduced transfer frequency, resonance strength, synchronous frequency, and impedance 293
phase across frequencies (Fig. 6 A, B). It is noteworthy that blocking the shunting current did not 204
reduce synchronous frequencies along the apical trunk to the level of the other two HCN models from 295
Harnett et al. (2015) and Kole et al. (2006), but it did reduce them to the low end of the experimental 296

range (Fig. 5). Therefore, the TASK-like shunting current alone does not endow a realistic phase 207
response; the Migliore & Migliore’s model of I}, alone was sufficient for realistic synchronous 208
frequencies. The changes to dendritic impedance caused by blocking I, and shunting current were 209
consistent along the apical trunk, becoming more pronounced at the distal end of the trunk where 300
HCN and shunting current density were highest (Fig. 6C-F). 301

Blocking HCN and TASK-like channels influences EPSPs in accordance with changes to dendritic 302
impedance (Fig. 7). The downward shifts in ZPP caused by blocking HCN and TASK-like channels 303
seen in Fig. 6D correspond to reductions in the compensation for membrane capacitance, increasing the 3o
delay in EPSP peak at the soma. Blocking TASK-like shunting current increases the lag between peak 3o
synaptic current halfway along the apical trunk and peak V ,emp at the soma by 1 ms. Blocking I, 306
increases the lag by 2.6 ms. Similarly, blocking these currents reduces resonance strength (Fig. 6C) and o7
the width of the EPSPs are increased accordingly. Although the changes to EPSP peak timing are 308
fairly small, coupled with the changes in EPSP shape these channels can have a large impact on the 300
integration and coincidence detection of synaptic potentials in the soma. 310
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Degeneracy and the interplay of I, and shunting current 311

We demonstrated how different distributions of HCN and TASK-like channels can produce realistic 312

impedance profiles (Fig. 8). This is an example of degeneracy, wherein different combinations of 313
elements, parameters, or in this case ion channels can produce the same behavior. We replaced the 314
HCN channel model used in model 1 with the combined HCN and TASK-like channel models 315

described by Migliore & Migliore (2012) and used in model 5. While we preserved the original HCN 316
channel distribution from model 1, this replacement maintained realistic transfer frequencies (Fig. 8C) s17
and produced synchronous frequencies which are in line with experimental observations (Fig. 8D). The s
location-dependent impedance response in the adjusted model 1 was similar to that of model 5, even 319
though the HCN and TASK-like channel distributions in model 1 was exponentially increasing with s
distance from the soma across the full length of the apical dendrites, while in model 5 their densities 32

were constant in the apical tufts (Fig. 8B). This shows degeneracy of the impedance profile and is 322
consistent with the variability of PTs seen in vivo [13,75]. It also further demonstrates that the 323
Migliore & Migliore (2012) implementation of I, and TASK-like shunting current provides the most 32
biologically plausible sources of inductive phase in neocortical PTs. 325

Both I, and TASK-like shunting current modulated all features of the impedance profile, but they 32

did not contribute to the impedance profile equally (Fig. 9). By varying HCN and/or TASK-like 327
channel density (Al and Alj, respectively) by £90% in increments of 10% uniformly across the 328
dendritic arbor, we explored how different distributions of these channels in model 5 modulated the 32
dendritic impedance profiles. We measured how transfer impedance between the distal end of the 330
apical trunk and the soma was affected by these changes to HCN and TASK-like channel densities 331
(Fig. 9). Changes to HCN channel density had a greater impact on the impedance profile than 332

equivalent changes to TASK-like channel density, but one can compensate for the other. For example, 333
at baseline (Al = 0%; Al = 0%), transfer frequency between the distal dendrite and the soma was 33
8.26 Hz; transfer resonance strength, 2.65; synchronous frequency, 6.32 Hz; and total inductive phase, 33
1.60 rad*Hz. By increasing HCN density across the neuron by 60%, transfer frequency increased to 336
8.97 Hz, resonance strength increased to 2.96, synchronous frequency increased to 7.06 Hz, and total 337

inductive phase increased to 2.01 rad*Hz. These changes may be roughly compensated by also 338
decreasing TASK-like channel density across the neuron by 70%, where transfer frequency was 8.26 Hz; 33
resonance strength, 2.52; synchronous frequency, 6.42 Hz; and total inductive phase, 1.67 rad*Hz. 340
Thus, regions of single color intensity in Fig. 9 represent degenerate combinations of HCN and 341
TASK-like channel densities. 342
Discussion 343
Dendritic conductances and impedance profiles 344

While none of the models studied were explicitly designed to exhibit realistic dendritic impedance, only 345

model 5 accurately captured features from both impedance amplitude and phase profiles. The 346
combination of I, with a TASK-like shunting current, which mediated the realistic dendritic impedance 347
we have seen, was intended to account for the paradoxical change from the excitatory to inhibitory 348
effect of Ij, in response to increasingly strong synaptic inputs [16,19,48]. The parameters of the 349

shunting current were tuned to reproduce this result while maintaining an F-I curve consistent with 350
experimental observations [16,54]. Importantly, model 5 did not reproduce biologically realistic phase 351
response after eliminating the TASK-like channels and replacing the HCN model with those developed 352
by Kole et al. (2006) and Harnett et al. (2015) (Fig. 5). With the other HCN channel models, model 353
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5 still maintained the experimentally observed F-I curve, but did not reproduce the paradoxical change ssa

from the excitatory to inhibitory effect of I, in response to increasingly strong synaptic 355
inputs. [20,37,54]. This suggests the model combining Ij, and the TASK-like shunting current 356
developed by Migliore & Migliore (2012) provides the best approximation of the currents mediating the sz
location-dependent impedance profiles of PT cells. 358

It is also noteworthy that a combination of dendritic I, and TASK-like shunting current 359

undermined the hypothesis that the aforementioned paradoxical effect of I, is mediated by M-type K+ 360
channel currents [19]. Recent work has demonstrated the effects of M-type KT channels on dendritic 36
impedance in the lobula giant movement detector neurons in grasshoppers [14]. We do not, however, 36
expect M-type KT channels to have a significant impact on dendritic impedance in neocortical PTs. 36
While the distribution of M-type KT channels in neocortical PTs is poorly understood, they are rare in 36

the dendrites of CA1 PCs [6]. The only model studied here that included M-type Kt channels 365
throughout the dendrites was model 3, which produced reasonable synchronous frequencies but 366
overestimated dendritic transfer frequencies. This can be attributed to model 3’s high HCN channel 367
density, by far the highest of the five studied here (Table 1). 368

Model 5 provides some insights into the dendritic ZPPs of PTs, with total inductive phase 360

increasing by more than 150% along the length of its apical trunk, a far greater increase than seen in 37
the other models (Fig. 4). Similar results were obtained in model 1 after it was adjusted to include sn
TASK-like channels. Though previous experimental studies have not described increases in total 372
inductive phase with distance along the apical trunk in PTs, the relationships seen in models 1 & 5 373
were comparable to those seen in CA1 PCs [52]. Leading or inductive phase is driven by the balance of 37
membrane capacitance and phenomenological inductance and is therefore sensitive to the distribution sz

of dendritic conductances [9,12,27,28,45,46,52,66,75,76]. Our results support the notion that 376
inductive phase, mediated by I;, and modulated by a TASK-like shunting current, provides a 377
mechanism for compensating the location-dependent capacitive delay of dendritic inputs. This has 378

been hypothesized as ensuring that simultaneous synaptic inputs distributed across the dendritic arbor 37
are coincident at the soma [76]. Here we see that HCN channels and TASK-like shunting current, by  3s0
contributing to inductive phase, both help to reduce the capacitive delay in the arrival of synaptic 381
inputs to the soma (Fig. 7). Some have also suggested that inductive phase provides a mechanism by s
which subthreshold neuronal membrane oscillations might maintain phase relationships with ongoing s
local field potentials [12,52,76]. Although of the precise physiological role of inductive phase remains 3ss
an open question, we believe a model with realistic dendritic phase response is more likely to have 385
realistic distributions of dendritic ion-channels. 386

The resonance mediated by I, in PTs qualitatively differs from resonance mediated by KT currents ss7
seen in trigeminal root ganglion neurons from guinea pigs or photoreceptors in blowflies [24,57,57]. 388
Resonant frequencies of the input ZAP at the soma in those cells range from 10 - 200 Hz, while resonant sso
frequencies in PTs are in the range of 3 - 10 Hz [13,29,75]. Furthermore, both location-dependence 390

and impedance phase remain largely unexplored in neurons with K*-mediated resonance. 301
Dendritic impedance profiles are not static. Previous work has demonstrated that subthreshold 302
resonance can be dynamically tuned by ongoing activity [12,27,41,51,52,61,62,70]. For instance, 393

long-term potentiation induces changes in the impedance profile of hippocampal PCs [51]. Dynamic 30
changes to impedance profiles may have a role in pathophysiology. For example, there is evidence for 395

upregulation of HCN channel expression following epileptic seizure [42,63,69]. And while HCN 396
channels are necessary for resonance in PTs, the dendritic impedance profile can be significantly 307
altered upon modulation of other local conductances or morphological changes to the dendritic 398

tree [15,17,28,30,32,60,62,83]. A number of studies have explored the possibility of modulating the 300
dendritic impedance profile by manipulating other channels like A- and M-type K* channels or Ca?+ a0
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channel "hot-zones” [14,17,60]; however, the possibility of modulating dendritic impedance via 401
TASK-like shunting current has not previously been investigated. Our observations of changes to the 10
impedance features through changes to HCN and TASK-like channel density suggest a paradigm by 403
which degeneracy and tunability of the impedance profile may arise (Fig. 9). For instance, changes to a0
the impedance profile caused by changes in Ij, either through changes in HCN channel expression or  aos
noradrenergic modulation [39], may be compensated for by appropriate adjustments to the TASK-like 406
channel density, and vice versa . It is important to note, though, that changes to TASK-like shunting 407
current cannot compensate for the complete absence of HCN channels in PTs, but can only modulate 408
the impedance profile in its presence. 400

Experimentally-verifiable predictions 410

1. model 5 was the only unaltered model to reproduce experimentally observed transfer frequencies an
and synchronous frequencies, and it also exhibited much larger total inductive phase (Fig. 4A). a1
Therefore, we expect this to be the case in real PTs as well. For instance, 2 Hz was the optimal 13
leading phase between the soma and the center of the apical trunk 136.4 pym away Fig. 4B). That 4
0.2 radian lead translates to a roughly 17 ms lead in peaks in somatic Vyemp response compared a5
to peaks in the current stimulus. While there is no doubt variability in PT dendritic impedance 416
profiles, we expect a 17 ms lead is reasonable and probably at the lower end of the possible range. 417

2. If the shunting current‘ is indeed produced by TASK channels, dendritic impedance should be a5
reversibly alterable by changes to extracellular acidity, as TASK channels are pH sensitive [72]. 41

3. The paradoxical effects of I, observed by George et al. (2009) were abolished with application of 42
the drug XE991. These effects are best accounted for by interaction between I, and a TASK-like 42

shunting current, and it has been suggested that XE991 may block TASK channels [16, 48]. 422
Therefore, we predict that bath application of XE991 to PT cells will produce comparable a3
changes to the dendritic impedance profile as those observed when blocking the shunting current s
in Fig. 6. 425

4. We also expect blocking the shunting current to produce an increased lag between peak synaptic 42
current in the apical dendrites and peak somatic V emp, and blocking I;, should produce an even a2
greater lag (Fig. 7). 428

Limitations and future directions 420

A major limitation of this study is a limitation of most biophysically-detailed models of neurons: the a3
distribution of conductances and passive properties are assumed to be either constant or vary smoothly 431
along the neuronal topography, and this is often not the case [1,49,67]. Each of these properties can 432
influence the dendritic impedance profile. For instance, hot-zones of Ca?+ channels have been shown 433
to have an impact on dendritic impedance, but the precise parameters defining these hot-zones differed 434
among the models presented here [16,17,23,54]. Differences in the distribution of parameters illustrate a3
the degeneracy of dendritic impedance, however. Both model 5 and the adjusted version of model 1, 436
which includes the TASK-like shunting current, similarly captured the features of the impedance profile 437
observed along the apical trunk (Fig. 8). These two models had different morphologies, passive 438
properties, Ca?4 channel hot-zone dimensions, and perhaps most importantly different distributions of 43
HCN channels along the neurons’ longitudinal axes. Impedance analysis of the apical trunk could not, 4o
therefore, provide any indication as to whether either of these distribution schemes are more likely to s
exist in real neurons. Considering the degeneracy of dendritic impedance, these two distributions may 4
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be a small sample of a wide range of possible distributions. In fact, it is unlikely that diversity in 443
morphology and passive properties alone can account for the variance of impedance features observed 4
experimentally [13,75]. Instead, these differences in the distribution of ion channels across the 445
dendritic tree are likely strong contributors to the diversity of PT impedance profiles. Further 446
investigation of the precise contributions of morphology and channel distribution to dendritic 447
impedance in PTs is one avenue for our future work. 448

Our exploration of degeneracy of the impedance profile was also limited. We observed how uniform 9
changes to HCN and TASK-like channel densities across the entire dendritic arbor produce different  4s0
impedance profiles (Fig. 6 & Fig. 9). This would be analogous to cell-wide changes in channel 451
expression, bath application of agonists or antagonists, or possibly changes to extracellular pH. We did 452
not explore how localized changes to HCN and TASK-like channel activity may affect the impedance 453

profile. For instance, stimulation of postsynaptic alpha2A adrenoceptors has been shown to inhibit 454
HCN channel activity [79]. This is not to mention the influences of passive membrane properties, other ass
active channels, or morphology on dendritic impedance [12,31,32]. Although showed how HCN 456
channels and TASK-like channels may affect the impedance profile, determining how they interact with as7
these other cell properties to modulate dendritic impedance profiles is a goal for future studies. 458

While we have focused on dendritic impedance in neocortical PTs from rodents, how these results aso
relate to PTs in humans remains unclear. Recent studies have shown interesting differences between 40
PTs in humans and rodents regarding I;-mediated phenomena like subthreshold resonance and sag 461
potentials in the soma [5,33]. Some of these results may be attributed to differing expression of HCN 42
subtypes between species [33]. The I-dependent physiological differences between rodents and humans 63
are based on measurements from the soma, so how these results may extend to the dendrites is still an 464
open question [5,33]. Furthermore, the majority of data on resonance from human PTs comes from s
patients with epilepsy, which is associated with pathological effects on HCN channels [42,63,69] To 466

better understand the relationship between the results presented here and dendritic impedance in 467
human PTs, we need a better picture of the distribution of HCN and TASK-like channels in their 468
dendrites and how they are affected in epilepsy. Considering the relative scarcity of human data 469
compared to rodent data, and the difficulty of performing the experiments necessary for obtaining this 470
information, computational modeling will be indispensable in bridging the gap between species. a1
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Figures & Tables

Max gy
Model Species| Strain Region Age g;ites den- | 1/CN Distribution
(S/cm?)

Constant in basal,

31&121(—)137 et Rat Wistar Neocortex P36 0.015 exponential with
' distance in apical

Constant in basal,

:1&22%;?; et Rat %I:ijiue Frontal Cortex 532 1- 0.0025 exponential with
' Y distance in apical

Exponential with dis-

jt&:il I;O%lg Rat Wistar gzr:uziosensory 5814_ 0.09 tance throughout den-
' dritic arbor

Constant in basal,
#4 Ney- . exponential with dis-
motin et | Mouse | C57Bl/6 lérl:clary Motor P21 0.006 tance in apical below
al. 2017 ortex nexus, constant above

the nexus

HCN and TASK-like
45 Dura- channels both constant
Bernal et | Mouse | C57Bl/6 | Lrumary Motor | ooy g in basal, exponential
al. 2019 Cortex with distance in apical

below nexus, constant
above the nexus

Table 1. Basic Model Information: Models are specified by either the publication in which they first
appeared. Ages are specified by postnatal day age. Under the comments on HCN channel distribution,

“exponential with distance” is with respect to the soma.
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A) Model B) Impedance Amplitude C) Impedance Phase D) Response to Syn. Stimulation
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Fig 1. Inductance influences neuronal impedance and the response to synaptic
stimulation. (A) A simple, passive neuron model (soma and dendrite with membrane capacitance)
was connected to a series circuit with an inductor (L = 10 kH), resistor (R = 25 M), and battery (E
= -70 mV) to illustrate some of the effects of inductance on impedance and synaptic potentials. We
computed impedance between the center of the dendrite and the center of the soma with this circuit
attached (solid black lines) and without it (dashed black lines). (B) The inductive circuit combined
with membrane capacitance from the neuron produces resonance. In the passive neuron alone,
impedance amplitude falls off with frequency. (C) The inductive circuit also increases impedance phase
across all frequencies, with positive inductive/leading phase (voltage peak precedes current peak for an
oscillatory input) seen at low frequencies. The horizontal dotted line indicates 0 radian phase shift
between the stimulating current and voltage response at the soma (i.e. synchrony). (D) Effects of
increased inductance on EPSPs measured at the soma: peak voltage is earlier due to inductive phase,
and the waveform is narrower due to resonance. Time of peak synaptic conductance is indicated by the
vertical dotted line.
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Fig 3. Resonant frequencies and synchronous frequencies of 5 PT models compared to
experimental data. (A) Four of the five models show transfer frequencies along the apical trunk
within the experimentally observed range. The fifth produced transfer frequencies above this range.
Experimental values of transfer frequencies were extracted from Ulrich (2002) and Dembrow et al.
(2015). (B) Only two models exhibit synchronous frequencies along the apical trunk which are within
the experimental range. The other three models produce synchronous frequencies below this range.
Experimental values of synchronous frequencies were extracted from Dembrow et al. (2015)
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Fig 5. A model of HCN including a TASK-like shunting current best approximates
experimentally observed impedance profiles. Resulting impedance features when using three
different models of HCN channels in the same model neuron. (A) Compared to the original PT model
which uses the HCN and TASK-like channel models from Migliore & Migliore (2012), the mechanisms
developed by Kole et al. (2006) and Harnett et al. (2011) reduced transfer frequency along the apical
trunk, but the values remain well within the experimental range. (B) They led to dramatic reductions
in synchronous frequency however.
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Fig 6. Selective blockade of I, and shunting current differentially modulates dendritic
impedance. Panels A & B show example ZAPs and ZPPs between the distal end of the apical trunk
and the soma 288.9 um away, respectively, under baseline conditions (red) and when either Ij, (green)
or the shunting current (red) have been blocked. We also observe how (C) resonance strength, (D)
total inductive phase, (E) transfer frequency, and (F) synchronous frequency are attenuated along the
apical trunk under those same conditions.
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Fig 7. Selective blockade of I, and shunting current effects timing and shape of EPSPs.
Model 5 was stimulated with an single excitatory synaptic current roughly halfway along the apical
trunk (136.4 pm from the soma), and Vyemp was measured at the soma following blockade of HCN
(green) and TASK-like channels (blue), as well as under control conditions (red). Maximal synaptic
conductance was tuned to produce a 1 mV EPSP at the soma, and peak synaptic current occurred at
1 ms (black, vertical dashed line). Maximal EPSP Vi emp lagged 3.7 ms behind peak synaptic under
control conditions, 4.8 ms after blocking TASK-like shunting current, and 6.3 ms after blocking Ij,.
EPSPs narrow in accordance with decreasing resonance strength seen in Fig. 6.
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Fig 9. Combined effects of modulating HCN and TASK-like channel density on
dendritic impedance. HCN density (Al) and/or TASK-like channel density (Alj;) were modulated
by £90% in 10% increments across the entire neuron, which altered (A) resonance strength, (B)
transfer frequency, (C) synchronous frequency, and (D) total inductive phase.
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