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Abstract

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive,
laborious, and expensive. However, with the plummeting costs of next-generation sequencing
and the addition of genomic selection to the plant breeder's toolbox, we now can more efficiently
tap the genetic diversity within large germplasm collections. In this study, we applied and
evaluated genomic selection's potential to a set of 482 pea accessions — genotyped with 30,600
single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related
components — for enhancing selection of accessions from the USDA Pea Germplasm Collection.
Genomic prediction models and several factors affecting predictive ability were evaluated in a
series of cross-validation schemes across complex traits. Different genomic prediction models
gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model
working best across all traits. Increasing the training population size improved the predictive
ability of most traits, including seed yield. Predictive abilities increased and reached a plateau
with increasing number of markers presumably due to extensive linkage disequilibrium in the
pea genome. Accounting for population structure effects did not significantly boost predictive
ability, but we observed a slight improvement in seed yield. By applying the best genomic
prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but
nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV).
The distribution of GEBV suggested that none of the nonphenotyped accessions were expected
to perform outside the range of the phenotyped accessions. Desirable breeding values with higher
reliability can be used to identify and screen favorable germplasm accessions. Expanding the
training set and incorporating additional orthogonal information (e.g., transcriptomics,
proteomics, metabolomics, physiological traits, etc.) into the genomic prediction framework
could enhance prediction accuracy.

Keywords: genomic selection, genomic prediction, reliability criteria, germplasm accessions,
pea (Pisum sativum L.), next-generation sequencing
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Introduction

Pea (Pisum sativum L.) is a vitally important pulse crop that provides protein (15.8-32.1%),
vitamins, minerals, and fibers. Pea consumption has cardiovascular benefits as it is rich in
potassium, folate, and digestible fibers, which promote gut health and prevent certain cancers
(Mudryj et al., 2014; Tayeh et al., 2015). Considering the health benefits of pea, the US
Department of Agriculture recommends regular pulses consumption, including peas, to promote
human health and wellbeing (http://www.choosemyplate.gov/). In 2019, more than 446,000
hectares of edible dry pea were planted with production totaling 1,013,600 tonnes in the USA,
making it the fourth-largest legume crop (http://www.fao.org) (USDA, 2020). Growing peas also
help maintain soil health and productivity by fixing atmospheric nitrogen (Burstin et al., 2015).
Recently, the pea protein has emerged as a frontrunner and showed the most promise in the
growing alternative protein market. The Beyond Meat burger is a perfect example of a pea
protein product gaining traction in the growing market. About 20-gram protein (17.5%) in each
burger comes from pea (https://www.nasdag.com/articles/heres-why-nows-thetime-to-buy-
beyond-meat-stock-2019-12-05). Another product made from pea, Ripptein, is a non-dairy milk
product of pea protein that is gaining tremendous interest as an alternative dairy product
(https://www.ripplefoods.com/ripptein/). Additionally, peas are gaining attention in the pet food
market as it is grain-free and an excellent source of essential amino acids required by cats and
dogs (PetfoodIndustry.com) (Facciolongo et al., 2014). As the demand for pea increases,
particularly in the growing alternative protein market, genetic diversity expansion is needed to
hasten the current rate of genetic gain in pea (Vandemark et al., 2014).

Germplasm collections serve as an essential source of variation for germplasm enhancement that
can sustain long-term genetic gain in breeding programs. The USDA Pisum collection, held at
the Western Regional Plant Introduction Station at Washington State University, is a good
starting point to investigate functional genetic variation useful for applied breeding efforts. To
date, this collection consists of 6,192 accessions plus a Pea Genetic Stocks collection of 712
accessions. From this collection, the USDA core collection comprised of 504 accessions was
assembled to represent ~18% of all USDA pea accessions at the time of construction (Simon and
Hannan 1995; Coyne et al., 2005). Subsequently, single-seed descent derived homozygous
accessions were developed from a subset of the core to form the 'Pea Single Plant'-derived (PSP)
collection. The PSP is used to facilitate the collection's genetic analysis (Cheng et al., 2015). The
USDA Pea Single Plant Plus Collection (PSPPC) was assembled and included the PSP and
Chinese accessions and field, snap and snow peas from US public pea-breeding programs
(Holdsworth et al., 2017).

Genomic selection (GS) takes advantage of high-density genomic data that holds a promise to
increase the rate of genetic gain (Meuwissen et al., 2001). As genotyping costs have significantly
declined relative to current phenotyping costs, GS has become an attractive option as a selection
decision tool to evaluate accessions in extensive germplasm collections. A genomic prediction
approach could use only genomic data to predict each accession's breeding value in the collection
(Meuwissen et al., 2001; Habier et al., 2007; VanRaden, 2008). The predicted values would
significantly increase the value of accessions in germplasm collections by giving breeders a
means to identify those favorable accessions meriting their attention from the thousand available
accessions in germplasm collections (Longin et al., 2014; Crossa et al., 2016; Jarquin et al.,
2016). Several studies used the genomic prediction approach to harness diversity in germplasm
collections, including lentil (Haile et al., 2020), soybean (Jarquin et al., 2016), wheat (Crossa et
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87 al., 2016), rice (Spindel et al., 2015), sorghum (Yu et al., 2016), maize (Gorjanc et al., 2016), and
88  potato (Bethke et al., 2019). A pea genomic selection study for drought-prone Italian

89  environment revealed increased selection accuracy of pea lines (Annicchiarico et al., 2019;

90  Annicchiarico et al., 2020). To the best of our knowledge, no such studies have been performed
91  using the USDA Pea Germplasm Collection, but a relevant study has been conducted using a

92  diverse pea germplasm set comprised of more than 370 accessions genotyped with a limited

93  number of markers (Burstin et al., 2015; Tayeh et al., 2015).

94  To date, methods to sample and utilize an extensive genetic resource like germplasm collections
95  remain a challenge. In this study, a genomic prediction approach targeting complex traits,
96 including seed yield and phenology, was evaluated to exploit diversity contained in the USDA
97  Pea Germplasm Collection. No research has been conducted before on genomic prediction for
98 the genetic exploration of the USDA Pea Germplasm Collection. Different cross-validation
99  schemes were used to answer essential questions surrounding the efficient implementation of
100  genomic prediction and selection, including determining best prediction models, optimum
101 population size and number of markers, and impact of accounting population structure into
102 genomic prediction framework. We then examined the distribution of all nonphenotyped
103  accessions using SNP information in the collection by applying genomic prediction models and
104  estimated reliability criteria of genomic estimated breeding values for the assessed traits.

105 Material and Methods
106  Plant materials

107 A total of 482 USDA germplasm accession were used in this study, including the Pea Single

108  Plant Plus Collection (Pea PSP) comprised of 292 pea germplasm accessions (Cheng et al.,

109  2015). The USDA Pea Core Collection contains accessions from different parts of the world and
110  represents the entire collection's morphological, geographic, and taxonomic diversity. These

111 accessions were initially acquired from 64 different countries and are conserved at the Western
112 Regional Plant Introduction Station, USDA, Agricultural Research Service (ARS), Pullman, WA
113 (Cheng et al., 2015).

114  DNA extraction, sequencing, SNP calling

115  Green leaves were collected from seedlings of each accession grown in the greenhouse with the
116  DNeasy 96 Plant Kit (Qiagen, Valencia, CA, USA). Genomic libraries for the Single Plant Plus
117  Collection were prepped at the University of Minnesota Genomics Center (UMGC) using

118  genotyping-by-sequencing (GBS). Four hundred eighty-two (482) dual-indexed GBS libraries
119  were created using restriction enzyme ApeKI (Elshire et al., 2011). A NovaSeq S1 1 x 100

120  Illumina Sequencing System (lllumina Inc., San Diego, CA, USA) was then used to sequence the
121 GBS libraries. Preprocessing was performed by the UMGC that generated the GBS sequence

122 reads. An initial quality check was performed using FastQC

123 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequencing adapter remnants were
124  clipped from all raw reads. Reads with final length <50 bases were discarded. The high-quality
125  reads were aligned to the reference genome of Pisum sativum (Pulse Crop Database

126 https://www.pulsedb.org/, Kreplak et al., 2019) using the Burrow Wheelers Alignment tool

127 (Version .7.17) (Li and Durbin, 2009) with default alignment parameters, and the alignment data
128  was processed with SAMtools (version 1.10) (Li et al., 2009). Sequence variants, including
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129  single and multiple nucleotide polymorphisms (SNPs and MNPs, respectively), were identified
130  using FreeBayes (Version 1.3.2) (Garrison and Marth, 2012). The combined read depth of 10
131 was used across samples for identifying an alternative allele as a variant, with the minimum base
132 quality filters of 20. The putative SNPs from freeBayes were filtered across the entire population
133 to maintain the SNPs for biallelic with minor allele frequency (MAF) < 5%. The putative SNP
134  discovery resulted in biallelic sites of 380,527 SNP markers. The QUAL estimate was used for
135  estimating the Phred-scaled probability. Sites with a QUAL value less than 20 and more than
136 80% missing values were removed from the marker matrix. The rest of the markers were further
137  filtered out so that heterozygosity was less than 20%. The filters were applied using VCFtools
138  (version 0.1.16) (Danecek et al., 2011) and in-house Perl scripts. The SNP data were uploaded in
139  apublic repository and is available at this link: https://www.ncbi.nlm.nih.gov/sra/PRINA730349
140  (Submission ID: SUB9608236). Missing data were imputed using a k-nearest neighbor genotype
141  imputation method (Money et al., 2015) implemented in TASSEL (Bradbury et al., 2007). SNP
142  data were converted to a numeric format where 1 denotes homozygous for a major allele, -1

143 denotes homozygous for an alternate allele, and O refers to heterozygous loci. Finally, 30,646
144  clean, curated SNP markers were identified and used for downstream analyses.

145  Phenotyping

146  Pea germplasm collections (Pea PSP) were planted following augmented design with standard
147  checks ("Hampton," 'Arargorn,’ ‘Columbian," and ‘1022”) at the USDA Central Ferry Farm in

148 2016, 2017, and 2018 (planting dates were March 14, March 28, and April 03, respectively).

149  The central Ferry farm is located at Central Ferry, WA at 46°39°5.1°’N; 117°45°45.4” W, and
150  elevation of 198 m. The Central Ferry farm has a Chard silt loam soil (coarse-loamy, mixed,

151  superactive, mesic Calcic Haploxerolls) and was irrigated with subsurface drip irrigation at 10
152 min d?. All seeds were treated with fungicides; mefenoxam (13.3 mL a.i. 45 kg-1), fludioxonil
153 (2.4 mL a.i. 45 kg -1), and thiabendazole (82.9 mL a.i.45 kg -1), insecticide; thiamethoxam (14.3
154  mL a.i. 45 kg -1), and sodium molybdate (16 g 45 kg -1) prior to planting. Thirty seeds were
155  planted per plot; each plot was 152 cm long, having double rows with 30 cm center spacing. The
156  dimensions of each plot were 152 cm x 60 cm. Standard fertilization and cultural practices were
157  used.

158  The following traits were recorded and are presented in this manuscript. Days to first flowering
159  (DFF) are the number of days from planting to when 10% of the plot's plants start flowering. The
160  number of seeds per pod (NoSeedsPod) is the number of seeds in each pod. Plant height (PH cm)
161 is defined as when all plants in a plot obtained full maturity and were measured in centimeters
162  from the collar region at soil level to the plants’ top. Pods per plant (PodsPlant) is the number of
163  recorded pods per plant. Days to maturity (DM) referred to physiological maturity when plots
164  were hand-harvested, mechanically threshed, cleaned with a blower, and weighed. Plot weight
165  (PlotWeight, gm) is the weight of each plot in grams after each harvest. Seed yield (kg ha) is
166  the plot weight converted to seed yield in kg per hectare.

167  Phenotypic data analysis

168 A mixed linear model was used to extract best linear unbiased predictors (BLUPS) for all traits
169  evaluated using the following model:


https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fsra%2FPRJNA730349&data=04%7C01%7C%7C603993f13e104a772b2d08d9197a3b8d%7Ced5b36e701ee4ebc867ee03cfa0d4697%7C0%7C0%7C637568835039330635%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=BKdwSPISXhFy3VvP2m1eH2W%2FOBvdMzEPRtCUI%2BbxY3M%3D&reserved=0
https://doi.org/10.1101/2021.05.07.443173
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.07.443173; this version posted October 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

170 yij = ,{i+Gi+Ej+(G*E)ij+ eij (1)

171 where y;; is the observed phenotype of i"" genotypes and j™ environment which is the number of
172 years, u is the overall mean, G; is the random genetic effect (i is number of genotypes), E; is the
173 random environments (j is number of years), (G = E);; is the genotype by environment

174  interaction, and e;; is the residual error.

175  For the purpose of estimating heritability, we fit the same model above. The heritability in broad
176  sense (H?) on an entry-mean basis for each assessed trait was calculated to evaluate the quality of
177  trait measurements following the equation (Hallauer et al., 2010):

a%

178 H? = (2)

cré + o-ég;’j +eZ/jr

179 where ¢ is the genetic variance, oZ; is variance due to the genotype by year interaction, o2 is
180 the error variance, j is number of years considered as environments, and r is the relative number
181  of occurrences of each genotype in a trial (this is non-replicated trial so harmonic mean of the
182  replicates were used as replicates). We also calculated heritability proposed by (Cullis et al.,
183  2006) implemented in Sommer package in R (Covarrubias-Pazaran, 2016).

9 . PEV
184 HeCullis =1 — (mdwg) 3)
185  where PEV is the predicted error variance for the genotype, Vg refers to the genotypic variance,
186  md is the mean values from the diagonal of the relationship matrix, which is an identity matrix.

187  The R package, Ime4 (Bates et al., 2015), was used to analyze the data. The trait values derived
188  from the BLUPSs were used to measure correlation with the ggcorrplot using ggplot2 package
189  (Wickham 2016). All phenotypic and genomic prediction models were analyzed in the R

190  environment (R Core Team, 2020).

191  Genomic selection models

192 The genomic selection models were fitted as follows:

193 y=u+Zu+te 4)

194  wherey is a vector of the genotype BLUPs obtained from equation (1), u is the intercept of the
195  model used for the study, Z is the SNP marker matrix, u is the vector of marker effects, and ¢ is a
196  residual vector.

197  Five genomic selection methods were used to predict genomic estimated breeding values in
198  respective phenotypes of the assessed traits: ridge regression best linear unbiased prediction
199  approach (RR-BLUP), partial least squares regression model (PLSR), random forest (RF),
200 BayesCpi, and Reproducing Kernel Hilbert Space (RKHS).

201  The RR-BLUP approach assumes all markers have an equal contribution to the genetic variance.
202 One of the most widely used methods for predicting breeding values is RR-BLUP, comparable to
203  the best linear unbiased predictor (BLUP) used to predict the worth of entries in the context of
204  mixed models (Meuwissen et al., 2001). The RR-BLUP basic frame model is:
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205 y=Zu+ce (5)

206  where u~N (0, Ia2) is a vector of marker effects and Z is the genotype matrix e.g., {aa,Aa,AA}
207 ={0, 1, 2} for biallelic single nucleotide polymorphisms (SNPs) that relates to phenotype y

208  (Endelman, 2011). The RR-BLUP genomic prediction was implemented using the ‘RR-BLUP’
209  package (Endelman, 2011).

210  Partial least square regression (PLSR) is a reduction dimension technique that aims to find

211 independent latent components that maximize the covariance between the observed phenotypes
212 and the markers (predictor variables) (Colombani et al., 2012). The number of components (also
213 known as latent variables) should be less than the number of observations to avoid

214  multicollinearity issues and commonly the number of components are chosen by cross

215  validation. PLSR was executed using the ‘pls’ package (Mevik and Wehrens, 2007).

216

217  Random forest is a machine learning model for genomic prediction that uses an average of

218  multiple decision trees to determine the predicted values. This regression model was

219  implemented using the ‘randomForest’ package (Breiman, 2001). The number of latent

220 components for PLSR and decision trees for random forest was determined by a five-fold cross-
221 validation to have a minimum prediction error.

222

223 BayesCpi was used to verify the influence of distinct genetic architectures of different traits on
224  prediction accuracy. The BayesCpi assumes that each marker has a probability m of being

225 included in the model, and this parameter is estimated at each Markov Chain Monte Carlo

226  (MCMC) iteration. The vector of marker effects u is assumed to be a mixture of distributions
227  having the probability = of being null effect and (1- =) of being a realization of a normal

228  distribution, so that, u;|m, crng (0, Jgg)_ The vector of residual effects was considered as

229 e~N(0,02). The marker and residual variances were assumed to follow a chi-square distribution
230 a7~x*(Spvo) and o ~x?(Sp,vo), respectively, with vy = 5 degrees of freedom as prior and S,

231  shape parameters assuming a heritability of 0.5 (Pérez and de los Campos 2014).

232 The last model used was the Reproducing Kernel Hilbert Space (RKHS). The method is a

233 regression where the estimated parameters are a linear function of the basis provided by the

234 reproducing kernel (RK). RKHS considers both additive and non-additive genetic effects (de los
235  Campos et al. 2013). In this work, the multi-kernel approach was used by averaging three kernels
236 with distinct bandwidth values. In this implementation the averaged kernel, K was given by:

237 K =Y,K,0} 65°, where 63 = 3, o . Herer=3 and g _are interpretable as variance

238 parameters associated with each kernel. Therefore, for each r'" kernel the proportion of sharing
239 alleles between pairs of individuals (ii") was given by K, = exp{—hkdi;} , Where hg is a

240  bandwidth parameter associated with r'" reproducing kernel and d?- is the genetic distance

241 between individuals i and i” computed as follows: d7- = ?Zl(xij_xi—j)z, where j=1,...,p

242 markers stated as above. The bandwidth parameter values for the three kernels were

243 h=0.5{1/5,1,5, as suggested by Pérez and de los Campos 2014. Those values were chosen using
244 the rule proposed by de los Campos et al. (2010).

245
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246 Genomic selection methods RR-BLUP, PLSR, RF were carried out using ‘GSwWGBS’ package
247  (Gaynor, 2015) while the BayesianCpi and RKHS were executed with the BGLR package (de los
248  Campos et al., 2010). We calculated each genomic selection model's predictive ability as the

249  Pearson correlation between the estimated breeding values from model (1) (obtained using the
250 full data set) and those of validation set predicted from the respective model. For that, we used a
251  cross-validation scheme considering 80% of the observations, randomly selected, as training and
252 the remaining 20% as validation set. The process was repeated 20 times for each model. From
253  the predictive ability values, we estimated the confidence interval for this parameter using the
254  bootstrap considering 10000 samples (James et al., 2013).

255

256  Determining optimal training population size

257  The influence of training population size on predictive ability was evaluated using a validation
258  set comprising 50 randomly selected lines and training sets of variable sizes. The validation set
259  was formed by randomly sampling 50 lines without replacement. The training population of size
260 nwas formed sequentially by adding 25 accessions from the remaining accessions such that its
261  size ranged between 50 to 175. We subset the collection into subgroups of 50, 75, 100, 125, 150,
262 and 175 individuals each. The RR-BLUP model was used to predict each trait. This procedure
263 was repeated 20 times, and accuracies of each training population size were averaged across 20
264  replicates. To predict a particular subpopulation with increasing population size, a similar

265  procedure was followed to using variable training population size ranged from 50 to 175 with an
266 increment of 25.

267  Determining optimal marker density

268  To evaluate the effects of GBS marker selection on predictive ability, we randomly sampled
269  markers five times with the following subset: one thousand (1 K), five thousand (5 K), ten

270  thousand (10 K), fifteen thousand (15 K), twenty thousand (20 K), twenty-five thousand (25 K),
271 and thirty thousand (30 K). A random sampling of SNP was implemented to minimize or avoid
272 any possible biases on sampling towards a particular distribution. Using the RR-BLUP model, a
273 five-fold cross validation approach was used to obtain predictive ability in each marker subset.
274  This procedure was repeated 20 times and predictive ability for each subset of SNP were

275  averaged across 20 replicates.

276  Accounting for population structure into the genomic prediction framework

277  We explored the confounding effect due to population structure on predictive ability. We

278 investigated subpopulation structure on 482 accessions genotyped with 30,600 SNP markers
279  using the ADMIXTURE clustering-based algorithm (Alexander et al., 2009). ADMIXTURE
280 identifies K genetic clusters, where K is specified by the user, from the provided SNP data. For
281  each individual, the ADMIXTURE method estimates the probability of membership to each
282  cluster. An analysis was performed in multiple runs by inputting successive values of K from 2
283  to 10. The optimal K value was determined using ADMIXTURE's cross-validation (CV) error
284  values. Based on >60% ancestry, each accession was classified into seven subpopulations (K=7).
285  Accessions within a subpopulation with membership coefficients of <60% were considered

286  admixed. A total of 8 subpopulations were used in this study, including admixed as a separate
287  subpopulation. Principal component (PC) analysis was also conducted to summarize the genetic
288  structure and variation present in the collection.
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289  To account for the effect of population structure, we included the top 10 PCs or, the Q-matrix
290 from ADMIXTURE into the RR-BLUP model and performed five-fold cross-validation repeated
291 20 times. Alternatively, we also used the subpopulation (SP) designation identified by

292  ADMIXTURE as a factor in the RR-BLUP model. Albeit a smaller population size, we also
293  performed a within-subpopulation prediction. As stated above, a subpopulation was defined

294  based on >60% ancestry cut-off. Only three subpopulations with this cut-off were identified and
295  used: SP5 (N=51), SP7 (N=58), and SP8 (N=41). A leave-one-SP-out was used to predict

296 individuals within the subpopulation with the RR-BLUP model. We also used increasing

297  population sizes to predict specific subpopulation (e.g. SP8) using RR-BLUP model.

298

299  Estimating reliability criteria and predicting unknown phenotypes:

300 Nonphenotyped entries were predicted based on the RR-BLUP model using SNP markers only.
301  The reliability criteria for each of the nonphenotyped lines were then calculated using the
302  formula (Hayes et al., 2009; Clark et al., 2012) as follows:

303 r(PEV)=./(1— (PEV/c?) (6)

304 where PEV is the predicted error variance, and a7 is the genetic variance.
305

306 Results

307  Phenotypic heritability and correlation

308 Recorded DFF had a wide range of variability from 60 to 84 days with a mean of 71 days. The
309  estimated heritability for DFF was 0.90 using equation (2) and 0.80 as per Cullis heritability

310 using equation (3) (Table 1). For the number of seeds per pod, the mean was 5.7 with a

311 heritability estimate of 0.84 (H2cuiis=0.66). The heritability for plant height was 0.81

312 (H%uwis=0.68), with an average height of 74 cm. Pods per plant had a heritability estimate of 0.50
313 (H2%cunis=0.27) with a mean of 18 pods per plant and ranged from 15 to 23 pods per plant. DM
314  had a mean of 104 days with an estimated heritability of 0.51 (H?cuiis=0.38). Seed yield per

315  hectare ranged widely from 1734 to 4463 kg ha! with a mean yield of 2918 kg ha'and a

316 heritability value of 0.67 (H?cuiis=0.46). The number of pods per plant was highly and positively
317  correlated with seed yield. Correlation estimation also suggested seed yield was positively

318  correlated with plant height (PH), days to maturity (DM), days to first flowering (DFF)

319  (Supplementary Figure S1).

320

321  Predictive ability of different genomic selection models

322 No single model consistently performed best across all traits that we evaluated (Table 2),

323  however Bayesian model BayesCpi, Reproducing Kernel Hilbert Space (RKHS), and RR-BLUP,
324  in general, tended to generate better results. Roughly the predictive abilities from different

325  models were similar, although slight observed differences were likely due to variations on

326  genetic architecture and the model’s assumptions underlying them. For DFF, the highest

327  predictive ability was obtained from the RR-BLUP (0.60). RR-BLUP, Random Forest (RF), and
328 RKHS models generated the highest predictive ability for pods per plant (0.28). The number of
329  seeds per pod (NoSeedPod) was better predicted by RR-BLUP and Bayes Cpi (0.42). For plant
330 height (PH) highest prediction accuracies were obtained from RF and BayesCpi (0.45). BaysCpi
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331 also gave the highest prediction accuracies for DM (0.47). For seed yield, RKHS had slight

332 advantages over other models (0.42). As mentioned above, some differences between the model's
333 accuracy were only marginal and cannot be a criterion for choosing one model (Table 2). For
334  example, among the tested models, the highest difference in predictive accuracy, considering

335  NoSeedsPod, had a magnitude of 0.02, a marginal value. The lack of significant differences

336 among genomic prediction methods can be interpreted as either a good approximation to the

337  optimal model by all methods or there may be a need for further research (Yu et al., 2016).

338  Unless indicated otherwise, the rest of our results focused on findings from the RR-BLUP

339  method.

340 Determining the optimal number of individuals

341  Increasing the training population size led to a slight increase in the predictive ability overall for
342  all traits. Across all traits except days to first flowering and plant height, predictive ability

343  reached a maximum with the largest training population size of N=175 (Figure 1). A training
344  population comprised of 50 individuals had the lowest predictive ability across all traits. For

345  days to first flowering, and plant height predictive ability did steadily increase up at N= 150, and
346  prediction ability reached the maximum for most traits at highest training population size with
347  N=175. Regardless of population size, predictive ability was consistently higher for days to first
348  flowering, whereas predictive ability was consistently lower for pods per plant (Figure 1).

349  However, while predicting subpopulation 5 highest predictive ability was obtained for plant

350 height (Supplementary Figure S3).

351  Determining the optimal marker density

352 The different marker subsets had insignificant differences on predictive ability for all the traits
353  evaluated in this study. In general, however, predictive abilities were higher between 5K to 15K
354  SNPs and reached a plateau with increasing number of SNP (Supplementary Figure S2). For
355  seed yield, plant height, and days to maturity, highest predictive ability were 0.38, 0.39, and 0.42
356  respectively. The highest predictive ability for DFF was 0.61 using a SNP subset of 15K.

357  Accounting for population structure in the genomic prediction model

358  Population structure explained some portion of the phenotypic variance, ranging from 9-19%,
359  with the highest percentages observed for plant height (19%) and seed yield (17%). Using either
360 ADMIXTURE or PCA to account for the effect due to population structure, we improved the
361  predictive ability. We observed a 6% improvement for days to first flowering and 32% for seed
362  yield compared over models that did not account for population structure.

363  We also performed within-subpopulation predictions. Presented here are the predictive abilities
364  for subpopulations 5, 7, and 8, as they had at least 40 entries. Subpopulation 8 had the highest
365  predictive ability for days to first flowering (0.68), plant height (0.33), days to maturity (0.43),
366  and seed yield (0.37). The highest predictive abilities for the number of seeds per pod (0.40) and
367  pods per plant (0.12) were obtained from subpopulation 7 (Table 3). Notably, predictive ability
368  was generally higher when all germplasm sets or subpopulations were included in the model
369 compared to when predictions were made using a subset of germplasm.

370  Predicting genotyped but nonphenotyped accessions
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371 The genomic prediction model was then used to predict nonphenotyped entries based on their
372 SNP information. Based on the distribution of GEBV, none of the predicted phenotypes for

373 nonphenotyped accessions exceeded the top-performing observed phenotypes for seed yield

374  (Figure 2). The mean seed yield of predicted entries was 2914 kg/ha, and the mean of observed
375  genotypes 2918 kg/ha were non-significant. The mean of observed and predicted entries were
376  non-significant for the other five traits (Supplementary Table 1). The GEBV for number of pods
377  per plant, number of seeds per pod (Supplementary Figure S4 and S5), days to first flowering,
378  and days to maturity all fall within the range of observed phenotypes (Similar Figures not

379  added).

380

381  Reliability estimation

382  We obtained reliability criteria for all traits, including seed yield and phenology, for 244

383  nonphenotyped accessions. The average reliability values ranged from 0.30 to 0.35, while the
384  highest values for evaluated traits ranged from 0.75 to 0.78. The higher reliability values were
385  distributed in the top, bottom, and intermediate predicted breeding values (Supplementary

386  Table S2 to S7). For seed yield (kg hal), the highest reliability was obtained from the bottom 50
387  (Figure 3). Higher reliability criteria are primarily distributed among the intermediate and top
388  GEBV for days to first flowering. Predicted intermediate plant height showed the highest

389 reliability, as presented in Figure 3.

390 Discussion

391  Widely utilized plant genetic resources collections, such as the USDA pea germplasm collection,
392  hold immense potential as diverse genetic resources to help guard against genetic erosion and
393  serve as unique sources of genetic diversity from which we could enhance genetic gain, boost
394  crop production, and help reduce crop losses due to disease, pests, and abiotic stresses (Crossa et
395 al., 2017; Holdsworth et al., 2017; Jarquin et al., 2016; Mascher et al., 2019). As the costs

396  associated with genotyping on a broader and more accurate scale continue to decrease,

397  opportunities increase to utilize these collections in plant breeding. Relying on phenotypic

398  evaluation alone can be costly, rigorous, and time-intensive. However, by incorporating high-
399  density marker coverage and efficient computational algorithms, we can better realize the

400  potential for utilizing these germplasm stocks by reducing the time and cost associated with their
401  evaluation (Yu et al., 2016; H. Li et al., 2018; Yu et al., 2020). In this study, we evaluated the
402  potential of genotyping-by-sequencing derived SNP for genomic prediction. We found that it
403  holds promises for extracting useful diversity from germplasm collections for applied breeding
404  efforts.

405 In this study, predictive ability was generally similar among methods, and there was no single
406  model that worked across traits, consistent with results obtained by other authors (Burstin et al.,
407  2015; Spindel et al., 2015; Yu et al., 2016; Azodi et al., 2019). For example, considering only the
408  punctual estimates, RR-BLUP model was the best for DFF, however for PH, DM, and seed yield,
409  the best models were BayesCpi and RF, BayesCpi and RKHS, respectively. In recent work,

410  Azodi et al., (2019) compared 12 models (6 linear and 6 non-linear) considering 3 traits in 6

411  different plant species, and they did not find any best algorithm for all traits across all species.
412  Newer statistical methods are expected to boost prediction accuracy; however, the biological

413  complexity and unique genetic architecture of traits can be regarded as the root cause for getting
414  zero or slight improvement on prediction accuracy (Yu et al., 2020; Valluru et al., 2019). As data
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415  collection accelerates in at different levels of biological organization (Kremling et al., 2019),
416  genomic prediction models will expand and nonparametric models, including machine learning,
417  may play an essential role for boosting prediction accuracy (Azodi et al., 2019; Yu et al., 2020).
418

419 A related work in pea has been published but only based on a limited number of markers

420  (Burstin et al., 2015). This work assessed genomic prediction models in a diverse collection of
421 373 pea accessions with 331SNPs markers and found no single best model across traits, which is
422  consistent with our findings. In this work, the authors reported that traits with higher heritability,
423  such as thousand seed weight and flowering date, had higher prediction accuracy. We also

424  verified DFF as having the highest heritability and predictive accuracies through all the models.
425 Interestingly, yield components like the number of seeds per pod and pods per plant showed

426  lower predictive accuracy, regardless of prediction models used. Consistent with our results,

427  Burstin et al. (2015) also found yield components (seed number per plant) as having lower

428  predictive accuracy and higher standard deviation for prediction. These traits are highly complex
429 and largely influenced by the environment.

430  The predictive ability increased for all traits except plant height when we increased the model's
431  training population size, suggesting that adding more entries in the study can boost predictive
432  ability. By accounting population structure into genomic prediction framework, we observed an
433 improved prediction accuracy for some traits — seed yield and DFF — but not others. Although
434  the population structure explained 9-19% of the phenotypic variance, we cannot fully and

435  conclusively answer the effect of population structure in prediction accuracy due to smaller

436  population size. In addition, accounting for the relatedness among individuals in the training and
437  testing sets can potentially boost prediction accuracy (Lorenz and Smith, 2015; Rutkoshi et al.,
438  2015; Riedelsheimer et al., 2013); it was outside the scope of this research but deserves further
439  study. Adding more environments (year-by-location combination) can also potentially improve
440  prediction accuracy using genomic prediction frameworks that account for genotype-by-

441  environment interactions and/or phenotypic plasticity (Jarquin et al, 2014; Crossa et al., 2017; X.
442  Lietal. 2018; Guo et al., 2020). In general, we observed that predictive ability slightly increased
443  and plateaued after reaching certain subset of SNPs. Such a plateau on prediction ability maybe
444  due to overfitting of models (Norman et al., 2018; Hickey et al., 2014), presumably due to

445  extensive linkage disequilibrium in the pea genome (Kreplak et al., 2019).

446  Previous studies have indicated the importance of considering reliability values when using

447  predictive ability values to select genotypes (Yu et al., 2016). We found higher reliability

448  estimates were spread across all GEBVs rather than clustering around higher or lower extreme of
449  GEBVs. Those accessions with top predicted values and high-reliability estimates maybe

450  selected as candidate parents for increasing seed yield and/or germplasm enhancement.

451  However, for a trait such as days to flowering in pea, even low or intermediate predicted values
452  maybe suitable candidates when paired with high-reliability values. We found the means of

453  GEBV for nonphenotyped entries were non-significantly different with phenotyped accessions,
454  and almost none of nonphenotyped accessions were expected to exceed seed yield of phenotyped
455  accessions. Several accessions in the USDA pea germplasm collection can be readily

456  incorporated into breeding programs for germplasm enhancement by incorporating above-

457  average accessions with high or moderately high-reliability values (Yu et al., 2020).

458
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459 Conclusions and Research Directions

460  The research findings demonstrated that the wealth of genetic diversity available in a germplasm
461  collection could be assessed efficiently and quickly using genomic prediction to identify valuable
462  germplasm accessions that can be used for applied breeding efforts. With the integration of more
463  orthogonal information (e.g., expression, metabolomics, proteomics, etc.) into genomic

464  prediction framework (Kremling et al., 2019; Valluru et al., 2019) coupled with the

465  implementation of more complex genomic selection models like a multivariate genomic

466  selection approach (Rutkoski et al., 2015), we can considerably enhance predictive ability. This
467  research framework could greatly contribute to help discover and extract useful diversity

468  targeting high-value quality traits such as protein and mineral concentrations from a large

469  germplasm collection in the future.
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Table 1. Heritability and summary statistics for seed yield and other agronomic traits

Trait Mean Range SD  CV(%) H? H2cunis
DFF (days) 71 60-84 4.8 6.7 0.90 0.80
NoSeedsPod (Nos.) 5.7 4.4-6.9 0.5 8.5 0.84 0.66
PH (cm) 74 37.6-108.3 115 15.5 0.81 0.68
PodsPlant (Nos.) 18 15-23 1.5 8.3 0.50 0.27
DM (days) 104 99-112 2.4 2.3 0.51 0.38
SeedYield (Kg ha™) 2918  1734-4463 451 15.4 0.67 0.46

699  DFF is days to first flowering; NoSeedsPod is the number of seeds per pod, PH is plant height,
700  PodsPlant is the number of pods per plant, DM is days to physiological maturity, SeedYield is
701 seed yield per hectare, SD is the standard deviation, CV is coefficient of variance, H? is

702  heritability in the broad sense.
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Table 2. Predictive ability of genomic selection models for seed yield and agronomic traits from
five genomic selection models
Traits RR-BLUP PLSR RF BayesCpi RKHS
DFF (days) 0.60 0.57 0.55 0.59 0.54
(0.57-0.63) (0.53-0.61) (0.52-0.58) (0.55-0.63) (0.5-0.58)
NoSeedsPod  0.42 0.41 0.40 0.42 0.40
(0.37-0.48) (0.36-0.46) (0.35-0.45) (0.38-0.46) (0.34-0.48)
PH (cm) 0.39 0.42 0.45 0.45 0.43
(0.33-0.44) (0.38-0.48) (0.4-05)  (0.41-0.48) (0.39-0.48)
PodsPlant 0.28 0.25 0.28 0.23 0.28
(0.22-0.33) (0.2-0.31)  (0.22-0.34) (0.17-0.29) (0.23-0.34)
DM (days) 0.42 0.44 0.41 0.47 0.45
(0.36-0.47) (0.39-05)  (0.35-0.46) (0.43-0.5)  (0.4-0.48)
SeedYield (kg 0.38 0.31 0.39 0.35 0.42
ha-1) (0.34-0.42) (0.27-0.36)  (0.35-0.44) (0.31-0.39) (0.37-0.48)

DFF is days to first flowering, PH is Plant height in cm, DM is days to physiological maturity;
within parentheses are ranges of predictive ability

Table 3. Predictive ability within and across subpopulations using RR-BLUP and all markers

Sub pops DFF NoSeedsPod PH PodsPlant DM SeedYield
Sub pop 5 (51) 0.27 0.26 0.08 -0.01 0.02 0.18
Sub pop 7 (58) 0.34 0.40 0.22 0.12 -0.01 0.01
Sub pop 8 (41) 0.68 0.35 0.33 0.07 0.43 0.37
SP- 0.50 0.45 0.47 0.25 0.51 0.34
SP+ 0.53 0.35 0.42 0.25 0.48 0.45
SP PC10 0.51 0.41 0.44 0.18 0.20 0.43
Var exp (R?) 0.13 0.09 0.19 0.15 0.15 0.17

DFF is days to first flowering, PH is plant height, DM is days to physiological maturity, SP- does
not account for population structure, SP+, refers to the population structure addressed in the
model, SP PC10 addresses population structure with 10 PC, Var exp (R?) refers the variance
explained by population structure after fitting a regression model, within parenthesis represent
the number of entries in each subpopulation.
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723 Figure 1. Predictive ability with increasing training population size using RR-BLUP model, DFF
724 s days to first flowering, DM, is days to physiological maturity, NoSeedsPod is number of seeds
725  per pod, PH is plant height in cm, PodsPlant is pods per plant, SeedYield is seed yield in kg ha*
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728  Figure 2. Distribution phenotyped and predicted non-phenotyped accessions of USDA pea
729  germplasm collections for seed yield and plant height
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Figure 3. Reliability criteria for nonphenotyped lines: the top 50 of the genomic estimated breeding
values are blue, and bottom 50 are in red, intermediates are in green. A. reliability estimates for seed
yield (Kg/ha), B. days to first flowering, C. plant height, D. seeds per plant
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Correlation in USDA Pea Germplasm collection in 2016-18
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Supplementary Figure S1. Phenotypic correlation among seed yield and agronomic traits
evaluated in this study, DFF is days to first flowering, PH is plant height in cm, SeedYield is
seed yield in kg hal, DM is the days to physiological maturity

21


https://doi.org/10.1101/2021.05.07.443173
http://creativecommons.org/licenses/by-nc-nd/4.0/

737
738

739
740
741
742

743

744

745
746

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.07.443173; this version posted October 20, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

0.6
20.59 Traits
3 ~— DFF
@ ~ om
g == NoSeedsPod
ksl ] = pH
3 0.4 % “= PodsPlant
E - «= SeedYield

0.3

/
1K 5 K 10_K 15 K 20 K 25 K 30 K

Number of SNP markers

Supplementary Figure S2. Predictive ability with increasing SNP markers RR-BLUP model,
DFF is days to first flowering, DM, is days to physiological maturity, NoSeedsPod is humber of
seeds per pod, PH is plant height in cm, PodsPlant is pods per plant, SeedYield is seed yield in
kg hat

PREDICTIVE ABILITY IN SUB POPULATION 5 USING RRBLUP FOR MULTIPLE
TRAITS WITH INCREASING TRAINING POPULATION

0.7

0.6
& —

0.5
_2 0.4 ==@-=Days to First Flower
g ~8—Pods/Plant
_§ 0.3 Plant Height
8 =dr—Number of Seeds/Pod
e
e 0.2 == Days to Maturity

—=—Seed yield

0.1

50 75 100 125 150 175

Number of training set
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748  Supplementary Figure S4. Distribution of phenotyped and predicted non-phenotyped accessions
749  for seed yield and number of pods per plant in the USDA germplasm collections
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