

1 Measuring arterial pulsatility with Dynamic Inflow MAgnitude Contrast (DIMAC)
2 Joseph R. Whittaker^{1,2*}, Fabrizio Fasano³, Marcello Venzi¹, Patrick Liebig⁴,
3 Daniel Gallichan⁵, and Kevin Murphy¹

4 1. *Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy,*
5 *Cardiff University, Cardiff, CF24 4HQ, United Kingdom*
6 2. *Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany*
7 3. *Siemens Healthineers, Camberley, United Kingdom*
8 4. *Siemens Healthcare GmbH, Erlangen, Germany*
9 5. *CUBRIC, School of Engineering, Cardiff, United Kingdom*

10

11 *Correspondence

12 Joseph R. Whittaker

13 whittaker@cbs.mpg.de

14

15 **Keywords:** magnetic resonance imaging; pulsatility; cerebral arteries; echo-planar imaging;
16 arterial stiffness; inflow effect; cerebral blood flow velocity

17 **Highlights:**

18 • We present a novel method for measuring pulsatility of cerebral arteries.
19 • The inflow effect on fast GRE imaging can be exploited to yield a flow velocity dependent
20 signal.
21 • We measure pulsatile flow through cerebral arteries dynamically on a beat-to-beat basis.
22 • We use physiological challenges to demonstrate sensitivity to dynamic and steady-state
23 changes in vascular tone.

24

25

26

27

28

29

30

31

32 **Abstract**

33 The pulsatility of blood flow through cerebral arteries is clinically important, as it is
34 intrinsically associated with cerebrovascular health. In this study we outline a new
35 MRI approach to measuring the real-time pulsatile flow in cerebral arteries, which is
36 based on the inflow phenomenon associated with fast gradient-recalled-echo
37 acquisitions. Unlike traditional phase-contrast techniques, this new method, which
38 we dub **Dynamic Inflow Magnitude Contrast** (DIMAC), does not require velocity-
39 encoding gradients as sensitivity to flow velocity is derived purely from the inflow
40 effect. We achieved this using a highly accelerated single slice EPI acquisition with a
41 very short TR (15 ms) and a 90° flip angle, thus maximizing inflow contrast. We
42 simulate the spoiled GRE signal in the presence of large arteries and perform a
43 sensitivity analysis to demonstrate that in the regime of high inflow contrast it shows
44 much greater sensitivity to flow velocity over blood volume changes. We support this
45 theoretical prediction with *in-vivo* data collected in two separate experiments
46 designed to demonstrate the utility of the DIMAC signal contrast. We perform a
47 hypercapnia challenge experiment in order to experimentally modulate arterial tone
48 within subjects, and thus modulate the arterial pulsatile flow waveform. We also
49 perform a thigh-cuff release challenge, designed to induce a transient drop in blood
50 pressure, and demonstrate that the continuous DIMAC signal captures the complex
51 transient change in the pulsatile and non-pulsatile components of flow. In summary,
52 this study proposes a new role for a well-established source of MR image contrast
53 and demonstrates its potential for measuring both steady-state and dynamic
54 changes in arterial tone.

55

56

57

58

59

60

61

62 **1. Introduction**

63 Healthy functioning of the human brain depends critically upon perfusion, i.e.,
64 cerebral blood flow (CBF), which in turn is highly dependent on the health of cerebral
65 arteries. Across the brain, CBF is tightly coupled to local metabolic demands, and
66 can be actively regulated via arteriole smooth muscle and capillary pericyte action
67 (Hall et al., 2014). At a more global level, cerebral autoregulation operates via a
68 multitude of neurogenic, metabolic and mechanical factors to keep CBF across the
69 whole brain stable in response to systemic cardiovascular stressors (Cipolla, 2009).
70 Flow though cerebral arteries therefore varies over multiple time scales, from
71 relatively low frequency fluctuations on the order of minutes (Zhang et al., 2000), to
72 dynamic alterations in response to beat-to-beat blood pressure changes (Aaslid et
73 al., 1989). Furthermore, the pulsatile pressure generated by the heart manifests as
74 periodic fluctuations in both arterial cerebral blood volume (CBV), due to passive
75 vessel diameter changes mediated by compliance of the vessel wall, and cerebral
76 blood flow velocity (CBFV). Thus arterial flow has both pulsatile and non-pulsatile
77 components, both of which are relevant in determining CBF and its regulation.

78 The pulsatile component of arterial blood flow, henceforth referred to as “arterial
79 pulsatility”, is clinically relevant as it is intrinsically linked to cardiovascular health,
80 particularly age associated loss of elasticity, i.e. arterial stiffening (Mitchell et al.,
81 2010; Wilkinson et al., 2015). Compliant (elastic) arteries, specifically large conduit
82 vessels like the aorta, partially buffer pulsatile energy generated by the heart, which
83 is believed to protect the microcirculation from damage. Naturally this effect
84 diminishes as large arteries stiffen, and this is hypothesised to be the primary route
85 by which arterial stiffening is associated with cerebrovascular disease (Mitchell et al.,
86 2011). Modified arterial pulsatility is therefore both directly indicative of local arterial
87 wall stiffness, but also a passive consequence of upstream stiffness, due to the
88 increased transmission of pulsatile energy. Thus arterial pulsatility depends
89 predominantly on the structural properties of the arterial vasculature, whereas the
90 non-pulsatile component of arterial flow reflects the active physiological processes
91 that modulate vascular resistance.

92 Arterial flow can be measured indirectly using Transcranial Doppler (TCD)
93 ultrasound, which is sensitive to CBFV, and has sufficient temporal resolution to

94 resolve the full velocity spectrum in real-time, including the high frequency pulsatile
95 component (Naqvi et al., 2013). The main disadvantage to TCD is that is limited in
96 sensitivity to only a few large intracranial arteries where there is a suitable acoustic
97 window in the cranium, which makes it challenging to assess downstream pulsatility.
98 In contrast, magnetic resonance imaging (MRI) is capable of wide whole-brain field-
99 of-view (FOV) and sensitivity to flow at multiple spatial scales, and so has the
100 potential to remedy this particular shortcoming of TCD. Phase contrast (PC) based
101 MRI methods quantify the phase shift of spins moving along a magnetic field
102 gradient, and were developed in the early days of MRI (Bryant et al., 1984; Nayler et
103 al., 1986; van Dijk, 1984), becoming the preferred approach for measuring pulsatile
104 arterial flow. However, the need to use additional magnetic field gradients to encode
105 velocity into the phase of the complex image data comes at the cost of acquisition
106 speed and places a fundamental limitation of the achievable temporal resolution. The
107 pulsatile component of flow has traditionally only been resolved using cardiac gating
108 techniques that average data over multiple cardiac cycles (Pelc et al., 1991), yielding
109 time averaged estimates of pulsatility insensitive to beat-to-beat variability. However,
110 more recently PC acquisitions have been developed with sufficient temporal
111 resolution to resolve the pulsatile components of flow in real-time, in an effort to
112 directly image the physiologically meaningful variability that occurs over the cardiac
113 cycle (Markl et al., 2016).

114 In this work, we outline a new approach to measuring arterial flow, which like real-
115 time PC methods is simultaneously sensitive to both pulsatile and non-pulsatile
116 components, that is based on the magnitude of the spoiled gradient-recalled-echo
117 (GRE) MRI signal, here termed Dynamic Inflow MAgnitude Contrast (DIMAC).
118 DIMAC exploits the inflow phenomenon, or time-of-flight (TOF) contrast, which is
119 present during rapid GRE imaging due to the differential effect repeated RF
120 excitation has on the degree of saturation in the longitudinal magnetisation of
121 different spin groups according their coherent motion through the imaging plane.
122 This saturation effect engenders sensitivity to arterial CBFV in MR image, which has
123 traditionally been exploited to visualize vascular networks in the form of TOF
124 angiography (Hartung et al., 2011). However, if a dynamic imaging approach is taken
125 to collect a time series of images, this inflow contrast could theoretically be used to
126 monitor fluctuations in arterial flow. Starting from the Bloch equations, Bianciardi et al

127 derived analytic expressions for the spoiled GRE signal with respect to inflow
128 (Bianciardi et al., 2016), and defined three different regimes according to whether
129 CBFV or CBV effects dominated. In this feasibility study, we explore further this
130 regime in which pulsatile CBFV effects are predominant and consider how this well
131 known source of image contrast may be utilized to record arterial pulsatile flow
132 dynamically in real-time.

133 We show with this approach that we can measure pulsatile arterial flow as is done
134 with real-time PC-MRI, but with better temporal resolution, which allows us to image
135 dynamic changes in pulsatile flow and resolve beat-to-beat pulsatile flow waveforms
136 with high fidelity. Although we use major intracranial arteries as an in-vivo test case
137 (namely internal carotid and middle cerebral arteries), as DIMAC is intrinsically
138 based on saturating static tissue spins, it is theoretically less sensitive to extraluminal
139 partial volumes than PC-MRI. This property of the DIMAC signal, which is supported
140 by our simulation results, implies that it may show particular promise when applied to
141 smaller arteries in the brain that are not as accessible with PC-MRI. Thus, we
142 present a proof-of-concept for a new technique that is similar to real-time PC-MRI
143 methods but may have particular benefits in applications focussed on dynamic flow
144 changes and pulsatility measurement in the smaller arteries of the brain.

145 **2. Methods**

146 **2.1. Theory**

147 **2.1.1. Inflow effect**

148 The inflow phenomenon, also called time-of-flight (TOF) effect, is fundamental to the
149 nuclear magnetic resonance (NMR) method. Even before the advent of MRI, it had
150 been shown that the apparent longitudinal magnetisation relaxation time T_1 of
151 flowing spin is shorter than stationary ones (Suryan, 1951). The mechanism behind
152 the effect is partial saturation of the longitudinal magnetisation of stationary spins
153 due to continual short interval RF excitation (i.e. short repetition time (TR)). In
154 contrast, spins flowing into the imaging plane/slab do not experience this saturation

155 effect to the same degree and so produce a stronger signal. In the extreme case of
156 very high flow velocities (or thin slices), spins are completely refreshed between RF
157 pulses, and so the fully relaxed equilibrium magnetisation is available to be
158 measured in the transverse plane. In the more general case, assuming transverse
159 magnetisation is spoiled after readout, different spin isochromats reach different
160 steady states of longitudinal magnetisation determined by their flow velocity.
161 The literature already includes detailed quantitative analysis of the short TR spoiled
162 GRE MRI signal steady state (Brown et al., 2014), including the effect of flow velocity
163 in non-static spins (Bianciardi et al., 2016; Gao et al., 1988). In the simplest case in
164 which a slice of thickness L is orientated perpendicularly to a blood vessel, which
165 can be modelled as a cylinder, assuming plug flow and a 90° flip angle, the
166 longitudinal magnetisation scales linearly with velocity v and is given by

$$M_z = M_0 \left(1 - e^{\frac{-TR}{T_1}} + e^{\frac{-TR}{T_1}} \frac{v}{v_c} \right) \quad 0 < v < v_c$$

$$M_z = M_0 \quad v_c \geq v$$

167 **Equation 1**

168 where M_0 is the equilibrium magnetisation, and v_c is the critical velocity, above which
169 the flowing spins experience only one RF pulse when crossing the excited slice. The
170 measured signal is simply scaled by the spin density/volume and a transverse
171 relaxation factor. The critical velocity v_c is determined by the ratio of slice thickness
172 and TR (L/TR). If $v > v_c$ there is no longer flow dependence, and the longitudinal
173 magnetization remains at equilibrium, in the steady state. Based on this theory, if $v <$
174 v_c we hypothesise that fast spoiled GRE sequences may prove very useful for
175 measuring pulsatile flow in arteries with high temporal resolution.

176 2.1.2. Sensitivity analysis - simulations

177 The cardiac induced pressure waveform that propagates through the vasculature
178 consequently leads to pulsatile flow in arteries (Wagshul et al., 2011), which
179 manifests as pulsatile changes in both CBV and CBFV. In this section, we perform
180 simulations to assess the sensitivity of the spoiled GRE signal to pulsatile changes in
181 CBFV and CBV. The cardiac phase (τ) dependent signal can be modelled in a two-

182 compartment model simply as the sum of intraluminal (i) and extraluminal (e)
183 compartments

$$M_{xy}(\tau) = M_{z,i} (CBFV(\tau)) \cdot \rho_i \cdot v_i(\tau) \cdot e^{-R_{2,i}^* TE} + M_{z,e} \cdot \rho_e \cdot (1 - v_i(\tau)) \cdot e^{-R_{2,e}^* TE}$$

184 **Equation 2**

185 where M_z is the longitudinal magnetization defined in Equation 1 (which is a function
186 of CBFV for intraluminal spins), ρ is the spin density for the respective
187 compartments, and v_i is the intraluminal volume (i.e. CBV). Cardiac pulsatile
188 physiology dictates that both CBV and CBFV are functions of τ , and so too is the
189 measured signal. The maxima of CBFV and CBV occur during the systolic peak
190 (*sys*) of the cardiac phase, with baseline values observed during the diastolic (*dia*)
191 portion. If during baseline a voxel is entirely contained within the vessel lumen (i.e.
192 $v_i(\tau_{dia}) = 1$), then the measured signal will be sensitive only to changes in CBFV
193 over the cardiac cycle. Thus, the signal is only sensitive to pulsatile CBV in voxels
194 with an extraluminal partial volume (i.e. $v_i(\tau_{dia}) < 1$), and the degree to which it is
195 depends on both the baseline partial volume and the maximum partial volume (i.e.
196 systolic peak).

197 We simulate the conditions for a single voxel (with dimensions 2x2x10 mm)
198 orientated perpendicularly to the middle cerebral artery (MCA), which we model as a
199 straight cylinder. The extraluminal partial volume (v_e) is assumed to be composed
200 entirely of CSF, which is the most appropriate assumption for large arteries in the
201 brain (Dieleman et al., 2014). All MR simulation parameters are listed in Table 1.
202 MCA CBFV varies both with cardiac cycle (i.e. pulsatility), but also across the vessel
203 lumen due to the laminar flow profile, being strictly 0 at the vessel wall, and peaking
204 during systole at the centre. Thus, CBFV was allowed to vary in the range between 0
205 – 100 cm s⁻¹ to provide a realistic distribution of flow velocities (O'Rourke et al.,
206 2020). Measuring *in-vivo* diameter changes within intracranial arteries is challenging,
207 but high-resolution images obtained with ultra-high field MR provide the best
208 estimates. Using this technique, it has been estimated that the MCA changes in
209 cross sectional area by ~2.5% over the cardiac cycle (Warnert et al., 2016).
210 Assuming a perfect cylinder this translates to a change in CBV of the same
211 magnitude. For simulations, we assumed that CBV could increase by up to 5% of its

212 baseline *diastolic* value. Using the above physiological ranges, we assess the global
213 sensitivity of the DIMAC signal to changes in CBFV and CBV as follows;

214 1. We define baseline CBFV and CBV values and calculate the signal magnitude
215 (S).

216 2. We then randomly sample (1000 samples) Δ CBFV and Δ CBV values
217 uniformly from the physiological plausible range and calculate the change in
218 signal from baseline (Δ S).

219 3. We then regress Δ S against Δ CBFV and Δ CBV (normalized between 0 and 1)
220 to estimate regression coefficients that are in units of Δ S per dynamic range of
221 CBFV and CBV.

222 4. The ratio of the regression coefficients (Δ S/ Δ CBFV divided by Δ S/ Δ CBV)
223 expresses the relative sensitivity to pulsatile changes in CBFV over CBV.

224

Parameter	Value	Reference	Comment
Arterial blood T_1	1664 ms	(Lu et al., 2004)	At Hct = 0.42
Arterial blood T_2^*	48.4 ms	(Zhao et al., 2007)	At $sO_2=98\%$ and Hct = 0.44
CSF T_1	3817 ms	(Lu et al., 2005)	
CSF T_2^*	400 ms	(Pinto et al., 2020)	
Arterial blood ρ	0.85	(Herscovitch and Raichle, 1985)	Assume Hct = 0.44
CSF ρ	1		Assume like water

225 **Table 1: MR parameters for simulation at 3T.**

226 2.1.3 Impact of SNR

227 We simulated different levels of SNR to explore how the predictions of the sensitivity
228 analysis would translate to the *in-vivo* scenario. The beat-to-beat pulsatile CBFV is
229 modelled with a Fourier basis set as

$$CBFV(\tau) = CBFV_{dia} + \sum_{n=1}^N c_n \cdot e^{i \frac{2\pi n \tau}{P}}$$

230

Equation 3

231 where $CBFV_{dia}$ is the baseline (i.e. dc component) during diastole, P is the beat-to-
232 beat time period, and n is the harmonic of the fundamental frequency. A total of
233 $N = 10$ harmonics were used taken from (Yang et al., 2019) in order to model a
234 generic pulsatile flow response.

235 **2.2. Experimental Protocol – *in-vivo* imaging**

236 We performed two separate *in-vivo* MRI experiments using a highly accelerated
237 GRE echo-planar-imaging (EPI) acquisition to demonstrate the potential of the
238 DIMAC method as follows: i) an experiment to estimate the steady-state cardiac
239 induced pulsatile flow response in the middle cerebral artery (MCA), using a
240 hypercapnia challenge to demonstrate the sensitivity of DIMAC to subtle changes in
241 vascular tone (*HC-challenge* experiment); ii) an experiment to measure flow changes
242 in the Internal Carotid (ICA) and Vertebral (VA) arteries during a thigh cuff release
243 (TCR) challenge to demonstrate sensitivity to dynamic changes in the non-pulsatile
244 component of CBFV, and beat-to-beat pulsatile flow (*TCR-challenge* experiment).
245 Finally, we also performed a simple flow phantom experiment with the same
246 acquisition in order to verify the strong flow velocity dependent signal that is
247 predicted in the very short TR domain (included in *Supplementary material*).

248 2.2.2. Imaging protocol

249 All experiments described below were performed on a Siemens 3T MAGNETOM
250 Prisma clinical scanner with a 32-channel receiver head-coil (Siemens Healthcare
251 GmbH, Erlangen), and used a prototype single slice GRE EPI sequence, with the
252 number of repetitions varied according to the experimental requirements (see
253 following sections). The protocol was optimized for maximum sensitivity to the inflow
254 effect by making the TR as short as possible, which included removing fat saturation
255 pulses. Acquisition parameters were as follows: flip angle=90°, FOV=192mm (2 mm²
256 in-plane resolution), GRAPPA=5, partial Fourier = 6/8, TR=15ms, TE=6.8ms, slice

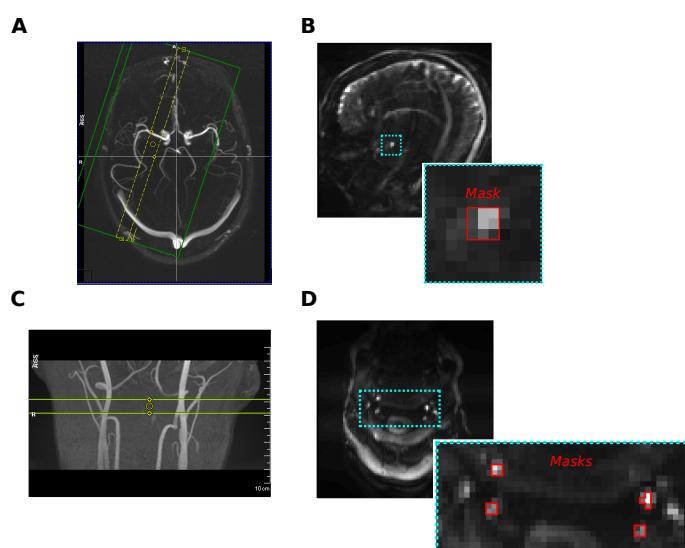
257 thickness=10mm. For all in-vivo experiments standard TOF scans were performed in
258 order to guide the placement of DIMAC slices perpendicularly to the artery of
259 interest. All participants gave written informed consent, and the School of
260 Psychology Cardiff University Ethics Committee approved the study in accordance
261 with the guidelines stated in the Cardiff University Research Framework (version 4.0,
262 2010). Data are publically available through the Open Science Framework
263 (DOI 10.17605/OSF.IO/ZQ5E3).

264 2.2.3. In-vivo experiments

265 2.2.3.1. *HC-challenge experiment*

266 An experiment was performed in 5 healthy participants to demonstrate the sensitivity
267 of DIMAC to measuring arterial pulsatility in-vivo, with slices positioned to target the
268 MCA as shown in Fig.1A. A hypercapnia challenge (HC) in which two distinct levels
269 of partial pressure of end-tidal CO₂ (P_{ET}CO₂) were targeted was used as a global
270 vasodilatory stimulus in order to model changes in vascular tone.

271 For each subject a series of scans was performed, which included acquisitions with
272 the default protocol (TR = 15 ms, 4096 repetitions), and 3 modified acquisitions in
273 which the TR was increased by a factor of 2 (i.e. TR = 30,60, and 120 ms). These
274 were included to provide empirical support for the theoretical prediction that
275 sensitivity to arterial pulsatility will decrease at longer TRs. The number of repetitions
276 for these modified acquisitions was also adjusted by a factor of 2 (i.e. 2048, 1024,
277 and 596 repetitions), such that the scan length was always exactly 61.44 seconds. In
278 addition to modifying TR, scans were also performed at 3 distinct levels of P_{ET}CO₂,
279 in which levels were defined with respect to individual subject baseline, which was
280 determined during the initial set up period during the experiment. For each TR
281 protocol, acquisitions were repeated at normocapnia (+0 mm Hg w.r.t. baseline), and
282 two levels of hypercapnia (+4 and +8 mm Hg w.r.t. baseline). Thus, for each subject
283 a series of twelve scans in total was performed, i.e. each of the 4 TR protocols at
284 each of the 3 levels of hypercapnia. The experiment therefore had a factorial design
285 with 2 factors (TR and HC) with 4 and 3 levels respectively (TR15, TR30, TR60, and
286 TR120; HC0, HC4, and HC8). For each HC level the order of scans was the same


287 (TR15, TR30, TR60, TR120), but the order of HC levels was randomised across
288 subjects.

289 The details of the HC experiment are as follows. A tight fitting mask was used to
290 manually deliver gas through a system of custom-made flow meters, as previously
291 described (Whittaker et al., 2016). A sampling line connected to the mask was used
292 to monitor $P_{ET}CO_2$ levels, and flow of medical air and 5% CO_2 was manually
293 adjusted to target discrete levels (+4 and +8 mm Hg) above the participant's
294 predetermined baseline value. The baseline level was determined on an individual
295 subject basis at the beginning of each scanning session. The mask circuit setup
296 allowed gases to mix in a length of tubing before reaching the mask, and a minimum
297 total flow rate of 30 L/min was maintained at all times. For the normocapnia scans
298 only medical air was delivered. For hypercapnia scans the flow rates were adjusted
299 to achieve the desired target prior to the start of the acquisition, with sufficient time
300 given to ensure a steady state was reached. Flow was always returned to medical air
301 in between HC levels to allow subjects to return to baseline, and subjects were given
302 ~1-2 min of recovery at baseline between hypercapnic levels. The start of a new
303 hypercapnic level and delivery of CO_2 gas was always preceded with the subject's
304 verbal consent. For each hypercapnic period, at least 1 minute was allowed when
305 transitioning to a new $P_{ET}CO_2$ level in order to ensure a steady state at the target
306 end-tidal value. As there were different TR protocols for each HC level, each lasting
307 ~1 min, when factoring in transitions, subjects were only ever at a particular
308 hypercapnic level for ~5-10 min. S2 in the *Supplementary material* shows an
309 example $P_{ET}CO_2$ trace and relative scan timings for one subject. All subjects
310 tolerated the HC challenge well and none reported any significant discomfort.
311 Additionally, photoplethysmography (PPG) traces were recorded concurrently to
312 provide an independent measure of the cardiac cycle.

313 2.2.3.2 TCR-challenge experiment

314 An experiment was performed in a single subject to demonstrate the utility of DIMAC
315 for measuring changes in flow/pulsatility dynamically. In order to modulate flow we
316 used a thigh cuff release (TCR) challenge, as it is known to cause a robust transient
317 drop in blood pressure (Aaslid et al., 1989; Mahony et al., 2000). A single transverse
318 slice was placed in the neck at a position approximately perpendicular to both the

319 internal carotid arteries (ICA) and vertebral arteries (VA), as shown in Fig. 1C. The
320 TCR protocol, detailed here in conference abstract form (Whittaker et al., 2020), was
321 briefly as follows: Pneumatic cuffs were placed around the tops of both thighs and
322 inflated to +40 mm Hg above baseline systolic BP pressure for 152 s and then
323 rapidly deflated. Scanning of the DIMAC acquisition was timed such that data
324 collection began 20 s before deflation, and each scan lasted ~60s (4096 repetitions).
325 A series of 5 TCR manoeuvres were repeated, and both concurrent PPG and beat-
326 to-beat blood pressure (Caretaker, Biopac) traces were recorded.

327
328 **Figure 1: A) An example of the slice placement at the M1 segment of the MCA for the *HC-challenge***
329 **experiment. B) An example DIMAC image, including MCA mask. C) Slice placement for the subject in the**
330 ***TCR-challenge* experiment placed to include best perpendicular placement of bilateral ICAs and VAs. D)**
331 **Subject's DIMAC EPI image and artery masks.**

332 2.3. *Analysis*

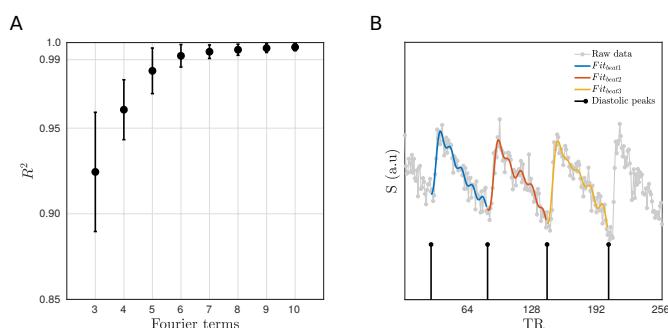
333 2.3.2. In-vivo experiments

334 Data for both in-vivo experiments were processed using AFNI (Cox, 1996) and
335 MATLAB. All images were first motion corrected using AFNI's 2dLMReg function and
336 filtered to remove linear drifts. Subsequent analysis of the data was performed on
337 ROI average time series and is described below. For the TR15 condition, pulsatile
338 CBFV weighting in the signal is sufficiently high such that the periodic signal is
339 clearly visible and we could perform peak detection to identify each cardiac cycle

340 without the need for the external PPG, which we refer to as *Beat-to-beat fit* and
341 describe below. For the other TR conditions this peak detection is no longer
342 possible, but the pulsatile component of the signal can still be extracted by using the
343 PPG as an external reference of the cardiac phase, which we refer to as *Cardiac*
344 *binned average*, and describe below. However, with this method, only a time
345 average pulsatile component can be extracted.

346 2.3.2.1. *Cardiac binned average*

347 As has been previously done with PC and functional MRI (fMRI) approaches, we can
348 use the PPG as an external reference to determine in which phase of the cardiac
349 cycle a particular MR image was acquired. *Systolic* peaks were detected in the PPG
350 signal, and then each beat-to-beat interval was split into a set of n cardiac bins.
351 Thus, individual data points in the time series could be sorted into one of these n
352 bins, and then averaged into a new n point cardiac phase time series, representing
353 the time averaged pulsatile component of the signal. As the sampling rate is different
354 for each TR protocol, the number of bins n was varied to be approximately half the
355 sampling rate, according to equation 4.


$$n = \left\lceil \frac{1}{2TR} \right\rceil$$

356 where $\lceil x \rceil$ is the ceiling function that rounds x up to the next integer value. With this
357 method we also calculated a time averaged pulsatility index (PI), a simple metric for
358 quantifying the degree of pulsatility in the signal, and defined as the maximum value
359 of the average signal minus the minimum value divided by the mean.

360 2.3.2.2. *Beat-to-beat fit*

361 As is customary with pulsatile flow waveforms, a Fourier series basis set was used to
362 model the pulsatile component of the signal. In order to detect this on an individual
363 beat-to-beat basis the *diastolic* peak of each cardiac cycle was detected (see Fig.
364 2B), and then, after removal of linear trends, linear regression was used to fit Fourier
365 basis set to the signal between each pair of *diastolic* peaks. Fig. 2A shows the
366 average R^2 of individual beat-to-beat fits for the *HC-challenge* experiment (averaged
367 across HC condition and subject for the TR15 condition only). As expected the R^2
368 increases with the number of harmonics included in the Fourier basis set and begins

369 to plateau at ~6. Thus, 5 terms (the fundamental frequency + 4 higher order
370 harmonics) was chosen as the best balance between goodness-of-fit and parsimony,
371 as increasing to a greater number of terms offers only marginal increases in R^2 , but
372 at the risk of over-fitting. As each individual beat is characterised by its own set of
373 Fourier coefficients, the time averaged pulsatile waveform can be modelled by
374 simply averaging these together, and then estimated with an arbitrary number of
375 data points.

376
377 **Figure 2: A) The average amount of variance explained in the beat-to-beat fit as a function of the number**
378 **of Fourier terms used. B) An example showing detected *diastolic* peaks and the beat-to-beat pulsatile**
379 **fits.**

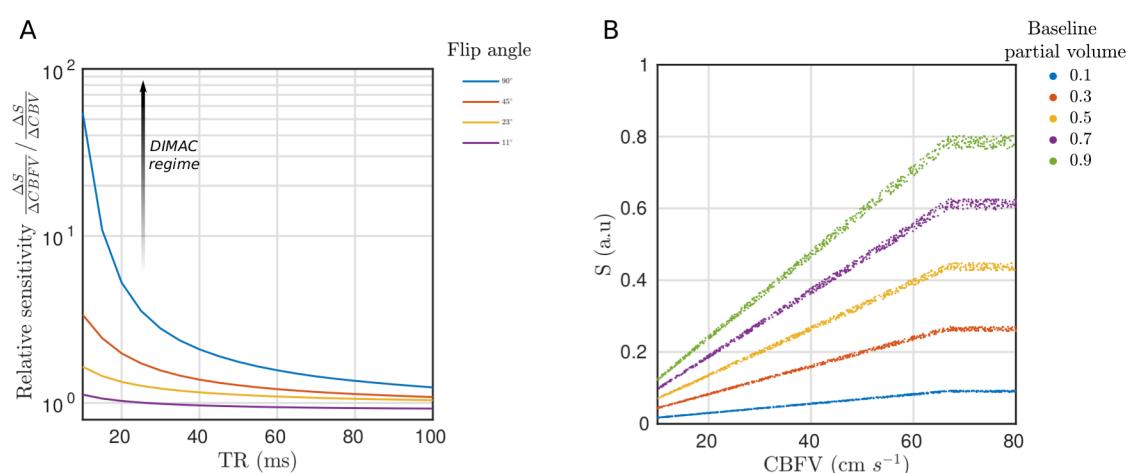
380 Additionally, *systolic* peaks (i.e. maximum signal during systole) were also detected.
381 Both *diastolic* and *systolic* peaks were up-sampled to the original sampling frequency
382 to create *diastolic* and *systolic* time series respectively. Thus, the whole time series
383 could be deconstructed into a non-pulsatile component (i.e. the low frequency
384 fluctuating *diastolic* peaks), and individual beat-to-beat pulsatile components that
385 could be characterised by a set of Fourier coefficients. The *diastolic* and *systolic* time
386 series are equivalent to the envelop of the dynamic pulsatile signal and contain low
387 frequency information related to the physiological factors that affect the non-pulsatile
388 component of CBFV.

389 2.3.2.3. *HC-challenge experiment*

390 For each subject, ROIs located at the MCA were defined from the average image
391 across all scans, as a 9 voxel mask encompassing the artery, which was selected
392 manually such that the centre voxel was the brightest in the region of the artery (see
393 Fig.1B). For the default protocol (TR15), each ROI time series was processed using
394 the *Beat-to-beat fit* method described above. Fourier coefficients for each individual
395 beat were averaged together and then the time-averaged waveform was

396 reconstructed with 100 data points. Additionally, the ROI time series were also
397 processed using the *Cardiac binned* average method in order to calculate and
398 compare the PI across all TR conditions. The PI was calculated for each TR and HC
399 condition, and then a repeated-measures ANOVA was used to test for an effect of
400 TR on PI, after averaging across HC levels.

401 2.3.2.2. *TCR-challenge experiment*

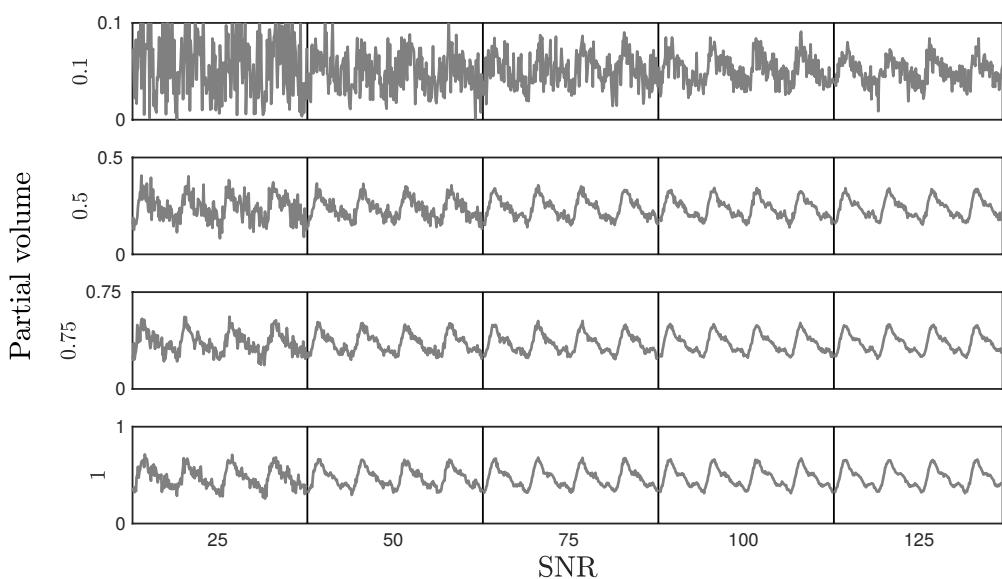

402 For each subject 4 ROIs were created encompassing the ICAs and VAs bilaterally as
403 follows; the brightest voxel in the region of each artery was used to define the centre
404 of a 5x5 voxel search space, within which the 4 brightest voxels were selected to
405 form a mask. As shown in Fig.1.D, voxels in all masks were contiguous to create a
406 single ROI for each artery. Average time-series were extracted from each ROI and
407 then processed using the *Beat-to-beat fit* method described above.

408 3. **Results**

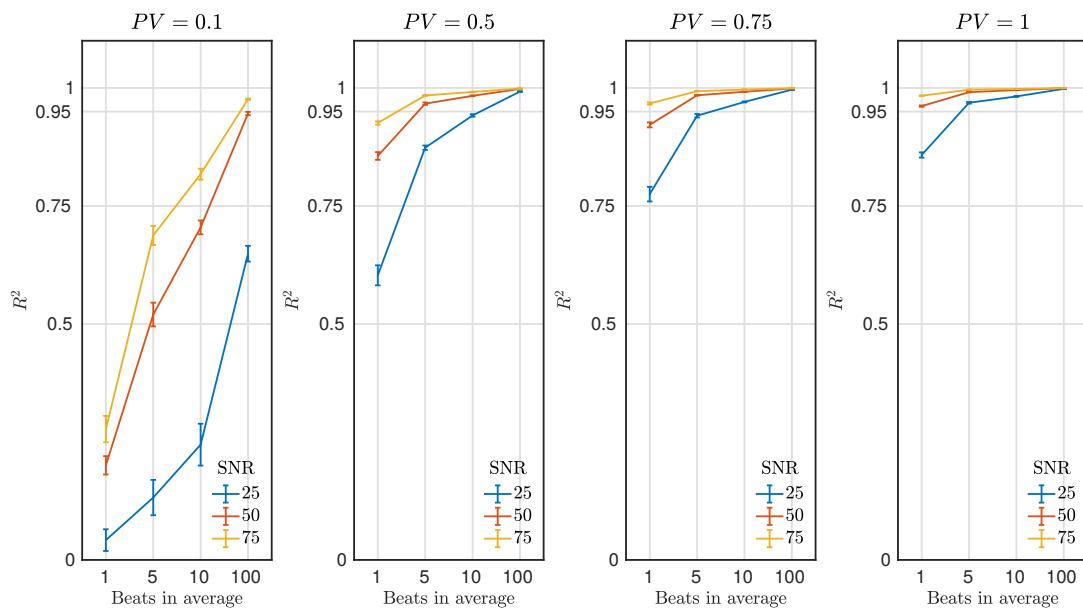
409 3.1. Simulations

410 Fig.3A shows the relative sensitivity of the GRE MRI signal as a function of TR for
411 different flip angles. The sensitivity to CBFV increases rapidly as TR is decreased,
412 and this is most pronounced for the maximum $\alpha = 90^\circ$. Thus, we define the “DIMAC
413 regime” as this region of the GRE parameter space that engenders high sensitivity to
414 pulsatile CBFV. Fig.3B shows the simulated signal plotted as a function of CBFV in
415 the case of $\alpha = 90^\circ$ and TR=15 ms, where it can be clearly seen that the effect of
416 pulsatile CBV is very small compared to CBFV when $v < v_c$, which in this simulation
417 is 66cm/s. When $v > v_c$, all flow sensitivity is lost and the signal is purely sensitive to
418 changes in CBV, although at a much reduced dynamic range. It is also evident that
419 the two parameters are coupled so that the dynamic range of CBV signal variance
420 scales with CBFV, and that the magnitude of the signal is dependent on baseline
421 partial volume. These results suggest that in the DIMAC regime of high saturation
422 (TR=15ms, flip=90°), partial volume of arterial blood merely scales the overall signal
423 magnitude, which is always relatively more sensitive to pulsatile CBFV over CBV.

424


425

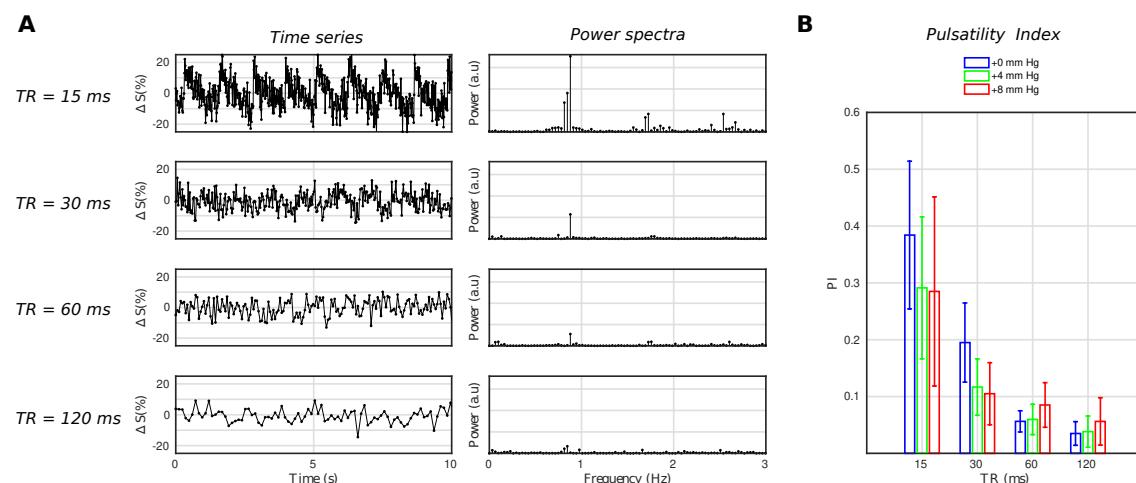
426 **Figure 3: A) Relative sensitivity of spoiled GRE signal to pulsatile CBFV compared with pulsatile CBV,**
427 where each line represents a different flip angle. The annotated arrow represents how the GRE signal
428 moves into the DIMAC regime of high sensitivity to pulsatile CBFV over pulsatile CBV as TR decreases
429 and flip angle increases. B) Scatterplot of simulated spoiled GRE signal in the DIMAC regime of low TR
430 (15 ms) and high flip angle (90°) as a function of CBFV. Note that the spread of data points reflects signal
431 variance due to pulsatile CBV, which is small compared with variance due to CBFV within the normal
432 physiological range. In every case the signal plateaus at the critical velocity 66 cm s^{-1} , i.e. when flow
433 velocity increases to the point when spins only experience a single RF pulse and the signal becomes
434 sensitive to CBV alone.


435

436 The pulsatile signal was then modelled for different baseline partial volumes and
437 SNR levels. As seen in Fig.4A the quality of the CBFV weighted pulsatile signal is a
438 function of both baseline partial volume and SNR, which determines the fidelity with
439 which single beats can be resolved. Fig.4B plots the agreement of the simulated
440 signal with the pulsatile CBFV waveform, and it can be seen that even in the lowest
441 partial volume and SNR case, although individual beats can't be seen, with sufficient
442 averaging (100 beats) the MR signal still shares more than 50% variance with the
443 pulsatile CBFV. In cases of high SNR and baseline partial volume, easily achievable
444 *in-vivo*, the individual beats can be resolved with high fidelity.

A

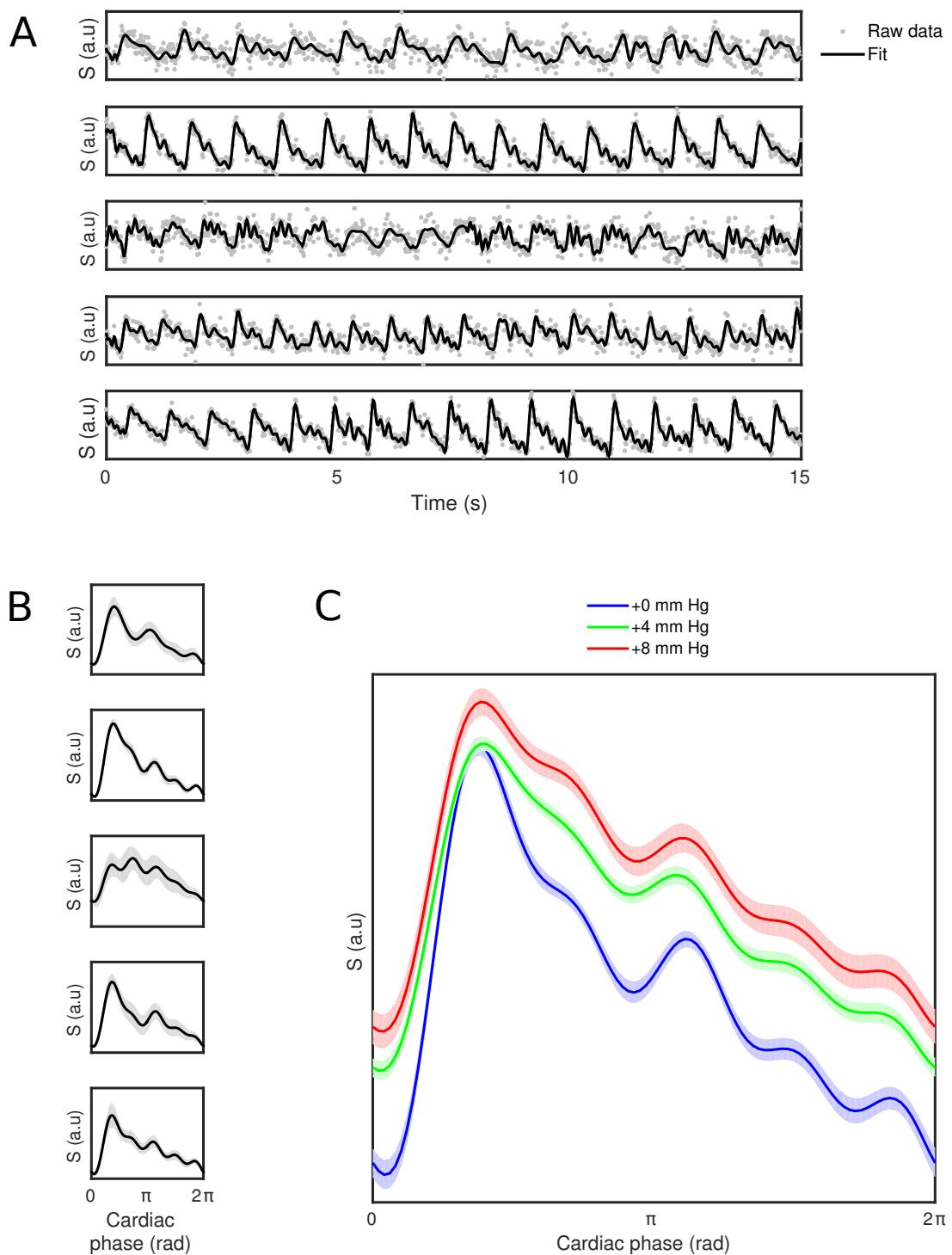
B


445

446 **Figure 4: A) Simulated DIMAC signal over 4 beats. Each panel represents a different partial volume (row)**
 447 **and SNR condition (column). Note the different y-axis scale for each partial volume. Thus, for a given**
 448 **SNR, increased partial volume of arterial blood increases signal magnitude and yields a stronger**
 449 **pulsatile signal. B) Each panel shows the amount of variance explained in the true CBFV waveform by**
 450 **the simulated DIMAC signal as a function of number of beats included in the average. Naturally, as the**
 451 **number of beats included in the average increases more noise is averaged out, and thus the R2**
 452 **increases. However this also shows that when both partial volume and SNR are sufficiently high,**
 453 **individual beats can be resolved with high fidelity (i.e. a high R2 with respect to the true CBFV**
 454 **waveform).**

455 3.2. In-vivo experiments

456 3.2.2. HC-challenge experiment


457 The theory predicts that in the “DIMAC regime” there is a strong sensitivity to
458 pulsatile CBFV, and comparing the signal from the different TR conditions empirically
459 supports this. A strongly periodic pulsatile signal is evident in the time series for the
460 TR15 condition, but is far less visible for the TR30 condition, and not readily visible
461 for the TR60 and TR120 conditions (see Fig 5A), as predicted by the theory. This is
462 also reflected in the power spectra, with the power of the fundamental cardiac
463 frequency clearly reducing as a function of TR, and higher order harmonics
464 becoming less well defined also (see Fig 5A). Fig 5B shows the PI for each TR and
465 HC condition. It is clear, as expected, that the PI is strongly dependent on TR
466 condition, and this is quantitatively verified by the results of a repeated measures
467 ANOVA on PI, which shows a significant effect of TR ($p=0.00062$).

469 **Figure 5: A) Example (subject 1) time series and their power spectra for each TR condition. Both the time**
470 **series and power spectrum make it clear that there is a strong degree of pulsatility for the TR15**
471 **conditions, which falls away with higher TR values as predicted by the theory. B) The pulsatility index for**
472 **each TR and HC condition, which quantitatively confirms that which is observed in A.**

473 Figure 6A shows the first 15 s of the DIMAC time series for each subject in the TR15
474 and HC0 condition, along with the beat-to-beat fit. Qualitatively one can observe
475 differences in the pulsatile signal shape across subjects, which is more clearly seen
476 in the average responses for each subject in Fig. 6B. One can also see in Fig. 6A
477 that there is beat-to-beat variability in the pulsatile signal, for example in the subject
478 presented in the fifth row, one can see that the first few beats are qualitatively
479 different in shape to the later beats.

480 Fig. 6C shows the group average cardiac phase waveforms across different HC
481 conditions. The cardiac phase waveforms show at least two clear peaks, which are
482 consistent with what is observed with TCD (Kurji et al., 2006; Robertson et al., 2008),
483 with the first one representing the systolic peak, and the second one representing a
484 reflection wave, preceded by the so called “Dicrotic notch”, related to a transient
485 increase in pressure associated with the aortic valve closing. Qualitatively, there is a
486 clear modulation of the waveform baseline with increasing levels of hypercapnia, due
487 to increased flow velocity, and also clear modulation of the waveform shape. With
488 increased hypercapnia the two peaks become broader, and less clearly separated
489 from one another. There is also evidence of an additional reflection peak appearing
490 on the downward slope of the primary peak, which becomes more pronounced with
491 increasing hypercapnia and has previously been demonstrated with TCD (Robertson
492 et al., 2008). Closer peaks may indicate resonance effects produced by pressure
493 waves in shorter vascular systems (Nichols et al., 2011).

500

501 3.2.2. *TCR-challenge experiment*

502 Fig. 7A shows the first 15 seconds of the L-ICA DIMAC signal along with the beat-to-
503 beat fit and the signal *diastolic* and *systolic* peaks. A very strong periodic signal is
504 clearly observable, with the prominent systolic and wave reflection peaks discernable
505 on a beat-to-beat basis. Figure 7B shows the full *systolic* and *diastolic* peak time
506 courses of the signal during the thigh cuff release challenge in both left and right ICA
507 and VAs. The magnitude of the signal changes are larger in the ICAs than in the
508 VAs, and the traces appear smoother, which is perhaps not surprising given that the
509 ICAs are larger arteries (diameter of ~5 mm compared with ~3 mm for VA), and thus
510 will have higher SNR. The event-locked change in the CBFV evoked by the TCR is
511 present in the signal *systolic* and *diastolic* peak time courses, and is clearly seen
512 bilaterally in the ICA, but only partially in the VA, primarily in the left branch.
513 Interestingly, it is also clear that the TCR response in the ICA *systolic* peak time
514 series is delayed with respect to the *diastolic* peak time series. Furthermore, the
515 *diastolic* peak response shows a marked drop in amplitude, followed by a
516 subsequent overshoot, whereas the *systolic* peak response shows a simple slowly
517 evolving increase in amplitude and return to baseline. *Supplementary material S3*
518 examines the TCR response more closely in the ICA DIMAC *systolic* and *diastolic*
519 peak time series and compares them with the heart rate and mean arterial blood
520 pressure responses, which demonstrates that these DIMAC signal changes are
521 clearly of a physiological origin.

522

524 **Figure 7: A)** First 15s of the *TCR-challenge* time series taken from the left ICA ROI. **B)** The *systolic* (blue)
525 and *diastolic* (red) peak time series (i.e. signal envelope) averaged across the five repeats, for both ICA
526 and VA bilaterally. The onset of the thigh-cuff release is highlighted with a dotted grey line. Both left and
527 right ICA show clear time locked responses to the *TCR-challenge* in both *systolic* and *diastolic* time
528 series. The same responses are far less evident in the VA time series, particularly in the right side.

529 **4. Discussion**

530 This study outlines a new approach for real-time measurement of arterial flow, which
531 we have dubbed Dynamic Inflow MAgnitude Contrast (DIMAC). The inflow effect
532 causes the magnitude of the complex GRE MR image to be inherently sensitive to
533 CBFV, and this sensitivity scales inversely with TR. Thus, the use of very short TRs,
534 which are a prerequisite for high temporal resolution imaging that can resolve the
535 pulsatile component of flow, has the fortuitous consequence of also imparting high
536 sensitivity to CBFV in the signal. So when combined with a high flip angle, short TR

537 GRE imaging enters the DIMAC regime of sensitivity, which we have proposed is a
538 valuable source of image contrast for measuring dynamic pulsatile arterial flow.
539 Using a two-compartment model to simulate the spoiled GRE signal, we have shown
540 that in the DIMAC regime the signal shows high relative sensitivity to pulsatile CBFV
541 with respect to pulsatile CBV. Bianciardi et al. previously delineated three different
542 regimes of image contrast with respect to sensitivity to temporal fluctuations in CBFV
543 (Bianciardi et al., 2016), and focussed specifically on the regime in which there is
544 minimal sensitivity to CBFV, and thus the dynamic image contrast predominately
545 reflects pulsatile changes in CBV. In contrast, in this study we have considered the
546 regime with sensitivity to pulsatile CBFV. Our simulations show that with very short
547 TRs and high flip angle we can achieve great sensitivity to changes in CBFV, with
548 minimal contribution from CBV, even in instances where there is a significant
549 extraluminal partial volume present. By limiting ourselves to single slices that are
550 carefully positioned perpendicularly to large cerebral arteries, we have shown that in
551 the DIMAC regime we can measure arterial flow with high temporal resolution in real-
552 time.

553 4.1. Dynamic measurements

554 A major advantage of the DIMAC approach we have outlined is the ability to
555 measure pulsatile flow in real-time, and resolve individual beat-to-beat pulsatile
556 waveforms. This is desirable as averaging across multiple cardiac cycles, as is
557 common with PC-MRI CBFV waveforms, typically leads to significant morphological
558 differences compared with TCD (Wagshul et al., 2011), best characterised as a loss
559 of fine structure, i.e. fewer clearly resolved distinct peaks and troughs. These key
560 features (peaks and troughs and their relative timings) that have been used to
561 characterise the CBFV waveform in the TCD literature (Aggarwal et al., 2008; Kurji et
562 al., 2006; Lockhart et al., 2006; Robertson et al., 2008), are often integral to attempts
563 to indirectly derive higher order measures of the cerebrovascular system such as
564 intracranial pressure and cerebral perfusion pressure (Aggarwal et al., 2008), or
565 downstream compliance (Robertson et al., 2008). To counter this problem, recent
566 technological advances have been exploited in an increased effort to develop PC-
567 MRI acquisitions with sufficiently high temporal resolution to enable real-time
568 pulsatile flow measurement (Markl et al., 2016). These novel real-time acquisitions

569 have mostly focussed on cardiac applications (Joseph et al., 2012; Klein et al., 2001;
570 Nayak et al., 2000; Nezafat et al., 2005), but there are still some neuroscience
571 applications, in particular focussing on CSF dynamics (Chen et al., 2015; Yildiz et al.,
572 2017). As these real-time acquisitions allow dynamic flow variations and beat-to-beat
573 variability to be assessed during short segments of time, the respiratory cycle's effect
574 on flow can be easily deduced (Chen et al., 2015), and a more complete assessment
575 of pulsatile flow can be made. For the same reason real-time approaches are crucial
576 for accurately gauging pulsatile flow in the presence of atrial fibrillation (Markl et al.,
577 2016), and quantifying the effect of beat-to-beat variations on flow characteristics. A
578 a benefit of DIMAC over PC-MRI is that it negates the need for additional gradients
579 to be played out, and so more readily facilitates high temporal resolution
580 acquisitions. Real-time PC-MRI methods using EPI readouts typically achieve
581 temporal resolutions between 50-80ms (Chen et al., 2015; Yildiz et al., 2017). This
582 situation can be improved slightly with non-Cartesian approaches (~40 – 50 ms)
583 (Joseph et al., 2012; Kowallick et al., 2014), but it is still not comparable with the
584 temporal resolution of 15ms used here, and there is potential for further
585 improvements if non-Cartesian approaches are also developed for DIMAC. The
586 benefit to higher temporal resolution is that it allows the higher order harmonics of
587 the pulsatile component of the signal to be accurately sampled, and high fidelity
588 pulsatile waveforms to be more accurately measured and in a shorter time, even on
589 a single beat basis. In particular, the precision with which the relative timings can be
590 measured between different peaks and troughs in the flow waveform is
591 fundamentally dependent on temporal resolution, and it is well established that
592 relative timing information within the pulsatile flow waveform contains physiologically
593 valuable information (Asgari et al., 2019; Naqvi et al., 2013).

594 Real-time acquisitions are necessary to study flow responses to dynamic
595 physiological challenges, such as Valsalva and Mueller manoeuvres (Kowallick et
596 al., 2014; Thavendiranathan et al., 2012), allowing pulsatile flow to be assessed in
597 the context of naturalistic physiological stress. Such approaches are beneficial for
598 cerebral flow applications, as determining the mechanisms of autoregulation is highly
599 active research area (van Beek et al., 2008). Furthermore, low frequency modulation
600 of arterial tone appears to be especially prevalent in the brain, and the existence of
601 slowly evolving fluctuations in CBF are well established cross-species, and have

602 been recorded using numerous modalities (Obrig et al., 2000). Understanding how
603 these low frequency changes modulate beat-to-beat pulsatile dynamics is a
604 potentially exciting new research direction that real-time pulsatility methods like
605 DIMAC offer. This point is highlighted by the *TCR-challenge* experiment presented in
606 this study, in which we measure the induced flow response to an orthostatic
607 challenge, and of note is the fact that the temporal dynamics of the *systolic* and
608 *diastolic* peak time series show differential responses. Such flow dynamics can only
609 be determined by methods with sufficient temporal resolution to accurately resolve
610 the pulsatile component of flow.

611

612 4.2. Flow velocity

613 The basis of DIMAC signal contrast is high sensitivity to flow velocity. The v_c
614 parameter sets the upper limit of CBFV sensitivity and is determined by TR and slice
615 thickness, parameters which are themselves limited by both practical and hardware
616 considerations. This is a non-trivial limitation of the approach described, as in
617 contrast with PC-MRI, in which the comparable velocity encoding (VENC) parameter
618 can be set relatively independently from the other image acquisition parameters,
619 DIMAC sensitivity is directly determined by those parameters. One inherent limitation
620 with DIMAC when measuring pulsatility, is that fluctuations in CBFV that exceed the
621 critical velocity v_c do not translate into signal variance, i.e. sensitivity to flow velocity
622 saturates. This signal saturation results in a total loss of velocity information above
623 v_c , unlike PC-MRI, where misspecification of the VENC parameter leads to aliasing
624 that can in some cases be corrected (Xiang, 1995), albeit with an SNR cost. The
625 parameters used here predict a v_c of $\sim 67 \text{ cm s}^{-1}$, which is below the peak velocity
626 one might expect to measure for ICAs, and on the limit for MCAs (Brant, 2001),
627 which risks losing sensitivity to the most central lamina of the cross-sectional flow
628 distribution. This is also a current limitation when comparing pulsatile flow waveforms
629 across different individuals, or physiological conditions such as with the experiment
630 presented here, particularly in the case of the *HC-challenge*. If during systole a
631 fraction of spins in the central lamina exceed v_c , then the observed differences
632 between hypercapnia levels may be more attributable to a graded response of this
633 effect. This effect results in a non-linear DIMAC signal behaviour in high flow velocity

634 situations, and so future research will be needed to better understand this and the
635 degree to which it confounds pulsatility estimates. However, in instances of slower
636 flow velocities this becomes less of an issue, and so perhaps there is more potential
637 in using this method to target smaller arteries.

638 A useful attribute of PC-MRI is that with careful consideration of acquisition and
639 analysis protocols, flow velocity can be quantified in meaningful units. This has clear
640 benefits, particularly from a clinical perspective. In principle a quantitative estimate of
641 CBFV could be extracted from the DIMAC contrast as we have demonstrated in the
642 *Supplementary material* with a simple flow phantom experiment. Equation 1 can be
643 solved for velocity if an estimate of the M_0 of arterial blood is provided, which could
644 be achieved using a separately acquired image with a long TR such that the critical
645 velocity v_c is sufficiently small so that the majority of flowing blood spins exceed it.
646 The main barrier to this would be limited spatial resolution and associated extra-
647 luminal partial volumes, which lead to multiple sources of signal contrast that present
648 a challenge for quantifying pulsatility in physiologically relevant terms (Viessmann et
649 al., 2017). However, as demonstrated by the simulations presented in Fig.1, in the
650 DIMAC regime the signal from static spins is effectively nulled, due to the saturating
651 effect of a train of short interval, high flip angle RF pulses, suggesting static tissue
652 partial volumes only contribute marginally to the total signal variance. However, this
653 topic warrants further focussed investigation in order to fully delineate the effects of
654 different signal sources, and thus explore whether CBFV might be quantified with an
655 acceptable level of precision.

656 4.3. Target arteries

657 In this feasibility study, we have focussed on large intracranial arteries, however
658 there may also be value in focussing DIMAC on smaller vessel applications. The
659 need to isolate the pure arterial blood signal phase makes partial volume errors non-
660 negligible in PC-MRI (Nayak et al., 2015), whereas inflow related techniques are less
661 impeded by extra-luminal signal contributions given that the contrast itself depends
662 on them being relatively saturated. Our simulations suggest that while the total signal
663 magnitude is inversely correlated with the extra-luminal partial volume, the relative
664 sensitivity to pulsatile CBFV over CBV changes is relatively unaffected. Furthermore,

665 the cerebral large arteries are relatively stiff in comparison to the aorta (Mitchell,
666 2008), which also contributes to this effect as consequently they show only relatively
667 small changes volume as a function of cardiac pulsations. Moving down the cerebral
668 arterial tree the relative stiffness is also expected to increase (Hayashi et al., 1980),
669 which further reduces the impact of CBV changes. Thus, the relative insensitivity to
670 extra-luminal partial volumes in the DIMAC signal, at least in terms of pulsatile CBFV
671 sensitivity, and the inherently small pulsatile CBV changes in cerebral arteries, both
672 implies that the method could be optimised to measure pulsatility in smaller arteries
673 with sub-voxel diameters. A smaller artery application would also benefit from ultra-
674 high field, not only due to the general increase in SNR, but also the specific
675 beneficial effect on inflow contrast, which is now well established in the TOF
676 angiography literature (Grochowski and Staśkiewicz, 2017).

677 **5. Conclusion**

678 The pulsatile nature of arterial blood flow provides a clinically relevant insight into
679 arterial structure/function and its effect on cerebral health. In this study, we
680 demonstrate the feasibility of a new approach to measuring pulsatile flow in cerebral
681 arteries by exploiting the inflow effect that is present in highly accelerated GRE
682 acquisitions. In addition to presenting simulation results to support this new method,
683 we also present in-vivo data from major cerebral arteries (ICA, VA and MCA), but
684 suggest that this technique may be used to target smaller vessels that are beyond
685 the scope of other methods. Our hypercapnia challenge results provide evidence
686 that the DIMAC signal is sensitive to subtle changes in vascular tone, and we have
687 shown that this method allows beat-to-beat assessment of pulsatile flow without
688 requiring averaging across cardiac cycles. Furthermore, using a thigh cuff release
689 challenge we have demonstrated that this real-time approach allows the full range of
690 dynamics, including both pulsatile and non-pulsatile components, associated with
691 transient flow responses to be measured. Thus, we believe this novel DIMAC
692 method provides a promising new approach for studying cerebral arterial function,
693 which will ultimately be valuable in researching arterial function in ageing and
694 cerebrovascular disorders.

695 **6. Acknowledgments**

696 This work was funded in whole, or in part, by the Wellcome Trust [WT200804]. For
697 the purposes of Open Access, the author has applied a CC BY public copyright
698 license to any Author Accepted Manuscript version arising from this submission.
699 Thanks to Peter Weale for valuable input during pilot scanning.

700 **7. Declaration of interest**

701 Fabrizio Fasano and Patrick Liebig are employees of Siemens Healthcare. Joseph
702 Whittaker, Fabrizio Fasano, Patrick Liebig, and Kevin Murphy are all named
703 inventors on a patent (Patent No: US 10,802,100 B2. Date of Patent: Oct 13, 2020)
704 which covers aspects of this research (Whittaker, 2019).

705

706 **8. References**

707

708 Aaslid, R., Lindegaard, K.F., Sorteberg, W., Nornes, H., 1989. Cerebral autoregulation dynamics in
709 humans. *Stroke* 20, 45-52.

710 Aggarwal, S., Brooks, D.M., Kang, Y., Linden, P.K., Patzer, J.F., 2nd, 2008. Noninvasive monitoring
711 of cerebral perfusion pressure in patients with acute liver failure using transcranial doppler
712 ultrasonography. *Liver Transpl* 14, 1048-1057.

713 Asgari, S., Canac, N., Hamilton, R., Scalzo, F., 2019. Identification of Pulse Onset on Cerebral Blood
714 Flow Velocity Waveforms: A Comparative Study. *BioMed research international* 2019, 3252178-
715 3252178.

716 Bianciardi, M., Toschi, N., Polimeni, J.R., Evans, K.C., Bhat, H., Keil, B., Rosen, B.R., Boas, D.A.,
717 Wald, L.L., 2016. The pulsatility volume index: an indicator of cerebrovascular compliance based on
718 fast magnetic resonance imaging of cardiac and respiratory pulsatility. *Philos Trans A Math Phys Eng
719 Sci* 374.

720 Brant, W.E., 2001. *The Core Curriculum: Ultrasound*. Lippincott, Williams & Wilkins, Philadelphia.

721 Brown, R., Cheng, Y.N., Hacke, E.M., Thompson, M.R., Venkatesan, R., 2014. *Magnetic Resonance
722 Imaging: Physical Principles and Sequence Design*, 2nd ed. John Wiley & Sons, Inc, New Jersey.

723 Bryant, D.J., Payne, J.A., Firmin, D.N., Longmore, D.B., 1984. Measurement of flow with NMR
724 imaging using a gradient pulse and phase difference technique. *Journal of Computer Assisted
725 Tomography* 8, 588-593.

726 Chen, L., Beckett, A., Verma, A., Feinberg, D.A., 2015. Dynamics of respiratory and cardiac CSF
727 motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging.
728 *Neuroimage* 122, 281-287.

729 Cipolla, M.J., 2009. *Integrated Systems Physiology: From Molecule to Function. The Cerebral
730 Circulation*. Morgan & Claypool Life Sciences

731 Copyright © 2010 by Morgan & Claypool Life Sciences., San Rafael (CA).

732 Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance
733 neuroimages. *Comput Biomed Res* 29, 162-173.

734 Dieleman, N., van der Kolk, A.G., Zwanenburg, J.J.M., Harteveld, A.A., Biessels, G.J., Luijten, P.R.,
735 Hendrikse, J., 2014. Imaging Intracranial Vessel Wall Pathology With Magnetic Resonance Imaging.
736 *Circulation* 130, 192-201.

737 Gao, J.H., Holland, S.K., Gore, J.C., 1988. Nuclear magnetic resonance signal from flowing nuclei in
738 rapid imaging using gradient echoes. *Med Phys* 15, 809-814.

739 Grochowski, C., Staśkiewicz, G., 2017. Ultra high field TOF-MRA: A method to visualize small
740 cerebral vessels. 7T TOF-MRA sequence parameters on different MRI scanners - Literature review.
741 *Neurol Neurochir Pol* 51, 411-418.

742 Hall, C.N., Reynell, C., Gesslein, B., Hamilton, N.B., Mishra, A., Sutherland, B.A., O'Farrell, F.M.,
743 Buchan, A.M., Lauritzen, M., Attwell, D., 2014. Capillary pericytes regulate cerebral blood flow in
744 health and disease. *Nature* 508, 55-60.

745 Hartung, M.P., Grist, T.M., Francois, C.J., 2011. Magnetic resonance angiography: current status and
746 future directions. *J Cardiovasc Magn Reson* 13, 19.

747 Hayashi, K., Handa, H., Nagasawa, S., Okumura, A., Moritake, K., 1980. Stiffness and elastic
748 behavior of human intracranial and extracranial arteries. *Journal of Biomechanics* 13, 175-184.

749 Herscovitch, P., Raichle, M.E., 1985. What is the Correct Value for the Brain-Blood Partition
750 Coefficient for Water? *Journal of Cerebral Blood Flow & Metabolism* 5, 65-69.

751 Joseph, A.A., Merboldt, K.-D., Voit, D., Zhang, S., Uecker, M., Lotz, J., Frahm, J., 2012. Real-time
752 phase-contrast MRI of cardiovascular blood flow using undersampled radial fast low-angle shot and
753 nonlinear inverse reconstruction. *NMR in Biomedicine* 25, 917-924.

754 Klein, C., Schalla, S., Schnackenburg, B., Bornstedt, A., Fleck, E., Nagel, E., 2001. Magnetic
755 resonance flow measurements in real time: Comparison with a standard gradient-echo technique.
756 *Journal of Magnetic Resonance Imaging* 14, 306-310.

757 Kowallick, J.T., Joseph, A.A., Unterberg-Buchwald, C., Fasshauer, M., van Wijk, K., Merboldt, K.D.,
758 Voit, D., Frahm, J., Lotz, J., Sohns, J.M., 2014. Real-time phase-contrast flow MRI of the ascending
759 aorta and superior vena cava as a function of intrathoracic pressure (Valsalva manoeuvre). *The
760 British journal of radiology* 87, 20140401-20140401.

761 Kurji, A., Debert, C.T., Whitelaw, W.A., Rawling, J.M., Frayne, R., Poulin, M.J., 2006. Differences
762 between middle cerebral artery blood velocity waveforms of young and postmenopausal women.
763 *Menopause* 13, 303-313.

764 Lockhart, C.J., Gamble, A.J., Rea, D., Hughes, S., McGivern, R.C., Wolsley, C., Stevenson, M.,
765 Harbinson, M.T., Plumb, R.D., McVeigh, G.E., 2006. Nitric oxide modulation of ophthalmic artery
766 blood flow velocity waveform morphology in healthy volunteers. *Clin Sci (Lond)* 111, 47-52.

767 Lu, H., Clingman, C., Golay, X., van Zijl, P.C.M., 2004. Determining the longitudinal relaxation time
768 (T1) of blood at 3.0 Tesla. *Magnetic Resonance in Medicine* 52, 679-682.

769 Lu, H., Nagae-Poetscher, L.M., Golay, X., Lin, D., Pomper, M., van Zijl, P.C.M., 2005. Routine clinical
770 brain MRI sequences for use at 3.0 Tesla. *Journal of Magnetic Resonance Imaging* 22, 13-22.

771 Mahony, P.J., Panerai, R.B., Deverson, S.T., Hayes, P.D., Evans, D.H., 2000. Assessment of the
772 thigh cuff technique for measurement of dynamic cerebral autoregulation. *Stroke* 31, 476-480.

773 Markl, M., Schnell, S., Wu, C., Bollache, E., Jarvis, K., Barker, A.J., Robinson, J.D., Rigsby, C.K.,
774 2016. Advanced flow MRI: emerging techniques and applications. *Clinical radiology* 71, 779-795.

775 Mitchell, G.F., 2008. Effects of central arterial aging on the structure and function of the peripheral
776 vasculature: implications for end-organ damage. *Journal of Applied Physiology* 105, 1652-1660.

777 Mitchell, G.F., Hwang, S.J., Vasan, R.S., Larson, M.G., Pencina, M.J., Hamburg, N.M., Vita, J.A.,
778 Levy, D., Benjamin, E.J., 2010. Arterial stiffness and cardiovascular events: the Framingham Heart
779 Study. *Circulation* 121, 505-511.

780 Mitchell, G.F., van Buchem, M.A., Sigurdsson, S., Gotal, J.D., Jonsdottir, M.K., Kjartansson, Ó.,
781 Garcia, M., Aspelund, T., Harris, T.B., Gudnason, V., Launer, L.J., 2011. Arterial stiffness, pressure
782 and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility –
783 Reykjavik Study. *Brain* 134, 3398-3407.

784 Naqvi, J., Yap, K.H., Ahmad, G., Ghosh, J., 2013. Transcranial Doppler Ultrasound: A Review of the
785 Physical Principles and Major Applications in Critical Care. *International Journal of Vascular Medicine*
786 2013, 629378.

787 Nayak, K.S., Nielsen, J.-F., Bernstein, M.A., Markl, M., D Gatehouse, P., M Botnar, R., Saloner, D.,
788 Lorenz, C., Wen, H., S Hu, B., Epstein, F.H., N Oshinski, J., Raman, S.V., 2015. Cardiovascular
789 magnetic resonance phase contrast imaging. *Journal of cardiovascular magnetic resonance : official*
790 *journal of the Society for Cardiovascular Magnetic Resonance* 17, 71-71.

791 Nayak, K.S., Pauly, J.M., Kerr, A.B., Hu, B.S., Nishimura, D.G., 2000. Real-time color flow MRI.
792 *Magnetic Resonance in Medicine* 43, 251-258.

793 Nayler, G.L., Firmin, D.N., Longmore, D.B., 1986. Blood flow imaging by cine magnetic resonance. *J*
794 *Comput Assist Tomogr* 10, 715-722.

795 Nezafat, R., Kellman, P., Derbyshire, J.A., McVeigh, E.R., 2005. Real-time blood flow imaging using
796 autocalibrated spiral sensitivity encoding. *Magnetic Resonance in Medicine* 54, 1557-1561.

797 Nichols, W.W., O'Rourke, M.F., Vlachopoulos, C., 2011. McDonald's Blood Flow in Arteries:
798 Theoretical, Experimental and Clinical Principles, 6th ed. CRC Press.

799 O'Rourke, M., Stone, J., Adj, A., Kim, M.O., Li, Y., Wang, J.G., Avolio, A., Eide, P.K., Czosnyka, M.,
800 2020. The Human Systemic and Cerebral Circulations: Contrasts in Structure and Function. *Artery*
801 *Research*.

802 Obrig, H., Neufang, M., Wenzel, R., Kohl, M., Steinbrink, J., Einhäupl, K., Villringer, A., 2000.
803 Spontaneous Low Frequency Oscillations of Cerebral Hemodynamics and Metabolism in Human
804 Adults. *Neuroimage* 12, 623-639.

805 Pelc, N.J., Herfkens, R.J., Shimakawa, A., Enzmann, D.R., 1991. Phase contrast cine magnetic
806 resonance imaging. *Magnetic resonance quarterly* 7, 229-254.

807 Pinto, J., Chappell, M.A., Okell, T.W., Mezue, M., Segerdahl, A.R., Tracey, I., Vilela, P., Figueiredo,
808 P., 2020. Calibration of arterial spin labeling data—potential pitfalls in post-processing. *Magnetic*
809 *Resonance in Medicine* 83, 1222-1234.

810 Robertson, J.W., Debert, C.T., Frayne, R., Poulin, M.J., 2008. Variability of middle cerebral artery
811 blood flow with hypercapnia in women. *Ultrasound Med Biol* 34, 730-740.

812 Suryan, G., 1951. Nuclear resonance in flowing liquids. *Proceedings of the Indian Academy of*
813 *Sciences - Section A* 33, 107.

814 Thavendiranathan, P., Verhaert, D., Walls, M.C., Bender, J.A., Rajagopalan, S., Chung, Y.-C.,
815 Simonetti, O.P., Raman, S.V., 2012. Simultaneous right and left heart real-time, free-breathing CMR
816 flow quantification identifies constrictive physiology. *JACC. Cardiovascular imaging* 5, 15-24.

817 van Beek, A.H., Claassen, J.A., Rikkert, M.G., Jansen, R.W., 2008. Cerebral autoregulation: an
818 overview of current concepts and methodology with special focus on the elderly. *J Cereb Blood Flow*
819 *Metab* 28, 1071-1085.

820 van Dijk, P., 1984. Direct Cardiac NMR Imaging of Heart Wall and Blood Flow Velocity. *Journal of*
821 *Computer Assisted Tomography* 8, 429-436.

822 Viessmann, O., Moller, H.E., Jezzard, P., 2017. Cardiac cycle-induced EPI time series fluctuations in
823 the brain: Their temporal shifts, inflow effects and T2(*) fluctuations. *Neuroimage* 162, 93-105.

824 Wagshul, M.E., Eide, P.K., Madsen, J.R., 2011. The pulsating brain: A review of experimental and
825 clinical studies of intracranial pulsatility. *Fluids and Barriers of the CNS* 8, 5.

826 Warnert, E.A.H., Verbree, J., Wise, R.G., van Osch, M.J.P., 2016. Using High-Field Magnetic
827 Resonance Imaging to Estimate Distensibility of the Middle Cerebral Artery. *Neurodegenerative*
828 *Diseases* 16, 407-410.

829 Whittaker, J.C., GB), Fasano, Fabrizio (Cardiff, GB), Heidemann, Robin (Litzendorf, DE), Murphy,
830 Kevin (Cardiff, GB), , Liebig, Patrick (Erlangen, DE), 2019. METHOD FOR OBTAINING MAGNETIC
831 RESONANCE IMAGING (MRI) ECHO-PLANAR IMAGE (EPI) DATA. Siemens Healthcare Limited
832 (Camberley, GB),Cardiff University (Cardiff, GB),Siemens Healthcare GmbH (Erlangen, DE), United
833 States.

834 Whittaker, J.R., Driver, I.D., Bright, M.G., Murphy, K., 2016. The absolute CBF response to activation
835 is preserved during elevated perfusion: Implications for neurovascular coupling measures.
836 *Neuroimage* 125, 198-207.

837 Whittaker, J.R., Steventon, J.J., Venzi, M., Murphy, K., 2020. Probing dynamic cerebral
838 autoregulation with BOLD fMRI using a thigh cuff challenge. *Proc. Int. Soc. Magn. Reson. Med.*,
839 *Virtual*.

840 Wilkinson, I.B., Cockcroft, J.R., McEniery, C.M., 2015. Aortic stiffness as a cardiovascular risk
841 predictor. *BMJ* 351, h3764.

842 Xiang, Q.-S., 1995. Temporal phase unwrapping for cine velocity imaging. *Journal of Magnetic*
843 *Resonance Imaging* 5, 529-534.

844 Yang, T.-H., Jo, G., Koo, J.-H., Woo, S.-Y., Kim, J.U., Kim, Y.-M., 2019. A compact pulsatile simulator
845 based on cam-follower mechanism for generating radial pulse waveforms. *BioMedical Engineering*
846 *OnLine* 18, 1.

847 Yildiz, S., Thyagaraj, S., Jin, N., Zhong, X., Heidari Pahlavian, S., Martin, B.A., Loth, F., Oshinski, J.,
848 Sabra, K.G., 2017. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal
849 fluid dynamics using real-time phase-contrast MRI. *Journal of Magnetic Resonance Imaging* 46, 431-
850 439.

851 Zhang, R., Zuckerman, J.H., Levine, B.D., 2000. Spontaneous fluctuations in cerebral blood flow:
852 insights from extended-duration recordings in humans. *American Journal of Physiology-Heart and*
853 *Circulatory Physiology* 278, H1848-H1855.

854 Zhao, J.M., Clingman, C.S., Närvinen, M.J., Kauppinen, R.A., van Zijl, P.C.M., 2007. Oxygenation
855 and hematocrit dependence of transverse relaxation rates of blood at 3T. *Magnetic Resonance in*
856 *Medicine* 58, 592-597.

857