

1 **Mutant alleles differentially shape cattle complex traits and fitness**

2 Ruidong Xiang^{1,2,*}, Ed J. Breen², Sunduimijid Bolormaa², Christy J. Vander Jagt², Amanda J.

3 Chamberlain², Iona M. Macleod², Michael E. Goddard^{1,2}

4 ¹ *Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville 3052,*
5 *Victoria, Australia*

6 ² *Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria 3083, Australia.*

7 *Corresponding Author: ruidong.xiang@unimelb.edu.au

8

9 **Abstract**

10 Classical mutant alleles (MAs), with large effects on phenotype, tend to be deleterious to
11 traits and fitness. Is this the case for mutations with small effects? We infer MAs for 8
12 million sequence variants in 113k cattle and quantify the effects of MA on 37 complex traits.
13 Heterozygosity for variants at genomic sites conserved across 100 vertebrates increase
14 fertility, stature, and milk production, positively associating these traits with fitness. MAs
15 decrease stature and fat and protein concentration in milk, but increase gestation length and
16 somatic cell count in milk (the latter indicative of mastitis). However, the allele frequency of
17 MAs that decrease fat and protein concentration and stature and increase gestation length and
18 somatic cell count is lower than the allele frequency of MAs with the opposite effect. These
19 results suggest bias in the direction of effect of mutation (e.g. towards reduced protein in
20 milk), but selection operating to reduce the frequency of these MAs. Taken together, our
21 results imply two classes of genomic sites subject to long-term selection: sites conserved
22 across vertebrates show hybrid vigour while sites subject to less long-term selection show a
23 bias in mutation towards alleles that are selected against.

24 **Introduction**

25 Classical mutations, with a large effect on phenotype, tend to decrease fitness, decrease
26 fitness-related traits and be partially recessive ¹⁻³ (also see the 1st category of mutations
27 defined in ³). However, the majority of the genetic variance in complex traits is due to
28 mutations of small effect. Do these small-effect mutations show the same characteristics as
29 those classical large-effect mutations? A study in *E. coli* showed that mutations with small
30 effect on fitness tend to be deleterious to protein function ⁴. However, how mutations affect
31 complex traits such as body size, health and fertility is unknown.

32 A better understanding of the consequence of mutations not only updates scientific
33 knowledge but also has practical implications. Domestic cattle support humans with food,
34 labour, clothing material and transportation. Today, there are over 4 billion cattle across the
35 world and over ~900 million tonnes of dairy products have been produced annually for
36 human consumption (<http://www.fao.org/3/ca8341en/CA8341EN.pdf>). When practicing
37 genomic selection, which is widely used in animal breeding ⁵, it would be an advantage to
38 know a priori whether mutations are more likely to increase or decrease traits of interest.
39 In particular, if a trait is related to fitness, one might expect mutations to be deleterious ^{2,6}.
40 Therefore the first objective of this study is to determine whether mutations, defined as the
41 non-ancestral allele (also known as derived alleles) at segregating sites, tend to increase or
42 decrease individual complex traits and whether this depends on the trait's association with
43 fitness.

44 Traits that are related to fitness typically show inbreeding depression and heterosis caused by
45 directional dominance. That is, fitness decreases with increased inbreeding due to increased
46 homozygosity at loci with recessive deleterious alleles ⁷. Conversely, fitness generally
47 increases with heterozygosity ⁸. Therefore, directional dominance can be used to link traits to
48 fitness. Here, we introduce a method testing for directional dominance by estimating the

49 effect of heterozygosity at genomic sites on traits of cattle and use this method to identify
50 traits that are associated with fitness. Then, we classify traits showing directional dominance
51 as ‘fitness-related traits’.

52 A likely cause of directional dominance is that mutations tend to be deleterious and partially
53 recessive. However, not all sites in the genome affecting a trait may show this pattern. Our
54 second objective is to test the hypothesis that sites, where the same allele has been conserved
55 across vertebrate evolution, are the most likely to show directional dominance. Therefore, we
56 consider conserved sites and other polymorphic sites in this analysis.

57 Cattle presents a unique opportunity for studying the effects of mutation. The cattle family
58 diverged from other artiodactyls up to 30 million years ago ⁹. Modern cattle are derived from
59 at least two different subspecies of wild aurochs, i.e., *Bos primigenius primigenius* (Eurasian
60 aurochs) and *Bos primigenius namadicus* (Indian aurochs) which diverged up to 0.5 million
61 years ago ¹⁰⁻¹⁷. Domestication of *Bos p. primigenius* led to the humpless *Bos taurus*
62 subspecies, which has evolved some highly productive breeds for agriculture, such as the
63 famous black-and-white Holstein breed with superior milk productivity. Besides natural
64 selection, dairy cattle breeds experienced very recent and intensive selection for milk
65 production traits ^{18,19} and stature ²⁰. Domestication of *Bos p. namadicus* gave rise to the
66 humped *Bos indicus* subspecies which evolved breeds with strong resistance to hot climates,
67 such as Brahman and Gir cattle.

68 In the present study, we use yak, sheep and camel as outgroup species to assign cattle
69 ancestral alleles for 8M sequence variants (at 8M genomic sites). For each of these variants,
70 the alternative to the ancestral allele is the mutant allele (MA). We estimate the effect of the
71 mutant allele at these 8M variable sites on 37 traits of 113k cattle from 4 breeds. We also
72 estimate the effect of heterozygosity on these traits using both conserved sites and all
73 genomic sites.

74 If mutant alleles decrease fitness we expect selection to reduce their allele
75 frequency compared with mutant alleles that either have no effect or increase fitness.
76 Therefore, we compare the allele frequency of mutant alleles that increase and decrease each
77 trait. We expand the analysis of mutant allele frequency to additional breeds of ancient and
78 modern cattle from the 1000 Bull Genomes database^{21,22}, which provides validation of our
79 results. Additional analyses of MAs with strong effects on milk production traits^{23,24} suggests
80 that the direction of phenotypic effects of these MAs correlates with their direction of effects
81 on the expression of genes in milk cells^{4,25}.

82

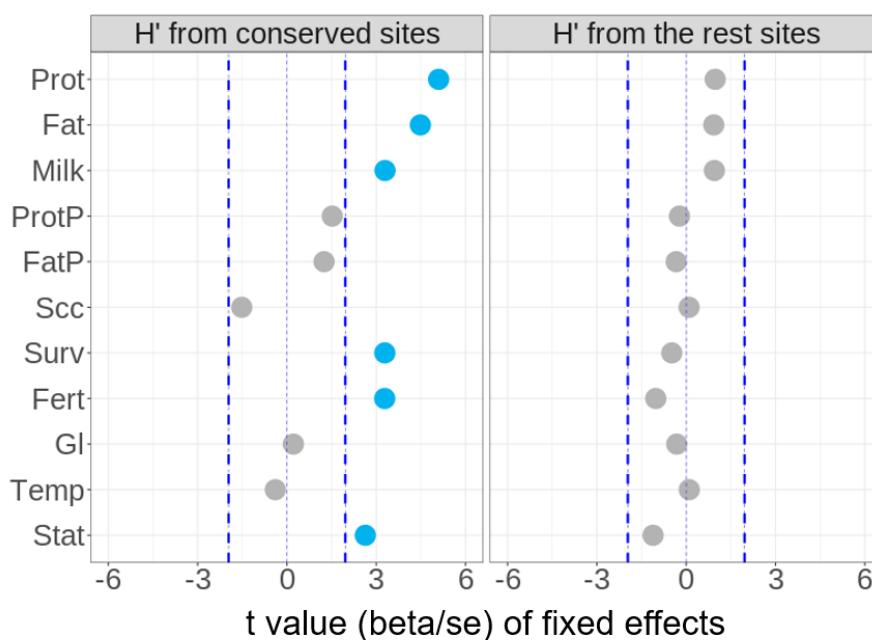
83 **Results**

84 *Directional dominance at sites conserved across 100 vertebrates*

85 To identify traits related to fitness, we have introduced a method to estimate the effect of
86 heterozygosity on 37 traits (described in Supplementary Table 1) recorded in over 100k
87 animals. In total, there were 16,035,443 imputed sequence variants (at 16,035,443 genomic
88 sites) with imputation accuracy $R^2 > 0.4$ and the minor allele frequency (MAF) > 0.005
89 available for variant-trait association analysis. A subset of these sequence variants that could
90 be assigned with ancestral alleles was used for analyses related to mutant alleles (described
91 later). For the analysis of the effect of heterozygosity, we fit the average heterozygosity of
92 sequence variants at 317,279 genomic sites conserved across 100 vertebrates (H'_{cons_j}) and
93 heterozygosity from variants at the other 15,718,164 sites ($H'_{non-cons_j}$) simultaneously (see
94 Methods). We observed a significant effect of heterozygosity at conserved sites for the yield
95 of protein (Prot), fat (Fat) and milk (Milk), survival (Surv), fertility performance (Fert),
96 stature (Stat) and angularity (related to slimness and milk yield) (Figure 1 and Supplementary
97 Figure 1). For all these traits, heterozygosity at other sites ($H'_{non-cons_j}$) was not significant
98 when fitted together with H'_{cons_j} . This directional dominance implies that milk production,

99 fertility, survival and stature show inbreeding depression and heterosis and therefore we
100 classify them as fitness-related traits and this directional dominance for these traits is
101 exclusively explained by genomic sites conserved across vertebrates. To be conserved across
102 vertebrates, mutations at these sites must be deleterious, implying extremely long-term
103 consistent selection for the ancestral allele at these sites.

104



105
106 **Figure 1.** Directional dominance at conserved sites (H') for traits of 104k cows. The beta
107 values and standard errors for each trait were generated using a mixed linear model, fitting H'
108 from 317,279 conserved sites (left panel) and H' from the remaining 15,718,164 sites (right
109 panel) together with other fixed effects (e.g., breed). Blue dashed lines indicate t value of -
110 1.96 and 1.96 commonly used to indicate the significance.

111

112 *Assignment of bovine ancestral and mutant alleles*

113 To assign the mutant alleles in cattle, we first determined the alternative, ancestral alleles
114 using artiodactyls, including cattle as the focal species (98 global cattle breeds from the 1000
115 Bull Genomes Project^{21,22}, Supplementary Table 2) and yak, sheep and camel as outgroup
116 ancestor species (Ensembl 46-mammal sequence data). A probabilistic method²⁵ was used to

117 assign an ancestral allele for each site mappable between 4 artiodactyl species (see Methods).
118 Out of 42,573,455 equivalent sites between the 4 species, 39,998,084 sites had the ancestral
119 allele assigned with high confidence (probability > 0.8). We compared our results with a
120 previous study using different methods ²⁶. Of 1,925,328 sites that were assigned ancestral
121 alleles with high confidence in both studies, 1,904,598 (98.7%) sites agreed. However, we
122 have assigned ancestral alleles with high confidence to ~10 times more sites than the previous
123 study due to the use of large sample size and whole-genome sequence data. The full results
124 are publicly available at <https://figshare.com/s/dd5985b76a413b56106b>.

125

126 *Biases in trait effects between ancestral and mutant alleles*

127 We conducted GWAS of 37 traits using over 16 million imputed sequence variants in bulls
128 (N ~ 9k) and cows (N ~ 104k) separately (see Methods). For 7,910,190 variants where the
129 ancestral allele was assigned, we compared the direction (increase or decrease) of the effect
130 of the mutant alleles (MAs) on the trait (Supplementary Figure 2-3). The same comparison
131 was also performed for variants at the 202,530 out of 317,279 conserved sites where the
132 ancestral alleles could be assigned. Note that for a variant, the effect of a MA is identical to -
133 1 × the effect of the ancestral allele. We focus the description of effects on MAs, but a MA
134 increasing the trait is identical to an ancestral allele decreasing the trait.

135 Within all analysed variants and conserved variants, for each trait we considered the
136 following three variant categories for systematic comparison: 1) large-effect variants, i.e., p-
137 value of GWAS (p_{gwas}) < 5e-8 and the effect direction agreed in both sexes; 2) medium-
138 effect variants, i.e., $5e-8 \leq p_{gwas} < 5e-5$ and the effect direction agreed in both sexes, and 3)
139 small-effect variants, i.e., $5e-5 \leq p_{gwas} < 0.05$ and the effect direction agreed in both sexes.
140 Here the effect size refers to the amount of variance explained by variants which is inversely
141 related to the p-value. The use of different effect size is because mutations of small and large

142 effects may be different in their direction of effect. Selecting variants that have the same
143 effect direction between independent GWAS populations ²⁷, such as bulls and cows, helps to
144 eliminate variants with spurious trait associations from the comparison. Based on a previous
145 method ²⁷, the True Discovery Rate by Effect Direction (TDRed) of GWAS between two
146 sexes across 37 analysed traits for the small-, medium- and large-effect variants was 0.8, 0.98
147 and 0.99, respectively.

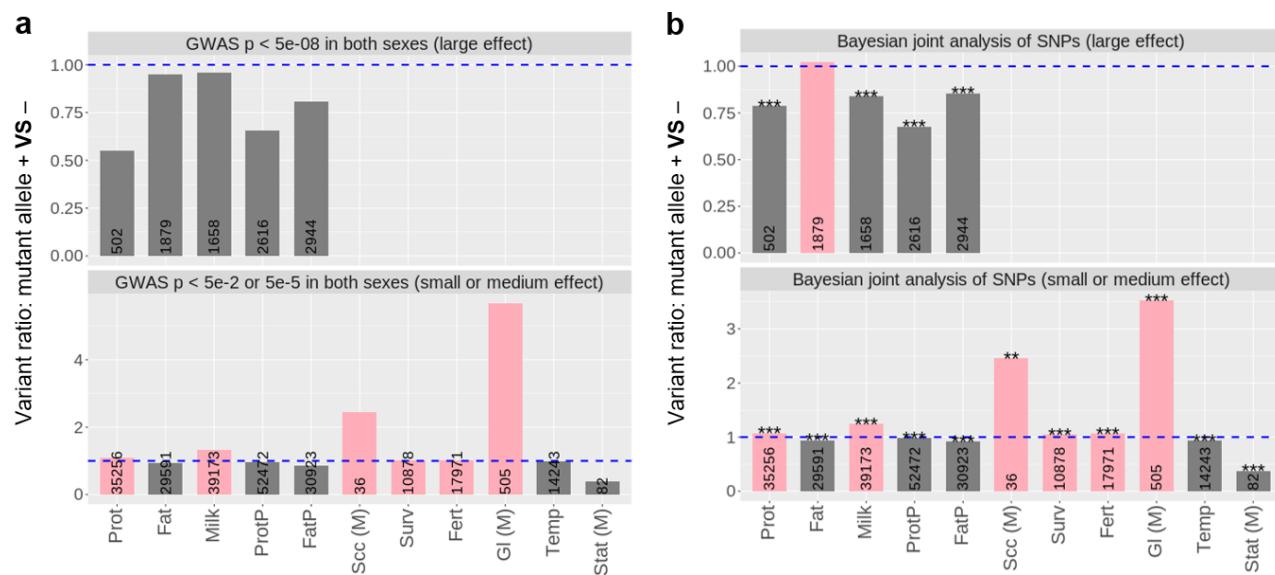
148 Based on GWAS results of each trait, we calculated the ratio of the number of variants where
149 the MA increased the trait (positive effect) to the number of variants where the MA decreased
150 the trait (negative effect). Across 37 traits and three effect-size groups, MAs showed diverse
151 trait effect patterns (Supplementary Figure 3). Results observed from GWAS were confirmed
152 by BayesR analysis ²⁸, which jointly fits on average 4.3 million variants per trait (See
153 methods and Supplementary Figure 3). Based on jointly estimated effects for a given set of
154 variants, the significance of the effect direction bias was tested using Kolmogorov-Smirnov
155 to estimate the p-value (p_{ks}) of the difference in the effect distribution between ancestral and
156 mutant alleles (see Methods). We also tested the significance of bias using LD-clumped ($r^2 <$
157 0.3) ²⁹ variants to calculate the standard error (Supplementary Figure 4).

158 In addition, we checked the direction of effects of MAs which had large positive effects and
159 large negative effects on protein yield, fat yield, milk yield, protein % and fat % on the
160 expression of genes within ± 1 Mb distance to these MAs (cis eQTL genes, see Methods) in
161 milk cells^{23,24}. For 4 out of 5 sets of variants where the mutant allele decreased the trait, we
162 found the mutant allele tended to decrease the expression of cis eQTL genes. For another 4
163 out of 5 sets of variants where mutant alleles increased the trait, the mutant allele tended to
164 increase the expression of cis eQTL genes (Supplementary Table 3). These results suggest
165 correlated direction of effects of MAs on milk production traits and the expression of genes
166 in milk cells.

167

168 In the following text, we focus on 1) MAs within the large- and small-effect categories for
169 milk production traits as these two sets of MAs showed distinct effect direction patterns
170 (Figure 2), and 2) MAs associated with other traits, including those with medium or small
171 effects on somatic cell count (Scc, indicative of mastitis, medium-effect), survival (Surv,
172 small-effect), fertility (Fert, frequency of pregnancy, small-effect), gestation length (Gl,
173 medium effect), temperament (Temp, docility, small-effect) and stature (Stat, medium effect)
174 (Figure 2).

175



176

177 **Figure 2.** The ratio (y-axis) between the number of variants with mutant alleles increasing
178 the trait (+) and the number of variants with mutant alleles decreasing the trait (−). GWAS
179 effects of mutant alleles are shown for all variants (a). BayesR joint effects of mutant alleles
180 from the same variants in (a) are shown for all variants (b). Pink colour: the majority of
181 variants with mutant alleles tend to increase the trait (taller than the blue-dashed line). Dark
182 grey: the majority of variants with mutant alleles tend to decrease the trait (shorter than the
183 blue-dashed line). Numbers in bars: total number of variants significant at the given
184 threshold. Stars: p-value for the significance of the difference in the distribution of BayesR
185 effects between ancestral and mutant alleles, ‘*’: $p < 0.05$, ‘**’: $p < 0.01$, ‘***’: $p < 0.001$.

186 For somatic cell count (Scc), gestation length (Gl) and stature (Stat), the results are from
187 medium-effect (M) variants and the full results are shown in Supplementary Figure 3.

188

189 The classical model ¹⁻³ predicts that the majority of MAs, or mutations, are deleterious or
190 slightly deleterious. In our study, MAs consistently showed biases towards decreasing protein
191 and fat concentration (Figure 2 and Supplementary Figure 3,4), docility and stature, and
192 towards increasing somatic cell count (an indicator of mastitis) and gestation length. Among
193 these traits only stature showed a significant effect of heterozygosity. For milk yield and
194 protein yield, both of which were classified as fitness-related traits (Figure 1), the bias in the
195 direction of MA depends on the size of the MA effect. Large-effect MAs tended to decrease
196 milk and protein yield whereas small-effect MAs tended to increase them. A possible
197 explanation is that mutation seldom has a large positive effect on milk protein yield or
198 fertility but small positive effect mutations occur and are increased in frequency by natural or
199 artificial selection.

200

201 Also, there was a slight majority of small-effect MAs which tended to increase fertility and
202 survival, both of which were positively related to fitness (Figure 1). The effects of these sets
203 of MAs is partially due to pleiotropy, i.e., the effect of these MAs on multiple traits
204 (Supplementary Table 4). For instance, while small-effect MAs increasing milk yield
205 decreased fat yield, protein % and fat %, they also increased protein yield. Also, while small-
206 effect MAs increasing fertility increased gestation length, they also increased stature.

207

208 The simplest explanation for the bias in the direction of MA effects is that it is due to a bias
209 in the direction of mutation. For instance, that mutation more often leads to a decrease in
210 fat% rather than an increase. However, it is also possible that mutations that decrease fat%
211 are selected and therefore more likely to be discovered than mutations that increase fat%.

212 Below we exclude this possibility by comparing the allele frequency at variants where the
213 MA increases or decreases the trait.

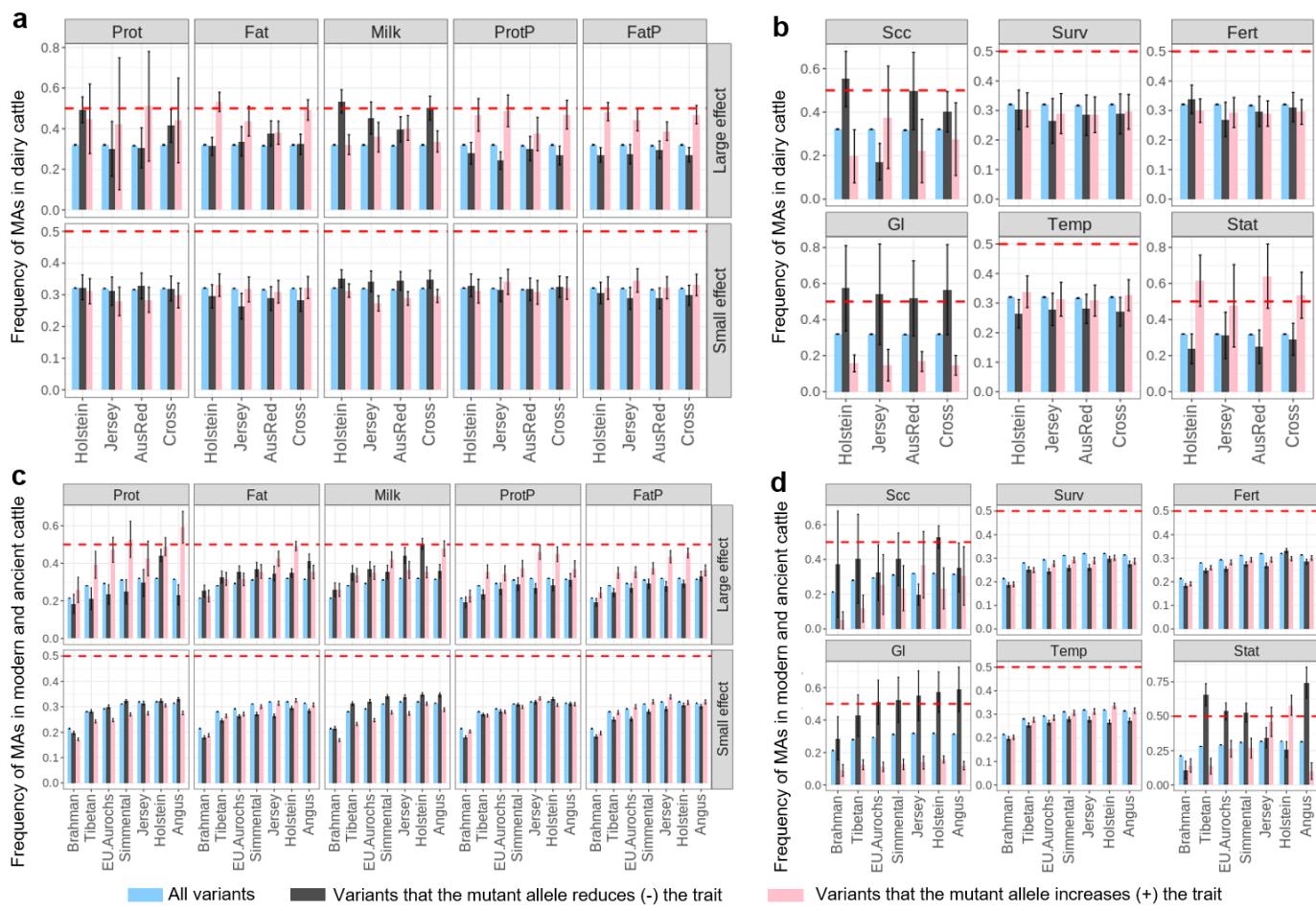
214

215 *Allele frequency of mutant alleles in modern and ancient cattle*

216 Across all variable sites, the allele frequency of MAs was lower than the allele frequency of
217 ancestral alleles (Supplementary Figure 5). Also, the frequency of MAs at conserved sites
218 (0.27) was lower than the frequency of MAs across all sites (0.32). This is consistent with the
219 selection for the ancestral allele which is necessary to maintain conservation of the same
220 allele across vertebrates.

221 We grouped variants based on their mutant allele reducing (MAs-) or increasing the trait
222 (MAs+) and compared their allele frequency in over 110k Holstein, Jersey, crossbreds and
223 Australian Red bulls and cows (Figure 3a,b). To account for LD, we estimated the error of
224 MA frequency based on LD-clumped ($r^2 < 0.3$)²⁹ variants. As an external validation, we also
225 considered this analysis in a selection of 7 subspecies/breeds of 1,720 ancient and modern
226 cattle from the 1000 Bull Genomes Project^{21,22} (Figure 3c,d).

227



228

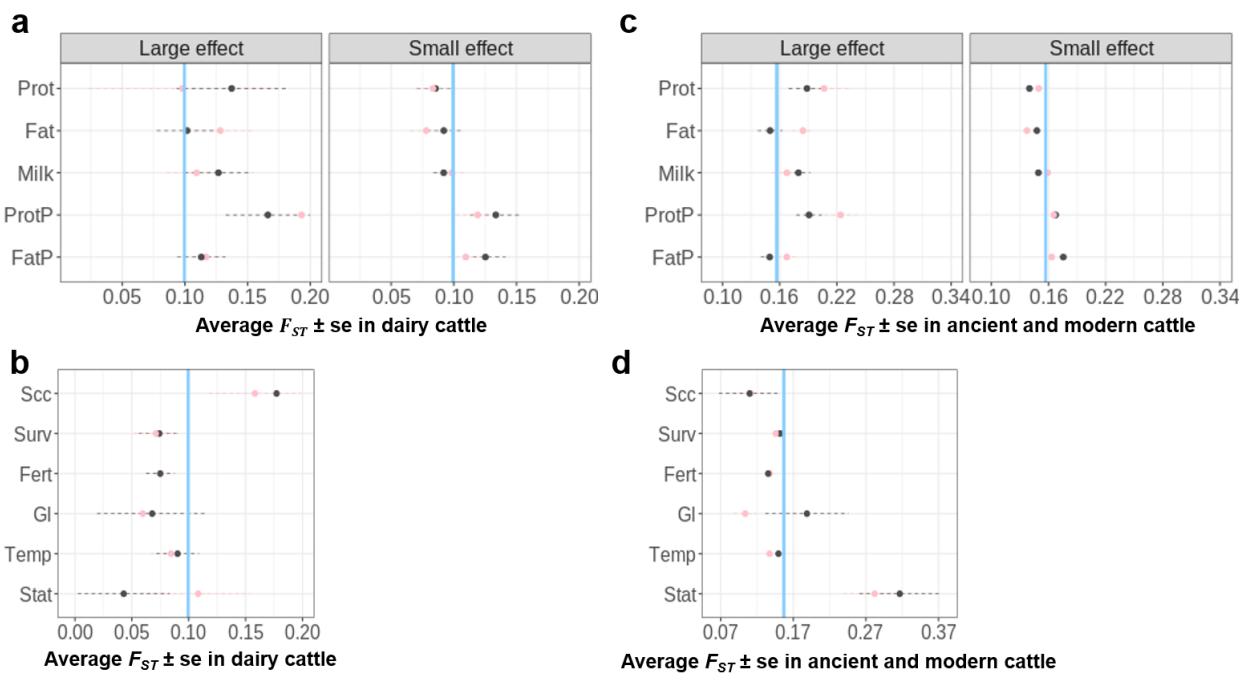
229 **Figure 3.** The allele frequency of mutant alleles (MAs) in cattle. The average frequency of
 230 variants associated with different traits is shown with standard error bars based on LD
 231 clumped variants. All variants include the 7.9M variants where mutant alleles were assigned.
 232 Red dashed line represents the frequency of 0.5. In the dairy cattle section (**a** and **b**), 90,627
 233 Holstein, 13,465 Jersey, 3,358 Australian Red (AusRed) and 4,649 crossbreds were used. In
 234 the ancient and modern cattle (**c** and **d**), 210 Brahman, 25 Tibetan, 10 Eurasian Aurochs, 242
 235 Simmental, 95 Jersey, 840 Holstein and 287 Angus were used. For panels **b** and **d**, results for
 236 survival (Surv), fertility (Fert) and temperament (Temp) were from small-effect MAs while
 237 results for somatic cell count (Scc), gestation length (GI) and stature (Stat) were from
 238 medium-effect MAs.

239

240 For fat%, protein%, docility and stature MAs that increase the trait had higher allele
 241 frequency than MAs that decrease the trait. For somatic cell count and gestation length, the
 242 reverse is true. That is, MAs increasing somatic cell count and gestation length had lower
 243 allele frequency than MAs that decreased the trait (Figure 3). Thus, although MAs more

244 commonly decreased fat% than increased it, the allele frequency was higher at sites where the
245 MAs increased fat%. This implies that selection acts against MAs that decrease fat% or
246 favours MAs that increase fat%. Consequently, the higher incidence of MAs that decrease
247 fat% cannot be due to selection favouring them but must be due to mutation more often
248 resulting in an allele that decreases fat% than increases it. Comparing results in Figure 2 and
249 3 shows that this is the usual pattern – the more common direction of effects of mutation
250 generates alleles that are selected against and hence have a reduced allele frequency.
251 For other traits, the results are less clear-cut. For milk yield, the majority of MAs of large
252 effect tended to decrease the trait (Figure 2). Interestingly, these large-effect milk-decreasing
253 MAs, which were deleterious, had a higher frequency than those MAs increasing milk yield
254 (Figure 3). On the other hand, the majority of MAs of small effect tended to increase the milk
255 yield (Figure 2). Yet, these small-effect MAs that increase milk were at a lower frequency
256 than MAs that decrease milk yield (Figure 3). Interpretation of these results is helped by
257 remembering that milk yield is negatively correlated with fat% and protein% (Supplementary
258 Table 4).

259
260 *Selection of trait-associated mutant alleles in modern and ancient cattle*
261 The above results for MA frequency at trait-associated variants imply selection. The selection
262 could be consistent across breeds which would limit the divergence of allele frequency
263 between breeds or it could be different between breeds leading to divergence in allele
264 frequency. We compared the average of Wright's fixation index ($\overline{F_{ST}}$), for MA+ variants and
265 MA- variants calculated using dairy cattle (Figure 4a,b) and ancient and modern cattle
266 (Figure 4c,d). To account for LD, we estimated the error of $\overline{F_{ST}}$ based on LD-clumped ($r^2 <$
267 0.3)²⁹ variants.
268



269 ■ All variants ■ Variants that the mutant allele decreases (-) the trait ■ Variants that the mutant allele increases (+) the trait

270 **Figure 4.** Selection (average Wright's fixation index $\overline{F_{ST}}$) of variants with mutant alleles that
271 increase or decrease the trait in dairy cattle (**a,b**) and ancient and modern cattle (**c,d**). The $\overline{F_{ST}}$
272 is shown as dots with its standard error bars estimated using LD clumped variants. The blue
273 line represents the $\overline{F_{ST}}$ for 7.9M variants analysed ($0.1 \pm 4.3 \times 10^{-5}$) in dairy cattle in **a** and **b**; and
274 $\overline{F_{ST}} = 0.157 \pm 5 \times 10^{-5}$ in ancient and modern cattle in **c** and **d**. For panels **b** and **d**, results for
275 survival (Surv), fertility (Fert) and temperament (Temp) were from small-effect MAs while
276 results for somatic cell count (Scc), gestation length (Gl) and stature (Stat) were from
277 medium-effect variants.

278

279 In general, variants associated with milk production traits (including somatic cell count,
280 Figure 4a) showed higher than average F_{ST} among dairy breeds implying divergent selection,
281 while variants associated with other traits, including survival and fertility, tended to have
282 below-average F_{ST} indicating convergent selection (Figure 4b). $\overline{F_{ST}}$ for gestation length was
283 below average especially for MA+, probably due to selection against mutations that increase
284 gestation length in all breeds (Figure 4d).

285 Among ancient and modern cattle, $\overline{F_{ST}}$ is high for both MA+ and MA- variants for stature
286 indicating divergent selection for height (Figure 4b). The allele frequency of MAs decreasing

287 height was the least frequent in Holstein cattle and was the most frequent in Tibetan cattle
288 living at high altitude and Angus cattle selected for beef production (Figure 3d). This
289 suggests that the direction of selection could vary across cattle breeds under different
290 environmental conditions and/or artificial selection.

291

292 **Discussion**

293 For some traits (e.g. survival, fertility) we expect that an increase in the trait leads to an
294 increase in fitness. It is these traits which typically show heterosis and inbreeding depression
295 due to directional dominance. The simplest explanation for these observations is that
296 mutations at sites affecting the trait tend to reduce the trait and be partially recessive.

297 However, our results show that it is not all sites affecting these traits that show directional
298 dominance but only those where the same allele is highly conserved across vertebrates. This
299 result explains why the mutations tend to lead to a decrease in the trait - long-term selection
300 has nearly fixed the favourable allele and so any mutation will cause a decrease in the trait
301 and in fitness. We partially confirm this explanation by finding that mutations for these traits
302 (milk and protein yield, stature but not fertility and survival) do tend to decrease the trait
303 although, for milk and protein yield, it is only mutations of large effect for which the effects
304 tend to be negative. This long term selection cannot be directly on traits involving lactation
305 since the same allele is conserved in vertebrates other than mammals.

306 For other traits we expect that an intermediate value leads to the highest fitness. For instance,
307 too high or too low a fat% in milk might be detrimental to the fitness of the mother or the
308 infant or both. These traits do not typically show inbreeding depression or heterosis. The
309 fittest allele might vary between species and environments. Therefore one might expect that
310 mutations are equally likely to increase or decrease the trait. However, that is not what we
311 found: for fat% and protein% mutations tend to decrease the trait whereas for SCC and

312 gestation length they tend to increase the trait. We hypothesise that at some of the genomic
313 sites affecting these traits selection has been consistent enough in mammals, or at least in
314 cattle, so that mutations cause a decrease in fat% and protein% and an increase in mastitis or
315 SCC and gestation length (leading to difficulty calving). This hypothesis is supported by our
316 finding that selection decreases the allele frequency of these mutations. This low allele
317 frequency is not only seen in dairy cattle but in beef breeds and *Bos indicus* breeds.
318 The findings on individual traits can be unexpected due to pleiotropy. That is, mutations
319 affect multiple traits. There are mutations at *DGAT1* and *GHR* loci that increase milk yield
320 but decrease fat% and protein% (Supplementary Figure 6). These are only at appreciable
321 frequency in domesticated cattle, especially breeds artificially selected for milk volume.
322 Their low allele frequency in other breeds and species suggest that natural selection acts
323 against the mutation thus increasing fat% and protein% but decreasing milk yield. Similarly,
324 there is a negative genetic correlation between milk yield and fertility so mutations that
325 increase milk yield might be favoured despite their negative effect on fertility. MAs
326 decreasing fertility tended to be most frequent in the Holstein breed (Figure 3d), perhaps
327 because these alleles tended to increase milk yield and stature.
328 For milk, fat and protein yield the results differ between mutations of large and small effects.
329 Mutations with a large effect on milk protein yield more often decrease protein yield than
330 increase it perhaps because the physiology supporting milk protein synthesis has been
331 optimised in part at least. Mutations with a small effect on protein yield are almost equally
332 likely to increase or decrease yield perhaps because natural selection favours an intermediate
333 level of milk protein yield because too high a yield drains the cow of nutrients needed for
334 maintenance and reproduction.
335 Effects of MAs on phenotypes might be mediated by their effects on gene expression. Based
336 on cis eQTL data ²³, we found that MAs with large effects on milk production traits had

337 direction of effects that were correlated with their direction of effects on gene expression in
338 milk cells. This result shows that the effect direction of MAs on gene expression may also
339 show systematic biases and this may be related to their effects on phenotypic traits. Future
340 studies with larger sample size and more tissues for eQTL mapping may update our
341 understanding of the MA effects on molecular phenotypes.

342 The selection which we have observed affecting the frequency of mutations of positive and
343 negative effect could be both natural selection acting over a long period before and since the
344 domestication of cattle, and artificial selection acting over the last 10,000 years and, more
345 intensely, over the last ~100 years in dairy cattle. Artificial selection may differ between
346 breeds and generate high Fst between breeds. For fat%, protein% and stature at least one
347 class of mutation is more common than random mutations and the overall FST between breeds
348 tended to be high. Our analysis also highlighted some specific breeds. For example, the
349 selection of variants associated with somatic cell count led to high FST among dairy cattle but
350 low FST in our other breeds. Holstein cattle have been selected to be tall ²⁰ and this is
351 reflected in the low frequency of MAs decreasing stature in Holstein. On the other hand, the
352 high frequency of MAs decreasing stature in Tibetan cattle (Figure 4d) may be due to its
353 adaptation to high altitude ³⁰.

354 Although mutation is biased in its effect on some traits, the bias is small for most traits. That
355 is, mutations decreasing protein yield are only slightly more common than mutations that
356 increase protein yield. Also, although conserved sites explain directional dominance and are
357 enriched for polymorphisms affecting complex traits ³¹, they do not explain the majority of
358 the genetic variance. That is, there are many sites affecting traits, such as milk yield and
359 stature, at which the allele carried varies between species implying that the fittest allele varies
360 depending on the environment and the background genotype of the species.

361 The sequence variants associated with a complex trait are not necessarily causal but likely to
362 be in high LD with the causal variants. This tends to dilute the signal that might be
363 discovered if causal variants were used. However, variants in high LD may share a similar
364 evolutionary history and therefore show some of the same characteristics. We used BayesR
365 which jointly fits variants and LD-clumping to account for LD. However, we acknowledge
366 that we cannot completely remove the effects of LD on our results. Therefore, future studies
367 with even larger sample sizes, e.g., ~1 million, may update our results.

368 Genomic selection ³², used in the breeding of livestock and crops, estimates the genetic value
369 of individuals for traits of interest from the alleles they carry at genetic markers such as
370 SNPs. The equation predicting genetic value uses the effect of each SNP on the trait
371 estimated in a training population. The best methods treat the SNP effects as random
372 variables drawn from a prior distribution. To date it has been assumed that the effects of a
373 mutation are equally likely to be positive or negative on the trait but, if it was known that one
374 direction of effect was more likely, this could be built into the prior distribution resulting in
375 an increase in the accuracy with which genetic value is predicted.

376 In conclusion, our results support a new hypothesis which provides a new picture of the
377 effects of mutation and selection on mammalian complex traits. Directional dominance,
378 which causes heterosis and inbreeding depression, is characteristic of loci where mutations
379 decrease the trait and fitness and this pattern has been consistent over the evolution of
380 vertebrates. More recent selection, although not causing directional dominance, leads to a
381 bias in the direction of mutation because the mutation results in an allele which is less fit than
382 the ancestral allele and tends to affect a complex trait in a consistent direction. This
383 hypothesis, if supported by future research, adds to our understanding of the evolution of
384 complex traits and has practical value in the artificial selection of livestock and crops.

385

386 **Methods**

387 **Data preparation for calling bovine ancestral alleles.** The assignment of bovine ancestral
388 alleles was based on a model comparison of alleles from cattle with alleles from outgroups of
389 yak (*Bos grunniens*), sheep (*Ovis aries*) and camel (*Camelus dromedarius*). According to the
390 evolutionary relationships reported previously ⁹, among ruminants, yak is an outgroup species
391 closely related to cattle, while sheep is less closely related to cattle than yak. Goat is
392 equivalent to sheep in its relationship to cattle, but we chose sheep in the current study.
393 Camel without the rumen is distantly related to cattle as they are artiodactyls. For the cattle
394 species, we used whole-genome sequence data of 98 individuals from Run 7 of the 1000 Bull
395 Genomes Project ^{21,22}. Each of those above mentioned 98 individuals represents a breed
396 collected by the consortium. Only those whole-genome sequence samples with coverage >
397 10x were selected and if multiple individuals were found for a breed, the whole-genome
398 sequence sample with the highest coverage was chosen. Both *Bos taurus* and *Bos indicus*
399 subspecies were included (Supplementary Table 2). The pre-processing of sequence reads
400 and alignment of sequence data is done by project partners using the standard 1000 Bull
401 Genomes Project pipeline: <http://www.1000bullgenomes.com/>. Only BAM files from 1000
402 Bull Genomes partners are collected and processed by the consortium. The latest published
403 data from the 1000 Bull Genomes Project (1832 samples) can be found at
404 <https://www.ebi.ac.uk/eva/?eva-study=PRJEB42783>. The details of variant calling can be
405 found in ³³. Briefly, Genome Analysis Toolkit (GATK v.3.8) ³⁴ was used for variant calling.
406 Variants from the GATK VQSR (Variant Quality Score Recalibration) 99.90 to 100.00
407 Tranche for SNP and INDEL were excluded, and Beagle v.4.0 ³⁵ was used to impute sporadic
408 missing. Whole-genome sequence data in VCF format for these 98 cattle, as a subset from
409 the 1000 Bull Genomes Project database, was generated for further analysis.

410 For the outgroup species (to determine ancestral alleles), we used whole-genome sequence
411 data of 46 mammals stored in the Multiple Alignment File generated by Ensembl EPO
412 pipeline (http://asia.ensembl.org/info/genome/compara/multiple_genome_alignments.html). The
413 46-mammal EPO Multiple Alignment File was downloaded. Then, the software WGAbed
414 (<https://henryjuho.github.io/WGAbed/>) from python v2.7 was used to retrieve sequence data
415 for cattle, yak, sheep and camel in bed file format. Only sites with sequence data available in
416 at least one outgroup species were kept. Using the cattle coordinates in the 4-species
417 WGAbed files, the sequence data of the outgroup species were matched with the 98 cattle. As
418 a result, 42,573,455 sites found in the 98 cattle and in at least one outgroup species were
419 found. Sequence data on these 42,573,455 sites across 4 species were used to determine the
420 bovine ancestral alleles.

421 **Probabilistic determination of bovine ancestral alleles.** We used the method proposed by
422 Keightley et al²⁵ with the model choice of The Kimura two-parameter (K2) which accounts
423 for allele frequency of the focal species to determine the probability of an allele being
424 ancestral at each available site. The method was implemented in estsfs²⁵ and the K2 model
425 was chosen due to its equivalent accuracy to other models but better computation efficiency.
426 As described above, the sequence data of three outgroup species were used. The order of
427 phylogenetic tree topology was cattle → yak → sheep → camel. As requested by the
428 software, allele counts of A, C, G and T were determined for the focal species (cattle) and for
429 out species at each available site. For cattle, the total allele count for each site was 196 (98
430 ×2). For each outgroup species, the total allele count for each site was up to 1. Missing
431 sequence data in the outgroup species were treated as 0 counts. For each site, estsfs produced
432 a probability (P_{ancs}) of the major allele in the focal species being ancestral. We then
433 determined alleles which were major at a site with $P_{ancs} > 0.8$ or those alleles which were
434 minor at a site with $P_{ancs} < 0.2$ to be ancestral. For those sites where the major or minor

435 alleles could not be determined but the $P_{ancs} > 0.8$ or < 0.2 , the cattle allele with the highest
436 frequency in the 3 out species was assigned ancestral. The rest of the sites were determined as
437 ambiguous where no clear ancestral alleles could be determined. The detailed results of
438 ancestral alleles for those 42,573,455 sites across 4 species and the probability of the alleles
439 being ancestral or ambiguous is publicly available at:

440 <https://figshare.com/s/dd5985b76a413b56106b>.

441 **Sequence variants under conserved sites across 100 vertebrate species.** The variant
442 selection followed previous procedures ³¹. Briefly, conservation was determined by the
443 criteria of PhastCon score ³⁶ > 0.9 based on the sequence data of those 100 species. The
444 choice of 0.9 as the cutoff was arbitrary. However, since PhastCons score ranges from 0 to 1,
445 this cutoff kept relatively highly conserved sites. Also, in a previous study ³¹, cattle variants
446 from sites with PhastCon score > 0.9 were highly enriched for the heritability of cattle traits.
447 The conserved sites were primarily determined using the human genome coordinates (hg38)
448 and were lifted over to the bovine genome ARS-UCD1.2 using the LiftOver software
449 (<https://genome.ucsc.edu/cgi-bin/hgLiftOver>) with a lift-over rate $> 92\%$. In total, 317,279
450 variants in the current study were assigned as the conserved variants.

451 **Animals and phenotypes for variant-trait association analysis.** Data was collected by
452 farmers and processed by DataGene Australia (<http://www.datagene.com.au/>) for the official
453 May 2020 release of National breeding values. No live animal experimentation was required.
454 Phenotype data was based on trait deviations for cows and daughter trait deviations for bulls.
455 Daughter trait deviations were the average trait deviations of a bull's daughters and all
456 phenotypes were pre-corrected for known fixed effects, with processing done by DataGene.
457 Phenotype data used included a total of 8,949 bulls and 103,350 cows from DataGene.
458 Holstein (6,886♂ / 87,003♀), Jersey (1562♂ / 13,353♀), cross-breed (36♂ / 5,037♀) and
459 Australian Red dairy (265♂ / 3,379♀) breeds were included. In total, 37 traits related to milk

460 production, mastitis, fertility, temperament and body conformation were studied
461 (Supplementary Table 1). Larger trait values of fertility (Fert), ease of birth (Ease),
462 temperament (Temp), milking speed (MSpeed), likeability (Like) meant poor performances,
463 so to assist the interpretability of the study, we have corrected the trait direction so that larger
464 values of Fert, Ease, Temp, MSpeed and Like meant increased fertility performance (calving
465 frequency), labour ease, docility, milking speed and the overall preference as a dairy cow
466 (Supplementary Table 1). This correction only affected the reported effect direction of the
467 mutant allele.

468 **Genotype data for association analysis.** The genotypes used in the current study included a
469 total of 16,035,443 imputed bi-allelic sequence variants with Minimac3^{37,38} imputation
470 accuracy $R^2 > 0.4$ and the minor allele frequency (MAF) > 0.005 in both sexes. Most bulls
471 were genotyped with a medium-density SNP array (50K: BovineSNP50 Beadchip, Illumina
472 Inc) or a high-density SNP array (HD: BovineHD BeadChip, Illumina Inc) and most cows
473 were genotyped with a low-density panel of approximately 6.9k SNPs overlapping with the
474 standard-50K panel. The low-density genotypes were first imputed to the Standard-50K panel
475 and then all 50K genotypes were imputed to the HD panel using Fimpute v3^{31,39}. Prior to
476 sequence imputation, the HD genotypes were converted to forward sequence format. Then,
477 all HD genotypes were imputed to sequence using Minimac3 with Eagle (v2) to pre-phase
478 genotypes^(38,40). The reference set for imputation included sequences of 3090 *Bos taurus*
479 animals from Run7 of the 1000 Bull Genomes Project²¹ aligned to the ARS-UCD1.2
480 reference bovine genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/)^{22,41}.
481 The accuracy of the sequence data for individual animals in the 1000 Bull Genomes Project is
482 routinely checked against their own high-density SNP array genotypes and the concordance
483 has been above 95%³³. The empirical accuracy of imputation to sequence using the 1000
484 Bull Genomes project has been routinely tested for dairy breeds: for example, in Holsteins

485 the average correlation between imputed and real sequence variants was 0.92 to 0.95 using
486 Run5 of the 1000 Bull Genomes project (N= 1577)⁴². Therefore, we believe our imputed data
487 is more accurate: first because the number of reference animals has almost doubled and
488 second because in our study we impose a Minimac3 R² filter to remove poorly imputed
489 variants. A Minimac3 R² threshold of 0.4 was used because our in-house tests demonstrate
490 that this is approximately equivalent to an empirical imputation accuracy (correlation) of
491 0.85.

492 **Genome-wide association studies.** The above mentioned traits were analysed one trait at a
493 time independently in each sex with linear mixed models using GCTA⁴³:

494
$$\mathbf{y} = \mathbf{mean} + \mathbf{breed} + \mathbf{bx} + \mathbf{a} + \mathbf{error} \quad (equation \ 1)$$

495 where **y** = vector of phenotypes for bulls or cows, **breed** = three breeds for bulls, Holstein,
496 Jersey and Australian Red and four breeds for cows (Holstein, Jersey, Australian Red and
497 MIX); **bx** = regression coefficient *b* on variant genotypes **x**; **a** = random polygenic effects
498 $\sim N(0, \mathbf{G}\sigma_g^2)$ where **G** = genomic relatedness matrix based on all variants and σ_g^2 = random
499 polygenic variance; **error** = the vector of random residual effects $\sim N(0, \mathbf{I}\sigma_e^2)$, where **I** =
500 the identity matrix and σ_e^2 the residual variance. The purpose of fitting breeds as fixed
501 effects together with the GRM in the model was to have strong control of the population
502 structure which may cause spurious associations between variants and phenotype. The
503 construction of GRM followed the default setting (–make-grm) in GCTA⁴³:
504 (<https://cnsgenomics.com/software/gcta/#MakingaGRM>).

505

506 **Bayesian mixture model analysis.** In the above-described GWAS, sequence variants, many
507 of which are in high LD, were analysed one at a time. In order to assess variant effects and
508 account for LD, we fitted selected variants jointly in BayesR²⁸. For each trait, variants that

509 showed the same sign between bulls and cows (regardless of p-value) and could be assigned
510 with an ancestral allele were analysed with BayesR. Across 37 traits, the number of variants
511 analysed ranged from 3,961,180 to 4,737,492. To reduce the computational burden of
512 BayesR, we estimated the joint effects of these variants for each trait in bulls. BayesR models
513 the variant effects as mixture distribution of four normal distributions including a null
514 distribution, $N(0, 0.0\sigma_g^2)$, and three others: $N(0, 0.0001\sigma_g^2)$, $N(0, 0.001\sigma_g^2)$,
515 $N(0, 0.01\sigma_g^2)$, where σ_g^2 was the additive genetic variance for the trait. The starting value
516 of σ_g^2 for each trait was estimated using GREML implemented in MTG2⁴⁴ with a single
517 genomic relationship matrix made of all 16M sequence variants. The statistical model used in
518 the single-trait BayesR was:

519
$$\mathbf{y} = \mathbf{W}\mathbf{v} + \mathbf{X}\mathbf{b} + \mathbf{e} \text{ (equation 2)}$$

520 where \mathbf{y} was a vector of phenotypic records; \mathbf{W} was the design matrix of marker genotypes;
521 centred and standardised to have a unit variance; \mathbf{v} was the vector of variant effects,
522 distributed as a mixture of the four distributions as described above; \mathbf{X} was the design matrix
523 allocating phenotypes to fixed effects; \mathbf{b} was the vector of fixed effects of breeds; \mathbf{e} = vector
524 of residual errors. As a result, the effect v for each variant jointly estimated with other
525 variants were obtained for further analysis.

526 **The difference in effect distribution between ancestral and mutant alleles.** For an
527 analysed variant, one allele is ancestral and then the other is mutant. If there is a bias in effect
528 direction in ancestral alleles or mutant alleles in a given set of variants, the effect distribution
529 of the ancestral and mutant alleles would be different. We tested if the distribution of the
530 effect of ancestral alleles estimated from BayesR was significantly different from that of
531 mutant alleles using the two-sample Kolmogorov-Smirnov test implemented by `ks.test()` in R
532 v3.6.1. The coding was `ks.test(a,m)` where a was the vector of variant effects based on the
533 ancestral alleles and m was a vector of variant effects based on the mutant alleles. To be more

534 conservative, we also tested the significance of biases using LD-clumped ($r^2 < 0.3$ within
535 1Mb windows) variants with small, medium and large effects using default settings in
536 plink1.9²⁹.

537 **Heterozygosity of individuals at conserved sites.** It is widely accepted that higher genomic
538 heterozygosity is linked to gene diversity, therefore, fitness. However, it is not clear at which
539 set of genes or variants heterozygosity is more related to fitness. Also, the simple estimation
540 of heterozygosity, i.e., assigning allele counts of 0 or 2 as homozygous and 1 as
541 heterozygous, leads to biases as the estimation is not independent of additive effects
542 (illustrated later). Our previous work showed conserved sites across 100 vertebrate species
543 significantly contribute to trait variation^{31,45} and it is also logical to assume mutations at
544 conserved sites tend to have strong effects on fitness. Therefore, we firstly partitioned the
545 genome into 317,279 conserved and 15,718,164 non-conserved variants. Then, we re-
546 parameterised the genotype allele count for each variant commonly used to model the
547 dominance deviation, so that the estimation of dominance deviation is independent of the
548 additive effects. We focused on cows because their traits were largely measured on
549 themselves, contrasting to bull traits which were based on their daughters' traits. We
550 estimated the variant-wise sum of the re-parameterised allele count value for dominance
551 deviation which was later termed as z'_{D_i} for each variant i in cows. The sum was averaged by
552 the number of variants and this average value based on re-parameterised dominance allele
553 count for the individual j was termed as H'_j to represent the individual heterozygosity. We
554 estimated the individual heterozygosity from conserved sites (H'_{cons_j}) and non-conserved
555 sites ($H'_{non-cons_j}$) and these computations are specified in the following text.

556 According to quantitative genetics theory⁴⁶⁻⁴⁸, the genetic value (G') of an individual can be
557 partitioned into the mean (μ), additive genetic value (A) arising from additive effect (a) and
558 dominance genetic value (D) arising from dominance deviation (d). At a single locus, let the

559 allele frequency of the three genotype classes of AA, AB and BB be p^2 , $2pq$ and q^2 ,

560 respectively. In a simple genetic model, the genetic value can be decomposed as:

561
$$G' = \mu + A + D + e = \mu + x_{A_i}a + z_{D_i}d + e \text{ (equation 3)}$$

562 Where x_{A_i} was the allele count for genotype AA, AB and BB for locus or variant i which

563 were usually coded as 0, 1, 2, respectively, to represent the additive component, and z_{D_i} was

564 usually coded as 0, 1, 0, for genotype AA, AB and BB for variant i , respectively, which

565 differentiates the homozygous and heterozygous to represent the dominance component.

566 Therefore, in the simplest form, the genome-wide heterozygosity of the individual j can be

567 calculated as:

568
$$H_j = \sum_i^N z_{D_i} / N \text{ (equation 4)}$$

569 where H_j is the simple genome-wide heterozygosity of individual j , N is the total number of

570 variants. Note that such calculation of H_j can also be used to derive inbreeding coefficient,

571 where $I_j = (\sum_i^N 2p_i q_i) \times H_j$. I_j was the inbreeding coefficient for the j^{th} individual.

572 In equation 3, however, due to the non-zero correlation between x_A and z_D under Hardy-

573 Weinberg equilibrium (HWE), the estimation of a and d is not independent, i.e.,

574 $\text{cov}(x_A, z_D) = 2p(1-p)(1-2p) \neq 0$ under HWE. This then resulted in the estimation of

575 H_j not being independent of the additive components. Therefore, we proposed to re-

576 parameterise this model to estimate a and d independently.

577 According to Falconer⁴⁷ at this locus, the additive effects can be derived using the regression

578 of genetic value on the number of A alleles, where $A'_{AA} = 2q \times \alpha$, $A'_{AB} = (p - q) \times \alpha$ and

579 $A'_{BB} = -2p \times \alpha$. A' is the re-parameterised additive genetic value and α is the allele

580 substitution effect: $\alpha = a + (p - q)d$. Because the dominance deviation is the difference

581 between the genetic value and the mean plus the additive value, the dominance effects can be

582 derived as $D'_{AA} = -2p^2 \times d$, $D'_{AB} = 2pq \times d$ and $D'_{BB} = -2q^2 \times d$. D' is the re-
583 parameterised dominance genetic value. Therefore, equation 3 can be re-parameterised as:

584
$$G' = \mu + A' + D' + e = \mu + x'_{A_i} \alpha + z'_{D_i} d + e \text{ (equation 5)}$$

585 Where x'_{A_i} was coded as $2q$, $p - q$ and $-2p$ for genotype of AA, AB and BB of variant i ,
586 respectively, to represent the additive component and z'_{D_i} was coded as $-2p^2$, $2pq$, $-2q^2$ for
587 genotype of AA, AB and BB of variant i , respectively, to represent the dominance
588 component. Such re-parametrisation has the following features: 1) The covariance between
589 the additive and dominance effects is zero; 2) the variance of the additive effects gives the
590 additive variance; and 3) The variance of the dominance deviations gives the dominance
591 variance. Equation 5 then leads to:

592
$$H'_j = \frac{\sum_i^N z'_{D_i}}{N} \text{ (equation 6)}$$

593 Where H'_j was the re-parameterised genome-wide heterozygosity for individual j , z'_{D_i} was
594 $-2p^2$, $2pq$, $-2q^2$ for genotype of AA, AB and BB of variant i and N was the total number of
595 variants. We then applied equation 6 to conserved and non-conserved variants to estimate
596 individual heterozygosity from conserved sites (H'_{cons_j}) and non-conserved sites
597 ($H'_{non-cons_j}$). We then fitted H'_{cons_j} and $H'_{non-cons_j}$ as fixed effects together with the fixed
598 effects of breed jointly in GREML similar to equation 1. The difference was that there is no
599 fixed effect of variants but more fixed effects due to the fitting of H'_{cons_j} and $H'_{non-cons_j}$.
600 The GREML analysis used the implementation with MTG2⁴⁴.

601 **Mutant allele frequency and F_{ST} in different breeds/subspecies.** Two sets of data were
602 used for this analysis. The first dataset was the Australian dairy cattle (8,949 bulls and
603 103,350 cows, Holstein, Jersey, Australian Red and crossbreds) used for GWAS as described
604 above. The second data set used for the analysis of mutant allele frequency and F_{ST} was the
605 curated whole-genome sequence data of 1,720 cattle from the 1000 Bull Genomes database

606 (Run 7)^{21,22}, which we refer to as modern and ancient cattle. Samples that met the quality
607 criteria of the 1000 Bull Genomes project were selected and they included 210 Brahman, 25
608 Tibetan, 10 Eurasian Aurochs, 242 Simmental, 95 Jersey, 843 Holstein and 295 Angus.
609 Genome sequences from 6 Gir and 12 Nellore cattle from the 1000 Bull Genomes database
610 were also analysed to support the results of mutant allele frequency of *Bos indicus*.
611 Additional information on these 1720 animals including related accession numbers (if
612 available) can be found in Supplementary Data 1. The ancient genome data were part of the
613 project of Verdugo et al 2019¹⁵ who processed and published the original data (PRJEB31621
614 at European Nucleotide Archive). These data were collected by Run 7 of the 1000 Bull
615 Genomes Project and processed by its standard pipeline
616 (<http://www.1000bullgenomes.com/>).

617 Sequence data at 7,910,190 variants assigned with mutant alleles were retrieved for these
618 animals to make a plink (v1.9) binary genotype file. The A1 allele of the plink genotypes was
619 set to the mutant allele and its frequency was calculated using the ‘--freq’ function for
620 different selections of populations and variant sets. Average mutant allele frequency and the
621 standard error were calculated for different selections of variants, e.g., variants with mutant
622 alleles increasing or decreasing traits. Standard errors for frequency and F_{ST} (described
623 below) were all estimated using LD-clumped variants in the same procedure in plink²⁹ as
624 described above. For variants associated with milk production traits, i.e., the yield of milk
625 protein, fat and milk and percentage of protein and fat, we selected variants with large
626 (GWAS p-value < 5e-8 in both sexes) and small (GWAS p-value < 5e-2 and p-value > 5e-5
627 in both sexes) effects to focus on. For other trait-associated variants, the group with the
628 largest effects available were selected for this comparison. For example, for stature, there
629 were no variants with p-value < 5e-8 in both sexes, we then selected the medium-effect
630 variants (GWAS p-value < 5e-5 and p-value > 5e-8 in both sexes). For fertility, there was no

631 variants with p-value < 5e-5 in both sexes, we then selected the small-effect variants (GWAS
632 p-value < 5e-2 and p-value > 5e-5 in both sexes) for the comparison. Average mutant allele
633 frequency and the standard error were also calculated for all 7.9M variants analysed as the
634 baseline. The analysis procedure for allele frequency on the Australian dairy cattle was
635 applied to these 1000 Bull Genomes individuals.

636 With the same plink binary genotype file described above and the population structure for
637 dairy cattle (4 dairy breeds) and for ancient and modern cattle (7 breeds/subspecies), GCTA
638 ⁴³ was used to calculate the F_{ST} value with the method described in Weir ⁴⁹ with the option of
639 ‘--fst’ and ‘--sub-pop’. The average F_{ST} value with standard errors was then calculated for
640 different selections of variants in the same fashion for selecting variant groups to compare the
641 mutant allele frequency as described above.

642 **cis eQTL in milk cells.** This analysis was based on 105 Holstein cattle who had RNA-seq
643 data in milk cells described and published previously (NCBI SRA SRP111067) ^{23,24}. The raw
644 reads of these data were aligned to the ARS-UCD1.2 reference bovine genome using STAR⁵⁰
645 and the quality check followed what was described previously ²³. FeatureCount ⁵¹ was used to
646 extract gene counts and the voom ⁵² normalised counts were used in the following analyses.
647 The normalised gene expression was analysed as phenotypes in the same GWAS model as
648 equation 1 using GCTA, except that there were no breed effects (all animals are Holstein) but
649 were other fixed effects of Experiment, Days in Milk, 1st PC and 2nd PC extracted from the
650 expression count matrix. Variants analysed were those that had large positive effects and
651 large negative effects ($p_{gwas} < 5e-8$) on protein yield, fat yield, milk yield, protein % and fat
652 %. For these variants, the normalised expression of genes within $\pm 1\text{Mb}$ distance to them were
653 analysed as phenotype. In other words, the analysis focused on cis eQTL genes for these
654 large-effect variants were analysed. When GWAS results of gene expression were obtained
655 (cis eQTL), the effect allele was mapped to the ancestral allele to determine the effects of

656 MAs. For quantifying the number of eQTL for each effect direction of MAs, only the SNPs
657 with the smallest p-value were considered.

658

659 **Data availability**

660 Our predictions of cattle ancestral alleles for those 42,573,455 sites have been made publicly
661 available at: <https://figshare.com/s/dd5985b76a413b56106b>. Multiple alignment data used to
662 determine cattle ancestral alleles are publicly available via Ensembl EPO pipeline
663 (http://asia.ensembl.org/info/genome/compara/multiple_genome_alignments.html).

664 Australian farmers and DataGene Australia (<http://www.datagene.com.au/>) are owners and
665 custodians of the raw phenotype and genotype data of Australian dairy animals. Access to
666 these data for research requires permission from DataGene under a Data Use Agreement. The
667 DNA sequence data as part of the 1000 Bull Genomes Consortium²⁰⁻²² are available to
668 consortium members and the membership is open. Sequence data of 1832 samples from the
669 1000 Bull Genome Project have been made publicly available at:

670 <https://www.ebi.ac.uk/eva/?eva-study=PRJEB42783>. The gene expression data is publicly
671 available (NCBI SRA SRP111067). In addition: 1. The summary data of the effect direction
672 and effect category of those 7.9M sequence variants for which the ancestral alleles can be
673 assigned is published at <https://figshare.com/s/ef020d948523c31c0e67>; 2. The allele frequency
674 of mutant alleles of those 7.9M sequence variants for which the ancestral alleles can be
675 assigned for the Holstein and Jersey cattle from the 1000 Bull Genome Project is published at
676 <https://figshare.com/s/20154b1d8e60e012e532>; 3. The coordinates of conserved sites analysed in
677 the manuscript is published at: <https://figshare.com/s/df9d3662f8f7fb8e72da>. Other supporting
678 data are shown in the supplementary materials of the current manuscript.

679

680 **Code availability**

681 The probability of ancestral allele assignment used the software published by ²⁵. The linear
682 mixed model used GCTA ⁴³ and MTG2 ⁴⁴. The Bayesian analysis used BayesR ⁵³. The R
683 code of estimating heterozygosity across conserved sites will be made public upon
684 publication.

685

686 **References:**

687 1 Ohta, T. Slightly deleterious mutant substitutions in evolution. *Nature* **246**, 96-98 (1973).
688 2 Eyre-Walker, A., Keightley, P. D., Smith, N. G. & Gaffney, D. Quantifying the slightly
689 deleterious mutation model of molecular evolution. *Molecular Biology and Evolution* **19**,
690 2142-2149 (2002).
691 3 Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations.
692 *Nature Reviews Genetics* **8**, 610-618 (2007).
693 4 Mehlhoff, J. D. *et al.* Collateral fitness effects of mutations. *Proceedings of the National
694 Academy of Sciences* **117**, 11597-11607 (2020).
695 5 Meuwissen, T., Hayes, B. & Goddard, M. Genomic selection: A paradigm shift in animal
696 breeding. *Animal frontiers* **6**, 6-14 (2016).
697 6 Chen, J., Glémén, S. & Lascoux, M. From drift to draft: how much do beneficial mutations
698 actually contribute to predictions of Ohta's slightly deleterious model of molecular
699 evolution? *Genetics* **214**, 1005-1018 (2020).
700 7 Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. *Trends in Ecology &
701 Evolution* **17**, 230-241, doi:[https://doi.org/10.1016/S0169-5347\(02\)02489-8](https://doi.org/10.1016/S0169-5347(02)02489-8) (2002).
702 8 Turelli, M. & Ginzburg, L. R. Should individual fitness increase with heterozygosity? *Genetics*
703 **104**, 191-209 (1983).
704 9 Jiang, Y. *et al.* The sheep genome illuminates biology of the rumen and lipid metabolism.
705 *Science* **344**, 1168-1173, doi:10.1126/science.1252806 (2014).
706 10 Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M. & Cunningham, P. Evidence for two
707 independent domestications of cattle. *Proceedings of the National Academy of Sciences* **91**,
708 2757-2761 (1994).
709 11 Bradley, D. G., MacHugh, D. E., Cunningham, P. & Loftus, R. T. Mitochondrial diversity and
710 the origins of African and European cattle. *Proceedings of the National Academy of Sciences*
711 **93**, 5131-5135 (1996).
712 12 Troy, C. S. *et al.* Genetic evidence for Near-Eastern origins of European cattle. *Nature* **410**,
713 1088-1091 (2001).
714 13 Chen, S. *et al.* Zebu cattle are an exclusive legacy of the South Asia Neolithic. *Molecular
715 biology and evolution* **27**, 1-6 (2010).
716 14 Utsunomiya, Y. *et al.* Genomic clues of the evolutionary history of Bos indicus cattle. *Animal
717 genetics* **50**, 557-568 (2019).
718 15 Verdugo, M. P. *et al.* Ancient cattle genomics, origins, and rapid turnover in the Fertile
719 Crescent. *Science* **365**, 173-176 (2019).
720 16 Upadhyay, M. *et al.* Genetic origin, admixture and population history of aurochs (Bos
721 primigenius) and primitive European cattle. *Heredity* **118**, 169-176 (2017).
722 17 Park, S. D. *et al.* Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius,
723 illuminates the phylogeography and evolution of cattle. *Genome biology* **16**, 234 (2015).

724 18 García-Ruiz, A. *et al.* Changes in genetic selection differentials and generation intervals in US
725 Holstein dairy cattle as a result of genomic selection. *Proceedings of the National Academy*
726 *of Sciences* **113**, E3995-E4004 (2016).

727 19 Coffey, E., Horan, B., Evans, R. & Berry, D. Milk production and fertility performance of
728 Holstein, Friesian, and Jersey purebred cows and their respective crosses in seasonal-calving
729 commercial farms. *Journal of Dairy Science* **99**, 5681-5689 (2016).

730 20 Bouwman, A. C. *et al.* Meta-analysis of genome-wide association studies for cattle stature
731 identifies common genes that regulate body size in mammals. *Nature genetics* **50**, 362
732 (2018).

733 21 Daetwyler, H. D. *et al.* Whole-genome sequencing of 234 bulls facilitates mapping of
734 monogenic and complex traits in cattle. *Nature genetics* **46**, 858 (2014).

735 22 Hayes, B. J. & Daetwyler, H. D. 1000 Bull Genomes Project to Map Simple and Complex
736 Genetic Traits in Cattle: Applications and Outcomes. *Annual review of animal biosciences* **7**,
737 89-102, doi:10.1146/annurev-animal-020518-115024 (2019).

738 23 Xiang, R. *et al.* Genome variants associated with RNA splicing variations in bovine are
739 extensively shared between tissues. *BMC Genomics* **19**, 521, doi:10.1186/s12864-018-4902-
740 8 (2018).

741 24 Chamberlain, A. *et al.* in *11th world congress on genetics applied to livestock production*
742 (*WCGALP*). Auckland, New Zealand: Volume *Molecular Genetics*. 254.

743 25 Keightley, P. D. & Jackson, B. C. Inferring the probability of the derived vs. the ancestral
744 allelic state at a polymorphic site. *Genetics* **209**, 897-906 (2018).

745 26 Rocha, D., Billerey, C., Samson, F., Boichard, D. & Boussaha, M. Identification of the putative
746 ancestral allele of bovine single-nucleotide polymorphisms. *Journal of Animal Breeding and*
747 *Genetics* **131**, 483-486 (2014).

748 27 Xiang, R., van den Berg, I., MacLeod, I. M., Daetwyler, H. D. & Goddard, M. E. Effect direction
749 meta-analysis of GWAS identifies extreme, prevalent and shared pleiotropy in a large
750 mammal. *Commun Biol* **3**, 88, doi:10.1038/s42003-020-0823-6 (2020).

751 28 Erbe, M. *et al.* Improving accuracy of genomic predictions within and between dairy cattle
752 breeds with imputed high-density single nucleotide polymorphism panels. *Journal of dairy*
753 *science* **95**, 4114-4129 (2012).

754 29 Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer
755 datasets. *Gigascience* **4**, 7, doi:10.1186/s13742-015-0047-8 (2015).

756 30 Chen, N. *et al.* Whole-genome resequencing reveals world-wide ancestry and adaptive
757 introgression events of domesticated cattle in East Asia. *Nature Communications* **9**, 1-13
758 (2018).

759 31 Xiang, R. *et al.* Quantifying the contribution of sequence variants with regulatory and
760 evolutionary significance to 34 bovine complex traits. *Proceedings of the National Academy*
761 *of Sciences* **116**, 19398-19408, doi:10.1073/pnas.1904159116 (2019).

762 32 Meuwissen, T., Hayes, B. & Goddard, M. Prediction of total genetic value using genome-wide
763 dense marker maps. *Genetics* **157**, 1819-1829 (2001).

764 33 Daetwyler, H. *et al.* in *Proc Assoc Adv Anim Breed Genet*. 201-204.

765 34 DePristo, M. A. *et al.* A framework for variation discovery and genotyping using next-
766 generation DNA sequencing data. *Nature genetics* **43**, 491-498 (2011).

767 35 Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data
768 inference for whole-genome association studies by use of localized haplotype clustering.
769 *American journal of human genetics* **81**, 1084-1097, doi:10.1086/521987 (2007).

770 36 Siepel, A. *et al.* Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
771 genomes. *Genome research* **15**, 1034-1050 (2005).

772 37 Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation.
773 *Bioinformatics* **31**, 782-784 (2014).

774 38 Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate
775 genotype imputation in genome-wide association studies through pre-phasing. *Nature*
776 *genetics* **44**, 955 (2012).

777 39 Sargolzaei, M., Chesnais, J. P. & Schenkel, F. S. A new approach for efficient genotype
778 imputation using information from relatives. *BMC Genomics* **15**, 478, doi:10.1186/1471-
779 2164-15-478 (2014).

780 40 Loh, P.-R. *et al.* Reference-based phasing using the Haplotype Reference Consortium panel.
781 *Nature genetics* **48**, 1443 (2016).

782 41 Rosen, B. D. *et al.* De novo assembly of the cattle reference genome with single-molecule
783 sequencing. *GigaScience* **9**, giaa021 (2020).

784 42 Pausch, H. *et al.* Evaluation of the accuracy of imputed sequence variant genotypes and their
785 utility for causal variant detection in cattle. *Genetics Selection Evolution* **49**, 1-14 (2017).

786 43 Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex
787 trait analysis. *The American Journal of Human Genetics* **88**, 76-82 (2011).

788 44 Lee, S. H. & Van der Werf, J. H. MTG2: an efficient algorithm for multivariate linear mixed
789 model analysis based on genomic information. *Bioinformatics* **32**, 1420-1422 (2016).

790 45 Xiang, R. *et al.* Genome-wide fine-mapping identifies pleiotropic and functional variants that
791 predict many traits across global cattle populations. *Nature Communications* **12**, 860,
792 doi:10.1038/s41467-021-21001-0 (2021).

793 46 Fisher, R. A. XV.—The correlation between relatives on the supposition of Mendelian
794 inheritance. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh*
795 **52**, 399-433 (1919).

796 47 Falconer, D. S. & Mackay, T. F. C. *Introduction to quantitative genetics*. (Longman, 1996).

797 48 Lynch, M. & Walsh, B. *Genetics and Analysis of Quantitative Traits*. (Sinauer Associates,
798 1998).

799 49 Weir, B. S. & Ott, J. Genetic data analysis II. *Trends in genetics* **13**, 379 (1997).

800 50 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21,
801 doi:10.1093/bioinformatics/bts635 (2013).

802 51 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
803 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2014).

804 52 Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: precision weights unlock linear model
805 analysis tools for RNA-seq read counts. *Genome Biology* **15**, R29 (2014).

806 53 Moser, G. *et al.* Simultaneous discovery, estimation and prediction analysis of complex traits
807 using a Bayesian mixture model. *PLoS genetics* **11**, e1004969 (2015).

808

809 **Acknowledgements**

810 Australian Research Council's Discovery Projects (DP160101056 and DP200100499)
811 supported R.X. and M.E.G. DairyBio, a joint venture project between Agriculture Victoria
812 (Melbourne, Australia), Dairy Australia (Melbourne, Australia) and the Gardiner Foundation
813 (Melbourne, Australia), funded computing resources used in the analysis. The authors also
814 thank the University of Melbourne, Australia for supporting this research. No funding bodies
815 participated in the design of the study nor analysis, or interpretation of data nor writing of the
816 manuscript. DataGene provided access to the reference data used in this study and the 1000
817 Bull Genomes consortium provided access to cattle sequence data. We thank Gert Nieuwhof
818 and Kon Konstantinov (DataGene) for the preparation and provision of data. We thank Prof.
819 Hans D. Daetwyler for assisting the access to the 1000 Bull Genomes data. We thank Prof.
820 Naomi Wray for a critical read of the manuscript.

821

822 **Author contributions**

823 M.E.G. and R.X. conceived the study. R.X. performed all analyses. E.J.B. contributed to the
824 BayesR analysis. I.M.M., assisted with data curation. S.B., C.J.J., and A.J.C. contributed to
825 the imputation of sequence variants. R.X. and M.E.G. wrote the paper. R.X., M.E.G., E.J.B.
826 and I.M.M. revised the paper. All authors read and approved the final manuscript.

827

828 **Competing Interests**

829 The authors declare no competing interests.