10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.19.440546; this version posted September 2, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Mutant alleles differentially shape cattle complex traits and fitness

Ruidong Xiang'?", Ed J. Breen?, Sunduimijid Bolormaa?, Christy J. Vander Jagt?, Amanda J.

Chamberlain?, lona M. Macleod?, Michael E. Goddard*?

! Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville 3052,
Victoria, Australia

2 Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria 3083, Australia.

“Corresponding Author: ruidong.xiang@unimelb.edu.au

Abstract

Classical mutant alleles (MAs), with large effects on phenotype, tend to be deleterious to
traits and fitness. Is this the case for mutations with small effects? We infer MAs for 8
million sequence variants in 113k cattle and quantify the effects of MA on 37 complex traits.
Heterozygosity for variants at genomic sites conserved across 100 vertebrates increase
fertility, stature, and milk production, positively associating these traits with fitness. MAs
decrease stature and fat and protein concentration in milk, but increase gestation length and
somatic cell count in milk (the latter indicative of mastitis). However, the allele frequency of
MAs that decrease fat and protein concentration and stature and increase gestation length and
somatic cell count is lower than the allele frequency of MAs with the opposite effect. These
results suggest bias in the direction of effect of mutation (e.g. towards reduced protein in
milk), but selection operating to reduce the frequency of these MAs. Taken together, our
results imply two classes of genomic sites subject to long-term selection: sites conserved
across vertebrates show hybrid vigour while sites subject to less long-term selection show a

bias in mutation towards alleles that are selected against.
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Introduction

Classical mutations, with a large effect on phenotype, tend to decrease fitness, decrease
fitness-related traits and be partially recessive 1 (also see the 1% category of mutations
defined in ®). However, the majority of the genetic variance in complex traits is due to
mutations of small effect. Do these small-effect mutations show the same characteristics as
those classical large-effect mutations? A study in E. coli showd that mutations with small
effect on fitness tend to be deleterious to protein function 4. However, how mutations affect
complex traits such as body size, health and fertility is unknown.

A better understanding of the consequence of mutations not only updates scientific
knowledge but also has practical implications. Domestic cattle support humans with food,
labour, clothing material and transportation. Today, there are over 4 billion cattle across the
world and over ~900 million tonnes of dairy products have been produced annually for

human consumption (http://www.fao.org/3/ca8341en/CA8341EN.pdf). When practicing

genomic selection, which is widely used in animal breeding °, it would be an advantage to
know a priori whether mutations are more likely to increase or decrease traits of interest.
In particular, if a trait is related to fitness, one might expect mutations to be deleterious 2.
Therefore the first objective of this study is to determine whether mutations, defined as the
non-ancestral allele (also known as derived alleles) at segregating sites, tend to increase or
decrease individual complex traits and whether this depends on the trait’s association with
fitness.

Traits that are related to fitness typically show inbreeding depression and heterosis caused by
directional dominance. That is, fitness decreases with increased inbreeding due to increased
homozygosity at loci with recessive deleterious alleles 7. Conversely, fitness generally
increases with heterozygosity 8. Therefore, directional dominance can be used to link traits to

fitness. Here, we introduce a method testing for directional dominance by estimating the


http://www.fao.org/3/ca8341en/CA8341EN.pdf
https://doi.org/10.1101/2021.04.19.440546
http://creativecommons.org/licenses/by-nc-nd/4.0/

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.19.440546; this version posted September 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

effect of heterozygosity at genomic sites on traits of cattle and use this method to identify
traits that are associated with fitness. Then, we classify traits showing directional dominance
as ‘fitness-related traits’.

A likely cause of directional dominance is that mutations tend to be deleterious and partially
recessive. However, not all sites in the genome affecting a trait may show this pattern. Our
second objective is to test the hypothesis that sites, where the same allele has been conserved
across vertebrate evolution, are the most likely to show directional dominance. Therefore, we
consider conserved sites and other polymorphic sites in this analysis.

Cattle presents a unique opportunity for studying the effects of mutation. The cattle family
diverged from other artiodactyls up to 30 million years ago °. Modern cattle are derived from
at least two different subspecies of wild aurochs, i.e., Bos primigenius primigenius (Eurasian
aurochs) and Bos primigenius namadicus (Indian aurochs) which diverged up to 0.5 million
years ago %%, Domestication of Bos p. primigenius led to the humpless Bos taurus
subspecies, which has evolved some highly productive breeds for agriculture, such as the
famous black-and-white Holstein breed with superior milk productivity. Besides natural
selection, dairy cattle breeds experienced very recent and intensive selection for milk
production traits *31° and stature 2°. Domestication of Bos p. namadicus gave rise to the
humped Bos indicus subspecies which evolved breeds with strong resistance to hot climates,
such as Brahman and Gir cattle.

In the present study, we use yak, sheep and camel as outgroup species to assign cattle
ancestral alleles for 8M sequence variants (at 8M genomic sites). For each of these variants,
the alternative to the ancestral allele is the mutant allele (MA). We estimate the effect of the
mutant allele at these 8M variable sites on 37 traits of 113k cattle from 4 breeds. We also
estimate the effect of heterozygosity on these traits using both conserved sites and all

genomic sites.
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If mutant alleles decrease fitness we expect selection to reduce their allele
frequencycompared with mutant alleles that either have no effect or increase fitness.
Therefore, we compare the allele frequency of mutant alleles that increase and decrease each
trait. We expand the analysis of mutant allele frequency to additional breeds of ancient and
modern cattle from the 1000 Bull Genomes database 1?2, which provides validation of our
results. Additional analyses of MAs with strong effects on milk production traits 224 suggests
that the direction of phenotypic effects of these MAs correlates with their direction of effects

on the expression of genes in milk cells*?°.

Results

Directional dominance at sites conserved across 100 vertebrates

To identify traits related to fitness, we have introduced a method to estimate the effect of
heterozygosity on 37 traits (described in Supplementary Table 1) recorded in over 100k
animals. In total, there were 16,035,443 imputed sequence variants (at 16,035,443 genomic
sites) with imputation accuracy R? > 0.4 and the minor allele frequency (MAF) > 0.005
available for variant-trait association analysis. A subset of these sequence variants that could
be assigned with ancestral alleles was used for analyses related to mutant alleles (described
later). For the analysis of the effect of heterozygosity, we fit the average heterozygosity of

sequence variants at 317,279 genomic sites conserved across 100 vertebrates (H ’Consj) and
heterozygosity from variants at the other 15,718,164 sites (H’non_consj) simultaneously (see

Methods). We observed a significant effect of heterozygosity at consserved sites for the yield
of protein (Prot), fat (Fat) and milk (Milk), survival (Surv), fertility performance (Fert),
stature (Stat) and angularity (related to slimness and milk yield) (Figure 1 and Supplementary

Figure 1). For all these traits, heterozygosity at other sites (H’non_consj) was not significant

when fitted together with H’Consj. This directional dominance implies that milk production,


https://doi.org/10.1101/2021.04.19.440546
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.19.440546; this version posted September 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

99 fertility, survival and stature show inbreeding depression and heterosis and therefore we
100  classify them as fitness-related traits and this directional dominance for these traits is
101  exclusively explained by genomic sites conserved across vertebrates. To be conserved across
102  vertebrates, mutations at these sites must be deleterious, implying extremely long-term

103  consistent selection for the ancestral allele at these sites.

104
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106  Figure 1. Directional dominance at conserved sites (/) for traits of 104k cows. The beta

107  values and standard errors for each trait were generated using a mixed linear model, fitting A’
108  from 317,279 conserved sites (left panel) and A’ from the remaining 15,718,164 sites (right
109  panel) together with other fixed effects (e.g., breed). Blue dashed lines indicate t value of -
110  1.96 and 1.96 commonly used to indicate the significance.

111

112 Assignment of bovine ancestral and mutant alleles

113 To assign the mutant alleles in cattle, we first determined the alternative, ancestral alleles
114  using artiodactyls, including cattle as the focal species (98 global cattle breeds from the 1000
115  Bull Genomes Project 222, Supplementary Table 2) and yak, sheep and camel as outgroup

116  ancestor species (Ensembl 46-mammal sequence data). A probabilistic method % was used to
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117  assign an ancestral allele for each site mappable between 4 artiodactyl species (see Methods).
118  Out of 42,573,455 equivalent sites between the 4 species, 39,998,084 sites had the ancestral
119  allele assigned with high confidence (probability > 0.8). We compared our results with a

120  previous study using different methods 2°. Of 1,925,328 sites that were assigned ancestral

121 alleles with high confidence in both studies, 1,904,598 (98.7%) sites agreed. However, we
122 have assigned ancestral alleles with high confidence to ~10 times more sites than the previous
123 study due to the use of large sample size and whole-genome sequence data. The full results

124 are publicly available at https://figshare.com/s/dd5985b76a413b56106b.

125

126  Biases in trait effects between ancestral and mutant alleles

127 We conducted GWAS of 37 traits using over 16 million imputed sequence variants in bulls
128 (N ~9K) and cows (N ~ 104k) separately (see Methods). For 7,910,190 variants where the
129  ancestral allele was assigned, we compared the direction (increase or decrease) of the effect
130  of the mutant alleles (MASs) on the trait (Supplementary Figure 2-3). The same comparison
131 was also performed for variants at the 202,530 out of 317,279 conserved sites where the

132 ancestral alleles could be assigned. Note that for a variant, the effect of a MA is identical to -
133 1 x the effect of the ancestral allele. We focus the description of effects on MAs, but a MA
134  increasing the trait is identical to an ancestral allele decreasing the trait.

135 Within all analysed variants and conserved variants, for each trait we considered the

136  following three variant categories for systematic comparison: 1) large-effect variants, i.e., p-

137 value of GWAS (p,qs) < 5e-8 and the effect direction agreed in both sexes; 2) medium-
138 effect variants, i.e., 5e-8 <= pg,,4s < 5€-5 and the effect direction agreed in both sexes, and 3)
139 small-effect variants, i.e., 5e-5 <= pg,,4s < 0.05 and the effect direction agreed in both sexes.

140  Here the effect size refers to the amount of variance explained by variants which is inversely

141  related to the p-value. The use of different effect size is because mutations of small and large
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142  effects may be different in their direction of effect. Selecting variants that have the same

143 effect direction between independent GWAS populations 27, such as bulls and cows, helps to
144  eliminate variants with spurious trait associations from the comparison. Based on a previous
145 method ?’, the True Discovery Rate by Effect Direction (TDRed) of GWAS between two

146  sexes across 37 analysed traits for the small-, medium- and large-effect variants was 0.8, 0.98
147  and 0.99, respectively.

148  Based on GWAS results of each trait, we calculated the ratio of the number of variants where
149  the MA increased the trait (positive effect) to the number of variants where the MA decreased
150 the trait (negative effect). Across 37 traits and three effect-size groups, MAs showed diverse
151  trait effect patterns (Supplementary Figure 3). Results observed from GWAS were confirmed
152 by BayesR analysis 28, which jointly fits on average 4.3 million variants per trait (See

153  methods and Supplementary Figure 3). Based on jointly estimated effects for a given set of
154  variants, the significance of the effect direction bias was tested using Kolmogorov-Smirnov
155  to estimate the p-value (py,) of the difference in the effect distribution between ancestral and
156  mutant alleles (see Methods). We also tested the significance of bias using LD-clumped (r? <
157  0.3) ?° variants to calculate the standard error (Supplementary Figure 4).

158  In addition, we checked the direction of effects of MAs which had large positive effects and
159  large negative effects on protein yield, fat yield, milk yield, protein % and fat % on the

160  expression of genes within £1Mb distance to these MAs (cis eQTL genes, see Methods) in
161 milk cells?®2% For 4 out of 5 sets of variants where the mutant allele decreased the trait, we
162  found the mutant allele tended to decrease the expression of cis eQTL genes. For another 4
163  out of 5 sets of variants where mutant alleles increased the trait, the mutant allele tended to
164  increase the expression of cis eQTL genes (Supplementary Table 3). These results suggest
165  correlated direction of effects of MAs on milk production traits and the expression of genes

166  in milk cells.
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167

168 In the following text, we focus on 1) MAs within the large- and small-effect categories for
169  milk production traits as these two sets of MAs showed distinct effect direction patterns

170  (Figure 2), and 2) MAs associated with other traits, including those with medium or small
171  effects on somatic cell count (Scc, indicative of mastitis, medium-effect), survival (Surv,

172 small-effect), fertility (Fert, frequency of pregnancy, small-effect), gestation length (Gl,

173 medium effect), temperament (Temp, docility, small-effect) and stature (Stat, medium effect)

174  (Figure 2).

175
a _ b I .
GWAS p < 5e-08 in both sexes (large effect) Bayesian joint analysis of SNPs (large effect)
1.00 B e s e S e et et st e 8 e
I .75 | 075
] ]
> >
+ 050 + 050
@ @
[+ [+
= 0.25- = 0.25 o
= = 5
-
_g 0.00 _g 0.00-
£ GWAS p < 5e-2 or 5e-5 in both sexes (small or medium effect) £ Bayesian joint analysis of SNPs (small or medium effect)
*kk
o o
s s 7
—_ —_
b— 4 — *k
c c
@© o 2
e e
(] (]
= 2- > Kk
L= B ik e - . Ak KK .
5 = A PO ., T ©_ _ [ = o] @ ha
TEC: §EH 1HINIM
o & a ® 8 5 B - o- '®m ® @ & A B
- = : — - = — = = x o o = - = a o
s § £ & & £ & 5 = g S e £ s 5§ § 28 &8 ¢ =
o = = I:Lﬁ = 0 w = o = a = = i 0 0 = — - —
o 8 o = E &3 o O = 8
176 0] 7] ” »

177  Figure 2. The ratio (y-axis) between the number of variants with mutant alleles increasing
178  the trait (+) and the number of variants with mutant alleles decreasing the trait (—). GWAS
179  effects of mutant alleles are shown for all variants (a). BayesR joint effects of mutant alleles
180  from the same variants in (a) are shown for all variants (b). Pink colour: the majority of

181  variants with mutant alleles tend to increase the trait (taller than the blue-dashed line). Dark
182  grey: the majority of variants with mutant alleles tend to decrease the trait (shorter than the
183  blue-dashed line). Numbers in bars: total number of variants significant at the given

184  threshold. Stars: p-value for the significance of the difference in the distribution of BayesR

185  effects between ancestral and mutant alleles, “*’: p < 0.05, “**’: p <0.01, “**** p <0.001.
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186  For somatic cell count (Scc), gestation length (Gl) and stature (Stat), the results are from
187  medium-effect (M) variants and the full results are shown in Supplementary Figure 3.
188

189  The classical model 1 predicts that the majority of MAs, or mutations, are deleterious or

190  slightly deleterious. In our study, MAs consistently showed biases towards decreasing protein
191  and fat concentration (Figure 2 and Supplementary Figure 3,4), docility and stature, and

192  towards increasing somatic cell count (an indicator of mastitis) and gestation length. Among
193  these traits only stature showed a significant effect of heterozygosity. For milk yield and

194  protein yield, both of which were classified as fitness-related traits (Figure 1), the bias in the
195  direction of MA depends on the size of the MA effect. Large-effect MAs tended to decrease
196  milk and protein yield whereas small-effect MAs tended to increase them. A possible

197  explanation is that mutation seldom has a large positive effect on milk protein yield or

198  fertility but small positive effect mutations occur and are increased in frequency by natural or
199  artificial selection.

200

201 Also, there was a slight majority of small-effect MAs which tended to increase fertility and
202  survival, both of which were positively related to fitness (Figure 1). The effects of these sets
203 of MAs is partially due to pleiotropy, i.e., the effect of these MAs on multiple traits

204  (Supplementary Table 4). For instance, while small-effect MAs increasing milk yield

205 decreased fat yield, protein % and fat %, they also increased protein yield. Also, while small-
206  effect MAs increasing fertility increased gestation length, they also increased stature.

207

208  The simplest explanation for the bias in the direction of MA effects is that it is due to a bias
209 in the direction of mutation. For instance, that mutation more often leads to a decrease in

210  fat% rather than an increase. However, it is also possible that mutations that decrease fat%

211  are selected and therefore more likely to be discovered than mutations that increase fat%.
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212 Below we exclude this possibility by comparing the allele frequency at variants where the
213 MA increases or decreases the trait.

214

215  Allele frequency of mutant alleles in modern and ancient cattle

216  Across all variable sites, the allele frequency of MAs was lower than the allele frequency of
217  ancestral alleles (Supplementary Figure 5). Also, the frequency of MAs at conserved sites
218  (0.27) was lower than the frequency of MAs across all sites (0.32). This is consistent with the
219  selection for the ancestral allele which is necessary to maintain conservation of the same

220 allele across vertebrates.

221 We grouped variants based on their mutant allele reducing (MAs—) or increasing the trait

222 (MAs+) and compared their allele frequency in over 110k Holstein, Jersey, crossbreds and
223 Australian Red bulls and cows (Figure 3a,b). To account for LD, we estimated the error of
224 MA frequency based on LD-clumped (r? < 0.3) 2° variants. As an external validation, we also
225  considered this analysis in a selection of 7 subspecies/breeds of 1,720 ancient and modern
226  cattle from the 1000 Bull Genomes Project 2?2 (Figure 3c,d).

227
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229  Figure 3. The allele frequency of mutant alleles (MAS) in cattle. The average frequency of
230  variants associated with different traits is shown with standard error bars based on LD

231 clumped variants. All variants include the 7.9M variants where mutant alleles were assigned.
232 Red dashed line represents the frequency of 0.5. In the dairy cattle section (a and b), 90,627
233 Holstein, 13,465 Jersey, 3,358 Australian Red (AusRed) and 4,649 crossbreds were used. In
234  the ancient and modern cattle (c and d), 210 Brahman, 25 Tibetan, 10 Eurasian Aurochs, 242
235  Simmental, 95 Jersey, 840 Holstein and 287 Angus were used. For panels b and d, results for
236 survival (Surv), fertility (Fert) and temperament (Temp) were from small-effect MAs while
237  results for somatic cell count (Scc), gestation length (GI) and stature (Stat) were from

238  medium-effect MAs.

239

240  For fat%, protein%, docility and stature MAs that increase the trait had higher allele
241  frequency than MAs that decrease the trait. For somatic cell count and gestation length, the
242  reverse is true. That is, MAs increasing somatic cell count and gestation length had lower

243  allele frequency than MAs that decreased the trait (Figure 3). Thus, although MAs more
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244  commonly decreased fat% than increased it, the allele frequency was higher at sites where the
245  MAs increased fat%. This implies that selection acts against MAs that decrease fat% or

246  favours MAs that increase fat%. Consequently, the higher incidence of MAs that decrease
247  fat% cannot be due to selection favouring them but must be due to mutation more often

248  resulting in an allele that decreases fat% than increases it. Comparing results in Figure 2 and
249 3 shows that this is the usual pattern — the more common direction of effects of mutation

250  generates alleles that are selected against and hence have a reduced allele frequency.

251  For other traits, the results are less clear-cut. For milk yield, the majority of MAs of large

252  effect tended to decrease the trait (Figure 2). Interestingly, these large-effect milk-decreasing
253  MAs, which were deleterious, had a higher frequency than those MAs increasing milk yield
254  (Figure 3). On the other hand, the majority of MAs of small effect tended to increase the milk
255  yield (Figure 2). Yet, these small-effect MAs that increase milk were at a lower frequency
256 than MAs that decrease milk yield (Figure 3). Interpretation of these results is helped by

257  remembering that milk yield is negatively correlated with fat% and protein% (Supplementary
258  Table 4).

259

260  Selection of trait-associated mutant alleles in modern and ancient cattle

261  The above results for MA frequency at trait-associated variants imply selection. The selection
262  could be consistent across breeds which would limit the divergence of allele frequency

263  between breeds or it could be different between breeds leading to divergence in allele

264  frequency. We compared the average of Wright’s fixation index (Fgy), for MA+ variants and
265 MA- variants calculated using dairy cattle (Figure 4a,b) and ancient and modern cattle

266  (Figure 4c,d). To account for LD, we estimated the error of Fg; based on LD-clumped (r? <
267 0.3) ?° variants.

268
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Figure 4. Selection (average Wright’s fixation index Fgy) of variants with mutant alleles that
increase or decrease the trait in dairy cattle (a,b) and ancient and modern cattle (c,d). The Fs
is shown as dots with its standard error bars estimated using LD clumped variants. The blue
line represents the Fgr for 7.9M variants analysed (0.1+4.3e-05) in dairy cattle in a and b; and
Fsr = 0.15745e-05 in ancient and modern cattle in ¢ and d). For panels b and d, results for
survival (Surv), fertility (Fert) and temperament (Temp) were from small-effect MAs while
results for somatic cell count (Scc), gestation length (Gl) and stature (Stat) were from

medium-effect variants.

In general, variants associated with milk production traits (including somatic cell count,
Figure 4a) showed higher than average Fst among dairy breeds implying divergent selection,
while variants associated with other traits, including survival and fertility, tended to have
below-average Fst indicating convergent selection (Figure 4b). Fs for gestation length was
below average especially for MA+, probably due to selection against mutations that increase
gestation length in all breeds (Figure 4d).

Among ancient and modern cattle, Fr is high for both MA+ and MA- variants for stature

indicating divergent selection for height (Figure 4b). The allele frequency of MAs decreasing
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287  height was the least frequent in Holstein cattle and was the most frequent in Tibetan cattle
288 living at high altitude and Angus cattle selected for beef production (Figure 3d). This

289  suggests that the direction of selection could vary across cattle breeds under different

290  environmental conditions and/or artificial selection.

291

292  Discussion

293  For some traits (e.g. survival, fertility) we expect that an increase in the trait leads to an

294  increase in fitness. It is these traits which typically show heterosis and inbreeding depression
295  due to directional dominance. The simplest explanation for these observations is that

296  mutations at sites affecting the trait tend to reduce the trait and be partially recessive.

297  However, our results show that it is not all sites affecting these traits that show directional
298  dominance but only those where the same allele is highly conserved across vertebrates. This
299  result explains why the mutations tend to lead to a decrease in the trait - long-term selection
300 has nearly fixed the favourable allele and so any mutation will cause a decrease in the trait
301 and in fitness. We partially confirm this explanation by finding that mutations for these traits
302  (milk and protein yield, stature but not fertility and survival) do tend to decrease the trait

303  although, for milk and protein yield, it is only mutations of large effect for which the effects
304 tend to be negative. This long term selection cannot be directly on traits involving lactation
305  since the same allele is conserved in vertebrates other than mammals.

306  For other traits we expect that an intermediate value leads to the highest fitness. For instance,
307  too high or too low a fat% in milk might be detrimental to the fitness of the mother or the
308 infant or both. These traits do not typically show inbreeding depression or heterosis. The
309 fittest allele might vary between species and environments. Therefore one might expect that
310 mutations are equally likely to increase or decrease the trait. However, that is not what we

311  found: for fat% and protein% mutations tend to decrease the trait whereas for SCC and
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312 gestation length they tend to increase the trait. We hypothesise that at some of the genomic
313  sites affecting these traits selection has been consistent enough in mammals, or at least in
314  cattle, so that mutations cause a decrease in fat% and protein% and an increase in mastitis or
315  SCC and gestation length (leading to difficulty calving). This hypothesis is supported by our
316  finding that selection decreases the allele frequency of these mutations. This low allele

317  frequency is not only seen in dairy cattle but in beef breeds and Bos indicus breeds.

318  The findings on individual traits can be unexpected due to pleiotropy. That is, mutations

319  affect multiple traits. There are mutations at DGAT1 and GHR loci that increase milk yield
320 but decrease fat% and protein% (Supplementary Figure 6). These are only at appreciable
321 frequency in domesticated cattle, especially breeds artificially selected for milk volume.

322 Their low allele frequency in other breeds and species suggest that natural selection acts

323  against the mutation thus increasing fat% and protein% but decreasing milk yield. Similarly,
324  there is a negative genetic correlation between milk yield and fertility so mutations that

325 increase milk yield might be favoured despite their negative effect on fertility. MAs

326  decreasing fertility tended to be most frequent in the Holstein breed (Figure 3d), perhaps
327  because these alleles tended to increase milk yield and stature.

328  For milk, fat and protein yield the results differ between mutations of large and small effects.
329  Mutations with a large effect on milk protein yield more often decrease protein yield than
330 increase it perhaps because the physiology supporting milk protein synthesis has been

331 optimised in part at least. Mutations with a small effect on protein yield are almost equally
332 likely to increase or decrease yield perhaps because natural selection favours an intermediate
333 level of milk protein yield because too high a yield drains the cow of nutrients needed for
334  maintenance and reproduction.

335  Effects of MAs on phenotypes might be mediated by their effects on gene expression. Based

336 on cis eQTL data 2, we found that MAs with large effects on milk production traits had
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337  direction of effects that were correlated with their direction of effects on gene expression in
338 milk cells. This result shows that the effect direction of MAs on gene expression may also
339  show systematic biases and this may be related to their effects on phenotypic traits. Future
340  studies with larger sample size and more tissues for eQTL mapping may update our

341  understanding of the MA effects on molecular phenotypes.

342  The selection which we have observed affecting the frequency of mutations of positive and
343  negative effect could be both natural selection acting over a long period before and since the
344  domestication of cattle, and artificial selection acting over the last 10,000 years and, more
345 intensely, over the last ~100 years in dairy cattle. Artificial selection may differ between

346  breeds and generate high Fst between breeds. For fat%, protein% and stature at least one

347  class of mutation is more common than random mutations and the overall Fst between breeds
348 tended to be high. Our analysis also highlighted some specific breeds. For example, the

349  selection of variants associated with somatic cell count led to high Fst among dairy cattle but
350  low Fst in our other breeds. Holstein cattle have been selected to be tall 2° and this is

351 reflected in the low frequency of MAs decreasing stature in Holstein. On the other hand, the
352 high frequency of MAs decreasing stature in Tibetan cattle (Figure 4d) may be due to its

353  adaptation to high altitude *°.

354  Although mutation is biased in its effect on some traits, the bias is small for most traits. That
355 is, mutations decreasing protein yield are only slightly more common than mutations that
356 increase protein yield. Also, although conserved sites explain directional dominance and are
357  enriched for polymorphisms affecting complex traits 3!, they do not explain the majority of
358  the genetic variance. That is, there are many sites affecting traits, such as milk yield and

359  stature, at which the allele carried varies between species implying that the fittest allele varies

360  depending on the environment and the background genotype of the species.
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361  The sequence variants associated with a complex trait are not necessarily causal but likely to
362  be in high LD with the causal variants. This tends to dilute the signal that might be

363  discovered if causal variants were used. However, variants in high LD may share a similar
364  evolutionary history and therefore show some of the same characteristics. We used BayesR
365  which jointly fits variants and LD-clumping to account for LD. However, we acknowledge
366  that we cannot completely remove the effects of LD on our results. Therefore, future studies
367  with even larger sample sizes, e.g., ~1 million, may update our results.

368  Genomic selection 32, used in the breeding of livestock and crops, estimates the genetic value
369  of individuals for traits of interest from the alleles they carry at genetic markers such as

370  SNPs. The equation predicting genetic value uses the effect of each SNP on the trait

371 estimated in a training population. The best methods treat the SNP effects as random

372 variables drawn from a prior distribution. To date it has been assumed that the effects of a
373  mutation are equally likely to be positive or negative on the trait but, if it was known that one
374  direction of effect was more likely, this could be built into the prior distribution resulting in
375  anincrease in the accuracy with which genetic value is predicted.

376  In conclusion, our results support a new hypothesis which provides a new picture of the

377  effects of mutation and selection on mammalian complex traits. Directional dominance,

378  which causes heterosis and inbreeding depression, is characteristic of loci where mutations
379  decrease the trait and fitness and this pattern has been consistent over the evolution of

380 vertebrates. More recent selection, although not causing directional dominance, leads to a
381  bias in the direction of mutation because the mutation results in an allele which is less fit than
382 the ancestral allele and tends to affect a complex trait in a consistent direction. This

383  hypothesis, if supported by future research, adds to our understanding of the evolution of

384  complex traits and has practical value in the artificial selection of livestock and crops.

385
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386 Methods

387 Data preparation for calling bovine ancestral alleles. The assignment of bovine ancestral
388 alleles was based on a model comparison of alleles from cattle with alleles from outgroups of
389  yak (Bos grunniens), sheep (Ovis aries) and camel (Camelus dromedarius). According to the
390 evolutionary relationships reported previously °, among ruminants, yak is an outgroup species
391 closely related to cattle, while sheep is less closely related to cattle than yak. Goat is

392  equivalent to sheep in its relationship to cattle, but we chose sheep in the current study.

393  Camel without the rumen is distantly related to cattle as they are artiodactyls. For the cattle
394  species, we used whole-genome sequence data of 98 individuals from Run 7 of the 1000 Bull
395  Genomes Project 222, Each of those above mentioned 98 individuals represents a breed

396  collected by the consortium. Only those whole-genome sequence samples with coverage >
397  10x were selected and if multiple individuals were found for a breed, the whole-genome

398  sequence sample with the highest coverage was chosen. Both Bos taurus and Bos indicus

399  subspecies were included (Supplementary Table 2). The pre-processing of sequence reads
400 and alignment of sequence data is done by project partners using the standard 1000 Bull

401  Genomes Project pipeline: http://www.1000bullgenomes.com/. Only BAM files from 1000

402  Bull Genomes partners are collected and processed by the consortium. The latest published
403  data from the 1000 Bull Genomes Project (1832 samples) can be found at

404  https://www.ebi.ac.uk/eva/?eva-study=PRJEB42783. The details of variant calling can be

405  found in ®. Briefly, Genome Analysis Toolkit (GATK v.3.8) 3* was used for variant calling.
406  Variants from the GATK VQSR (Variant Quality Score Recalibration) 99.90 to 100.00

407  Tranche for SNP and INDEL were excluded, and Beagle v.4.0 3° was used to impute sporadic
408  missing. Whole-genome sequence data in VCF format for these 98 cattle, as a subset from

409  the 1000 Bull Genomes Project database, was generated for further analysis.
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410  For the outgroup species (to determine ancestral alleles), we used whole-genome sequence
411  data of 46 mammals stored in the Multiple Alignment File generated by Ensembl EPO

412 pipeline (http://asia.ensembl.org/info/genome/compara/multiple genome alignments.html). The

413 46-mammal EPO Multiple Alignment File was downloaded. Then, the software WGAbed

414  (https://henryjuho.github.io/WGAbed/) from python v2.7 was used to retrieve sequence data

415  for cattle, yak, sheep and camel in bed file format. Only sites with sequence data available in
416  at least one outgroup species were kept. Using the cattle coordinates in the 4-species

417  WGADbed files, the sequence data of the outgroup species were matched with the 98 cattle. As
418  aresult, 42,573,455 sites found in the 98 cattle and in at least one outgroup species were

419  found. Sequence data on these 42,573,455 sites across 4 species were used to determine the
420  bovine ancestral alleles.

421  Probabilistic determination of bovine ancestral alleles. We used the method proposed by
422  Keightley et al 2° with the model choice of The Kimura two-parameter (K2) which accounts
423  for allele frequency of the focal species to determine the probability of an allele being

424  ancestral at each available site. The method was implemented in estsfs 2> and the K2 model
425  was chosen due to its equivalent accuracy to other models but better computation efficiency.
426  As described above, the sequence data of three outgroup species were used. The order of

427  phylogenetic tree topology was cattle — yak — sheep — camel. As requested by the

428  software, allele counts of A, C, G and T were determined for the focal species (cattle) and for
429  out species at each available site. For cattle, the total allele count for each site was 196 (98
430  x2). For each outgroup species, the total allele count for each site was up to 1. Missing

431  sequence data in the outgroup species were treated as 0 counts. For each site, estsfs produced
432 aprobability (Pancs) Of the major allele in the focal species being ancestral. We then

433 determined alleles which were major at a site with Pancs > 0.8 or those alleles which were

434  minor at a site with Pancs < 0.2 to be ancestral. For those sites where the major or minor
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435  alleles could not be determined but the Pancs > 0.8 or < 0.2, the cattle allele with the highest
436  frequency in the 3 out species was assigned ancestral. The rest of the sites were determined as
437  ambiguous where no clear ancestral alleles could be determined. The detailed results of

438  ancestral alleles for those 42,573,455 sites across 4 species and the probability of the alleles
439  being ancestral or ambiguous is publicly available at:

440  https://figshare.com/s/dd5985b76a413b56106b.

441  Sequence variants under conserved sites across 100 vertebrate species. The variant

442  selection followed previous procedures L. Briefly, conservation was determined by the

443 criteria of PhastCon score *® > 0.9 based on the sequence data of those 100 species. The

444  choice of 0.9 as the cutoff was arbitrary. However, since PhastCons score ranges from 0 to 1,
445 this cutoff kept relatively highly conserved sites. Also, in a previous study 3!, cattle variants
446  from sites with PhastCon score > 0.9 were highly enriched for the heritability of cattle traits.
447  The conserved sites were primarily determined using the human genome coordinates (hg38)
448  and were lifted over to the bovine genome ARS-UCD1.2 using the LiftOver software

449  (https://genome.ucsc.edu/cgi-bin/hgLiftOver) with a lift-over rate > 92%. In total, 317,279

450  variants in the current study were assigned as the conserved variants.
451  Animals and phenotypes for variant-trait association analysis. Data was collected by

452  farmers and processed by DataGene Australia (http://www.datagene.com.au/) for the official

453  May 2020 release of National breeding values. No live animal experimentation was required.
454  Phenotype data was based on trait deviations for cows and daughter trait deviations for bulls.
455  Daughter trait deviations were the average trait deviations of a bull’s daughters and all

456  phenotypes were pre-corrected for known fixed effects, with processing done by DataGene.
457  Phenotype data used included a total of 8,949 bulls and 103,350 cows from DataGene.

458  Holstein (6,886 / 87,0039), Jersey (15627 / 13,353%), cross-breed (367 /5,03729) and

459  Australian Red dairy (26573 / 3,3799) breeds were included. In total, 37 traits related to milk
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460  production, mastitis, fertility, temperament and body conformation were studied

461  (Supplementary Table 1). Larger trait values of fertility (Fert), ease of birth (Ease),

462  temperament (Temp), milking speed (MSpeed), likeability (Like) meant poor performances,
463  so to assist the interpretability of the study, we have corrected the trait direction so that larger
464  values of Fert, Ease, Temp, MSpeed and Like meant increased fertility performance (calving
465  frequency), labour ease, docility, milking speed and the overall preference as a dairy cow
466  (Supplementary Table 1). This correction only affected the reported effect direction of the
467  mutant allele.

468  Genotype data for association analysis. The genotypes used in the current study included a
469 total of 16,035,443 imputed bi-allelic sequence variants with Minimac3 3”3 imputation

470  accuracy R? > 0.4 and the minor allele frequency (MAF) > 0.005 in both sexes. Most bulls
471 were genotyped with a medium-density SNP array (50K: BovineSNP50 Beadchip, Illumina
472 Inc) or a high-density SNP array (HD: BovineHD BeadChip, Illumina Inc) and most cows
473 were genotyped with a low-density panel of approximately 6.9k SNPs overlapping with the
474  standard-50K panel. The low-density genotypes were first imputed to the Standard-50K panel
475  and then all 50K genotypes were imputed to the HD panel using Fimpute v3 313, Prior to
476  sequence imputation, the HD genotypes were converted to forward sequence format. Then,
477  all HD genotypes were imputed to sequence using Minimac3 with Eagle (v2) to pre-phase
478  genotypes (34%). The reference set for imputation included sequences of 3090 Bos taurus
479  animals from Run7 of the 1000 Bull Genomes Project ! aligned to the ARS-UCD1.2

480  reference bovine genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/) 2241,

481  The accuracy of the sequence data for individual animals in the 1000 Bull Genomes Project is
482  routinely checked against their own high-density SNP array genotypes and the concordance
483  has been above 95% 3. The empirical accuracy of imputation to sequence using the 1000

484  Bull Genomes project has been routinely tested for dairy breeds: for example, in Holsteins
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485  the average correlation between imputed and real sequence variants was 0.92 to 0.95 using
486  Run5 of the 1000 Bull Genomes project (N= 1577)*2. Therefore, we believe our imputed data
487 is more accurate: first because the number of reference animals has almost doubled and

488  second because in our study we impose a Minimac3 R? filter to remove poorly imputed

489  variants. A Minimac3 R? threshold of 0.4 was used because our in-house tests demonstrate
490 that this is approximately equivalent to an empirical imputation accuracy (correlation) of

491  0.85.

492  Genome-wide association studies. The above mentioned traits were analysed one trait at a

493  time independently in each sex with linear mixed models using GCTA .
494 y = mean + breed + bx + a + error (equation1)

495  where y = vector of phenotypes for bulls or cows, breed = three breeds for bulls, Holstein,
496  Jersey and Australian Red and four breeds for cows (Holstein, Jersey, Australian Red and
497  MIX); bx =regression coefficient b on variant genotypes x; a= random polygenic effects
498  ~N(0, Gog?) where G = genomic relatedness matrix based on all variants and c4®> = random
499  polygenic variance; error = the vector of random residual effects ~N(0, lce?) , where | =
500 the identity matrix and ce? the residual variance.The purpose of fitting breeds as fixed

501 effects together with the GRM in the model was to have strong control of the population
502  structure which may cause spurious associations between variants and phenotype. The

503  construction of GRM followed the default setting (--make-grm) in GCTA®:

504  (https://cnsgenomics.com/software/gcta/#MakingaGRM).

505

506  Bayesian mixture model analysis. In the above-described GWAS, sequence variants, many
507  of which are in high LD, were analysed one at a time. In order to assess variant effects and

508  account for LD, we fitted selected variants jointly in BayesR 8. For each trait, variants that
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509  showed the same sign between bulls and cows (regardless of p-value) and could be assigned
510  with an ancestral allele were analysed with BayesR. Across 37 traits, the number of variants
511  analysed ranged from 3,961,180 to 4,737,492. To reduce the computational burden of

512  BayesR, we estimated the joint effects of these variants for each trait in bulls. BayesR models
513  the variant effects as mixture distribution of four normal distributions including a null

514  distribution, N(0,0.002 ), and three others: N(0,0.000152), N(0,0.00102)),

515  N(0,0.0102,), where 0%, was the additive genetic variance for the trait. The starting value
516  of o2, for each trait was estimated using GREML implemented in MTG2 ** with a single
517  genomic relationship matrix made of all 16M sequence variants. The statistical model used in
518 the single-trait BayesR was:

519 y = Wv + Xb + e (equation 2)

520  where y was a vector of phenotypic records; W was the design matrix of marker genotypes;
521  centred and standardised to have a unit variance; v was the vector of variant effects,

522  distributed as a mixture of the four distributions as described above; X was the design matrix
523  allocating phenotypes to fixed effects; b was the vector of fixed effects of breeds; e = vector
524  of residual errors. As a result, the effect v for each variant jointly estimated with other

525  variants were obtained for further analysis.

526  The difference in effect distribution between ancestral and mutant alleles. For an

527  analysed variant, one allele is ancestral and then the other is mutant. If there is a bias in effect
528 direction in ancestral alleles or mutant alleles in a given set of variants, the effect distribution
529  of the ancestral and mutant alleles would be different. We tested if the distribution of the

530 effect of ancestral alleles estimated from BayesR was significantly different from that of

531  mutant alleles using the two-sample Kolmogorov-Smirnov test implemented by ks.test() in R
532  v3.6.1. The coding was ks.test(a,m) where a was the vector of variant effects based on the

533  ancestral alleles and m was a vector of variant effects based on the mutant alleles. To be more
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534  conservative, we also tested the significance of biases using LD-clumped (r? < 0.3 within
535  1Mb windows) variants with small, medium and large effects using default settings in

536 plink1.9 %,

537  Heterozygosity of individuals at conserved sites. It is widely accepted that higher genomic
538 heterozygosity is linked to gene diversity, therefore, fitness. However, it is not clear at which
539  set of genes or variants heterozygosity is more related to fitness. Also, the simple estimation
540  of heterozygosity, i.e., assigning allele counts of 0 or 2 as homozygous and 1 as

541  heterozygous, leads to biases as the estimation is not independent of additive effects

542  (illustrated later). Our previous work showed conserved sites across 100 vertebrate species
543  significantly contribute to trait variation 314° and it is also logical to assume mutations at

544  conserved sites tend to have strong effects on fitness. Therefore, we firstly partitioned the
545  genome into 317,279 conserved and 15,718,164 non-conserved variants. Then, we re-

546  parameterised the genotype allele count for each variant commonly used to model the

547  dominance deviation, so that the estimation of dominance deviation is independent of the
548  additive effects. We focused on cows because their traits were largely measured on

549  themselves, contrasting to bull traits which were based on their daughters’ traits. We

550 estimated the variant-wise sum of the re-parameterised allele count value for dominance

551 deviation which was later termed as z'p, for each variant i in cows. The sum was averaged by

552  the number of variants and this average value based on re-parameterised dominance allele

553 count for the individual j was termed as H'; to represent the individual heterozygosity. We
554  estimated the individual heterozygosity from conserved sites (H’Consj) and non-conserved
555  sites (H’non_cons]_) and these computations are specified in the following text.

556 According to quantitative genetics theory 648, the genetic value (G') of an individual can be
557  partitioned into the mean (), additive genetic value (A) arising from additive effect (a) and

558 dominance genetic value (D) arising from dominance deviation (d). At a single locus, let the
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559 allele frequency of the three genotype classes of AA, AB and BB be p?, 2pq and ¢?,

560  respectively. In a simple genetic model, the genetic value can be decomposed as:

561 G'=pu+A+D+e=p+x4a+zpd+ e (equation 3)

562 Where x,, was the allele count for genotype AA, AB and BB for locus or variant i which
563  were usually coded as 0, 1, 2, respectively, to represent the additive component, and z,, was
564  usually coded as 0, 1, 0, for genotype AA, AB and BB for variant i, respectively, which

565  differentiates the homozygous and heterozygous to represent the dominance component.

566  Therefore, in the simplest form, the genome-wide heterozygosity of the individual j can be

567 calculated as:

568 H; = ! ZDi/N (equation 4)

569  where H; is the simple genome-wide heterozygosity of individual j, N is the total number of
570  variants. Note that such calculation of H; can also be used to derive inbreeding coefficient,
571 where [; = (X 2p;q;) x H;. I; was the inbreeding coefficient for the ji individual.

572  Inequation 3, however, due to the non-zero correlation between x, and z,, under Hardy-
573  Weinberg equilibrium (HWE), the estimation of a and d is not independent, i.e.,

574  cov(xy, zp) = 2p(1 — p)(1 — 2p) # 0 under HWE. This then resulted in the estimation of
575  H; not being independent of the additive components. Therefore, we proposed to re-

576  parameterise this model to estimate a and d independently.

577  According to Falconer 7 at this locus, the additive effects can be derived using the regression
578  of genetic value on the number of A alleles, where A'y, = 2q X a, A’y = (p — q) X a and
579 A'pp = —2p X a. A" is the re-parameterised additive genetic value and « is the allele

580  substitution effect: @ = a + (p — q)d. Because the dominance deviation is the difference

581  between the genetic value and the mean plus the additive value, the dominance effects can be
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582  derivedas D'y, = —2p% X d, D', = 2pq X d and D'z = —2q% x d. D' is the re-

583  parameterised dominance genetic value. Therefore, equation 3 can be re-parameterised as:
584 G'=pu+A"+D +e=p+x'ya+zpd+ e (equation 5)

585  Where x', was coded as 2q, p — q and —2p for genotype of AA, AB and BB of variant i,
586  respectively, to represent the additive component and z', was coded as —2p?, 2pq, —2q? for
587  genotype of AA, AB and BB of variant i, respectively, to represent the dominance

588  component. Such re-parametrisation has the following features: 1) The covariance between
589 the additive and dominance effects is zero; 2) the variance of the additive effects gives the
590  additive variance; and 3) The variance of the dominance deviations gives the dominance

591  variance. Equation 5 then leads to:

N I
592 H'; = 207 Di/N (equation 6)

593  Where H'; was the re-parameterised genome-wide heterozygosity for individual j, z';, was
594  —2p?, 2pq, —2q* for genotype of AA, AB and BB of variant i and N was the total number of

595  variants. We then applied equation 6 to conserved and non-conserved variants to estimate

596 individual heterozygosity from conserved sites (H’Consj) and non-conserved sites
597 (H'non—cons,-)- We then fitted H’Consj and H'non—cons,- as fixed effects together with the fixed

598 effects of breed jointly in GREML similar to equation 1. The difference was that there is no

599 fixed effect of variants but more fixed effects due to the fitting of H’Consj and H ’non_consj.

600 The GREML analysis used the implementation with MTG2 %4,

601  Mutant allele frequency and Fsr in different breeds/subspecies. Two sets of data were
602  used for this analysis. The first dataset was the Australian dairy cattle (8,949 bulls and

603 103,350 cows, Holstein, Jersey, Australian Red and crossbreds) used for GWAS as described
604  above. The second data set used for the analysis of mutant allele frequency and Fst was the

605  curated whole-genome sequence data of 1,720 cattle from the 1000 Bull Genomes database
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606  (Run 7) 222 which we refer to as modern and ancient cattle. Samples that met the quality
607  criteria of the 1000 Bull Genomes project were selected and they included 210 Brahman, 25
608  Tibetan, 10 Eurasian Aurochs, 242 Simmental, 95 Jersey, 843 Holstein and 295 Angus.

609  Genome sequences from 6 Gir and 12 Nellore cattle from the 1000 Bull Genomes database
610  were also analysed to support the results of mutant allele frequency of Bos indicus.

611  Additional information on these 1720 animals including related accession numbers (if

612  available) can be found in Supplementary Data 1. The ancient genome data were part of the
613  project of Verdugo et al 2019 ** who processed and published the original data (PRIJEB31621
614  at European Nucleotide Archive). These data were collected by Run 7 of the 1000 Bull

615  Genomes Project and processed by its standard pipeline

616  (http://www.1000bullgenomes.com/).

617  Sequence data at 7,910,190 variants assigned with mutant alleles were retrieved for these
618  animals to make a plink (v1.9) binary genotype file. The Al allele of the plink genotypes was
619  set to the mutant allele and its frequency was calculated using the ‘--freq’ function for

620 different selections of populations and variant sets. Average mutant allele frequency and the
621  standard error were calculated for different selections of variants, e.g., variants with mutant
622 alleles increasing or decreasing traits. Standard errors for frequency and Fst (described

623  below) were all estimated using LD-clumped variants in the same procedure in plink # as
624  described above. For variants associated with milk production traits, i.e., the yield of milk
625  protein, fat and milk and percentage of protein and fat, we selected variants with large

626  (GWAS p-value < 5e-8 in both sexes) and small (GWAS p-value < 5e-2 and p-value > 5e-5
627  in both sexes) effects to focus on. For other trait-associated variants, the group with the

628 largest effects available were selected for this comparison. For example, for stature, there
629  were no variants with p-value < 5e-8 in both sexes, we then selected the medium-effect

630  variants (GWAS p-value < 5e-5 and p-value > 5e-8 in both sexes). For fertility, there was no
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631  variants with p-value < 5e-5 in both sexes, we then selected the small-effect variants (GWAS
632  p-value < 5e-2 and p-value > 5e-5 in both sexes) for the comparison. Average mutant allele
633  frequency and the standard error were also calculated for all 7.9M variants analysed as the
634  baseline. The analysis procedure for allele frequency on the Australian dairy cattle was

635  applied to these 1000 Bull Genomes individuals.

636  With the same plink binary genotype file described above and the population structure for
637  dairy cattle (4 dairy breeds) and for ancient and modern cattle (7 breeds/subspecies), GCTA
638  “®was used to calculate the Fsr value with the method described in Weir #® with the option of
639  ‘--fst’ and ‘--sub-pop’. The average Fst value with standard errors was then calculated for
640  different selections of variants in the same fashion for selecting variant groups to compare the
641  mutant allele frequency as described above.

642  ciseQTL in milk cells. This analysis was based on 105 Holstein cattle who had RNA-seq
643  data in milk cells described and published previously (NCBI SRA SRP111067) 224, The raw
644  reads of these data were aligned to the ARS-UCD1.2 reference bovine genome using STAR®
645  and the quality check followed what was described previously 23, FeatureCount °* was used to
646  extract gene counts and the voom 2 normalised counts were used in the following analyses.
647  The normalised gene expression was analysed as phenotypes in the same GWAS model as
648  equation 1 using GCTA, except that there were no breed effects (all animals are Holstein) but
649  were other fixed effects of Experiment, Days in Milk, 1st PC and 2nd PC extracted from the
650  expression count matrix. Variants analysed were those that had large positive effects and

651  large negative effects (p,,,4s< 5€-8) on protein yield, fat yield, milk yield, protein % and fat
652  %. For these variants, the normalised expression of genes within £1Mb distance to them were
653  analysed as phenotype. In other words, the analysis focused on cis eQTL genes for these

654 large-effect variants were analysed. When GWAS results of gene expression were obtained

655  (cis eQTL), the effect allele was mapped to the ancestral allele to determine the effects of
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656  MAs. For quantifying the number of eQTL for each effect direction of MAs, only the SNPs
657  with the smallest p-value were considered.

658

659 Data availability

660  Our predictions of cattle ancestral alleles for those 42,573,455 sites have been made publicly

661 available at: https://figshare.com/s/dd5985b76a413b56106b. Multiple alignment data used to

662  determine cattle ancestral alleles are publicly available via Ensembl EPO pipeline

663  (http://asia.ensembl.org/info/genome/compara/multiple genome alignments.html).

664  Australian farmers and DataGene Australia (http://www.datagene.com.au/) are owners and

665  custodians of the raw phenotype and genotype data of Australian dairy animals. Access to
666  these data for research requires permission from DataGene under a Data Use Agreement. The
667 DNA sequence data as part of the 1000 Bull Genomes Consortium 2°-22 are available to

668  consortium members and the membership is open. Sequence data of 1832 samples from the
669 1000 Bull Genome Project have been made publicly available at:

670  https://www.ebi.ac.uk/eva/?eva-study=PRJEB42783. The gene expression data is publically

671 available (NCBI SRA SRP111067). In addition: 1. The summary data of the effect direction
672  and effect category of those 7.9M sequence variants for which the ancestral alleles can be

673  assigned is published at https:/figshare.com/s/ef020d948523c31c0e67; 2. The allele frequency

674  of mutant alleles of those 7.9M sequence variants for which the ancestral alleles can be
675  assigned for the Holstein and Jersey cattle from the 1000 Bull Genome Project is published at

676  https:/figshare.com/s/20154b1d8e60e012e532; 3. The coordinates of conserved sites analysed in

677  the manuscript is published at: https:/figshare.com/s/df9d3662f8f7fb8e72da. Other supporting

678  data are shown in the supplementary materials of the current manuscript.

679

680 Code availability
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The probability of ancestral allele assignment used the software published by %. The linear
mixed model used GCTA * and MTG2 #4. The Bayesian analysis used BayesR *. The R
code of estimating heterozygosity across conserved sites will be made public upon

publication.
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