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 8 

Abstract 9 

Classical mutant alleles (MAs), with large effects on phenotype, tend to be deleterious to 10 

traits and fitness. Is this the case for mutations with small effects? We infer MAs for 8 11 

million sequence variants in 113k cattle and quantify the effects of MA on 37 complex traits. 12 

Heterozygosity for variants at genomic sites conserved across 100 vertebrates increase 13 

fertility, stature, and milk production, positively associating these traits with fitness. MAs 14 

decrease stature and fat and protein concentration in milk, but increase gestation length and 15 

somatic cell count in milk (the latter indicative of mastitis). However, the allele frequency of 16 

MAs that decrease fat and protein concentration and stature and increase gestation length and 17 

somatic cell count is lower than the allele frequency of MAs with the opposite effect. These 18 

results suggest bias in the direction of effect of mutation (e.g. towards reduced protein in 19 

milk), but selection operating to reduce the frequency of these MAs. Taken together, our 20 

results imply two classes of genomic sites subject to long-term selection: sites conserved 21 

across vertebrates show hybrid vigour while sites subject to less long-term selection show a 22 

bias in mutation towards alleles that are selected against.  23 
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Introduction 24 

Classical mutations, with a large effect on phenotype, tend to decrease fitness, decrease 25 

fitness-related traits and be partially recessive 1-3 (also see the 1st category of mutations 26 

defined in 3). However, the majority of the genetic variance in complex traits is due to 27 

mutations of small effect. Do these small-effect mutations show the same characteristics as 28 

those classical large-effect mutations? A study in E. coli showd that mutations with small 29 

effect on fitness tend to be deleterious to protein function 4. However, how mutations affect 30 

complex traits such as body size, health and fertility is unknown.  31 

A better understanding of the consequence of mutations not only updates scientific 32 

knowledge but also has practical implications. Domestic cattle support humans with food, 33 

labour, clothing material and transportation. Today, there are over 4 billion cattle across the 34 

world and over ~900 million tonnes of dairy products have been produced annually for 35 

human consumption (http://www.fao.org/3/ca8341en/CA8341EN.pdf). When practicing 36 

genomic selection, which is widely used in animal breeding 5, it would be an advantage to 37 

know a priori whether mutations are more likely to increase or decrease traits of interest. 38 

In particular, if a trait is related to fitness, one might expect mutations to be deleterious 2,6. 39 

Therefore the first objective of this study is to determine whether mutations, defined as the 40 

non-ancestral allele (also known as derived alleles) at segregating sites, tend to increase or 41 

decrease individual complex traits and whether this depends on the trait’s association with 42 

fitness.  43 

Traits that are related to fitness typically show inbreeding depression and heterosis caused by 44 

directional dominance. That is, fitness decreases with increased inbreeding due to increased 45 

homozygosity at loci with recessive deleterious alleles 7. Conversely, fitness generally 46 

increases with heterozygosity 8. Therefore, directional dominance can be used to link traits to 47 

fitness. Here, we introduce a method testing for directional dominance by estimating the 48 
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effect of heterozygosity at genomic sites on traits of cattle and use this method to identify 49 

traits that are associated with fitness. Then, we classify traits showing directional dominance 50 

as ‘fitness-related traits’. 51 

A likely cause of directional dominance is that mutations tend to be deleterious and partially 52 

recessive. However, not all sites in the genome affecting a trait may show this pattern. Our 53 

second objective is to test the hypothesis that sites, where the same allele has been conserved 54 

across vertebrate evolution, are the most likely to show directional dominance. Therefore, we 55 

consider conserved sites and other polymorphic sites in this analysis. 56 

Cattle presents a unique opportunity for studying the effects of mutation. The cattle family 57 

diverged from other artiodactyls up to 30 million years ago 9. Modern cattle are derived from 58 

at least two different subspecies of wild aurochs, i.e., Bos primigenius primigenius (Eurasian 59 

aurochs) and Bos primigenius namadicus (Indian aurochs) which diverged up to 0.5 million 60 

years ago 10-17. Domestication of Bos p. primigenius led to the humpless Bos taurus 61 

subspecies, which has evolved some highly productive breeds for agriculture, such as the 62 

famous black-and-white Holstein breed with superior milk productivity. Besides natural 63 

selection, dairy cattle breeds experienced very recent and intensive selection for milk 64 

production traits 18,19 and stature 20. Domestication of Bos p. namadicus gave rise to the 65 

humped Bos indicus subspecies which evolved breeds with strong resistance to hot climates, 66 

such as Brahman and Gir cattle. 67 

In the present study, we use yak, sheep and camel as outgroup species to assign cattle 68 

ancestral alleles for 8M sequence variants (at 8M genomic sites). For each of these variants, 69 

the alternative to the ancestral allele is the mutant allele (MA). We estimate the effect of the 70 

mutant allele at these 8M variable sites on 37 traits of 113k cattle from 4 breeds. We also 71 

estimate the effect of heterozygosity on these traits using both conserved sites and all 72 

genomic sites. 73 
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If mutant alleles decrease fitness we expect selection to reduce their allele 74 

frequencycompared with mutant alleles that either have no effect or increase fitness. 75 

Therefore, we compare the allele frequency of mutant alleles that increase and decrease each 76 

trait. We expand the analysis of mutant allele frequency to additional breeds of ancient and 77 

modern cattle from the 1000 Bull Genomes database 21,22, which provides validation of our 78 

results. Additional analyses of MAs with strong effects on milk production traits 23,24 suggests 79 

that the direction of phenotypic effects of these MAs correlates with their direction of effects 80 

on the expression of genes in milk cells4,25. 81 

 82 

Results 83 

Directional dominance at sites conserved across 100 vertebrates 84 

To identify traits related to fitness, we have introduced a method to estimate the effect of 85 

heterozygosity on 37 traits (described in Supplementary Table 1) recorded in over 100k 86 

animals. In total, there were 16,035,443 imputed sequence variants (at 16,035,443 genomic 87 

sites) with imputation accuracy R2 > 0.4 and the minor allele frequency (MAF) > 0.005 88 

available for variant-trait association analysis. A subset of these sequence variants that could 89 

be assigned with ancestral alleles was used for analyses related to mutant alleles (described 90 

later). For the analysis of the effect of heterozygosity, we fit the average heterozygosity of 91 

sequence variants at 317,279 genomic sites conserved across 100 vertebrates (𝐻′𝑐𝑜𝑛𝑠𝑗
) and 92 

heterozygosity from variants at the other 15,718,164 sites (𝐻′𝑛𝑜𝑛−𝑐𝑜𝑛𝑠𝑗
) simultaneously (see 93 

Methods). We observed a significant effect of heterozygosity at consserved sites for the yield 94 

of protein (Prot), fat (Fat) and milk (Milk), survival (Surv), fertility performance (Fert), 95 

stature (Stat) and angularity (related to slimness and milk yield) (Figure 1 and Supplementary 96 

Figure 1). For all these traits, heterozygosity at other sites (𝐻′𝑛𝑜𝑛−𝑐𝑜𝑛𝑠𝑗
) was not significant 97 

when fitted together with 𝐻′𝑐𝑜𝑛𝑠𝑗
. This directional dominance implies that milk production, 98 
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fertility, survival and stature show inbreeding depression and heterosis and therefore we 99 

classify them as fitness-related traits and this directional dominance for these traits is 100 

exclusively explained by genomic sites conserved across vertebrates. To be conserved across 101 

vertebrates, mutations at these sites must be deleterious, implying extremely long-term 102 

consistent selection for the ancestral allele at these sites. 103 

 104 

 105 

Figure 1. Directional dominance at conserved sites (H’) for traits of 104k cows. The beta 106 

values and standard errors for each trait were generated using a mixed linear model, fitting H’ 107 

from 317,279 conserved sites (left panel) and H’ from the remaining 15,718,164 sites (right 108 

panel) together with other fixed effects (e.g., breed). Blue dashed lines indicate t value of -109 

1.96 and 1.96 commonly used to indicate the significance.  110 

 111 

Assignment of bovine ancestral and mutant alleles 112 

To assign the mutant alleles in cattle, we first determined the alternative, ancestral alleles 113 

using artiodactyls, including cattle as the focal species (98 global cattle breeds from the 1000 114 

Bull Genomes Project 21,22, Supplementary Table 2) and yak, sheep and camel as outgroup 115 

ancestor species (Ensembl 46-mammal sequence data). A probabilistic method 25 was used to 116 
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assign an ancestral allele for each site mappable between 4 artiodactyl species (see Methods). 117 

Out of 42,573,455 equivalent sites between the 4 species, 39,998,084 sites had the ancestral 118 

allele assigned with high confidence (probability > 0.8). We compared our results with a 119 

previous study using different methods 26. Of 1,925,328 sites that were assigned ancestral 120 

alleles with high confidence in both studies, 1,904,598 (98.7%) sites agreed. However, we 121 

have assigned ancestral alleles with high confidence to ~10 times more sites than the previous 122 

study due to the use of large sample size and whole-genome sequence data. The full results 123 

are publicly available at https://figshare.com/s/dd5985b76a413b56106b. 124 

 125 

Biases in trait effects between ancestral and mutant alleles 126 

We conducted GWAS of 37 traits using over 16 million imputed sequence variants in bulls 127 

(N ~ 9k) and cows (N ~ 104k) separately (see Methods). For 7,910,190 variants where the 128 

ancestral allele was assigned, we compared the direction (increase or decrease) of the effect 129 

of the mutant alleles (MAs) on the trait (Supplementary Figure 2-3). The same comparison 130 

was also performed for variants at the 202,530 out of 317,279 conserved sites where the 131 

ancestral alleles could be assigned. Note that for a variant, the effect of a MA is identical to -132 

1 × the effect of the ancestral allele. We focus the description of effects on MAs, but a MA 133 

increasing the trait is identical to an ancestral allele decreasing the trait.  134 

Within all analysed variants and conserved variants, for each trait we considered the 135 

following three variant categories for systematic comparison: 1) large-effect variants, i.e., p-136 

value of GWAS (𝑝𝑔𝑤𝑎𝑠) < 5e-8 and the effect direction agreed in both sexes; 2) medium-137 

effect variants, i.e., 5e-8 <= 𝑝𝑔𝑤𝑎𝑠 < 5e-5 and the effect direction agreed in both sexes, and 3) 138 

small-effect variants, i.e., 5e-5 <= 𝑝𝑔𝑤𝑎𝑠 < 0.05 and the effect direction agreed in both sexes. 139 

Here the effect size refers to the amount of variance explained by variants which is inversely 140 

related to the p-value. The use of different effect size is because mutations of small and large 141 
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effects may be different in their direction of effect. Selecting variants that have the same 142 

effect direction between independent GWAS populations 27, such as bulls and cows, helps to 143 

eliminate variants with spurious trait associations from the comparison. Based on a previous 144 

method 27, the True Discovery Rate by Effect Direction (TDRed) of GWAS between two 145 

sexes across 37 analysed traits for the small-, medium- and large-effect variants was 0.8, 0.98 146 

and 0.99, respectively. 147 

Based on GWAS results of each trait, we calculated the ratio of the number of variants where 148 

the MA increased the trait (positive effect) to the number of variants where the MA decreased 149 

the trait (negative effect). Across 37 traits and three effect-size groups, MAs showed diverse 150 

trait effect patterns (Supplementary Figure 3). Results observed from GWAS were confirmed 151 

by BayesR analysis 28, which jointly fits on average 4.3 million variants per trait (See 152 

methods and Supplementary Figure 3). Based on jointly estimated effects for a given set of 153 

variants, the significance of the effect direction bias was tested using Kolmogorov-Smirnov  154 

to estimate the p-value (𝑝𝑘𝑠) of the difference in the effect distribution between ancestral and 155 

mutant alleles (see Methods). We also tested the significance of bias using LD-clumped (r2 < 156 

0.3) 29 variants to calculate the standard error (Supplementary Figure 4).  157 

In addition, we checked the direction of effects of MAs which had large positive effects and 158 

large negative effects on protein yield, fat yield, milk yield, protein % and fat % on the 159 

expression of genes within ±1Mb distance to these MAs (cis eQTL genes, see Methods) in 160 

milk cells23,24. For 4 out of 5 sets of variants where the mutant allele decreased the trait, we 161 

found the mutant allele tended to decrease the expression of cis eQTL genes. For another 4 162 

out of 5 sets of variants where mutant alleles increased the trait, the mutant allele tended to 163 

increase the expression of cis eQTL genes (Supplementary Table 3). These results suggest 164 

correlated direction of effects of MAs on milk production traits and the expression of genes 165 

in milk cells. 166 
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 167 

In the following text, we focus on 1) MAs within the large- and small-effect categories for 168 

milk production traits as these two sets of MAs showed distinct effect direction patterns 169 

(Figure 2), and 2) MAs associated with other traits, including those with medium or small 170 

effects on somatic cell count (Scc, indicative of mastitis, medium-effect), survival (Surv, 171 

small-effect), fertility (Fert, frequency of pregnancy, small-effect), gestation length (Gl, 172 

medium effect), temperament (Temp, docility, small-effect) and stature (Stat, medium effect) 173 

(Figure 2). 174 

 175 

 176 

Figure 2. The ratio (y-axis) between the number of variants with mutant alleles increasing 177 

the trait (+) and the number of variants with mutant alleles decreasing the trait (−). GWAS 178 

effects of mutant alleles are shown for all variants (a). BayesR joint effects of mutant alleles 179 

from the same variants in (a) are shown for all variants (b). Pink colour: the majority of 180 

variants with mutant alleles tend to increase the trait (taller than the blue-dashed line). Dark 181 

grey: the majority of variants with mutant alleles tend to decrease the trait (shorter than the 182 

blue-dashed line). Numbers in bars: total number of variants significant at the given 183 

threshold. Stars: p-value for the significance of the difference in the distribution of BayesR 184 

effects between ancestral and mutant alleles, ‘*’: p < 0.05, ‘**’: p < 0.01, ‘***’ p < 0.001. 185 
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For somatic cell count (Scc), gestation length (Gl) and stature (Stat), the results are from 186 

medium-effect (M) variants and the full results are shown in Supplementary Figure 3. 187 

 188 

The classical model 1-3 predicts that the majority of MAs, or mutations, are deleterious or 189 

slightly deleterious. In our study, MAs consistently showed biases towards decreasing protein 190 

and fat concentration (Figure 2 and Supplementary Figure 3,4), docility and stature, and 191 

towards increasing somatic cell count (an indicator of mastitis) and gestation length. Among 192 

these traits only stature showed a significant effect of heterozygosity. For milk yield and 193 

protein yield, both of which were classified as fitness-related traits (Figure 1), the bias in the 194 

direction of MA depends on the size of the MA effect. Large-effect MAs tended to decrease 195 

milk and protein yield whereas small-effect MAs tended to increase them. A possible 196 

explanation is that mutation seldom has a large positive effect on milk protein yield or 197 

fertility but small positive effect mutations occur and are increased in frequency by natural or 198 

artificial selection. 199 

 200 

Also, there was a slight majority of small-effect MAs which tended to increase fertility and 201 

survival, both of which were positively related to fitness (Figure 1). The effects of these sets 202 

of MAs is partially due to pleiotropy, i.e., the effect of these MAs on multiple traits 203 

(Supplementary Table 4). For instance, while small-effect MAs increasing milk yield 204 

decreased fat yield, protein % and fat %, they also increased protein yield. Also, while small-205 

effect MAs increasing fertility increased gestation length, they also increased stature.  206 

 207 

The simplest explanation for the bias in the direction of MA effects is that it is due to a bias 208 

in the direction of mutation. For instance, that mutation more often leads to a decrease in 209 

fat% rather than an increase. However, it is also possible that mutations that decrease fat% 210 

are selected and therefore more likely to be discovered than mutations that increase fat%. 211 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.04.19.440546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440546
http://creativecommons.org/licenses/by-nc-nd/4.0/


Below we exclude this possibility by comparing the allele frequency at variants where the 212 

MA increases or decreases the trait.  213 

 214 

Allele frequency of mutant alleles in modern and ancient cattle 215 

Across all variable sites, the allele frequency of MAs was lower than the allele frequency of 216 

ancestral alleles (Supplementary Figure 5). Also, the frequency of MAs at conserved sites 217 

(0.27) was lower than the frequency of MAs across all sites (0.32). This is consistent with the 218 

selection for the ancestral allele which is necessary to maintain conservation of the same 219 

allele across vertebrates. 220 

We grouped variants based on their mutant allele reducing (MAs−) or increasing the trait 221 

(MAs+) and compared their allele frequency in over 110k Holstein, Jersey, crossbreds and 222 

Australian Red bulls and cows (Figure 3a,b). To account for LD, we estimated the error of 223 

MA frequency based on LD-clumped (r2 < 0.3) 29 variants. As an external validation, we also 224 

considered this analysis in a selection of 7 subspecies/breeds of 1,720 ancient and modern 225 

cattle from the 1000 Bull Genomes Project 21,22 (Figure 3c,d). 226 

 227 
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 228 

Figure 3. The allele frequency of mutant alleles (MAs) in cattle. The average frequency of 229 

variants associated with different traits is shown with standard error bars based on LD 230 

clumped variants. All variants include the 7.9M variants where mutant alleles were assigned. 231 

Red dashed line represents the frequency of 0.5. In the dairy cattle section (a and b), 90,627 232 

Holstein, 13,465 Jersey, 3,358 Australian Red (AusRed) and 4,649 crossbreds were used. In 233 

the ancient and modern cattle (c and d), 210 Brahman, 25 Tibetan, 10 Eurasian Aurochs, 242 234 

Simmental, 95 Jersey, 840 Holstein and 287 Angus were used. For panels b and d, results for 235 

survival (Surv), fertility (Fert) and temperament (Temp) were from small-effect MAs while 236 

results for somatic cell count (Scc), gestation length (Gl) and stature (Stat) were from 237 

medium-effect MAs. 238 

 239 

For fat%, protein%, docility and stature MAs that increase the trait had higher allele 240 

frequency than MAs that decrease the trait. For somatic cell count and gestation length, the 241 

reverse is true. That is, MAs increasing somatic cell count and gestation length had lower 242 

allele frequency than MAs that decreased the trait (Figure 3). Thus, although MAs more 243 
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commonly decreased fat% than increased it, the allele frequency was higher at sites where the 244 

MAs increased fat%. This implies that selection acts against MAs that decrease fat% or 245 

favours MAs that increase fat%. Consequently, the higher incidence of MAs that decrease 246 

fat% cannot be due to selection favouring them but must be due to mutation more often 247 

resulting in an allele that decreases fat% than increases it. Comparing results in Figure 2 and 248 

3 shows that this is the usual pattern – the more common direction of effects of mutation 249 

generates alleles that are selected against and hence have a reduced allele frequency.  250 

For other traits, the results are less clear-cut. For milk yield, the majority of MAs of large 251 

effect tended to decrease the trait (Figure 2). Interestingly, these large-effect milk-decreasing 252 

MAs, which were deleterious, had a higher frequency than those MAs increasing milk yield 253 

(Figure 3). On the other hand, the majority of MAs of small effect tended to increase the milk 254 

yield (Figure 2). Yet, these small-effect MAs that increase milk were at a lower frequency 255 

than MAs that decrease milk yield (Figure 3). Interpretation of these results is helped by 256 

remembering that milk yield is negatively correlated with fat% and protein% (Supplementary 257 

Table 4). 258 

 259 

Selection of trait-associated mutant alleles in modern and ancient cattle 260 

The above results for MA frequency at trait-associated variants imply selection. The selection 261 

could be consistent across breeds which would limit the divergence of allele frequency 262 

between breeds or it could be different between breeds leading to divergence in allele 263 

frequency. We compared the average of Wright’s fixation index (𝐹𝑆𝑇
̅̅ ̅̅ ), for MA+ variants and 264 

MA− variants calculated using dairy cattle (Figure 4a,b) and ancient and modern cattle 265 

(Figure 4c,d). To account for LD, we estimated the error of 𝐹𝑆𝑇
̅̅ ̅̅  based on LD-clumped (r2 < 266 

0.3) 29 variants. 267 

 268 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.04.19.440546doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.440546
http://creativecommons.org/licenses/by-nc-nd/4.0/


 269 

Figure 4. Selection (average Wright’s fixation index 𝐹𝑆𝑇
̅̅ ̅̅ ) of variants with mutant alleles that 270 

increase or decrease the trait in dairy cattle (a,b) and ancient and modern cattle (c,d). The 𝐹𝑆𝑇
̅̅ ̅̅  271 

is shown as dots with its standard error bars estimated using LD clumped variants. The blue 272 

line represents the 𝐹𝑆𝑇
̅̅ ̅̅  for 7.9M variants analysed (0.1±4.3e-05) in dairy cattle in a and b; and 273 

𝐹𝑆𝑇
̅̅ ̅̅  = 0.157±5e-05 in ancient and modern cattle in c and d). For panels b and d, results for 274 

survival (Surv), fertility (Fert) and temperament (Temp) were from small-effect MAs while 275 

results for somatic cell count (Scc), gestation length (Gl) and stature (Stat) were from 276 

medium-effect variants. 277 

 278 

In general, variants associated with milk production traits (including somatic cell count, 279 

Figure 4a) showed higher than average FST among dairy breeds implying divergent selection, 280 

while variants associated with other traits, including survival and fertility, tended to have 281 

below-average FST indicating convergent selection (Figure 4b). 𝐹𝑆𝑇
̅̅ ̅̅  for gestation length was 282 

below average especially for MA+, probably due to selection against mutations that increase 283 

gestation length in all breeds (Figure 4d). 284 

Among ancient and modern cattle, 𝐹𝑆𝑇
̅̅ ̅̅  is high for both MA+ and MA− variants for stature 285 

indicating divergent selection for height (Figure 4b). The allele frequency of MAs decreasing 286 
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height was the least frequent in Holstein cattle and was the most frequent in Tibetan cattle 287 

living at high altitude and Angus cattle selected for beef production (Figure 3d). This 288 

suggests that the direction of selection could vary across cattle breeds under different 289 

environmental conditions and/or artificial selection. 290 

 291 

Discussion 292 

For some traits (e.g. survival, fertility) we expect that an increase in the trait leads to an 293 

increase in fitness. It is these traits which typically show heterosis and inbreeding depression 294 

due to directional dominance. The simplest explanation for these observations is that 295 

mutations at sites affecting the trait tend to reduce the trait and be partially recessive. 296 

However, our results show that it is not all sites affecting these traits that show directional 297 

dominance but only those where the same allele is highly conserved across vertebrates. This 298 

result explains why the mutations tend to lead to a decrease in the trait -  long-term selection 299 

has nearly fixed the favourable allele and so any mutation will cause a decrease in the trait 300 

and in fitness. We partially confirm this explanation by finding that mutations for these traits 301 

(milk and protein yield, stature but not fertility and survival) do tend to decrease the trait 302 

although, for milk and protein yield, it is only mutations of large effect for which the effects 303 

tend to be negative. This long term selection cannot be directly on traits involving lactation 304 

since the same allele is conserved in vertebrates other than mammals. 305 

For other traits we expect that an intermediate value leads to the highest fitness. For instance, 306 

too high or too low a fat% in milk might be detrimental to the fitness of the mother or the 307 

infant or both. These traits do not typically show inbreeding depression or heterosis. The 308 

fittest allele might vary between species and environments. Therefore one might expect that 309 

mutations are equally likely to increase or decrease the trait. However, that is not what we 310 

found: for fat% and protein% mutations tend to decrease the trait whereas for SCC and 311 
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gestation length they tend to increase the trait. We hypothesise that at some of the genomic 312 

sites affecting these traits selection has been consistent enough in mammals, or at least in 313 

cattle, so that mutations cause a decrease in fat% and protein% and an increase in mastitis or 314 

SCC and gestation length (leading to difficulty calving). This hypothesis is supported by our 315 

finding that selection decreases the allele frequency of these mutations. This low allele 316 

frequency is not only seen in dairy cattle but in beef breeds and Bos indicus breeds. 317 

The findings on individual traits can be unexpected due to pleiotropy. That is, mutations 318 

affect multiple traits. There are mutations at DGAT1 and GHR loci that increase milk yield 319 

but decrease fat% and protein% (Supplementary Figure 6). These are only at appreciable 320 

frequency in domesticated cattle, especially breeds artificially selected for milk volume. 321 

Their low allele frequency in other breeds and species suggest that natural selection acts 322 

against the mutation thus increasing fat% and protein% but decreasing milk yield. Similarly, 323 

there is a negative genetic correlation between milk yield and fertility so mutations that 324 

increase milk yield might be favoured despite their negative effect on fertility. MAs 325 

decreasing fertility tended to be most frequent in the Holstein breed (Figure 3d), perhaps 326 

because these alleles tended to increase milk yield and stature.  327 

For milk, fat and protein yield the results differ between mutations of large and small effects. 328 

Mutations with a large effect on milk protein yield more often decrease protein yield than 329 

increase it perhaps because the physiology supporting milk protein synthesis has been 330 

optimised in part at least. Mutations with a small effect on protein yield are almost equally 331 

likely to increase or decrease yield perhaps because natural selection favours an intermediate 332 

level of milk protein yield because too high a yield drains the cow of nutrients needed for 333 

maintenance and reproduction. 334 

Effects of MAs on phenotypes might be mediated by their effects on gene expression. Based 335 

on cis eQTL data 23, we found that MAs with large effects on milk production traits had 336 
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direction of effects that were correlated with their direction of effects on gene expression  in 337 

milk cells. This result shows that the effect direction of MAs on gene expression may also 338 

show systematic biases and this may be related to their effects on phenotypic traits. Future 339 

studies with larger sample size and more tissues for eQTL mapping may update our 340 

understanding of the MA effects on molecular phenotypes. 341 

The selection which we have observed affecting the frequency of mutations of positive and 342 

negative effect could be both natural selection acting over a long period before and since the 343 

domestication of cattle, and artificial selection acting over the last 10,000 years and, more 344 

intensely, over the last ~100 years in dairy cattle. Artificial selection may differ between 345 

breeds and generate high Fst between breeds. For fat%, protein% and stature at least one 346 

class of mutation is more common than random mutations and the overall FST between breeds 347 

tended to be high. Our analysis also highlighted some specific breeds. For example, the 348 

selection of variants associated with somatic cell count led to high FST among dairy cattle but 349 

low FST in our other breeds. Holstein cattle have been selected to be tall 20 and this is 350 

reflected in the low frequency of MAs decreasing stature in Holstein. On the other hand, the 351 

high frequency of MAs decreasing stature in Tibetan cattle (Figure 4d) may be due to its 352 

adaptation to high altitude 30. 353 

Although mutation is biased in its effect on some traits, the bias is small for most traits. That 354 

is, mutations decreasing protein yield are only slightly more common than mutations that 355 

increase protein yield. Also, although conserved sites explain directional dominance and are 356 

enriched for polymorphisms affecting complex traits 31, they do not explain the majority of 357 

the genetic variance. That is, there are many sites affecting traits, such as milk yield and 358 

stature, at which the allele carried varies between species implying that the fittest allele varies 359 

depending on the environment and the background genotype of the species. 360 
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The sequence variants associated with a complex trait are not necessarily causal but likely to 361 

be in high LD with the causal variants. This tends to dilute the signal that might be 362 

discovered if causal variants were used. However, variants in high LD may share a similar 363 

evolutionary history and therefore show some of the same characteristics. We used BayesR 364 

which jointly fits variants and LD-clumping to account for LD. However, we acknowledge 365 

that we cannot completely remove the effects of LD on our results. Therefore, future studies 366 

with even larger sample sizes, e.g., ~1 million, may update our results.  367 

Genomic selection 32, used in the breeding of livestock and crops, estimates the genetic value 368 

of individuals for traits of interest from the alleles they carry at genetic markers such as 369 

SNPs. The equation predicting genetic value uses the effect of each SNP on the trait 370 

estimated in a training population. The best methods treat the SNP effects as random 371 

variables drawn from a prior distribution. To date it has been assumed that the effects of a 372 

mutation are equally likely to be positive or negative on the trait but, if it was known that one 373 

direction of effect was more likely, this could be built into the prior distribution resulting in 374 

an increase in the accuracy with which genetic value is predicted.  375 

In conclusion, our results support a new hypothesis which provides a new picture of the 376 

effects of mutation and selection on mammalian complex traits. Directional dominance, 377 

which causes heterosis and inbreeding depression, is characteristic of loci where mutations 378 

decrease the trait and fitness and this pattern has been consistent over the evolution of 379 

vertebrates. More recent selection, although not causing directional dominance, leads to a 380 

bias in the direction of mutation because the mutation results in an allele which is less fit than 381 

the ancestral allele and tends to affect a complex trait in a consistent direction. This 382 

hypothesis, if supported by future research, adds to our understanding of the evolution of 383 

complex traits and has practical value in the artificial selection of livestock and crops. 384 

 385 
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Methods 386 

Data preparation for calling bovine ancestral alleles. The assignment of bovine ancestral 387 

alleles was based on a model comparison of alleles from cattle with alleles from outgroups of 388 

yak (Bos grunniens), sheep (Ovis aries) and camel (Camelus dromedarius). According to the 389 

evolutionary relationships reported previously 9, among ruminants, yak is an outgroup species 390 

closely related to cattle, while sheep is less closely related to cattle than yak. Goat is 391 

equivalent to sheep in its relationship to cattle, but we chose sheep in the current study. 392 

Camel without the rumen is distantly related to cattle as they are artiodactyls. For the cattle 393 

species, we used whole-genome sequence data of 98 individuals from Run 7 of the 1000 Bull 394 

Genomes Project 21,22. Each of those above mentioned 98 individuals represents a breed 395 

collected by the consortium. Only those whole-genome sequence samples with coverage > 396 

10x were selected and if multiple individuals were found for a breed, the whole-genome 397 

sequence sample with the highest coverage was chosen. Both Bos taurus and Bos indicus 398 

subspecies were included (Supplementary Table 2). The pre-processing of sequence reads 399 

and alignment of sequence data is done by project partners using the standard 1000 Bull 400 

Genomes Project pipeline: http://www.1000bullgenomes.com/. Only BAM files from 1000 401 

Bull Genomes partners are collected and processed by the consortium. The latest published 402 

data from the 1000 Bull Genomes Project (1832 samples) can be found at 403 

https://www.ebi.ac.uk/eva/?eva-study=PRJEB42783. The details of variant calling can be 404 

found in 33. Briefly, Genome Analysis Toolkit (GATK v.3.8) 34 was used for variant calling. 405 

Variants from the GATK VQSR (Variant Quality Score Recalibration) 99.90 to 100.00 406 

Tranche for SNP and INDEL were excluded, and Beagle v.4.0 35 was used to impute sporadic 407 

missing.  Whole-genome sequence data in VCF format for these 98 cattle, as a subset from 408 

the 1000 Bull Genomes Project database, was generated for further analysis.  409 
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For the outgroup species (to determine ancestral alleles), we used whole-genome sequence 410 

data of 46 mammals stored in the Multiple Alignment File generated by Ensembl EPO 411 

pipeline (http://asia.ensembl.org/info/genome/compara/multiple_genome_alignments.html). The 412 

46-mammal EPO Multiple Alignment File was downloaded. Then, the software WGAbed 413 

(https://henryjuho.github.io/WGAbed/) from python v2.7 was used to retrieve sequence data 414 

for cattle, yak, sheep and camel in bed file format. Only sites with sequence data available in 415 

at least one outgroup species were kept. Using the cattle coordinates in the 4-species 416 

WGAbed files, the sequence data of the outgroup species were matched with the 98 cattle. As 417 

a result, 42,573,455 sites found in the 98 cattle and in at least one outgroup species were 418 

found. Sequence data on these 42,573,455 sites across 4 species were used to determine the 419 

bovine ancestral alleles. 420 

Probabilistic determination of bovine ancestral alleles. We used the method proposed by 421 

Keightley et al 25 with the model choice of The Kimura two-parameter (K2) which accounts 422 

for allele frequency of the focal species to determine the probability of an allele being 423 

ancestral at each available site. The method was implemented in estsfs 25 and the K2 model 424 

was chosen due to its equivalent accuracy to other models but better computation efficiency. 425 

As described above, the sequence data of three outgroup species were used. The order of 426 

phylogenetic tree topology was cattle → yak → sheep → camel. As requested by the 427 

software, allele counts of A, C, G and T were determined for the focal species (cattle) and for 428 

out species at each available site. For cattle, the total allele count for each site was 196 (98 429 

×2). For each outgroup species, the total allele count for each site was up to 1. Missing 430 

sequence data in the outgroup species were treated as 0 counts. For each site, estsfs produced 431 

a probability (Pancs) of the major allele in the focal species being ancestral. We then 432 

determined alleles which were major at a site with Pancs > 0.8 or those alleles which were 433 

minor at a site with Pancs < 0.2 to be ancestral. For those sites where the major or minor 434 
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alleles could not be determined but the Pancs > 0.8 or < 0.2, the cattle allele with the highest 435 

frequency in the 3 out species was assigned ancestral. The rest of the sites were determined as 436 

ambiguous where no clear ancestral alleles could be determined. The detailed results of 437 

ancestral alleles for those 42,573,455 sites across 4 species and the probability of the alleles 438 

being ancestral or ambiguous is publicly available at: 439 

https://figshare.com/s/dd5985b76a413b56106b. 440 

Sequence variants under conserved sites across 100 vertebrate species. The variant 441 

selection followed previous procedures 31. Briefly, conservation was determined by the 442 

criteria of PhastCon score 36 > 0.9 based on the sequence data of those 100 species. The 443 

choice of 0.9 as the cutoff was arbitrary. However, since PhastCons score ranges from 0 to 1, 444 

this cutoff kept relatively highly conserved sites. Also, in a previous study 31, cattle variants 445 

from sites with PhastCon score > 0.9 were highly enriched for the heritability of cattle traits. 446 

The conserved sites were primarily determined using the human genome coordinates (hg38) 447 

and were lifted over to the bovine genome ARS-UCD1.2 using the LiftOver software 448 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver) with a lift-over rate > 92%. In total, 317,279 449 

variants in the current study were assigned as the conserved variants. 450 

Animals and phenotypes for variant-trait association analysis. Data was collected by 451 

farmers and processed by DataGene Australia (http://www.datagene.com.au/) for the official 452 

May 2020 release of National breeding values. No live animal experimentation was required. 453 

Phenotype data was based on trait deviations for cows and daughter trait deviations for bulls. 454 

Daughter trait deviations were the average trait deviations of a bull’s daughters and all 455 

phenotypes were pre-corrected for known fixed effects, with processing done by DataGene. 456 

Phenotype data used included a total of 8,949 bulls and 103,350 cows from DataGene. 457 

Holstein (6,886♂ / 87,003♀), Jersey (1562♂ / 13,353♀), cross-breed (36♂ / 5,037♀) and 458 

Australian Red dairy (265♂ / 3,379♀) breeds were included. In total, 37 traits related to milk 459 
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production, mastitis, fertility, temperament and body conformation were studied 460 

(Supplementary Table 1). Larger trait values of fertility (Fert), ease of birth (Ease), 461 

temperament (Temp), milking speed (MSpeed), likeability (Like) meant poor performances, 462 

so to assist the interpretability of the study, we have corrected the trait direction so that larger 463 

values of Fert, Ease, Temp, MSpeed and Like meant increased fertility performance (calving 464 

frequency), labour ease, docility, milking speed and the overall preference as a dairy cow 465 

(Supplementary Table 1). This correction only affected the reported effect direction of the 466 

mutant allele. 467 

Genotype data for association analysis. The genotypes used in the current study included a 468 

total of 16,035,443 imputed bi-allelic sequence variants with Minimac3 37,38 imputation 469 

accuracy R2 > 0.4 and the minor allele frequency (MAF) > 0.005 in both sexes. Most bulls 470 

were genotyped with a medium-density SNP array (50K: BovineSNP50 Beadchip, Illumina 471 

Inc) or a high-density SNP array (HD: BovineHD BeadChip, Illumina Inc) and most cows 472 

were genotyped with a low-density panel of approximately 6.9k SNPs overlapping with the 473 

standard-50K panel. The low-density genotypes were first imputed to the Standard-50K panel 474 

and then all 50K genotypes were imputed to the HD panel using Fimpute v3 31,39. Prior to 475 

sequence imputation, the HD genotypes were converted to forward sequence format. Then, 476 

all HD genotypes were imputed to sequence using Minimac3 with Eagle (v2) to pre-phase 477 

genotypes (38,40). The reference set for imputation included sequences of 3090 Bos taurus 478 

animals from Run7 of the 1000 Bull Genomes Project 21 aligned to the ARS-UCD1.2 479 

reference bovine genome (https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/) 22,41. 480 

The accuracy of the sequence data for individual animals in the 1000 Bull Genomes Project is 481 

routinely checked against their own high-density SNP array genotypes and the concordance 482 

has been above 95% 33. The empirical accuracy of imputation to sequence using the 1000 483 

Bull Genomes project has been routinely tested for dairy breeds: for example, in Holsteins 484 
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the average correlation between imputed and real sequence variants was 0.92 to 0.95 using 485 

Run5 of the 1000 Bull Genomes project (N= 1577)42. Therefore, we believe our imputed data 486 

is more accurate: first because the number of reference animals has almost doubled and 487 

second because in our study we impose a Minimac3 R2 filter to remove poorly imputed 488 

variants. A Minimac3 R2 threshold of 0.4 was used because our in-house tests demonstrate 489 

that this is approximately equivalent to an empirical imputation accuracy (correlation) of 490 

0.85. 491 

Genome-wide association studies. The above mentioned traits were analysed one trait at a 492 

time independently in each sex with linear mixed models using GCTA 43: 493 

𝐲 = 𝐦𝐞𝐚𝐧 + 𝐛𝐫𝐞𝐞𝐝 + 𝐛𝐱 + 𝐚 + 𝐞𝐫𝐫𝐨𝐫    (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 494 

where y = vector of phenotypes for bulls or cows, 𝐛𝐫𝐞𝐞𝐝 = three breeds for bulls, Holstein, 495 

Jersey and Australian Red and four breeds for cows (Holstein, Jersey, Australian Red and 496 

MIX); bx = regression coefficient b on variant genotypes x; a =  random polygenic effects 497 

~N(0, Gσg
2) where G = genomic relatedness matrix based on all variants and σg

2 = random 498 

polygenic variance; error = the vector of random residual effects ∼N(0, Iσe
2) , where I = 499 

the identity matrix and σe
2 the residual variance.The purpose of fitting breeds as fixed 500 

effects together with the GRM in the model was to have strong control of the population 501 

structure which may cause spurious associations between variants and phenotype. The 502 

construction of GRM followed the default setting (--make-grm) in GCTA43: 503 

(https://cnsgenomics.com/software/gcta/#MakingaGRM). 504 

 505 

Bayesian mixture model analysis. In the above-described GWAS, sequence variants, many 506 

of which are in high LD, were analysed one at a time. In order to assess variant effects and 507 

account for LD, we fitted selected variants jointly in BayesR 28. For each trait, variants that 508 
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showed the same sign between bulls and cows (regardless of p-value) and could be assigned 509 

with an ancestral allele were analysed with BayesR. Across 37 traits, the number of variants 510 

analysed ranged from 3,961,180 to 4,737,492. To reduce the computational burden of 511 

BayesR, we estimated the joint effects of these variants for each trait in bulls. BayesR models 512 

the variant effects as mixture distribution of four normal distributions including a null 513 

distribution, 𝑁(0, 0.0𝜎2
𝑔), and three others: 𝑁(0, 0.0001𝜎2

𝑔), 𝑁(0, 0.001𝜎2
𝑔), 514 

𝑁(0, 0.01𝜎2
𝑔), where 𝜎2

𝑔 was the additive genetic variance for the trait. The starting value 515 

of 𝜎2
𝑔 for each trait was estimated using GREML implemented in MTG2 44 with a single 516 

genomic relationship matrix made of all 16M sequence variants. The statistical model used in 517 

the single-trait BayesR was: 518 

𝐲 = 𝐖𝐯 + 𝐗𝐛 + 𝐞 (equation 2) 519 

where y was a vector of phenotypic records; W was the design matrix of marker genotypes; 520 

centred and standardised to have a unit variance; v was the vector of variant effects, 521 

distributed as a mixture of the four distributions as described above; X was the design matrix 522 

allocating phenotypes to fixed effects; b was the vector of fixed effects of breeds; e = vector 523 

of residual errors. As a result, the effect 𝑣 for each variant jointly estimated with other 524 

variants were obtained for further analysis. 525 

The difference in effect distribution between ancestral and mutant alleles. For an 526 

analysed variant, one allele is ancestral and then the other is mutant. If there is a bias in effect 527 

direction in ancestral alleles or mutant alleles in a given set of variants, the effect distribution 528 

of the ancestral and mutant alleles would be different. We tested if the distribution of the 529 

effect of ancestral alleles estimated from BayesR was significantly different from that of 530 

mutant alleles using the two-sample Kolmogorov-Smirnov test implemented by ks.test() in R 531 

v3.6.1. The coding was ks.test(a,m) where a was the vector of variant effects based on the 532 

ancestral alleles and m was a vector of variant effects based on the mutant alleles. To be more 533 
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conservative, we also tested the significance of biases using LD-clumped (r2 < 0.3 within 534 

1Mb windows) variants with small, medium and large effects using default settings in 535 

plink1.9 29. 536 

Heterozygosity of individuals at conserved sites. It is widely accepted that higher genomic 537 

heterozygosity is linked to gene diversity, therefore, fitness. However, it is not clear at which 538 

set of genes or variants heterozygosity is more related to fitness. Also, the simple estimation 539 

of heterozygosity, i.e., assigning allele counts of 0 or 2 as homozygous and 1 as 540 

heterozygous, leads to biases as the estimation is not independent of additive effects 541 

(illustrated later). Our previous work showed conserved sites across 100 vertebrate species 542 

significantly contribute to trait variation 31,45 and it is also logical to assume mutations at 543 

conserved sites tend to have strong effects on fitness. Therefore, we firstly partitioned the 544 

genome into 317,279 conserved and 15,718,164 non-conserved variants. Then, we re-545 

parameterised the genotype allele count for each variant commonly used to model the 546 

dominance deviation, so that the estimation of dominance deviation is independent of the 547 

additive effects. We focused on cows because their traits were largely measured on 548 

themselves, contrasting to bull traits which were based on their daughters’ traits. We 549 

estimated the variant-wise sum of the re-parameterised allele count value for dominance 550 

deviation which was later termed as 𝑧′𝐷𝑖
 for each variant i in cows. The sum was averaged by 551 

the number of variants and this average value based on re-parameterised dominance allele 552 

count for the individual j was termed as 𝐻′𝑗 to represent the individual heterozygosity. We 553 

estimated the individual heterozygosity from conserved sites (𝐻′𝑐𝑜𝑛𝑠𝑗
) and non-conserved 554 

sites (𝐻′𝑛𝑜𝑛−𝑐𝑜𝑛𝑠𝑗
) and these computations are specified in the following text. 555 

According to quantitative genetics theory 46-48, the genetic value (𝐺′) of an individual can be 556 

partitioned into the mean (µ), additive genetic value (A) arising from additive effect (a) and 557 

dominance genetic value (D) arising from dominance deviation (d). At a single locus, let the 558 
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allele frequency of the three genotype classes of AA, AB and BB be p2, 2pq and q2, 559 

respectively. In a simple genetic model, the genetic value can be decomposed as: 560 

𝐺′ = 𝜇 + 𝐴 + 𝐷 + 𝑒 = 𝜇 + 𝑥𝐴𝑖
𝑎 + 𝑧𝐷𝑖

𝑑 + 𝑒 (equation 3) 561 

Where 𝑥𝐴𝑖
 was the allele count for genotype AA, AB and BB for locus or variant i which 562 

were usually coded as 0, 1, 2, respectively, to represent the additive component, and 𝑧𝐷𝑖
 was 563 

usually coded as 0, 1, 0, for genotype AA, AB and BB for variant i, respectively, which 564 

differentiates the homozygous and heterozygous to represent the dominance component. 565 

Therefore, in the simplest form, the genome-wide heterozygosity of the individual j can be 566 

calculated as: 567 

𝐻𝑗 =
∑ 𝑧𝐷𝑖

𝑁
𝑖

𝑁
⁄  (equation 4) 568 

where 𝐻𝑗 is the simple genome-wide heterozygosity of individual j, 𝑁 is the total number of 569 

variants. Note that such calculation of 𝐻𝑗 can also be used to derive inbreeding coefficient, 570 

where 𝐼𝑗 = (∑ 2𝑝𝑖𝑞𝑖
𝑁
𝑖 ) × 𝐻𝑗. 𝐼𝑗 was the inbreeding coefficient for the jth individual. 571 

In equation 3, however, due to the non-zero correlation between 𝑥𝐴 and 𝑧𝐷 under Hardy-572 

Weinberg equilibrium (HWE), the estimation of a and d is not independent, i.e., 573 

𝑐𝑜𝑣(𝑥𝐴, 𝑧𝐷) = 2𝑝(1 − 𝑝)(1 − 2𝑝) ≠ 0 under HWE. This then resulted in the estimation of 574 

𝐻𝑗 not being independent of the additive components. Therefore, we proposed to re-575 

parameterise this model to estimate a and d independently. 576 

According to Falconer 47 at this locus, the additive effects can be derived using the regression 577 

of genetic value on the number of A alleles, where 𝐴′𝐴𝐴 = 2𝑞 × 𝛼, 𝐴′𝐴𝐵 = (𝑝 − 𝑞) × 𝛼 and 578 

𝐴′𝐵𝐵 = −2𝑝 × 𝛼. 𝐴′ is the re-parameterised additive genetic value and 𝛼 is the allele 579 

substitution effect: 𝛼 = 𝑎 + (𝑝 − 𝑞)𝑑. Because the dominance deviation is the difference 580 

between the genetic value and the mean plus the additive value, the dominance effects can be 581 
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derived as 𝐷′𝐴𝐴 = −2𝑝2 × 𝑑, 𝐷′𝐴𝐵 = 2𝑝𝑞 × 𝑑 and 𝐷′𝐵𝐵 = −2𝑞2 × 𝑑. 𝐷′ is the re-582 

parameterised dominance genetic value. Therefore, equation 3 can be re-parameterised as: 583 

𝐺′ = 𝜇 + 𝐴′ + 𝐷′ + 𝑒 = 𝜇 + 𝑥′𝐴𝑖
𝛼 + 𝑧′𝐷𝑖

𝑑 + 𝑒 (equation 5) 584 

Where 𝑥′𝐴 was coded as 2𝑞, 𝑝 − 𝑞 and −2𝑝 for genotype of AA, AB and BB of variant i, 585 

respectively, to represent the additive component and 𝑧′𝐷 was coded as −2𝑝2, 2𝑝𝑞, −2𝑞2 for 586 

genotype of AA, AB and BB of variant i, respectively, to represent the dominance 587 

component. Such re-parametrisation has the following features: 1) The covariance between 588 

the additive and dominance effects is zero; 2) the variance of the additive effects gives the 589 

additive variance; and 3) The variance of the dominance deviations gives the dominance 590 

variance. Equation 5 then leads to: 591 

𝐻′𝑗 =
∑ 𝑧′𝐷𝑖

𝑁
𝑖

𝑁
⁄  (equation 6) 592 

Where 𝐻′𝑗 was the re-parameterised genome-wide heterozygosity for individual j, 𝑧′𝐷 was 593 

−2𝑝2, 2𝑝𝑞, −2𝑞2 for genotype of AA, AB and BB of variant i and N was the total number of 594 

variants. We then applied equation 6 to conserved and non-conserved variants to estimate 595 

individual heterozygosity from conserved sites (𝐻′𝑐𝑜𝑛𝑠𝑗
) and non-conserved sites 596 

(𝐻′𝑛𝑜𝑛−𝑐𝑜𝑛𝑠𝑗
). We then fitted 𝐻′𝑐𝑜𝑛𝑠𝑗

 and 𝐻′𝑛𝑜𝑛−𝑐𝑜𝑛𝑠𝑗
 as fixed effects together with the fixed 597 

effects of breed jointly in GREML similar to equation 1. The difference was that there is no 598 

fixed effect of variants but more fixed effects due to the fitting of 𝐻′𝑐𝑜𝑛𝑠𝑗
 and 𝐻′𝑛𝑜𝑛−𝑐𝑜𝑛𝑠𝑗

. 599 

The GREML analysis used the implementation with MTG2 44. 600 

Mutant allele frequency and FST in different breeds/subspecies. Two sets of data were 601 

used for this analysis. The first dataset was the Australian dairy cattle (8,949 bulls and 602 

103,350 cows, Holstein, Jersey, Australian Red and crossbreds) used for GWAS as described 603 

above. The second data set used for the analysis of mutant allele frequency and FST was the 604 

curated whole-genome sequence data of 1,720 cattle from the 1000 Bull Genomes database 605 
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(Run 7) 21,22, which we refer to as modern and ancient cattle. Samples that met the quality 606 

criteria of the 1000 Bull Genomes project were selected and they included 210 Brahman, 25 607 

Tibetan, 10 Eurasian Aurochs, 242 Simmental, 95 Jersey, 843 Holstein and 295 Angus. 608 

Genome sequences from 6 Gir and 12 Nellore cattle from the 1000 Bull Genomes database 609 

were also analysed to support the results of mutant allele frequency of Bos indicus. 610 

Additional information on these 1720 animals including related accession numbers (if 611 

available) can be found in Supplementary Data 1. The ancient genome data were part of the 612 

project of Verdugo et al 2019 15 who processed and published the original data (PRJEB31621 613 

at European Nucleotide Archive). These data were collected by Run 7 of the 1000 Bull 614 

Genomes Project and processed by its standard pipeline 615 

(http://www.1000bullgenomes.com/).  616 

Sequence data at 7,910,190 variants assigned with mutant alleles were retrieved for these 617 

animals to make a plink (v1.9) binary genotype file. The A1 allele of the plink genotypes was 618 

set to the mutant allele and its frequency was calculated using the ‘--freq’ function for 619 

different selections of populations and variant sets. Average mutant allele frequency and the 620 

standard error were calculated for different selections of variants, e.g., variants with mutant 621 

alleles increasing or decreasing traits. Standard errors for frequency and FST (described 622 

below) were all estimated using LD-clumped variants in the same procedure in plink 29 as 623 

described above. For variants associated with milk production traits, i.e., the yield of milk 624 

protein, fat and milk and percentage of protein and fat, we selected variants with large 625 

(GWAS p-value < 5e-8 in both sexes) and small (GWAS p-value < 5e-2 and p-value > 5e-5 626 

in both sexes) effects to focus on. For other trait-associated variants, the group with the 627 

largest effects available were selected for this comparison. For example, for stature, there 628 

were no variants with p-value < 5e-8 in both sexes, we then selected the medium-effect 629 

variants (GWAS p-value < 5e-5 and p-value > 5e-8 in both sexes). For fertility, there was no 630 
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variants with p-value < 5e-5 in both sexes, we then selected the small-effect variants (GWAS 631 

p-value < 5e-2 and p-value > 5e-5 in both sexes) for the comparison. Average mutant allele 632 

frequency and the standard error were also calculated for all 7.9M variants analysed as the 633 

baseline. The analysis procedure for allele frequency on the Australian dairy cattle was 634 

applied to these 1000 Bull Genomes individuals. 635 

With the same plink binary genotype file described above and the population structure for 636 

dairy cattle (4 dairy breeds) and for ancient and modern cattle (7 breeds/subspecies), GCTA 637 

43 was used to calculate the FST value with the method described in Weir 49 with the option of 638 

‘--fst’ and ‘--sub-pop’. The average FST value with standard errors was then calculated for 639 

different selections of variants in the same fashion for selecting variant groups to compare the 640 

mutant allele frequency as described above. 641 

cis eQTL in milk cells. This analysis was based on 105 Holstein cattle who had RNA-seq 642 

data in milk cells described and published previously (NCBI SRA SRP111067) 23,24. The raw 643 

reads of these data were aligned to the ARS-UCD1.2 reference bovine genome using STAR50 644 

and the quality check followed what was described previously 23. FeatureCount 51 was used to 645 

extract gene counts and the voom 52 normalised counts were used in the following analyses. 646 

The normalised gene expression was analysed as phenotypes in the same GWAS model as 647 

equation 1 using GCTA, except that there were no breed effects (all animals are Holstein) but 648 

were other fixed effects of Experiment, Days in Milk, 1st PC and 2nd PC extracted from the 649 

expression count matrix. Variants analysed were those that had large positive effects and 650 

large negative effects (𝑝𝑔𝑤𝑎𝑠< 5e-8) on protein yield, fat yield, milk yield, protein % and fat 651 

%. For these variants, the normalised expression of genes within ±1Mb distance to them were 652 

analysed as phenotype. In other words, the analysis focused on cis eQTL genes for these 653 

large-effect variants were analysed. When GWAS results of gene expression were obtained 654 

(cis eQTL), the effect allele was mapped to the ancestral allele to determine the effects of 655 
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MAs. For quantifying the number of eQTL for each effect direction of MAs, only the SNPs 656 

with the smallest p-value were considered. 657 

 658 

Data availability 659 

Our predictions of cattle ancestral alleles for those 42,573,455 sites have been made publicly 660 

available at: https://figshare.com/s/dd5985b76a413b56106b. Multiple alignment data used to 661 

determine cattle ancestral alleles are publicly available via Ensembl EPO pipeline 662 

(http://asia.ensembl.org/info/genome/compara/multiple_genome_alignments.html). 663 

Australian farmers and DataGene Australia (http://www.datagene.com.au/) are owners and 664 

custodians of the raw phenotype and genotype data of Australian dairy animals. Access to 665 

these data for research requires permission from DataGene under a Data Use Agreement. The 666 

DNA sequence data as part of the 1000 Bull Genomes Consortium 20-22 are available to 667 

consortium members and the membership is open. Sequence data of 1832 samples from the 668 

1000 Bull Genome Project have been made publicly available at: 669 

https://www.ebi.ac.uk/eva/?eva-study=PRJEB42783. The gene expression data is publically 670 

available (NCBI SRA SRP111067). In addition: 1. The summary data of the effect direction 671 

and effect category of those 7.9M sequence variants for which the ancestral alleles can be 672 

assigned is published at https://figshare.com/s/ef020d948523c31c0e67; 2. The allele frequency 673 

of mutant alleles of those 7.9M sequence variants for which the ancestral alleles can be 674 

assigned for the Holstein and Jersey cattle from the 1000 Bull Genome Project is published at 675 

https://figshare.com/s/20154b1d8e60e012e532; 3. The coordinates of conserved sites analysed in 676 

the manuscript is published at: https://figshare.com/s/df9d3662f8f7fb8e72da. Other supporting 677 

data are shown in the supplementary materials of the current manuscript. 678 

 679 

Code availability 680 
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The probability of ancestral allele assignment used the software published by 25. The linear 681 

mixed model used GCTA 43 and MTG2 44. The Bayesian analysis used BayesR 53. The R 682 

code of estimating heterozygosity across conserved sites will be made public upon 683 

publication.  684 
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