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Abstract

Human intelligence is one of the main objects of study in cognitive neu-
roscience. Reviews and meta-analyses have proved to be fundamental to
establish and cement neuroscientific theories on intelligence. The predic-
tion of intelligence using in vivo neuroimaging data and machine learning
has become a widely accepted and replicated result. Here, we present a
systematic review of this growing area of research, based on studies that
employ structural, functional, and/or diffusion MRI to predict human intel-

ligence in cognitively normal subjects using machine-learning. We performed
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a systematic assessment of methodological and reporting quality, using the
PROBAST and TRIPOD assessment forms and 30 studies identified through
a systematic search. We observed that fMRI is the most employed modal-
ity, resting-state functional connectivity (RSFC) is the most studied predic-
tor, and the Human Connectome Project is the most employed dataset. A
meta-analysis revealed a significant difference between the performance ob-
tained in the prediction of general and fluid intelligence from fMRI data,
confirming that the quality of measurement moderates this association. The
expected performance of studies predicting general intelligence from fMRI
was estimated to be r = 0.42 (Clgs, = [0.35,0.50]) while for studies pre-
dicting fluid intelligence obtained from a single test, expected performance
was estimated as r = 0.15 (Clgse, = [0.13,0.17]). We further enumerate
some virtues and pitfalls we identified in the methods for the assessment
of intelligence and machine learning. The lack of treatment of confounder
variables, including kinship, and small sample sizes were two common oc-
currences in the literature which increased risk of bias. Reporting quality
was fair across studies, although reporting of results and discussion could be
vastly improved. We conclude that the current literature on the prediction of
intelligence from neuroimaging data is reaching maturity. Performance has
been reliably demonstrated, although extending findings to new populations
is imperative. Current results could be used by future works to foment new
theories on the biological basis of intelligence differences.

Keywords: Behavior, fMRI, Resting-State, deep learning, intelligence,

prediction, systematic review
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1. Introduction

Intelligence is a broad construct comprising multiple components, which
can be estimated with a range of well-established tests (Urbina 2011). Re-
gardless of the instrument, scores in intelligence tests are positively corre-
lated. G was postulated to be the “general factor” explaining this phe-
nomenon by Spearman (1904), whose evidence “[...] can be said to be over-
whelming” (Carroll 1997). Albeit originally terming it “general intelligence”,
Spearman later in his life adopted a critical view of the term and ceased to
associate it with G (Spearman 1927). Henceforth, to avoid ambiguities in this
review we will employ the widely used term “intelligence”. Even though G
successfully captures the overall positive correlation (Spearman 1904), there
is controversy regarding its validity as a single, all-encompassing, measure of
intelligence. An alternative view posits that intelligence comprises multiple
factors (Thurstone 1938). Posteriorly, an integrated model for intelligence
called Gg-Gc¢ was proposed by Cattell (1941, 1971). Gg stands for fluid in-
telligence and is associated with inductive and deductive reasoning, covering
non-verbal components; therefore, it does not depend on previously acquired
knowledge and the influence of culture. Concept formation and recognition,
identification of complex relationships, understanding of implications, and
making inferences are examples of tasks related to Gg. On the other hand,
Gc, crystallized intelligence, comprises the knowledge acquired through life
experience and education related to cultural experiences. Hence, crystallized
capacities are demonstrated, for example, in tasks regarding the recognition
of the meaning of words (Schelini 2006). While the scientific construction of

G is based on correlations between test scores, intelligence quotient (IQ) is
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based on the sum of standardized scores of commonly used cognitive batter-
ies, such as Wechsler scales with full scale 1Q (FSIQ), verbal 1Q (VIQ), and
performance 1Q (PIQ). FSIQ scores are excellent measures of G (Gignac et
al. 2017) representing the general level of cognitive functioning. VIQ relates
to verbal comprehension, acquired knowledge, language processing, verbal
reasoning, attention, verbal learning, and memory. In sharp contrast, PIQ
is connected to perceptual organization, processing visual, planning ability,
non-learning-verbal and thinking skills, and manipulating visual stimuli with
speed.

Studies show associations between brain and behavior measurements.
The first finding was the positive correlation between brain volume or in-
tracranial volume and intelligence (Luders et al. 2009; McDaniel 2005). Other
structural MRI (sMRI) correlates of intelligence include fine-grained mor-
phometry, such as callosal thickness (Luders et al. 2007), striatal volume (Grazio-
plene et al. 2015) and regional gray and white matter volumetry (Haier et al.
2005). Functional connectivity (FC), as measured by functional MRI (fMRI),
has reliably been shown to correlate with G and 1Q. This includes correlations
between resting-state FC (RSFC) network organization and FSIQ (Pamplona
et al. 2015; Song et al. 2008) and regional global connectivity and Gg (Cole
et al. 2012). The topography of task fMRI (T-fMRI) statistical maps have
been found to correlate with intelligence as well (Choi et al. 2008; Graham
et al. 2010). Correlates of intelligence extend beyond fMRI RSFC and task
activations as well, to include measures such as amplitude of low frequency
fluctuations (ALFF) and dynamic functional connectivity (dynFC). Using mul-

timodal magnetic resonance imaging (MRI) Ritchie et al. (2015) demonstrates
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a plethora of correlates of G, including diffusion MRI (dMRI). For extensive
literature reviews, see Basten et al. (2021) and Dizaji et al. (2021).

Previous reviews (Barbey 2018; Jung et al. 2007) and meta-analyses (Bas-
ten et al. 2015; McDaniel 2005; Pietschnig et al. 2015) were fundamental in
the development of theories of biological intelligence. At the time studies per-
forming predictive analyses were scarcer than today. This type of analysis
enjoys growing popularity in neuroimaging (Bzdok 2017; Bzdok et al. 2018).
machine learning (ML)-based predictive analyses allow one to test a much
more complex hypothesis space than univariate, group-based testing. The
multivariate nature of ML allows interactions and commonalities between
predictors to be taken into account. It also “tests” such hypotheses on the
basis of individualized predictions, taking into account heterogeneity that is
diluted in group-based analyses (Sui et al. 2020). Data-driven studies based
on ML are fundamental to understand the degree that variability in brain
phenotypes explain variability in intelligence. ML-based studies also address
the question of generalizability patterns at the forefront. For these reasons,
this type of study is widely used in the investigation of behavior, with cog-
nition and, specifically, human intelligence as the most studied domains (Sui
et al. 2020).

While the literature of brain correlates on intelligence covers various tech-
niques, such as sMRI, fMRI, dMRI, positron emission tomography (PET),
electroencephalography (EEG), magnetoencephalography (MEG), predictive
studies are limited in this regard. Availability is one of the main factors be-
hind that choice, because ML benefits from large amounts of data (Cui et al.

2018). Small data has been identified as one source of optimistic bias in error-
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bars (Varoquaux 2018), and leads to non-reproducible results. Large-scale
open-data imaging cohorts are often centered on fMRI, with sMRI and dMRI
providing complimentary information. For this reason, we opted to focus on
fMRI, sMRI and dMRI, anticipating a small incidence of studies using other
imaging modalities.

A large number of studies on the prediction of intelligence was published
in recent years. To the best of the authors’ knowledge, no review on this
application of ML to predict human intelligence from brain imaging has been
previously published. The purpose of this review is to identify existing litera-
ture, critically appraise reporting and methodology. We hope that our work
will promote the establishment of best practices and prospects for future

research in this field of research.

2. Methods

This review was developed following Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines for transparent
reporting of systematic reviews (Moher et al. 2009). See Table B.4 for the
PRISMA checklist. ~ Choice of methods and search strategy are based on
a protocol we developed and registered at Open Science Framework (Vieira

et al. 2021a). Post-hoc adaptations are mentioned below, when applicable.

2.1. Eligibility criteria
Eligibility criteria were peer-reviewed original articles written in English
that performed individualized prediction of intelligence using at least one of

fMRI, sMRI and dMRI in neurotypical human subjects using ML and include
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evaluation of generalizability, i.e. cross-validation, bootstrapping, or external

validation.

2.2. Information sources

We performed a systematized search in Scopus (scopus.com), dating to
15th December 2020. Additional documents were retrieved from a recent
literature review (Dizaji et al. 2021), co-authored by B.H.V. and C.E.G.S.,
and another study (Fan et al. 2020, Table 1) that provide a comparison

between similar studies.

2.3. Search strategy

We retrieved all documents in Scopus that contained at least one of the
following terms in their title, abstract, or keywords: “morphometry”, “cor-
tical thickness”, “functional connectivity”, “structural connectivity”, or “ef-
fective connectivity”. Simultaneously, the document should contain at least
one of the following terms: “prediction”, “predict”, “CPM”, “multivariate
pattern analysis”, “bases”, “variability”, or “mvpa”’. The documents should
also contain in their title one of the following terms: “intelligence”, “behav-
ioral”, “behavior”, “cognitive ability” or “cognition”. See Appendix A for
the actual search string used.

After removal of duplicates, all records had title and abstract screened.
Records were discarded if we could identify disagreement with inclusion cri-
teria, and kept otherwise. Remaining records were retained for full-text in-
spection. If in accordance with the inclusion criteria, these were retained

as eligible for qualitative synthesis. Otherwise discarded with reasons, e.g.,
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non-human subjects, no validation or other generalizability evaluation, did

not predict intelligence, did not use neurotypical subjects.

2.4. Data collection process

We originally planned to use the CHecklist for critical Appraisal and data
extraction for systematic Reviews of prediction Modelling Studies (CHARMS)
checklist (Moons et al. 2014), but ultimately it became clear that we needed
a form tailored for our research question. We constructed our own data
extraction form, borrowing from CHARMS.

An online document was created and shared between authors B.H.V.,
K.F. and A.K.S. All three authors performed data extraction, including: (1)
identification (title, year, source title, digital object identifier), (2) study
population (dataset, number of subjects for psychometric assessment, num-
ber of subjects for prediction, age and sex characteristics of the sample), (3)
methods (imaging modality, input features, number of features, ML models,
validation strategy, performance metrics, a priori feature selection, construct,
instrument, components of intelligence, scores, quality of cognitive assess-
ment), (4) results (performance of individual methods/data combinations,
best performance).

Regarding the quality of intelligence measurement, retrieved items in-
cluded, when applicable: number of subtests, number of dimensions, time
duration of test application, test completeness. These are important to as-
sess whether the test properly measures intelligence and is applicable to the
construct.

We additionally retrieved citations among identified documents, to build a

citation network. Due to differences in formats and unreliability of automatic
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searching, we opted to perform a manual search over all documents. For
each identified studied, we searched for the names of first authors of every
other document. For consistency, we opted to consider citations of pre-print
versions (same authors and title) of identified documents.

We used the Prediction model risk of bias assessment tool (PROBAST)
to assess risk of bias (RoB) and concerns regarding applicability in individual
studies. This was a choice made post-hoc to the registration of the study.
We originally planned to create an RoB assessment checklist for the reviewed
studies, but after registration we became aware of PROBAST, which fulfilled
this role, requiring minimal adaptations. This assessment was performed at
the result-level.

It is critical to ensure that reporting is transparent in order to ensure
that findings can be replicated. We also used the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis or Diagno-
sis (TRIPOD) (Collins et al. 2015; Moons et al. 2015) checklist assessment
tool (Heus et al. 2019) to evaluate reporting quality. We used a modified
version tailored for ML predictions (Wang et al. 2020), including three modi-
fied items, shown in Table D.5. Several items in TRIPOD were not adequate
for our research question, and were removed from the questionnaire for our
evaluation. A few items and subitems were deemed not applicable or not
important to our review question, and their assessments do not appear in
this review. Namely, 1.i, 1.iii, 2.iii, 2.iv, 2.xi, 3b, 4a, 4b, 5c, 6b, Ta.iv, 7b,
10a, 10b.iv, 10b.v, 10c, 10d.ii, 10e, 11, 13a, 13b.iii, 13b.iv, 13c.ii, 15a.ii, 15b,
16.iii, 17, and 20.i, 22.ii. Items 1 and 16.i were edited to allow NA entries, due

to studies that had broader scopes than the one pertaining to this review’s
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question. Item 13b, pertaining to demographics, requires description of the
actual data being used, and not from the original sample before exclusions.
[tems 13b and 14a, that should be assessed based on “Results” sections,
were extended to “Methods” sections as well. We performed the TRIPOD
assessment at the study-level and performed across-studies summarization
of reporting quality ratings.

Authors G.S.P.P. and B.H.V. completed PROBAST and TRIPOD indepen-
dently. To ensure both reviewers’ interpretations were aligned, calibration
was performed twice, using one study from each checklist on each occasion.
Interrater agreement was then computed based on the Kappa statistic, at
the score-level, for the remaining documents, excluding the two used for cal-
ibration.

The quality of measurement of intelligence is linked to validity and can
interfere on results of each study. For example, Gignac et al. (2017) demon-
strated that the quality of measurement moderates the association between
intelligence and brain volume. The guide for categorization of measurement
quality by Gignac et al. (2017) proposes four quality criteria: the number
of tests, the number of group-level dimensions, testing time, and correlation
with G. Authors K.F. and A.K.S. performed the assessment of measurement
quality based on these criteria. “Number of tests” is categorized into 1, 1-
2, 2-8, and 9+ which signal “poor”, “reasonable”, “good”, and “excellent”
measures of G, respectively, in the absence of any other information. There-
fore, a minimum of nine tests is needed to represent an excellent G. The
“number of group-level dimensions” criterion is divided into 1, 1-2, 2-3, and

3+ test dimensions, leading to the respective classifications “poor”, “reason-
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able”, “good”, and “excellent” measures of G, in the absence of any other
information. So, an excellent measure of G is expected to present at least
three group-level dimensions, e.g., G, G¢, processing speed. “Testing times”
of 3-9 min, 10-19 min, 20-39 min, and 40+ minutes are respectively classified
as possibly “poor”, “reasonable”, “good”, and “excellent” measures of G.
The last criterion, “correlation with G”, is the best indicator of measurement
quality and takes precedence over the others. However, this correlation is
scarcely reported. Gignac et al. (2017) recommends substituting the corre-
lation with G with the three other criteria.

The primary measure of prediction performance evaluation was chosen
to be the Pearson correlation coefficient, R-squared and mean squared error
(MSE). See Appendix C for a mathematical description of different perfor-
mance measures. The Pearson correlation coefficient is the most used mea-
sure in the literature. It is scale- and location-invariant, which means that
high values can be obtained with arbitrarily large errors. R-squared, when
properly evaluated, is a less biased measure of explained variance than the
correlation coefficient squared. However, it also suffers from its own biases
that will be discussed below, requiring proper care regarding the variance of
the sample. Ideally, MSE or mean absolute error (MAE) should be used when
comparing different models applied to the same data (Poldrack et al. 2020).
Regardless of the choice of the performance measure, comparisons between
modeling approaches using different data can be ambiguous, since intrinsic

variation can differ between datasets.
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2.5. Synthesis of results

To determine the level of performance expected for each modality, we
estimated a mixed-effects meta-analytic model using the package “metafor”
in R 4.0.5 (Viechtbauer 2010) using results that were rated with both low
RoB and low concerns regarding applicability in PROBAST. The number
of samples was taken to be the total number of subjects used in the esti-
mation of performance with pooled or unpooled means. We employed the
Hunter-Schmidt estimator to deal with the sampling variance, which entails
a homogeneity assumption. Different datasets and measurements of intelli-
gence were treated as fixed effects. The same procedures were used for the
R-squared, except that the Hunter-Schmidt estimator was not applied , since
it pertains exclusively to correlation coefficients. Residual heterogeneity, i.e.
the variability unaccounted for by the model and covariates, was measured
by the I? statistic.

Standard errors are seldom reported in the literature. Moreover, due to
the nature of cross-validation (CV), where resulting models across folds are
not independent, standard errors are underestimated (Varoquaux 2018).

Assessment of within-study selective reporting is unfeasible in our setting;,
due to the lack of pre-registrations. Due to computational resources available
today, the risk of selective reporting is real, leading to overfitting of the
validation set. For an in-depth exposition, see Hosseini et al. (2020).

The funnel-plot was used to qualitatively assess the risk of publication
bias.

Since one of the biggest bottlenecks for ML is sample size, we compared

the number of training samples used with measured performances across
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studies. Training set size is often not homogeneous within studies. For CV-
based studies, including leave-one-family-out CV, we chose to approximate it
as N x (K —1)/K, where N is the total amount of data available for training
and K is the number of groupings, i.e. folds or families. The formula holds
true for leave-one-out CV as well. For Holdout-based studies, the actual

number of training data is given by the studies.

3. Results

Our search strategy identified 689 records in Scopus. Additionally, 17
records were identified from Dizaji et al. (2021) and 7 in Fan et al. (2020).
63 records remained after removal of duplicates and screening. These were
submitted to full-text eligibility analysis. 30 records were considered eligible
for qualitative synthesis. See Figure 1. The number of studies per year is
shown in Figure 2. General characteristics from each document obtained

with our data extraction form are reported in Table 1.
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Figure 1: Systematic review flow diagram. See PRISMA statement (Moher et al. 2009)
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Figure 2: Year of publication of the 30 studies identified. An upward tendency is demon-
strated, with 20 studies being published in 2019 and 2020 alone.
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Studies Number of subjects Input ML models Validation strategy Target
Choi et 408 for FA, 225 for predic- i . fMRI & sMRI Linear modelling Independent test sample G
al. 2008 tion from NRI/KAIST (train- . Cortical thickness, T-fMRI activation in a (derived from sepa-
ing data: 116 sMRIs and fluid reasoning task, gray matter volume, sex rate structural and
61 fMRIs; test data: 48); functional samples)
Yang et 78 from NRI sMRI PLSR LOoCv FSIQ
al. 20132P Cortical thickness, surface area,
: sulcal depth, mean curvature
Finn et 118 from HCP (Q2 release) fMRI CPM LOOCvV Gg
al. 2015 RSFC under various preprocessing pipelines
Wang et 164 from ABIDE sMRI Multi-kernel KSVR Repeated (10x) 10-fold CV, 1Q
al. 20152P Regional gray and white matter volume following multiple with inner CV (unspeci-
feature selection fied) for parameter tuning
Ferguson 830 from HCP (S900 release) (600 . fMRI LASSO Independent test sample Gg
et al. 2017P for training, 230 for testing) Scaled elgey'l\{alues from spectral
decomposition of concatenated
RS-fMRI, products of eigenvalues
Powell et 841 from HCP dMRI LASSO PCR 5-fold CV Gp
al. 20172 Local Connectome Finger-
prints and intracranial volume
Greene et 515 from HCP; 571 from PNC RSEC and T-fMRI fMRI CPM LOOCV (within samples) and Gp
al. 20187 and 1~ activation between samples/between
(7 tasks in HCP, 2 in PNC) conditiol;s v/alidation
Dubois et 884 from HCP (51200 release) fMRI CPM & elastic net LOFOCV (410 families) Gp
al. 2018b? RSFC under various preprocessing pipelines following uni-
variate filtering
Dubois et al. 884 for CV, 1181 for FA from HCP fMRI Elastic Net after LOFOCV G
2018a2P RSFC univariate filtering
Li et al. 100 from HCP (Un- fMRI L2SVR LOOCV Gg
20182P related subjects) ALFF following voxelwise uni-
variate filtering, seed-based FC
Cox et 27100 for FA and 4768 for train- sMRI & dMRI MIMIC Independent test sample G
al. 2019P ing, 2510 for testing with frac- ROl white matter mean diffusivity and (Manchester = training
tiQnal anisotropy; 4707 fpr train- fractioqal anisotropy aqd gray mat- data, Newcastle = test data)
ing, 2494 for testing with mean ter cortical and subcortical volumes
diffusion; cortical: 5246 for train-
ing, 2589 for testing with cortical
volume; 5253 for training, 2595
for testing with subcortical
volume; from the UK Biobank
Yang et 68 from HCP-Q1 fMRI Linear regression LOOCV G
al. 2019° RS-fMRI temporal variances of tem-

poral autocorrelations (sulci, gyri,
undefined cortices) from four ROls
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Table 1 continued from previous page

Studies Number of subjects Input ML models Validation strategy Target
Zhang et 1065 from HCP dMRI & fMRI Linear regression 5-fold CV G
al. 2019 Structural connectivity tensor (weighted (after tensor network

according to 12 factors based on dif- PCA with k = 60)
fusion, endpoints and geometry);
RSFC; local structural connectivity

Gao et 515 from HCP; 571 from PNC fMRI rCPM, GFC-ridge, Repeated (100x) 10-fold Gg
al. 20192 RSFC and T-fMRI FC cCPM, CPM, GFC-CPM CV; External Validation

Dadi et 443 from HCP (213 High IQ, fMRI K-Nearest Neighbors Repeated (100x) Strat- Gg
al. 2019 230 Low IQ, based on terciles) RSFC (K = 1, Euclidean ified Holdout (75%)

distance metric), Gaus-
sian Naive Bayes,
Random Forests,
L1-SVC L1-LogReg,
Ridge classification,
L2SVC, L2LogReg,
10%-univariate
ANOVA SVC
Elliott et 298 from HCP; 591 fMRI CPM LOOCV (within samples) and Cognitive
al. 2019 from Dunedin Study RSFC, GFC between samples validation Ability
lYé:)(t):)lgt 316 unrelated subjects (out of Bivari a L fMRI CPM Repeated (5000x) 10-fold CV Gg
al. ivariate and multivariate
563) from HCP (51200 release) (distance correlation) RSFC
Li et al. 862 from BGSP, 953 from HCP fMRI KRR (correla- 20-fold nested family-aware G
2019 RSFC tion kernel) CV, inner 20-fold CV for
selection of parameters
Kashyap 803 from HCP RSEC with 4 with o ﬂ\ARI Elaspi% Nf?ltt after 20-fold nested CV, with G
. a with and without Common Or- univariate ering i CV for tuni
et al. 2019 thogonal Basis Extraction (COBE) mmer or tuning
Kong et 577 from HCP . . fMRI KRR (dice over- Repeated (100x) 20-fold Gg
al. 2019? Dice overlap kernel of different parcel- lap kernel) family-aware CV nested with
lation algorithms (ICA back-projection inner tuning 20-fold CV
algorithm, individual-specific parcella-
tion algorithm of Gordon, parcellation
algorithm of Wang, multi-session hier-
archical Bayesian model (MS-HBM))
Dryburgh 226 from ABIDE-I fMRI CPM LOOCV FSIQ and Verbal
et al. 20202P RSFC intelligence
quotient (VIQ)
Jiang et al. 326 from UESTC fMRI & sMRI CcCPM LOOCV FSIQ
2020b2P RSFC, cortical thickness (vertexwise)
Hilger et 308 from NKI (Enhanced) sMRI PCA-SVR & Atlas-SVR 10-fold CV (with nested inner FSIQ
al. 20202b Gray matter volume (voxel and regionwise) 3-fold CV for parameter tun-
ing) stratified for intelligence
Fan et al. 1050 from HCP fMRI Deep neural network 10-fold CV (no splitting Gg and Crystal-
20202P dynFC (CNN-LSTM), SVR runs from the same subject) ized Intelligence
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Table 1 continued from previous page

Studies Number of subjects Input ML models Validation strategy Target
Sripada et 967 for T-fMRI, 903 for RS-fMRI X . . fMRI Linear regres- 10-fold family-aware CV General Cog-
al. 20202P from HCP (S1200 release) Brain Basis Set (BBS) modeling de- sion (75 compo- nitive Ability

composition of task contrasts, RSFC nents/coefficients) (computed
for each fold)

Wei et 1003 (812 “recon2” used fMRI CPM, SVR, LASSO, 10-fold stratified CV & in- Gg

al. 2020 as discovery set; 191 “re- RSFC and Ridge regression, dependent validation set
conl” as validation set) after Bootstrapp@ng
from HCP (S1200 release) Feature selection
He et al. 953 from HCP (S1200 re- fMRI KRR, FNN, Brain- HCP: 20-fold family-aware CV G
2020 lease); 8868 from UK Biobank RSFC NetCNN, GNN nested with inner tuning; UK
Biobank: Holdout (6868 training,
1000 validation and 1000 test)
Jiang et al. 360 from UESTC; 200 fMRI LASSO LOOCV (with nested FSIQ and Gg
2020a2P from HCP (Q3 release); RSFC 10-fold CV for tuning)
120 from COBRE (60 HCs)
Wu et al. 922 from HCP (S1200 release) o . fMRI PLSR Independent test sample Gg and Fluid,
2020 (830 for training and 92 for test) T-fMRI activation in seven HCP tasks Crystalized and
(emotion, gambling, language, motor, re- Total Scores
lational, social, and working memory)
Lin et al. 143 (1 subject with missing dMRI & fMRI CPM LOoCv Gg
20202 data) from HCP (S900 release) RSFC and structural connectivity (quanti-
tative anisotropy, mean streamline length,
and normalized number of streamlines)
Table 1: General characteristics of documents retrieved using based on our data extraction form. “a”: primarily about

predictive modeling; “b”: primarily about intelligence;
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A co-citation network is shown in Figure 3. Arrows point from the cited
to the citing document. In total, 78 citations were identified. This network
systematically demarks highly influential works in the sample. Finn et al.
(2015) is cited by 23 studies, out of 26 studies that were published posteriorly
to it.

Regarding data sources, 23 (77%) studies used different releases of the
Human Connectome Project (HCP). Among these, 17 (57%) studies use solely
HCP data. 6 (20%) studies used the HCP together with other datasets, such
as the Philadelphia Neurodevelopmental Cohort (PNC) data, the Dunedin
Study, Center for Biomedical Research Excellence (COBRE) and University of
Electronic Science and Technology of China (UESTC), the UK Biobank, and
Brain Genomics Superstruct Project (BGSP). Other sources of data included
the Neuroscience Research Institute (NRI) (Choi et al. 2008; Yang et al.
2013), Korea Advanced Institute of Science and Technology (KAIST) (Choi
et al. 2008), Autism Brain Imaging Data Exchange (ABIDE) (Dryburgh et
al. 2020; Wang et al. 2015), UK Biobank (Cox et al. 2019), Nathan Kline
Institute - Rockland Sample (NKI) (Hilger et al. 2020) and UESTC (Jiang
et al. 2020b). All sources of data provide images acquired with 3 T MRI
scanners, with the exception of NRI, that only includes data acquired with
1.5 T. See Figure 4a.

Regarding imaging modality, 21 (70%) studies only used fMRI data. sMRI
was the only imaging modality in 3 (10%) studies. 1 (3%) study concerned
only dMRI. Multimodality was also explored, with fMRI and sMRI in 2 (7%)
studies, sMRI and dMRI in 1 (3%) study, and dMRI and fMRI in 1 (3%) study.
No study performed multimodal prediction based on fMRI, sMRI and dMRI
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Figure 3: A citation network relating all 30 studies identified in Figure 1. Colors are used
to better differentiate studies and carry no meaning. Arrows are colored according to

parent nodes and point from the cited work to the one citing it.
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(a) Sources of data (b) Imaging modality

Figure 4: General characteristics of eligible studies. (a) shows the main sources of data
identified in the sample. 23 (77%) studies employed different releases of the HCP, with
17 (57%) based solely on HCP data. (b) shows the use of different imaging modalities.
Shown in blue, 25 studies were based on unimodal data: 21 (70%) used fMRI, 3 (10%)
used sMRI and 1 (3%) used dMRI exclusively. Shown in red, the remaining five studies
employed multimodal data: 2 (7%) used fMRI and sMRI, 1 (3%) used sMRI and dMRI, 2
(7%) used dMRI and fMRI.

simultaneously. Also, all studies used solely MRI data, i.e. no additional
imaging such as PET, EEG or MEG is used. See Figure 4b.

We identified four constructs reported as outcomes. Gg is an outcome in
20 (67%) studies, IQ in 6 (20%) studies, general intelligence, general cognitive
ability or G appears in 4 (13%) studies and cognitive ability appears in 1
(3%) study. 2 (3%) studies reported results on Gg and other NIH Toolbox
for Assessment of Neurological and Behavioral Function (NIHTB) cognition

scores (Fan et al. 2020; Wu et al. 2020), i.e. total, fluid and/or crystallized
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cognition scores. 1 (3%) study includes measures of both 1Q and Gg as
outcomes (Jiang et al. 2020a).

The most common reported instrument is the 24-item Raven’s Progressive
Matrices (RPM), appearing in 22 (73%) studies. In all these studies, the
RPM employed is the Penn Matrix Test (PMAT), from the University of
Pennsylvania Computerized Neurocognitive Battery (PennCNB), which also
appears in 18-item format in 2 (7%) studies (Gao et al. 2019; Greene et al.
2018). The 36-item Raven’s Advanced Progressive Matrices Set II appears
in 1 (3%) study (Choi et al. 2008), as one test in the estimation of G. All 20
studies that studied G reported the usage of RPM. 3 (10%) of these studies
also studied additional scores, either due to availability in specific datasets
or as parallel measures. These are the Wechsler Adult Intelligence Scale
(WAIS) matrix reasoning test score, as a substitute for Gg in the BGSP (Li
et al. 2019), and NIHTB fluid cognition scores (Fan et al. 2020; Wu et al.
2020). RPM-like tests also appear in studies that derive G from analytical
decomposition of test scores (Choi et al. 2008; Dubois et al. 2018a; Sripada
et al. 2020). See Table 2.

We used qualitative cues in titles and abstracts to determine the overall
scope of studies. 10 (33%) studies had prediction of intelligence as their
primary objective. Other 10 (33%) studies were concerned primarily with
predictive modeling, although not focused on intelligence. 4 (13%) studies
focused primarily on intelligence, but not primarily on predictive modeling.
The remaining 6 (20%) studies did not focus primarily on intelligence and
primarily on predictive modeling, albeit including results on both.

Out of the 25 (83%) studies employing fMRI, 20 (67%) explored FC. All
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of these 20 include RSFC-based analyses, while 12 (40%) studied RSFC ex-
clusively. In 19 (63%) studies, the only fMRI data was resting-state fMRI
(RS-fMRI). 6 (20%) studies used T-fMRI, with task FC and/or spatial to-
pographies as inputs (Choi et al. 2008; Elliott et al. 2019; Gao et al. 2019;
Greene et al. 2018; Sripada et al. 2020; Wu et al. 2020). Choi et al. (2008)
employed a fluid reasoning task. Elliott et al. (2019), Gao et al. (2019),
Greene et al. (2018), Sripada et al. (2020), and Wu et al. (2020) employed
seven tasks from the HCP. Additionally, Gao et al. (2019) and Greene et al.
(2018) used the working-memory and emotion identification tasks from the
PNC and Elliott et al. (2019) employed the emotion processing, color Stroop,
monetary incentive delay and episodic memory tasks from the Dunedin study.

Not counting intracranial volume, which is used both as a predictor and
as a confounder in several studies, all 6 (20%) studies reporting usage of
sMRI employ morphometric measurements as predictors. The small sample
of dMRI-including studies included as predictors mean diffusivity and frac-
tional anisotropy, structural connectivity, local connectome fingerprints, and
structural connectivity tensors and local structural connectivity.

Regression based on linear models was reported in 25 (83%) studies.
Among these, 10 (33%) reported use of some form of penalized linear mod-
eling. 10 (33%) reported using Connectome Predictive Modeling (CPM). 4
(13%) reported using Support Vector Regression. 5 (17%) reported using
linear regression, either on inputs or on extracted components, e.g., Prin-
cipal Components Regression. 2 (7%) reported using Partial Least Squares
Regression. Regression based on nonlinear models was reported in 5 (17%)

studies. These include polynomial Kernel SVR (Wang et al. 2015), corre-
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lation kernel ridge regression (KRR) (He et al. 2020; Li et al. 2019), dice
overlap KRR (Kong et al. 2019) and deep learning, based on convolutional
neural networks (CNNs), graph neural networks and fully connected deep
networks (He et al. 2020) or recurrent neural networks (RNNs) (Fan et al.
2020).

In 29 (97%) studies, prediction of intelligence was implemented as regres-
sion, i.e. prediction of a continuous variable. 1 (3%) study (Dadi et al. 2019)
performed classification, subdividing subjects into two groups, one with high
and the other with low 1Q. They report using Support Vector Classification
and Penalized Logistic Regression, as linear models, and 1-Nearest Neighbor,
Naive Bayes and Random Forest, as non-linear models.

Regarding the level of spatial abstraction of input data, 26 (87%) stud-
ies presented inputs at the regional level, either intra-regional features 7
(23%), e.g., regional cortical thickness estimates, or inter-regional features in
20 (67%) studies, e.g., RSFC. Inter-voxel predictors appear in 2 (7%) stud-
ies (Powell et al. 2017; Zhang et al. 2019), in the form of local dMRI structural
connectivity. Intra-voxel predictors appear in 5 (17%) studies (Hilger et al.
2020; Jiang et al. 2020b; Kong et al. 2019; Li et al. 2018; Wu et al. 2020),
e.g., seed-based FC or voxelwise morphometry, ALFF, or T-fMRI statistical
maps. No study used raw or minimally preprocessed imaging data directly
as input to ML models.

In total, discounting censored and unclear results, e.g., results presented
only graphically, 209 results are presented across 25 studies, encompassing
10 performance metrics. These are Pearson correlation coefficient, Spear-

man rank correlation coefficient, R-squared, square root of R-squared, MAE,
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MSE, root MSE (RMSE), normalized RMSE (NRMSE), normalized root mean
squared deviations (nRMSD), and area under the ROC curve (AUC). See Ap-
pendix C for the mathematical definition of each.

From the 30 studies encompassed in this review, 9 did not directly men-
tion the tests used (Dadi et al. 2019; Dryburgh et al. 2020; He et al. 2020;
Kashyap et al. 2019; Kong et al. 2019; Li et al. 2019; Wang et al. 2015; Wu
et al. 2020; Yoo et al. 2019). Supplementary materials and citations were
consulted to identify tests used in all but one study (Dryburgh et al. 2020).
See Table 2. There was, however, little information about the measurement’s
validity for the populations under study. 3 studies cited references deemed
adequate (Ferguson et al. 2017; Wei et al. 2020; Yang et al. 2019), whereas
partial references were cited in 2 studies (Hilger et al. 2020; Lin et al. 2020).

Regarding measurement quality, 7 measurements were rated as excellent,
distributed across 8 (27%) studies. 6 measurements were rated as good,
distributed across 5 (17%) studies. 7 measurements were rated as fair, dis-
tributed across 21 (70%) studies. 1 (3%) study has a measurement of 1Q
which we could not identify, based on pre-processed ABIDE, which include

multiple instruments. See Table 2 for detailed ratings.
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Studies Measurement Number Dimensions Testing Rating
of tests time
(min)
Choi et al. 2008 G (principal component of 36- 9+ 3+ 40+ 4
item RPM and K-WAIS-R subtests)
Dubois et al. 2018a; Sripada et al. 2020 G (FA of 10 tests in the 9+ 3+ 40+ 4
NIHTB and PennCNB)
Cox et al. 2019 G (FA of 4 tests in the UK Biobank) 2-8 3+ 20-39 3
Yang et al. 2013 FSIQ (K-WAIS-R) 9+ 3+ 40+ 4
Jiang et al. 2020a FSIQ (WAIS) 9+ 3+ 40+ 4
Jiang et al. 2020a,b FSIQ (Chinese WAIS) 9+ 3+ 40+ 4
Wang et al. 2015 1Q (WISC-IV in ABIDE) 9+ 3+ 40+ 4
Hilger et al. 2020 FSIQ (WASI in NKI) 2-8 3+ 40+ 3
Wang et al. 2015 1Q (WASI in ABIDE) 2-8 3+ 40+ 3
Dryburgh et al. 2020 1Q (Unclear) ? ? ? ?
Dadi et al. 2019; Dubois et al. 2018b; Gg (24-item RPM number of 1-2 1-2 3-19 2
Fan et al. 2020; Ferguson et al. 2017; correct responses in HCP)
Finn et al. 2015; Gao et al. 2019; Greene
et al. 2018; He et al. 2020; Jiang et al.
2020a; Kashyap et al. 2019; Kong et
al. 2019; Li et al. 2018; Li et al. 2019;
Lin et al. 2020; Powell et al. 2017; Wei
et al. 2020; Wu et al. 2020; Yang et al.
2019; Yoo et al. 2019; Zhang et al. 2019
Li et al. 2019 Gg (WAIS - Matrix Reasoning test) 1-2 1-2 ? 2
Gao et al. 2019; Greene et al. 2018 Gg (18-item RPM in PNC) 1-2 1-2 3-19 2
Gao et al. 2019; Greene et al. 2018 Gg (24-item RPM in PNC) 1-2 1-2 3-19 2
Powell et al. 2017 Gg (24-item RPM total 1-2 1-2 3-19 2
skipped items in HCP)
Powell et al. 2017 Gg (24-item RPM median reaction 1-2 1-2 3-19 2
time for correct responses in HCP)
Wu et al. 2020 Total cognition score (com- 2-8 3+ 40+ 3
posite score from the NIHTB)
Wu et al. 2020 Fluid cognition score (com- 2-8 3+ 40+ 3
posite score from the NIHTB)
Fan et al. 2020; Wu et al. 2020 Crystallized cognition score (com- 2-8 3+ 40+ 3
posite score from the NIHTB)
Elliott et al. 2019 Cognitive ability (WAIS- 9+ 3+ 40+ 4
IV in the Dunedin study)
Elliott et al. 2019 Cognitive ability (24- 1-2 1-2 3-19 2

item RPM in HCP)

Table 2: On the quality of the measurement of intelligence. This categorization follows

a set of rules established in Gignac et al. (2017). 1 = poor, 2 = fair, 3 = good, 4
FA = factor analysis; K-WAIS-R = Korean WAIS-R; WASI

excellent, ? = unclear.

Wechsler Abbreviated Scale of Intelligence; WISC-IV = Wechsler Intelligence Scale for

Children - 4th edition.
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The assessments of RoB and applicability are shown in Table 3. In to-
tal, 8 (27%) studies were rated with low overall RoB and low concern re-
garding applicability. This includes five development-only studies (Dubois
et al. 2018a,b; He et al. 2020; Li et al. 2019; Sripada et al. 2020), one
development-validation study (Cox et al. 2019), and the validation portions of
two development-validation studies (Elliott et al. 2019; Greene et al. 2018).
These are eligible for quantitative synthesis, 7.e. meta-analysis. Li et al.
(2019) does not present prediction results in text format however, and thus
was not used. Results pertaining to sMRI and dMRI encompass only the
4 results in Cox et al. (2019), and thus these modalities were ineligible for
quantitative synthesis, per our protocol. 89 results identified among the re-
maining 6 studies were suitable for quantitative synthesis: 3 in Dubois et al.
(2018a), 8 in He et al. (2020), 16 in Sripada et al. (2020), 39 in Dubois et
al. (2018b), 6 in Greene et al. (2018), and 17 in Elliott et al. (2019). All
of these employed fMRI solely and reported either the Pearson Correlation
Coefficient or R-squared, with the exception of Greene et al. (2018), which
reported squared Spearman Rank Correlation. We opted to group this result

with R-squared.
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ROB Applicability Overall
Studies D/V
Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability
Choi et al. 2008 D - - ? + - - - + -
Yang et al. 2013 D - - - + - - - + _
Finn et al. 2015 D - - - + - - - + _
Wang et al. 2015 D ? — — + ? _ ? + ?
Ferguson et al. 2017 D - - - ? - — - ? _
Powell et al. 2017 D ? - — ? - — _ ? _
Greene et al. 2018 D - - - ? - - - ? _
Greene et al. 2018 \% - - - - - - - — _
Dubois et al. 2018b D - - - — - - _ _ _
Dubois et al. 2018a D - - - — - - _ _ _
Li et al. 2018 D ? - - + - - _ + _
Cox et al. 2019 D - - - - - - — _ _
Cox et al. 2019 A% - - - - - - — _ _
Yang et al. 2019 D ? - - + - - - + _
Zhang et al. 2019 D ? - - + - - - + _
Gao et al. 2019 D — — - + _ _ _ + _
Gao et al. 2019 Vv — — — ? - _ _ ? _
Dadi et al. 2019 D ? - — + - — _ + _
Elliott et al. 2019 D - - - ? - - - ? _
Elliott et al. 2019 \% - - - - - - - _ _
Yoo et al. 2019 D - - - + - - - + _
Li et al. 2019 D - - - — - - - _ _
Kashyap et al. 2019 D — — - + _ _ _ + _
Kong et al. 2019 D ? — — ? _ _ _ ? _
Dryburgh et al. 2020 D — — ? + + — — + +
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Table 3 continued from previous page

ROB Applicability Overall
Studies D/V
Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability
Jiang et al. 2020b D - - — + ? _ _ + ?
Hilger et al. 2020 D — — — + — _ _ + _
Fan et al. 2020 D - - — ? — - - ? _
Sripada et al. 2020 D - - - — - - _ _ _
Wei et al. 2020 D - - - ? - - _ ? _
He et al. 2020 D - - - - - - — _ _
Jiang et al. 2020a D - - - ? - - - ? _
Jiang et al. 2020a \Y% - - - ? - — - ? _
Wu et al. 2020 D — - - + _ _ _ + _
Lin et al. 2020 D - - - + — - - + _

Table 3: PROBAST = Prediction model Risk Of Bias ASsessment Tool; ROB = risk of bias; D = Development; V = Validation.

+ expresses low ROB/low concern regarding applicability; — expresses high ROB/high concern regarding applicability; and ?

expresses unclear ROB/unclear concern regarding applicability.
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Forest plots with individual results are shown in Appendix E. For the
Correlation coefficient obtained from fMRI, both G and G have expected
correlations significantly different from zero, based on 66 results from 5 stud-
ies (Dubois et al. 2018a,b; Elliott et al. 2019; He et al. 2020; Sripada et al.
2020). For G, the expected correlation was 0.42 (Clgsy, = [0.35, 0.50], p
<0.001). For Gg, the expected correlation was 0.15 (Clgse, = [0.13, 0.17], p
<0.001). Both are significantly different (p <0.001). A significant difference
between HCP and UK Biobank was found: 0.086 (Clgss, = [0.012, 0.16], p =
0.022). Residual heterogeneity was estimated at I? = 77.8% for this analysis.

For R-squared, only G has expected R-squared significantly different from
zero, based on 34 results from 6 studies (Dubois et al. 2018a,b; Elliott et al.
2019; Greene et al. 2018; He et al. 2020; Sripada et al. 2020). For G, the
expected R-squared was 0.16 (Clgs, = [0.13, 0.18], p <0.001). For Gg, the
expected R-squared was 0.022 (Clgse, = [-0.021, 0.066], p = 0.3). Both are
significantly different (p <0.001). No significant differences between HCP and
PNC or between HCP and UK Biobank were found. Residual heterogeneity
was estimated at 12 = 63.3% for this analysis.

TRIPOD has items that apply only to either validation or development
of models. Here, all studies included development of models, while a few
also included external validation. We chose to represent results together in
Figure 5, with the caveat that a few items (10e, 12, 13¢, 17, 19a) only apply
to studies that include validation of models.

The histogram of TRIPOD ratings is shown in Figure 6.

Funnel plots for both the analysis of correlation coefficients and R-squared

are shown in Appendix F. Both analyses present symmetrical funnel plots,
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Figure 5: Overall results from the TRIPOD assessment of reporting quality. Bars represent
average scores across studies. Items are nested into topics which are nested within sections,
following the specification in TRIPOD. Sections and topics are shown, while items can be
inspected in more detail in Table D.5 or Heus et al. (2019) and Moons et al. (2015). Items
7a, 10b and 15a were adjusted following Wang et al. (2015). Table D.5 reflects these

adjustments.
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Figure 6: Distribution of TRIPOD overall ratings across 30 studies.

which imply low risk of publication bias, but the range of standard errors is
low, due to sample limitations, e.g. the lack of results with more subjects.
We additionally analyzed the relationship between the expected effect
size and training set size. Due to the small number of results pertaining to
R-squared, this analysis was performed only for the correlation coefficient.
Figure 7 shows the expected correlation coefficient between predicted values
and true labels as a function of approximate training set size. This com-
parison is qualitative, and does not take into account confounders, but it is
also expected that such procedures are more robust in larger sample sizes.
Compare with Figure E.8, which includes only studies with low RoB and low

concerns regarding applicability.
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Figure 7: The expected correlation coefficient according to the approximate training size
data employed across studies. With the exception of holdout-based studies, where the
actual training set size is known, the approximate training size data was estimated as the
total number of data available for training times by (K — 1)/K, where K is the number
of groupings. Low risk of bias refers to studies that were rated with low RoB and low
concern regarding applicability in Table 3. Modality refers to the imaging modality of

each individual result.
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4. Discussion & Conclusion

Here, we systematically reviewed available studies on the application of
ML to the prediction of human intelligence using MRI data. Most of these
studies were published very recently. See Figure 2. Namely, two-thirds were
published in 2019 and 2020. This attests the high and growing interest over
this question in the literature.

It is also very clear from Figure 3 that some highly cited studies exert
a larger influence in the literature. Later works were highly influenced by
these and, in a way, the current state of the literature reflects those earlier
successes. A few studies do not cite other earlier studies in Figure 3, likely
because not every document focused exclusively on individualized prediction
and /or intelligence. That should be taken into account when examining most
results, especially TRIPOD ratings. See the TRIPOD checklist (Heus et al.
2019).

In the case of T-fMRI, results are largely compatible across datasets, but
not across tasks. Gao et al. (2019) and Greene et al. (2018) show that FC
derived from tasks are stronger predictors of Gg than RSFC. The gambling
and the working-memory tasks demonstrate higher predictive power. Sripada
et al. (2020) and Wu et al. (2020) also found that the working-memory task
is highly discriminative of G, this time using statistical spatial maps.

While some of the studies presented results on more than one MRI modal-
ity, only one study presented a model that learns from multimodal data.
Jiang et al. (2020b) presented results on both vertexwise cortical thickness
and region of interest (ROI)-based RSFC. They show that a model that uses

both modalities at once attains significantly higher predictive accuracy for
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intelligence compared to single-modality models. Choi et al. (2008) “neuro-
metric model” includes both cortical thickness and T-fMRI statistical maps
as inputs, but each part of the model was learned in isolation.

The HCP (Essen et al. 2013; Glasser et al. 2016) is the most employed
dataset, appearing in 73% of the sample. Dating its first releases back to
2013, it began being employed for the prediction of intelligence as early as
2015 (Finn et al. 2015).

The majority, encompassing 83% of eligible studies, employed linear mod-
eling for regression to some extent. Linear modeling is a strong baseline, also
appearing in studies employing non-linear models. The most popular linear
approaches include CPM and penalized linear models, each appearing in 40%
of studies using linear models. CPM (Shen et al. 2017) is a very streamlined
approach to predictive modeling. It is based on building linear models to
predict outputs from aggregate measures of correlation between inputs and
outputs, after thresholding based on significance. Features that are kept
are then divided into positive-feature and negative-feature networks (Finn
et al. 2015). Features in each network are summarized, e.g., summed or av-
eraged, for each sample. Then, linear regression is used to predict outputs
from these aggregate features, either separately or jointly for the positive-
feature and negative-feature networks. After its introduction by Finn et al.
(2015), albeit not yet named CPM, it became a staple of predictive modeling.
Even though “connectome” appears in its name, the same principle can also
be extended to other domains such as morphometry (Jiang et al. 2020b).
Penalized linear modeling, on the other hand, does not aggregate features.

Often, univariate filtering based on significance thresholding is used, akin to
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CPM. Then, however, remaining features are used as they are, without any
additional transformation. The rationale for it is that penalization of coeffi-
cients can resolve commonalities and differences in features, and effectively
attenuates overfitting.

Non-linear regression modeling appears in only few studies, 17% of the
sample. This might be due to the intrinsic high dimensionality of neuroimag-
ing data, particularly evident for fMRI. At such high dimensionality, overfit-
ting becomes a greater concern for more flexible models. The only non-linear
model appearing more than once is KRR, a kernelized penalized linear regres-
sion. It is a very flexible approach given that a similarity measure between
samples can be derived. Instead of using the base features in the model,
features are expanded to higher (potentially infinite) dimensionalities. The
kernel is the dot product between samples in this high dimensional space,
which allows for efficient computation of models, bypassing the need of ex-
plicitly computing features in the new basis. In the sample, the correlation
and the Dice overlap kernels were used in different studies. Due to the im-
plicit high dimensionality, penalization is used very often, such as the ridge
penalty, in the case of KRR.

Across studies, prediction is usually performed in aggregate measures of
the data. Abrol et al. (2021) systematically shows that deep neural net-
works when trained on raw data outperform classical linear and non-linear
ML models in the prediction of age, gender and Mini Mental State Exami-
nation scores. They also show that embeddings obtained from deep neural
networks provide strong features for classical ML. This suggests that the

choice of features in the literature has the potential of negatively biasing the
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performance of deep neural networks. Deep neural networks allow for using
structured data, due to their inductive biases, present in architectures such
as CNNs for image data or RNNs for sequence data. Only few studies use
deep neural networks for the prediction of intelligence using neuroimaging.
He et al. (2020) modeled Gg based on RSFC with three deep neural networks.
Fan et al. (2020) modeled Gg and G¢ based on dynFC with RNNs. Vieira
et al. (2021b, not in this review) implements prediction of G also with RNNs,
but based on RS-fMRI timeseries.

4.1. Limitations across studies

We must first state that limitations found in the analyzed studies have
to be examined under the light of the current review’s question, i.e. what
current literature regarding the ML-based prediction of intelligence using neu-
roimaging looks like. Many studies did not focus primarily on the prediction
of intelligence, even though they included such results. Studies proposing or
benchmarking modeling choices, i.e. preprocessing, ML, and imaging meth-
ods, will often include intelligence among their results. A common occurrence
in these studies, that include several outcomes, is that they will not give re-
sults in text format. When results are shown only graphically, we decided
to not use inferred numbers. Also, when assessing the TRIPOD checklist, we
only scored items that were clearly within the scope of the document. For
example, studies not primarily concerned with prediction were not penalized
by not mentioning prediction in their title, i.e. item 1.ii in TRIPOD.

The choice of outcome may also be an object of discussion. Lohman et
al. (2012) argue that Gg consists of three components: sequential reasoning,

quantitative reasoning and inductive reasoning. The latter is the core of
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RPM. For this reason, Gignac (2015) argues that RPM can be considered an
imperfect measure of Gg. This is due to its rather narrow scope, since it exclu-
sively consists of figural type items. All studies that predicted Gr employed
the RPM in some extent. Most, 19 out of 20, used solely the RPM, with the
remaining one employing both the RPM and NIHTB’s fluid composite score.
For this reason, their results necessitate further consideration.

For both correlation and R-squared results, G-based results are signifi-
cantly higher than Gg-based ones. This alludes to Gignac et al. (2017), who
showed that higher measurement quality moderates the observed correlation
between intelligence and brain volume. In our assessment in Table 2, G de-
rived from 10-tests in the NIHTB and PennCNB was rated as excellent, while
Gr or “cognitive ability” obtained from a single test was rated as fair. Fur-
thermore, Dubois et al. (2018a,b) used the same predictor data based on
RS-fMRI, but obtained very disparate results using the HCP. The authors
reported r = 0.263 and R? = 0.047, when predicting PMAT-based G, versus
r = 0.457 and R? = 0.206, when predicting G based on the factor analysis of
10 tests in the PennCNB and NIHTB.

The measurement of G and Gr may incur risks of bias compromising
proper estimation of intelligence. The use of a single-domain test, such as
inductive reasoning in RPM, would evaluate an isolated skill and not measure
adequately intelligence, which is by definition a set of different cognitive skills.
Furthermore, a test that assesses different skills needs to cover more than
one cognitive domain, e.g., verbal, visual or spatial, to obtain a complete
measurement (Gignac et al. 2017).

Another bias in interpreting results can occur due to the omission of infor-
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mation related to the measurement of intelligence. The article must present
the construct, e.g. intelligence, G, or Gg, and the psychological test used
so that it is possible to verify whether the test is adequate to measure the
function contained in the specific construct. However, a psychological test
suitable for the construct is not necessarily suitable for the population stud-
ied. It is essential to ensure tests are adequately validated for the population
under study.

Despite the solid empirical basis of the concepts of G, Gg, and G¢, there
are still concerns regarding cognitive abilities associated with G (Kent 2017).
New research on the neuroimaging-based prediction of intelligence should
bring more specifications when evaluating cognitive constructs, such as the
psychological instrument, validity, and application range.

The current conceptualization of the intelligence construct does not en-
compass only G¢ or Gg. It covers adaptability and problem-solving in real life,
considering emotional intelligence factors, decision making (Stankov 2017),
and personality (Kent 2017). The interaction of these cognitive processes
in an integrated way configures a complex multidimensional construct (Mc-
Grew 2009). Due to this characteristic, it is recommended to use as many
specifications as possible when performing the intelligence measurement.

The best model for the development of psychological instruments in in-
telligence evaluation is the Cattell-Horn-Carroll (CHC), seen as the best psy-
chometric evidence for human aptitudes (Abu-Hamour et al. 2016; Hurks
et al. 2016; James et al. 2015; Lecerf et al. 2010; Wechsler et al. 2016). CHC
theory consists of a hierarchical multidimensional model with ten factors of

cognitive functioning: Fluid intelligence (Gf), Quantitative knowledge (Gq),
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Crystallized intelligence (Gc), Reading and writing (Grw), Short-term mem-
ory (Gsm), Visual processing (Gv), Auditory Processing (Ga), Long-term
memory storage and retrieval ability (Glr), Processing Speed (Gs) and De-
cision speed (Gt). However, there is criticism over its weak explanatory
capacity, its failure to make testable predictions, and its enmeshment to the
Woodcock-Johnson battery (Wasserman 2019). The Woodcock-Johnson bat-
tery of tests (Woodcock et al. 2001) was designed to be more aligned to the
CHC theory. However, there is evidence against this alignment and the lack
of support for interpreting most of the scores suggested by its scoring sys-
tem (Dombrowski et al. 2019). To date, no psychological test measures the
broad cognitive abilities established in the CHC model which are contained
in intelligence. For an adequate measurement, one should make use of in-
struments that are most related to the CHC theory, e.g., WAIS or Woodcock-
Johnson Tests, Fourth Edition (WJ IV ACH).

The preponderance of Gg has three probable causes: (1) early success, as
reported in Finn et al. (2015), which is cited by 23 out of 26 possible studies,
as can be seen in Figure 3; (2) ease of estimation, since it is often taken to
comprise the score of a single test; and (3) availability, which compounds with
the last reason, since RPM scores are available from the HCP, UK Biobank,
BGSP and PNC.

The prevalence of Gg presents some challenges regarding the validity of
results. The RPM can be considered a good score to include for the esti-
mation of G and Gg. Current studies show that Gg and G have a strong
correlation and are often statistically indistinguishable (Caemmerer et al.

2020). In isolation, however, according to the criteria published in Gignac
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et al. (2017), the RPM would be considered at best a “fair” measure of G.
Similarly, although it is correlated with Gg, it does not appear to be remark-
able in comparison with other tests that measure Gg (Gignac 2015). These
findings point to the necessity of investigating what the models are learning
through the RPM, and how much of it is shared between G, Gg and test
specific variance. This would better clarify how much the prediction of RPM
correlates with prediction of Gg.

The literature constructs a clear picture regarding the level of expected
evidence: correlations between brain imaging data and intelligence are sub-
stantial, albeit reliably low. It hovers around between 0.12 and 0.25 in large
sample-size studies based on the UK Biobank (Cox et al. 2019; He et al.
2020), shown in Figure 7. According to our quantitative analysis, the confi-
dence interval covers between 0.35 and 0.50 for G and 0.13 and 0.17 for Gg
based on fMRI data only. A possible explanation for this is that, in fact,
the current data only affords such a level of performance. This also means
that unexplained components of intelligence could be potentially learned in
other spatio-temporal resolutions and imaging contrast mechanisms. An-
other, more problematic hypothesis is that ML is capturing relationships
with other behaviors and demographics that correlate with intelligence, but
not intelligence itself. This “shortcut learning” (Geirhos et al. 2020) is a ma-
jor challenge for ML generalizability and interpretability. Possible shortcuts
could include attention and arousal, but can go much deeper, to include sub-
stance abuse, malnutrition or socioeconomic status. Population modelling is
one alternative to estimate how much brain data contributes to prediction of

mental traits, i.e. Dadi et al. (2021, not in this review) demonstrates that,
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despite statistical significance, multimodal brain data constributes little to
the prediction of Gg compared with sociodemographics.

On the choice of performance metrics, we see that Pearson correlation
coefficient and R-squared are the most common in the literature. This is due
to their scale invariance and perceived ease of interpretation. Despite their
popularity, both are prone to biases. The correlation coefficient represents
the linear association between predictions and true outcomes. Its formulation
does not involve actual residuals, so models with arbitrarily large errors can
still achieve perfect unitary correlation. Since R-squared involves a ratio, the
denominator that represents the variance of true values can arbitrarily reduce
or augment it. In other words, too small (or too large) variance of intelligence
in the sample can lead to small (or large) R-squared, even under the same
model (Alexander et al. 2015). This means that comparisons between studies,
specially when their outcomes and/or populations differ, is at elevated risk
of bias. A different choice of population incurs different characteristics of the
outcome variance, possibly compromising the comparison. Model comparison
on the same data could be performed under a well-behaved metric, such as
the MSE or MAE.

We detected censoring for studies with high RoB and small sample sizes,
as can be seen in Figure 7. Their variability and the frequency of nega-
tive results diminish with models trained on less than 300 subjects. This
is a qualitative indicator of publication bias, but also of selective reporting,
since most studies report comparisons with multiple models. This selective
reporting can be a result of the issue described in Hosseini et al. (2020),

where authors perform optimization of their models on the same data that


https://doi.org/10.1101/2021.10.19.462649
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.19.462649; this version posted October 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

performance is measured, leading to inflated performance estimates due to
overfitting to the test set and leakage.

The diversity of populations under study across studies is skewed towards
a select group of countries. The 11 datasets identified can be grouped accord-
ingly into United States (HCP, NKI, PNC, BGSP, COBRE), New Zealand (the
Dunedin Study), United Kingdom (UK Biobank), China (UESTC), South
Korea (NRI, KAIST) and North America/Europe (ABIDE-I). Earlier releases
of ABIDE were for the most part based on United States populations as well
(New York University, Kennedy Krieger Institute, Stanford, Oregon Health
& Science University, University of California, Los Angeles as in Wang et
al. (2015)). This limitation stems from economic factors that affect coun-
tries differently. While some datasets sampled highly-educated young adult
populations, several others are matched samples from the local general popu-
lation, which diminishes risks of biases. The prediction of Gg from the HCP,
specially that assessed by the RPM, is very predominant in the literature.
Albeit large datasets are often employed, the homogeneities across studies
raise concerns regarding generalizability to other populations. Future works
could perform validation analyses of trained models on new datasets, taking
special care of differences in imaging acquisition and pre-processing.

While earlier association works helped to foment new theories on intel-
ligence, current ML-based works have not yet contributed substantially to
this endeavor. This comes from the fact that the majority of the works do
not try to extract explanatory value from the trained models. Few works
test the leverage of different features and how these fit within or without

theories such as Parieto Frontal Integration Theory (P-FIT) and Network
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Neuroscience Theory. Future works and possibly meta-analyses can solidify
these findings, providing support for existing or new theories.

A common occurrence in the assessment of PROBAST was that studies
did not take into account the optimistic bias of confounders received high
RoB ratings for “Analysis” Table 3. A notorious confounder which should be
taken into account is kinship, in datasets like the HCP (Dubois et al. 2018a).
Other, more pervasive ones, include movement and brain volume, but also
sex and age. Two common approaches in the literature are removing the
effect of confounders using linear models and stratifying data in a way to
minimize bias due to confounders, the latter a very common approach when
dealing with family structure. While our work cannot determine optimal
strategies for treatment of confounders, low RoB studies were expected to
recognize their effects and account for it in results.

Another common factor leading to high RoB was small sample size. It is
a well-known fact from the literature that ML-based studies suffer spurious
correlation induced by small samples (Varoquaux 2018). The few studies
that report the standard error of the mean cross-validated performance also
likely underestimate it (Varoquaux 2018). Recognizing the negative impact
of small sample sizes, having fewer than 500 subjects was considered as an

indicator of possible RoB in the assessment of Table 3.

4.2. Limitations of the review

Some possible limitations can be identified in our review methodology.
Searching for manuscripts on predictive modeling on neuroimaging is par-
ticularly challenging. In the early literature, the term “predict” would often

be used to refer to studies on correlations and associations. For this reason,
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we had to use a search strategy based on domain-knowledge. This choice,
however, incurs the risk of selection bias due to missing documents. Since
we successfully retrieved a reasonable number of documents, we believe that
we minimized this risk and also obtained a representative sample. It is how-
ever expected that our selection missed documents, but we believe that this
number should be small.

The fact that most studies either did not focus solely on intelligence
or were not primarily about individualized prediction makes data retrieval
difficult. For this reason, in several instances constructs and instruments
are not readily identified in searchable text. We thoroughly searched for
information in actual figures and supplementary materials. We did not follow
citations or other sources to infer this information, since the construct should
ideally be stated by authors.

Another source of variance is the fact that terminology is flexible. Studies
will often use terms like cognitive ability or others with ambiguous meaning.
For example, in Elliott et al. (2019) “cognitive ability” refers to both FSIQ
and Gg, while in Sripada et al. (2020) “general cognitive ability” names a
measurement that is identified with G in other studies. Some works will refer
to a G-like construct as general intelligence, others will refrain from using the
term intelligence altogether. We tried to disambiguate authors’ choices with
the coherence of the review in mind. This is particularly evident in Table 2,
where we tried to unify terminology.

We adopted the TRIPOD adherence assessment form (Heus et al. 2019) to
evaluate reporting quality. That benefits objectivity in this analysis. Mea-

suring adherence to a specific reporting guideline has the disadvantage of
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potentially misrepresenting studies. This guideline is not enforced by jour-
nals, reviewers or the authors themselves in this research area. This form
has been similarly applied to documents published prior to TRIPOD (Za-
manipoor Najafabadi et al. 2020). Due to the generality of TRIPOD items,
we believe that the risk of bias is low regarding the assessment of reporting
quality. Several studies achieved high ratings, as can be seen in Figure 6.

We employed PROBAST to assess RoB and applicability. PROBAST is a
tool designed primarily for studies in health and medicine, but its items are
still very applicable to our review question. Another benefit is that the use
of standardized tools minimizes biases when compared with an alternative
created by authors. This was a post-hoc adaptation from the protocol in
Vieira et al. (2021a), but, with aforementioned justification, we also consider
that the risk of inducing bias is low.

We employed the PRISMA checklist as a reporting guideline. PRISMA was
designed for studies that evaluate healthcare interventions, but most items
can be applied to our review question. We believe that this choice offers no
additional risk of bias for our review.

The quality of measurement of intelligence was evaluated by the first three
criteria of the essential guide for categorizing the quality of general intelli-
gence measurement (Gignac et al. 2017). Although the guide was proposed
for G, we also used it to assess the quality of measurement of G.

The number of studies using modalities other than fMRI with low RoB and
low concerns regarding applicability was insufficient for quantitative analy-
sis. For this reason, we only obtained meta-estimates of correlation and

R-squared from fMRI. Figure 7 seems to point towards an approximately
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unique ceiling in performance, but the small number of studies, especially

truly multimodal ones, makes that inference inconclusive.

4.83. Future work

Future work could explore other imaging techniques, such as PET, EEG
and MEG. These imaging techniques probe different functional aspects from
fMRI. PET allows the study of slow metabolic dynamics in the brain and
was fundamental for the definition of the P-FIT, being employed in the study
of metabolic response differences under cognitively demanding tasks (Jung
et al. 2007). EEG and MEG, on the other hand, probe fast electrical cerebral
dynamics, and their importance was also acknowledged in P-FIT, albeit nei-
ther was part of its experimental foundation. In addition to other imaging
techniques, multimodality presents an avenue for future research. It is cur-
rently not possible to establish whether information learned from different
modalities overlap due to the lack of large numbers of multimodal models.
Studies employing two or more techniques or modalities at once can better
disambiguate the predictive power exclusive to each. This type of study is,
however, becoming more widespread. Jiang et al. (2020b) model anatomical
and RSFC data jointly, Dhamala et al. (2021, not in this review) use dMRI
structural connectivity and RSFC, and Dadi et al. (2021, not in this review)
includes joint modeling based on RSFC, dMRI diffusion measurements, and
sMRI global and regional volumes.

Most works employ ROI-level features. Although this “summarization”
makes ML more amenable, since it diminishes the dimensionality of data,
this level of spatial abstraction can discard useful intra-regional information.

Feilong et al. (2021, not in this review) systematically demonstrates that
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accounting for fine-grained, intra-ROI task and resting-state FC differences
lead to improvements in the prediction of G and other intelligence measure-
ments. Future developments on data-efficient ML models that can robustly
learn from minimally preprocessed data have the potential of resolving this
abstraction and discovering relationships hidden by summarization.

Other ML algorithmic developments can improve prediction accuracy and
validity in the future. In particular, interpretable and explainable models can
further corroborate, falsify and augment current theories on the biological
bases of intelligence, which were majoritarily developed based on coarse-
grained spatial attributes of brain anatomy and function.

Refinements of psychometric and neuroscientific theories of intelligence
will also lead to a demand for future work. Intelligence differences do not
occur in isolation, being permeated by other human behaviors and environ-
mental factors. The extended P-FIT (ExtPFIT) was formulated in Gur et al.
(2021), and its generalizability can be tested in a ML-based framework. Other
neuroscientific theories and extensions will probably emerge in the future.

Finally, larger scale datasets will diminish small sample-size biases in pre-
dictive models (Varoquaux 2018). Jointly learning across different datasets
and discarding confounding information efficiently can boost predictive ac-
curacy. Future works can help answer if the patterns observed in current
models generalize across different populations, socio-economic environments,

languages and cultures.

4.4. Conclusions

More than half of the identified studies include linear modeling to pre-

dict RPM-based G from HCP fMRIs. This fact attests the significance and
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reliability of fMRI-based prediction studies. It also alludes to possible new
avenues of research that have been studied infrequently if at all.

By pointing out salient results across studies and limitations, we hope
that this work contributes to further developments in this area of research.
While predictive modeling “best-practices” are abound, the literature cur-
rently lacks reporting guidelines, which could be fulfilled to ease literature
search. Some gaps that can be filled by future studies include: extending
and validating the current models in new populations, developing models
using other spatiotemporal resolutions, other modalities, and imaging tech-
niques, and disambiguating the contribution of neuronal phenomena to the

predictions.
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Section/topic

Data items

Risk of bias in individ-

ual studies

Summary measures

Synthesis of results

Risk of bias across
studies

Additional analyses

RESULTS

Study selection

Study characteristics

Risk of bias within
studies
Results of individual
studies

Synthesis of results

11

12

13
14

16

17

18

21

Table B.4 continued from previous page

Checklist item Reported
on page #

List and define all variables for which data were sought (e.g., PICOS, funding sources) and any page 8
assumptions and simplifications made.
Describe methods used for assessing risk of bias of individual studies (including specification of  page 9
whether this was done at the study or outcome level), and how this information is to be used in any
data synthesis.
State the principal summary measures (e.g., risk ratio, difference in means). page 11
Describe the methods of handling data and combining results of studies, if done, including measures  page 12
of consistency (e.g., 12) for each meta-analysis.
Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, page 12
selective reporting within studies).
Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if  page 12

done, indicating which were pre-specified.

Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons page 13
for exclusions at each stage, ideally with a flow diagram.

For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-  page 19

"9sUadl| [euoneuIaIl| 0" AN-Ag-DD. Japun a|qejiene

up period) and provide the citations.

Present data on risk of bias of each study and, if available, any outcome level assessment (see item  page 25
12).

For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data  page 30
for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

Present the main results of the review. If meta-analyses are done, include for each, confidence page 30

intervals and measures of consistency
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Section/topic

Risk of bias across
studies

Additional analysis

DISCUSSION

Summary of evidence

Limitations

Conclusions

FUNDING
Funding

22

23

24

25

26

27

Table B.4 continued from previous page

Checklist item

Present results of any assessment of risk of bias across studies (see Item 15).

Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression

[see Item 16]).

Summarize the main findings including the strength of evidence for each main outcome; consider
their relevance to key groups (e.g., healthcare providers, users, and policy makers).

Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete
retrieval of identified research, reporting bias).

Provide a general interpretation of the results in the context of other evidence, and implications for

future research.

Describe sources of funding for the systematic review and other support (e.g., supply of data); role

of funders for the systematic review.

Reported
on page #
page 30

page 32

page 34

page 37

page 48

page 49

Table B.4: From: Moher et al. (2009)
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Appendix C. Prediction performance metrics

Given a set of true labels y, and a set of predictions g, several performance

metrics can be defined.

Appendiz C.1. Continuous valued labels

The Pearson correlation coefficient, defined as

(g, ) = > (9 — E[9]) (v — Ely)) 7
VEN G- El9)* S (4 - Ely))?
is the most popular performance metric for regression of continuous val-
ued labels.
Other metrics include the MSE,

Ziv(yz - Z)z)Q

MSE(y, ) = Bl(y - §)?] = =400

the MAE,
N N
~ ~ i 1Y — Y
MAE(y,y) = Elly — 9] = %

and Spearman rank correlation coefficient,

p(y.y) = 1(R(y), R()),
defined in terms of Pearson’s, but based on ranks instead of values, as
denoted by the rank function R(-).

A few more metrics are linked to the MSE. These include the coefficient

of determination, or squared deviance, R-squared,
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SV (i — i)

RQ(ya ,g) =1- ’
SNy — Elyi))?
the RMSE,
the NRMSE,
. RMSE(y,9)
NRMSE(y, §) = ———2
.9) = =5
and the nRMSD,
WRMSD(y, §) = W) _ T g

¢2 (y; — Ely))?

Appendiz C.2. Binary valued labels

In our sample, the only reported performance metric for binary valued

labels y; € {0, 1} was the AUC, defined mathematically as

SN (s — vi) g5,
Z yzz (1—%) .

Notice that (y; — y;)* = 1 only when y; # y;, being 0 otherwise.

AUROC(y,y) =
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Appendix D. Adjusted TRIPOD checklist

Section/Topic [tem Checklist Item Page

Title and abstract

Title 1 Identify the study as developing and /or
validating a multivariable prediction
model, the target population, and the

outcome to be predicted.

Abstract 2 Provide a summary of objectives, study
design, setting, participants, sample
size, predictors, outcome, statistical

analysis, results, and conclusions.

Introduction

3a Explain the medical context (including
whether diagnostic or prognostic) and
rationale for developing or validating
the multivariable prediction model, in-

cluding references to existing models.

Background and 3b Specify  the objectives, including
objectives whether the study describes the devel-
opment or validation of the model or

both.

Methods
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Table D.5 continued from previous page

Section/Topic [tem Checklist Item Page

4a Describe the study design or source of
data (e.g., randomized trial, cohort, or
registry data), separately for the devel-
opment and validation data sets, if ap-

plicable.

Source of data 4b Specify the key study dates, including
start of accrual; end of accrual; and, if

applicable, end of follow-up.

ba Specify key elements of the study set-
ting (e.g., primary care, secondary care,
general population) including number

and location of centres.

5b Describe eligibility criteria for partici-
pants.
Participants oe Give details of treatments received, if
relevant.
6a Clearly define the outcome that is pre-

dicted by the prediction model, includ-

ing how and when assessed.

Outcome 6b Report any actions to blind assessment

of the outcome to be predicted.
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Table D.5 continued from previous page

Section/Topic [tem Checklist Item Page

Adjusted Clearly define all predictors used in de-
Ta veloping or validating the ML model,
including how and when they were

measured.

Predictors b Report any actions to blind assessment

of predictors for the outcome and other

predictors.

Sample size 8 Explain how the study size was arrived
at.

Missing data 9 Describe how missing data were han-

dled (e.g., complete-case analysis, sin-
gle imputation, multiple imputation)

with details of any imputation method.

10a Describe how predictors were handled

in the analyses.

Adjusted Specify type of model, all model-
10b building procedures (including any pre-
dictor selection, hyperparameter selec-

tion if needed), and method for internal

validation.
Statistical 10d Specify all measures used to assess
analysis model performance and, if relevant, to

methods compare multiple models.
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Table D.5 continued from previous page

Section/Topic [tem Checklist Item Page

Risk groups 11 Provide details on how risk groups were

created, if done.

Results

13a Describe the flow of participants
through the study, including the num-
ber of participants with and without
the outcome and, if applicable, a sum-
mary of the follow-up time. A diagram

may be helpful.

Participants 13b Describe the characteristics of the par-
ticipants (basic demographics, clinical
features, available predictors), includ-
ing the number of participants with
missing data for predictors and out-

come.

14a Specify the number of participants and

outcome events in each analysis.

Model 14b If done, report the unadjusted associa-

development tion between each candidate predictor

and outcome.
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Table D.5 continued from previous page

Section/Topic [tem Checklist Item Page

Adjusted Present the full prediction model to
15a allow predictions for individuals (i.e.
links to the final model online (coding
of predictors, code and final parame-
ters/coefficients, and with the architec-

ture described in full in the article)).

Model 15b Explain how to the use the prediction
specification model.
Model performance 16 Report performance measures (with

CIs) for the prediction model.

Discussion

Limitations 18 Discuss any limitations of the study
(such as nonrepresentative sample, few
events per predictor, missing data).

Interpretation 19b Give an overall interpretation of the
results, considering objectives, limita-
tions, and results from similar studies,
and other relevant evidence.

Implications 20 Discuss the potential clinical use of the

model and implications for future re-

search.

Other information
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Table D.5 continued from previous page

Section/Topic [tem Checklist Item Page
Supplementary infor- | 21 Provide information about the avail-
mation ability of supplementary resources,

such as study protocol, Web calculator,

and data sets.
Funding 22 Give the source of funding and the role

of the funders for the present study.

Table D.5: Adjusted TRIPOD checklist for reporting quality assessment
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Appendix E. Synthesis of meta-analytic results
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Figure E.8: Forest plot for the correlation coefficient meta-analysis.
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Figure E.9: Forest plot for the R-squared meta-analysis.
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Appendix F. Risk of bias across studies
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Figure F.10: Funnel plot for the correlation coefficient meta-analysis.
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Figure F.11: Funnel plot for the R-squared meta-analysis.
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