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Abstract

Human intelligence is one of the main objects of study in cognitive neu-

roscience. Reviews and meta-analyses have proved to be fundamental to

establish and cement neuroscientific theories on intelligence. The predic-

tion of intelligence using in vivo neuroimaging data and machine learning

has become a widely accepted and replicated result. Here, we present a

systematic review of this growing area of research, based on studies that

employ structural, functional, and/or diffusion MRI to predict human intel-

ligence in cognitively normal subjects using machine-learning. We performed
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a systematic assessment of methodological and reporting quality, using the

PROBAST and TRIPOD assessment forms and 30 studies identified through

a systematic search. We observed that fMRI is the most employed modal-

ity, resting-state functional connectivity (RSFC) is the most studied predic-

tor, and the Human Connectome Project is the most employed dataset. A

meta-analysis revealed a significant difference between the performance ob-

tained in the prediction of general and fluid intelligence from fMRI data,

confirming that the quality of measurement moderates this association. The

expected performance of studies predicting general intelligence from fMRI

was estimated to be r = 0.42 (CI95% = [0.35, 0.50]) while for studies pre-

dicting fluid intelligence obtained from a single test, expected performance

was estimated as r = 0.15 (CI95% = [0.13, 0.17]). We further enumerate

some virtues and pitfalls we identified in the methods for the assessment

of intelligence and machine learning. The lack of treatment of confounder

variables, including kinship, and small sample sizes were two common oc-

currences in the literature which increased risk of bias. Reporting quality

was fair across studies, although reporting of results and discussion could be

vastly improved. We conclude that the current literature on the prediction of

intelligence from neuroimaging data is reaching maturity. Performance has

been reliably demonstrated, although extending findings to new populations

is imperative. Current results could be used by future works to foment new

theories on the biological basis of intelligence differences.

Keywords: Behavior, fMRI, Resting-State, deep learning, intelligence,

prediction, systematic review
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1. Introduction

Intelligence is a broad construct comprising multiple components, which

can be estimated with a range of well-established tests (Urbina 2011). Re-

gardless of the instrument, scores in intelligence tests are positively corre-

lated. G was postulated to be the “general factor” explaining this phe-

nomenon by Spearman (1904), whose evidence “[...] can be said to be over-

whelming” (Carroll 1997). Albeit originally terming it “general intelligence”,

Spearman later in his life adopted a critical view of the term and ceased to

associate it with G (Spearman 1927). Henceforth, to avoid ambiguities in this

review we will employ the widely used term “intelligence”. Even though G

successfully captures the overall positive correlation (Spearman 1904), there

is controversy regarding its validity as a single, all-encompassing, measure of

intelligence. An alternative view posits that intelligence comprises multiple

factors (Thurstone 1938). Posteriorly, an integrated model for intelligence

called GF-GC was proposed by Cattell (1941, 1971). GF stands for fluid in-

telligence and is associated with inductive and deductive reasoning, covering

non-verbal components; therefore, it does not depend on previously acquired

knowledge and the influence of culture. Concept formation and recognition,

identification of complex relationships, understanding of implications, and

making inferences are examples of tasks related to GF. On the other hand,

GC, crystallized intelligence, comprises the knowledge acquired through life

experience and education related to cultural experiences. Hence, crystallized

capacities are demonstrated, for example, in tasks regarding the recognition

of the meaning of words (Schelini 2006). While the scientific construction of

G is based on correlations between test scores, intelligence quotient (IQ) is
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based on the sum of standardized scores of commonly used cognitive batter-

ies, such as Wechsler scales with full scale IQ (FSIQ), verbal IQ (VIQ), and

performance IQ (PIQ). FSIQ scores are excellent measures of G (Gignac et

al. 2017) representing the general level of cognitive functioning. VIQ relates

to verbal comprehension, acquired knowledge, language processing, verbal

reasoning, attention, verbal learning, and memory. In sharp contrast, PIQ

is connected to perceptual organization, processing visual, planning ability,

non-learning-verbal and thinking skills, and manipulating visual stimuli with

speed.

Studies show associations between brain and behavior measurements.

The first finding was the positive correlation between brain volume or in-

tracranial volume and intelligence (Luders et al. 2009; McDaniel 2005). Other

structural MRI (sMRI) correlates of intelligence include fine-grained mor-

phometry, such as callosal thickness (Luders et al. 2007), striatal volume (Grazio-

plene et al. 2015) and regional gray and white matter volumetry (Haier et al.

2005). Functional connectivity (FC), as measured by functional MRI (fMRI),

has reliably been shown to correlate with G and IQ. This includes correlations

between resting-state FC (RSFC) network organization and FSIQ (Pamplona

et al. 2015; Song et al. 2008) and regional global connectivity and GF (Cole

et al. 2012). The topography of task fMRI (T-fMRI) statistical maps have

been found to correlate with intelligence as well (Choi et al. 2008; Graham

et al. 2010). Correlates of intelligence extend beyond fMRI RSFC and task

activations as well, to include measures such as amplitude of low frequency

fluctuations (ALFF) and dynamic functional connectivity (dynFC). Using mul-

timodal magnetic resonance imaging (MRI) Ritchie et al. (2015) demonstrates
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a plethora of correlates of G, including diffusion MRI (dMRI). For extensive

literature reviews, see Basten et al. (2021) and Dizaji et al. (2021).

Previous reviews (Barbey 2018; Jung et al. 2007) and meta-analyses (Bas-

ten et al. 2015; McDaniel 2005; Pietschnig et al. 2015) were fundamental in

the development of theories of biological intelligence. At the time studies per-

forming predictive analyses were scarcer than today. This type of analysis

enjoys growing popularity in neuroimaging (Bzdok 2017; Bzdok et al. 2018).

machine learning (ML)-based predictive analyses allow one to test a much

more complex hypothesis space than univariate, group-based testing. The

multivariate nature of ML allows interactions and commonalities between

predictors to be taken into account. It also “tests” such hypotheses on the

basis of individualized predictions, taking into account heterogeneity that is

diluted in group-based analyses (Sui et al. 2020). Data-driven studies based

on ML are fundamental to understand the degree that variability in brain

phenotypes explain variability in intelligence. ML-based studies also address

the question of generalizability patterns at the forefront. For these reasons,

this type of study is widely used in the investigation of behavior, with cog-

nition and, specifically, human intelligence as the most studied domains (Sui

et al. 2020).

While the literature of brain correlates on intelligence covers various tech-

niques, such as sMRI, fMRI, dMRI, positron emission tomography (PET),

electroencephalography (EEG), magnetoencephalography (MEG), predictive

studies are limited in this regard. Availability is one of the main factors be-

hind that choice, because ML benefits from large amounts of data (Cui et al.

2018). Small data has been identified as one source of optimistic bias in error-
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bars (Varoquaux 2018), and leads to non-reproducible results. Large-scale

open-data imaging cohorts are often centered on fMRI, with sMRI and dMRI

providing complimentary information. For this reason, we opted to focus on

fMRI, sMRI and dMRI, anticipating a small incidence of studies using other

imaging modalities.

A large number of studies on the prediction of intelligence was published

in recent years. To the best of the authors’ knowledge, no review on this

application of ML to predict human intelligence from brain imaging has been

previously published. The purpose of this review is to identify existing litera-

ture, critically appraise reporting and methodology. We hope that our work

will promote the establishment of best practices and prospects for future

research in this field of research.

2. Methods

This review was developed following Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analyses (PRISMA) guidelines for transparent

reporting of systematic reviews (Moher et al. 2009). See Table B.4 for the

PRISMA checklist. Choice of methods and search strategy are based on

a protocol we developed and registered at Open Science Framework (Vieira

et al. 2021a). Post-hoc adaptations are mentioned below, when applicable.

2.1. Eligibility criteria

Eligibility criteria were peer-reviewed original articles written in English

that performed individualized prediction of intelligence using at least one of

fMRI, sMRI and dMRI in neurotypical human subjects using ML and include
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evaluation of generalizability, i.e. cross-validation, bootstrapping, or external

validation.

2.2. Information sources

We performed a systematized search in Scopus (scopus.com), dating to

15th December 2020. Additional documents were retrieved from a recent

literature review (Dizaji et al. 2021), co-authored by B.H.V. and C.E.G.S.,

and another study (Fan et al. 2020, Table 1) that provide a comparison

between similar studies.

2.3. Search strategy

We retrieved all documents in Scopus that contained at least one of the

following terms in their title, abstract, or keywords: “morphometry”, “cor-

tical thickness”, “functional connectivity”, “structural connectivity”, or “ef-

fective connectivity”. Simultaneously, the document should contain at least

one of the following terms: “prediction”, “predict”, “CPM”, “multivariate

pattern analysis”, “bases”, “variability”, or “mvpa”. The documents should

also contain in their title one of the following terms: “intelligence”, “behav-

ioral”, “behavior”, “cognitive ability” or “cognition”. See Appendix A for

the actual search string used.

After removal of duplicates, all records had title and abstract screened.

Records were discarded if we could identify disagreement with inclusion cri-

teria, and kept otherwise. Remaining records were retained for full-text in-

spection. If in accordance with the inclusion criteria, these were retained

as eligible for qualitative synthesis. Otherwise discarded with reasons, e.g.,
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non-human subjects, no validation or other generalizability evaluation, did

not predict intelligence, did not use neurotypical subjects.

2.4. Data collection process

We originally planned to use the CHecklist for critical Appraisal and data

extraction for systematic Reviews of prediction Modelling Studies (CHARMS)

checklist (Moons et al. 2014), but ultimately it became clear that we needed

a form tailored for our research question. We constructed our own data

extraction form, borrowing from CHARMS.

An online document was created and shared between authors B.H.V.,

K.F. and A.K.S. All three authors performed data extraction, including: (1)

identification (title, year, source title, digital object identifier), (2) study

population (dataset, number of subjects for psychometric assessment, num-

ber of subjects for prediction, age and sex characteristics of the sample), (3)

methods (imaging modality, input features, number of features, ML models,

validation strategy, performance metrics, a priori feature selection, construct,

instrument, components of intelligence, scores, quality of cognitive assess-

ment), (4) results (performance of individual methods/data combinations,

best performance).

Regarding the quality of intelligence measurement, retrieved items in-

cluded, when applicable: number of subtests, number of dimensions, time

duration of test application, test completeness. These are important to as-

sess whether the test properly measures intelligence and is applicable to the

construct.

We additionally retrieved citations among identified documents, to build a

citation network. Due to differences in formats and unreliability of automatic
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searching, we opted to perform a manual search over all documents. For

each identified studied, we searched for the names of first authors of every

other document. For consistency, we opted to consider citations of pre-print

versions (same authors and title) of identified documents.

We used the Prediction model risk of bias assessment tool (PROBAST)

to assess risk of bias (RoB) and concerns regarding applicability in individual

studies. This was a choice made post-hoc to the registration of the study.

We originally planned to create an RoB assessment checklist for the reviewed

studies, but after registration we became aware of PROBAST, which fulfilled

this role, requiring minimal adaptations. This assessment was performed at

the result-level.

It is critical to ensure that reporting is transparent in order to ensure

that findings can be replicated. We also used the Transparent Reporting

of a Multivariable Prediction Model for Individual Prognosis or Diagno-

sis (TRIPOD) (Collins et al. 2015; Moons et al. 2015) checklist assessment

tool (Heus et al. 2019) to evaluate reporting quality. We used a modified

version tailored for ML predictions (Wang et al. 2020), including three modi-

fied items, shown in Table D.5. Several items in TRIPOD were not adequate

for our research question, and were removed from the questionnaire for our

evaluation. A few items and subitems were deemed not applicable or not

important to our review question, and their assessments do not appear in

this review. Namely, 1.i, 1.iii, 2.iii, 2.iv, 2.xi, 3b, 4a, 4b, 5c, 6b, 7a.iv, 7b,

10a, 10b.iv, 10b.v, 10c, 10d.ii, 10e, 11, 13a, 13b.iii, 13b.iv, 13c.ii, 15a.ii, 15b,

16.iii, 17, and 20.i, 22.ii. Items 1 and 16.i were edited to allow NA entries, due

to studies that had broader scopes than the one pertaining to this review’s
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question. Item 13b, pertaining to demographics, requires description of the

actual data being used, and not from the original sample before exclusions.

Items 13b and 14a, that should be assessed based on “Results” sections,

were extended to “Methods” sections as well. We performed the TRIPOD

assessment at the study-level and performed across-studies summarization

of reporting quality ratings.

Authors G.S.P.P. and B.H.V. completed PROBAST and TRIPOD indepen-

dently. To ensure both reviewers’ interpretations were aligned, calibration

was performed twice, using one study from each checklist on each occasion.

Interrater agreement was then computed based on the Kappa statistic, at

the score-level, for the remaining documents, excluding the two used for cal-

ibration.

The quality of measurement of intelligence is linked to validity and can

interfere on results of each study. For example, Gignac et al. (2017) demon-

strated that the quality of measurement moderates the association between

intelligence and brain volume. The guide for categorization of measurement

quality by Gignac et al. (2017) proposes four quality criteria: the number

of tests, the number of group-level dimensions, testing time, and correlation

with G. Authors K.F. and A.K.S. performed the assessment of measurement

quality based on these criteria. “Number of tests” is categorized into 1, 1-

2, 2-8, and 9+ which signal “poor”, “reasonable”, “good”, and “excellent”

measures of G, respectively, in the absence of any other information. There-

fore, a minimum of nine tests is needed to represent an excellent G. The

“number of group-level dimensions” criterion is divided into 1, 1-2, 2-3, and

3+ test dimensions, leading to the respective classifications “poor”, “reason-
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able”, “good”, and “excellent” measures of G, in the absence of any other

information. So, an excellent measure of G is expected to present at least

three group-level dimensions, e.g., GF, GC, processing speed. “Testing times”

of 3-9 min, 10-19 min, 20-39 min, and 40+ minutes are respectively classified

as possibly “poor”, “reasonable”, “good”, and “excellent” measures of G.

The last criterion, “correlation with G”, is the best indicator of measurement

quality and takes precedence over the others. However, this correlation is

scarcely reported. Gignac et al. (2017) recommends substituting the corre-

lation with G with the three other criteria.

The primary measure of prediction performance evaluation was chosen

to be the Pearson correlation coefficient, R-squared and mean squared error

(MSE). See Appendix C for a mathematical description of different perfor-

mance measures. The Pearson correlation coefficient is the most used mea-

sure in the literature. It is scale- and location-invariant, which means that

high values can be obtained with arbitrarily large errors. R-squared, when

properly evaluated, is a less biased measure of explained variance than the

correlation coefficient squared. However, it also suffers from its own biases

that will be discussed below, requiring proper care regarding the variance of

the sample. Ideally, MSE or mean absolute error (MAE) should be used when

comparing different models applied to the same data (Poldrack et al. 2020).

Regardless of the choice of the performance measure, comparisons between

modeling approaches using different data can be ambiguous, since intrinsic

variation can differ between datasets.
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2.5. Synthesis of results

To determine the level of performance expected for each modality, we

estimated a mixed-effects meta-analytic model using the package “metafor”

in R 4.0.5 (Viechtbauer 2010) using results that were rated with both low

RoB and low concerns regarding applicability in PROBAST. The number

of samples was taken to be the total number of subjects used in the esti-

mation of performance with pooled or unpooled means. We employed the

Hunter-Schmidt estimator to deal with the sampling variance, which entails

a homogeneity assumption. Different datasets and measurements of intelli-

gence were treated as fixed effects. The same procedures were used for the

R-squared, except that the Hunter-Schmidt estimator was not applied , since

it pertains exclusively to correlation coefficients. Residual heterogeneity, i.e.

the variability unaccounted for by the model and covariates, was measured

by the I2 statistic.

Standard errors are seldom reported in the literature. Moreover, due to

the nature of cross-validation (CV), where resulting models across folds are

not independent, standard errors are underestimated (Varoquaux 2018).

Assessment of within-study selective reporting is unfeasible in our setting,

due to the lack of pre-registrations. Due to computational resources available

today, the risk of selective reporting is real, leading to overfitting of the

validation set. For an in-depth exposition, see Hosseini et al. (2020).

The funnel-plot was used to qualitatively assess the risk of publication

bias.

Since one of the biggest bottlenecks for ML is sample size, we compared

the number of training samples used with measured performances across
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studies. Training set size is often not homogeneous within studies. For CV-

based studies, including leave-one-family-out CV, we chose to approximate it

as N× (K−1)/K, where N is the total amount of data available for training

and K is the number of groupings, i.e. folds or families. The formula holds

true for leave-one-out CV as well. For Holdout-based studies, the actual

number of training data is given by the studies.

3. Results

Our search strategy identified 689 records in Scopus. Additionally, 17

records were identified from Dizaji et al. (2021) and 7 in Fan et al. (2020).

63 records remained after removal of duplicates and screening. These were

submitted to full-text eligibility analysis. 30 records were considered eligible

for qualitative synthesis. See Figure 1. The number of studies per year is

shown in Figure 2. General characteristics from each document obtained

with our data extraction form are reported in Table 1.
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Records identified through

database searching
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Additional records identified

through other sources

n=24

Records after du-

plicates removed

n=698

Records screened

n=698

Records excluded based

on inclusion criteria

n=635

Full-text articles as-

sessed for eligibility

n=63

Full-text articles excluded,

with reasons (n=33):

Not intelligence (n=10),

Single test outcomes

(n=1), No validation

(n=20), Epilepsy (n=1), No

validation & Autism (n=1)

Studies included in

qualitative synthesis

n=30

Studies included in

quantitative synthesis

n=6
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Figure 1: Systematic review flow diagram. See PRISMA statement (Moher et al. 2009)
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Figure 2: Year of publication of the 30 studies identified. An upward tendency is demon-

strated, with 20 studies being published in 2019 and 2020 alone.
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Studies Number of subjects Input ML models Validation strategy Target

Choi et
al. 2008b

408 for FA, 225 for predic-
tion from NRI/KAIST (train-

ing data: 116 sMRIs and
61 fMRIs; test data: 48);

fMRI & sMRI
Cortical thickness, T-fMRI activation in a

fluid reasoning task, gray matter volume, sex

Linear modelling
(derived from sepa-
rate structural and
functional samples)

Independent test sample G

Yang et

al. 2013ab
78 from NRI sMRI

Cortical thickness, surface area,
sulcal depth, mean curvature

PLSR LOOCV FSIQ

Finn et
al. 2015

118 from HCP (Q2 release) fMRI
RSFC under various preprocessing pipelines

CPM LOOCV GF

Wang et

al. 2015ab
164 from ABIDE sMRI

Regional gray and white matter volume
Multi-kernel KSVR
following multiple
feature selection

Repeated (10x) 10-fold CV,
with inner CV (unspeci-

fied) for parameter tuning

IQ

Ferguson

et al. 2017b
830 from HCP (S900 release) (600

for training, 230 for testing)
fMRI

Scaled eigenvalues from spectral
decomposition of concatenated

RS-fMRI, products of eigenvalues

LASSO Independent test sample GF

Powell et
al. 2017a

841 from HCP dMRI
Local Connectome Finger-

prints and intracranial volume

LASSO PCR 5-fold CV GF

Greene et
al. 2018a

515 from HCP; 571 from PNC fMRI
RSFC and T-fMRI activation
(7 tasks in HCP, 2 in PNC)

CPM LOOCV (within samples) and
between samples/between

conditions validation

GF

Dubois et
al. 2018ba

884 from HCP (S1200 release) fMRI
RSFC under various preprocessing pipelines

CPM & elastic net
following uni-

variate filtering

LOFOCV (410 families) GF

Dubois et al.
2018aab

884 for CV, 1181 for FA from HCP fMRI
RSFC

Elastic Net after
univariate filtering

LOFOCV G

Li et al.
2018ab

100 from HCP (Un-
related subjects)

fMRI
ALFF following voxelwise uni-

variate filtering, seed-based FC

L2SVR LOOCV GF

Cox et
al. 2019b

27100 for FA and 4768 for train-
ing, 2510 for testing with frac-

tional anisotropy; 4707 for train-
ing, 2494 for testing with mean

diffusion; cortical: 5246 for train-
ing, 2589 for testing with cortical

volume; 5253 for training, 2595
for testing with subcortical

volume; from the UK Biobank

sMRI & dMRI
ROI white matter mean diffusivity and

fractional anisotropy and gray mat-
ter cortical and subcortical volumes

MIMIC Independent test sample
(Manchester = training

data, Newcastle = test data)

G

Yang et

al. 2019b
68 from HCP-Q1 fMRI

RS-fMRI temporal variances of tem-
poral autocorrelations (sulci, gyri,
undefined cortices) from four ROIs

Linear regression LOOCV GF
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Table 1 continued from previous page

Studies Number of subjects Input ML models Validation strategy Target

Zhang et
al. 2019

1065 from HCP dMRI & fMRI
Structural connectivity tensor (weighted

according to 12 factors based on dif-
fusion, endpoints and geometry);

RSFC; local structural connectivity

Linear regression
(after tensor network

PCA with k = 60)

5-fold CV GF

Gao et
al. 2019a

515 from HCP; 571 from PNC fMRI
RSFC and T-fMRI FC

rCPM, GFC-ridge,
cCPM, CPM, GFC-CPM

Repeated (100x) 10-fold
CV; External Validation

GF

Dadi et
al. 2019a

443 from HCP (213 High IQ,
230 Low IQ, based on terciles)

fMRI
RSFC

K-Nearest Neighbors
(K = 1, Euclidean

distance metric), Gaus-
sian Näıve Bayes,
Random Forests,

L1-SVC L1-LogReg,
Ridge classification,
L2SVC, L2LogReg,

10%-univariate
ANOVA SVC

Repeated (100x) Strat-
ified Holdout (75%)

GF

Elliott et
al. 2019

298 from HCP; 591
from Dunedin Study

fMRI
RSFC, GFC

CPM LOOCV (within samples) and
between samples validation

Cognitive
Ability

Yoo et
al. 2019

316 unrelated subjects (out of
563) from HCP (S1200 release)

fMRI
Bivariate and multivariate
(distance correlation) RSFC

CPM Repeated (5000x) 10-fold CV GF

Li et al.
2019

862 from BGSP, 953 from HCP fMRI
RSFC

KRR (correla-
tion kernel)

20-fold nested family-aware
CV, inner 20-fold CV for
selection of parameters

GF

Kashyap
et al. 2019a

803 from HCP fMRI
RSFC with and without Common Or-
thogonal Basis Extraction (COBE)

Elastic Net after
univariate filtering

20-fold nested CV, with
inner CV for tuning

GF

Kong et
al. 2019a

577 from HCP fMRI
Dice overlap kernel of different parcel-
lation algorithms (ICA back-projection
algorithm, individual-specific parcella-
tion algorithm of Gordon, parcellation
algorithm of Wang, multi-session hier-
archical Bayesian model (MS-HBM))

KRR (dice over-
lap kernel)

Repeated (100x) 20-fold
family-aware CV nested with

inner tuning 20-fold CV

GF

Dryburgh

et al. 2020ab
226 from ABIDE-I fMRI

RSFC
CPM LOOCV FSIQ and Verbal

intelligence
quotient (VIQ)

Jiang et al.

2020bab
326 from UESTC fMRI & sMRI

RSFC, cortical thickness (vertexwise)
CPM LOOCV FSIQ

Hilger et

al. 2020ab
308 from NKI (Enhanced) sMRI

Gray matter volume (voxel and regionwise)
PCA-SVR & Atlas-SVR 10-fold CV (with nested inner

3-fold CV for parameter tun-
ing) stratified for intelligence

FSIQ

Fan et al.
2020ab

1050 from HCP fMRI
dynFC

Deep neural network
(CNN-LSTM), SVR

10-fold CV (no splitting
runs from the same subject)

GF and Crystal-
ized Intelligence
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Table 1 continued from previous page

Studies Number of subjects Input ML models Validation strategy Target

Sripada et

al. 2020ab
967 for T-fMRI, 903 for RS-fMRI

from HCP (S1200 release)
fMRI

Brain Basis Set (BBS) modeling de-
composition of task contrasts, RSFC

Linear regres-
sion (75 compo-

nents/coefficients)

10-fold family-aware CV General Cog-
nitive Ability

(computed
for each fold)

Wei et
al. 2020a

1003 (812 “recon2” used
as discovery set; 191 “re-
con1” as validation set)

from HCP (S1200 release)

fMRI
RSFC

CPM, SVR, LASSO,
and Ridge regression,
after Bootstrapping

Feature selection

10-fold stratified CV & in-
dependent validation set

GF

He et al.
2020a

953 from HCP (S1200 re-
lease); 8868 from UK Biobank

fMRI
RSFC

KRR, FNN, Brain-
NetCNN, GNN

HCP: 20-fold family-aware CV
nested with inner tuning; UK

Biobank: Holdout (6868 training,
1000 validation and 1000 test)

GF

Jiang et al.

2020aab
360 from UESTC; 200

from HCP (Q3 release);
120 from COBRE (60 HCs)

fMRI
RSFC

LASSO LOOCV (with nested
10-fold CV for tuning)

FSIQ and GF

Wu et al.
2020

922 from HCP (S1200 release)
(830 for training and 92 for test)

fMRI
T-fMRI activation in seven HCP tasks

(emotion, gambling, language, motor, re-
lational, social, and working memory)

PLSR Independent test sample GF and Fluid,
Crystalized and

Total Scores

Lin et al.
2020a

143 (1 subject with missing
data) from HCP (S900 release)

dMRI & fMRI
RSFC and structural connectivity (quanti-
tative anisotropy, mean streamline length,

and normalized number of streamlines)

CPM LOOCV GF

Table 1: General characteristics of documents retrieved using based on our data extraction form. “a”: primarily about

predictive modeling; “b”: primarily about intelligence;
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A co-citation network is shown in Figure 3. Arrows point from the cited

to the citing document. In total, 78 citations were identified. This network

systematically demarks highly influential works in the sample. Finn et al.

(2015) is cited by 23 studies, out of 26 studies that were published posteriorly

to it.

Regarding data sources, 23 (77%) studies used different releases of the

Human Connectome Project (HCP). Among these, 17 (57%) studies use solely

HCP data. 6 (20%) studies used the HCP together with other datasets, such

as the Philadelphia Neurodevelopmental Cohort (PNC) data, the Dunedin

Study, Center for Biomedical Research Excellence (COBRE) and University of

Electronic Science and Technology of China (UESTC), the UK Biobank, and

Brain Genomics Superstruct Project (BGSP). Other sources of data included

the Neuroscience Research Institute (NRI) (Choi et al. 2008; Yang et al.

2013), Korea Advanced Institute of Science and Technology (KAIST) (Choi

et al. 2008), Autism Brain Imaging Data Exchange (ABIDE) (Dryburgh et

al. 2020; Wang et al. 2015), UK Biobank (Cox et al. 2019), Nathan Kline

Institute - Rockland Sample (NKI) (Hilger et al. 2020) and UESTC (Jiang

et al. 2020b). All sources of data provide images acquired with 3 T MRI

scanners, with the exception of NRI, that only includes data acquired with

1.5 T. See Figure 4a.

Regarding imaging modality, 21 (70%) studies only used fMRI data. sMRI

was the only imaging modality in 3 (10%) studies. 1 (3%) study concerned

only dMRI. Multimodality was also explored, with fMRI and sMRI in 2 (7%)

studies, sMRI and dMRI in 1 (3%) study, and dMRI and fMRI in 1 (3%) study.

No study performed multimodal prediction based on fMRI, sMRI and dMRI
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Figure 3: A citation network relating all 30 studies identified in Figure 1. Colors are used

to better differentiate studies and carry no meaning. Arrows are colored according to

parent nodes and point from the cited work to the one citing it.
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Figure 4: General characteristics of eligible studies. (a) shows the main sources of data

identified in the sample. 23 (77%) studies employed different releases of the HCP, with

17 (57%) based solely on HCP data. (b) shows the use of different imaging modalities.

Shown in blue, 25 studies were based on unimodal data: 21 (70%) used fMRI, 3 (10%)

used sMRI and 1 (3%) used dMRI exclusively. Shown in red, the remaining five studies

employed multimodal data: 2 (7%) used fMRI and sMRI, 1 (3%) used sMRI and dMRI, 2

(7%) used dMRI and fMRI.

simultaneously. Also, all studies used solely MRI data, i.e. no additional

imaging such as PET, EEG or MEG is used. See Figure 4b.

We identified four constructs reported as outcomes. GF is an outcome in

20 (67%) studies, IQ in 6 (20%) studies, general intelligence, general cognitive

ability or G appears in 4 (13%) studies and cognitive ability appears in 1

(3%) study. 2 (3%) studies reported results on GF and other NIH Toolbox

for Assessment of Neurological and Behavioral Function (NIHTB) cognition

scores (Fan et al. 2020; Wu et al. 2020), i.e. total, fluid and/or crystallized
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cognition scores. 1 (3%) study includes measures of both IQ and GF as

outcomes (Jiang et al. 2020a).

The most common reported instrument is the 24-item Raven’s Progressive

Matrices (RPM), appearing in 22 (73%) studies. In all these studies, the

RPM employed is the Penn Matrix Test (PMAT), from the University of

Pennsylvania Computerized Neurocognitive Battery (PennCNB), which also

appears in 18-item format in 2 (7%) studies (Gao et al. 2019; Greene et al.

2018). The 36-item Raven’s Advanced Progressive Matrices Set II appears

in 1 (3%) study (Choi et al. 2008), as one test in the estimation of G. All 20

studies that studied GF reported the usage of RPM. 3 (10%) of these studies

also studied additional scores, either due to availability in specific datasets

or as parallel measures. These are the Wechsler Adult Intelligence Scale

(WAIS) matrix reasoning test score, as a substitute for GF in the BGSP (Li

et al. 2019), and NIHTB fluid cognition scores (Fan et al. 2020; Wu et al.

2020). RPM-like tests also appear in studies that derive G from analytical

decomposition of test scores (Choi et al. 2008; Dubois et al. 2018a; Sripada

et al. 2020). See Table 2.

We used qualitative cues in titles and abstracts to determine the overall

scope of studies. 10 (33%) studies had prediction of intelligence as their

primary objective. Other 10 (33%) studies were concerned primarily with

predictive modeling, although not focused on intelligence. 4 (13%) studies

focused primarily on intelligence, but not primarily on predictive modeling.

The remaining 6 (20%) studies did not focus primarily on intelligence and

primarily on predictive modeling, albeit including results on both.

Out of the 25 (83%) studies employing fMRI, 20 (67%) explored FC. All
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of these 20 include RSFC-based analyses, while 12 (40%) studied RSFC ex-

clusively. In 19 (63%) studies, the only fMRI data was resting-state fMRI

(RS-fMRI). 6 (20%) studies used T-fMRI, with task FC and/or spatial to-

pographies as inputs (Choi et al. 2008; Elliott et al. 2019; Gao et al. 2019;

Greene et al. 2018; Sripada et al. 2020; Wu et al. 2020). Choi et al. (2008)

employed a fluid reasoning task. Elliott et al. (2019), Gao et al. (2019),

Greene et al. (2018), Sripada et al. (2020), and Wu et al. (2020) employed

seven tasks from the HCP. Additionally, Gao et al. (2019) and Greene et al.

(2018) used the working-memory and emotion identification tasks from the

PNC and Elliott et al. (2019) employed the emotion processing, color Stroop,

monetary incentive delay and episodic memory tasks from the Dunedin study.

Not counting intracranial volume, which is used both as a predictor and

as a confounder in several studies, all 6 (20%) studies reporting usage of

sMRI employ morphometric measurements as predictors. The small sample

of dMRI-including studies included as predictors mean diffusivity and frac-

tional anisotropy, structural connectivity, local connectome fingerprints, and

structural connectivity tensors and local structural connectivity.

Regression based on linear models was reported in 25 (83%) studies.

Among these, 10 (33%) reported use of some form of penalized linear mod-

eling. 10 (33%) reported using Connectome Predictive Modeling (CPM). 4

(13%) reported using Support Vector Regression. 5 (17%) reported using

linear regression, either on inputs or on extracted components, e.g., Prin-

cipal Components Regression. 2 (7%) reported using Partial Least Squares

Regression. Regression based on nonlinear models was reported in 5 (17%)

studies. These include polynomial Kernel SVR (Wang et al. 2015), corre-
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lation kernel ridge regression (KRR) (He et al. 2020; Li et al. 2019), dice

overlap KRR (Kong et al. 2019) and deep learning, based on convolutional

neural networks (CNNs), graph neural networks and fully connected deep

networks (He et al. 2020) or recurrent neural networks (RNNs) (Fan et al.

2020).

In 29 (97%) studies, prediction of intelligence was implemented as regres-

sion, i.e. prediction of a continuous variable. 1 (3%) study (Dadi et al. 2019)

performed classification, subdividing subjects into two groups, one with high

and the other with low IQ. They report using Support Vector Classification

and Penalized Logistic Regression, as linear models, and 1-Nearest Neighbor,

Näıve Bayes and Random Forest, as non-linear models.

Regarding the level of spatial abstraction of input data, 26 (87%) stud-

ies presented inputs at the regional level, either intra-regional features 7

(23%), e.g., regional cortical thickness estimates, or inter-regional features in

20 (67%) studies, e.g., RSFC. Inter-voxel predictors appear in 2 (7%) stud-

ies (Powell et al. 2017; Zhang et al. 2019), in the form of local dMRI structural

connectivity. Intra-voxel predictors appear in 5 (17%) studies (Hilger et al.

2020; Jiang et al. 2020b; Kong et al. 2019; Li et al. 2018; Wu et al. 2020),

e.g., seed-based FC or voxelwise morphometry, ALFF, or T-fMRI statistical

maps. No study used raw or minimally preprocessed imaging data directly

as input to ML models.

In total, discounting censored and unclear results, e.g., results presented

only graphically, 209 results are presented across 25 studies, encompassing

10 performance metrics. These are Pearson correlation coefficient, Spear-

man rank correlation coefficient, R-squared, square root of R-squared, MAE,
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MSE, root MSE (RMSE), normalized RMSE (NRMSE), normalized root mean

squared deviations (nRMSD), and area under the ROC curve (AUC). See Ap-

pendix C for the mathematical definition of each.

From the 30 studies encompassed in this review, 9 did not directly men-

tion the tests used (Dadi et al. 2019; Dryburgh et al. 2020; He et al. 2020;

Kashyap et al. 2019; Kong et al. 2019; Li et al. 2019; Wang et al. 2015; Wu

et al. 2020; Yoo et al. 2019). Supplementary materials and citations were

consulted to identify tests used in all but one study (Dryburgh et al. 2020).

See Table 2. There was, however, little information about the measurement’s

validity for the populations under study. 3 studies cited references deemed

adequate (Ferguson et al. 2017; Wei et al. 2020; Yang et al. 2019), whereas

partial references were cited in 2 studies (Hilger et al. 2020; Lin et al. 2020).

Regarding measurement quality, 7 measurements were rated as excellent,

distributed across 8 (27%) studies. 6 measurements were rated as good,

distributed across 5 (17%) studies. 7 measurements were rated as fair, dis-

tributed across 21 (70%) studies. 1 (3%) study has a measurement of IQ

which we could not identify, based on pre-processed ABIDE, which include

multiple instruments. See Table 2 for detailed ratings.
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Studies Measurement Number
of tests

Dimensions Testing
time

(min)

Rating

Choi et al. 2008 G (principal component of 36-
item RPM and K-WAIS-R subtests)

9+ 3+ 40+ 4

Dubois et al. 2018a; Sripada et al. 2020 G (FA of 10 tests in the
NIHTB and PennCNB)

9+ 3+ 40+ 4

Cox et al. 2019 G (FA of 4 tests in the UK Biobank) 2–8 3+ 20–39 3

Yang et al. 2013 FSIQ (K-WAIS-R) 9+ 3+ 40+ 4

Jiang et al. 2020a FSIQ (WAIS) 9+ 3+ 40+ 4

Jiang et al. 2020a,b FSIQ (Chinese WAIS) 9+ 3+ 40+ 4

Wang et al. 2015 IQ (WISC-IV in ABIDE) 9+ 3+ 40+ 4

Hilger et al. 2020 FSIQ (WASI in NKI) 2–8 3+ 40+ 3

Wang et al. 2015 IQ (WASI in ABIDE) 2–8 3+ 40+ 3

Dryburgh et al. 2020 IQ (Unclear) ? ? ? ?

Dadi et al. 2019; Dubois et al. 2018b;
Fan et al. 2020; Ferguson et al. 2017;

Finn et al. 2015; Gao et al. 2019; Greene
et al. 2018; He et al. 2020; Jiang et al.

2020a; Kashyap et al. 2019; Kong et
al. 2019; Li et al. 2018; Li et al. 2019;

Lin et al. 2020; Powell et al. 2017; Wei
et al. 2020; Wu et al. 2020; Yang et al.

2019; Yoo et al. 2019; Zhang et al. 2019

GF (24-item RPM number of
correct responses in HCP)

1–2 1–2 3–19 2

Li et al. 2019 GF (WAIS - Matrix Reasoning test) 1–2 1–2 ? 2

Gao et al. 2019; Greene et al. 2018 GF (18-item RPM in PNC) 1–2 1–2 3–19 2

Gao et al. 2019; Greene et al. 2018 GF (24-item RPM in PNC) 1–2 1–2 3–19 2

Powell et al. 2017 GF (24-item RPM total
skipped items in HCP)

1–2 1–2 3–19 2

Powell et al. 2017 GF (24-item RPM median reaction
time for correct responses in HCP)

1–2 1–2 3–19 2

Wu et al. 2020 Total cognition score (com-
posite score from the NIHTB)

2–8 3+ 40+ 3

Wu et al. 2020 Fluid cognition score (com-
posite score from the NIHTB)

2–8 3+ 40+ 3

Fan et al. 2020; Wu et al. 2020 Crystallized cognition score (com-
posite score from the NIHTB)

2–8 3+ 40+ 3

Elliott et al. 2019 Cognitive ability (WAIS-
IV in the Dunedin study)

9+ 3+ 40+ 4

Elliott et al. 2019 Cognitive ability (24-
item RPM in HCP)

1–2 1–2 3–19 2

Table 2: On the quality of the measurement of intelligence. This categorization follows

a set of rules established in Gignac et al. (2017). 1 = poor, 2 = fair, 3 = good, 4 =

excellent, ? = unclear. FA = factor analysis; K-WAIS-R = Korean WAIS-R; WASI =

Wechsler Abbreviated Scale of Intelligence; WISC-IV = Wechsler Intelligence Scale for

Children - 4th edition.
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The assessments of RoB and applicability are shown in Table 3. In to-

tal, 8 (27%) studies were rated with low overall RoB and low concern re-

garding applicability. This includes five development-only studies (Dubois

et al. 2018a,b; He et al. 2020; Li et al. 2019; Sripada et al. 2020), one

development-validation study (Cox et al. 2019), and the validation portions of

two development-validation studies (Elliott et al. 2019; Greene et al. 2018).

These are eligible for quantitative synthesis, i.e. meta-analysis. Li et al.

(2019) does not present prediction results in text format however, and thus

was not used. Results pertaining to sMRI and dMRI encompass only the

4 results in Cox et al. (2019), and thus these modalities were ineligible for

quantitative synthesis, per our protocol. 89 results identified among the re-

maining 6 studies were suitable for quantitative synthesis: 3 in Dubois et al.

(2018a), 8 in He et al. (2020), 16 in Sripada et al. (2020), 39 in Dubois et

al. (2018b), 6 in Greene et al. (2018), and 17 in Elliott et al. (2019). All

of these employed fMRI solely and reported either the Pearson Correlation

Coefficient or R-squared, with the exception of Greene et al. (2018), which

reported squared Spearman Rank Correlation. We opted to group this result

with R-squared.
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Studies D/V
ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Choi et al. 2008 D – – ? + – – – + –

Yang et al. 2013 D – – – + – – – + –

Finn et al. 2015 D – – – + – – – + –

Wang et al. 2015 D ? – – + ? – ? + ?

Ferguson et al. 2017 D – – – ? – – – ? –

Powell et al. 2017 D ? – – ? – – – ? –

Greene et al. 2018 D – – – ? – – – ? –

Greene et al. 2018 V – – – – – – – – –

Dubois et al. 2018b D – – – – – – – – –

Dubois et al. 2018a D – – – – – – – – –

Li et al. 2018 D ? – – + – – – + –

Cox et al. 2019 D – – – – – – – – –

Cox et al. 2019 V – – – – – – – – –

Yang et al. 2019 D ? – – + – – – + –

Zhang et al. 2019 D ? – – + – – – + –

Gao et al. 2019 D – – – + – – – + –

Gao et al. 2019 V – – – ? – – – ? –

Dadi et al. 2019 D ? – – + – – – + –

Elliott et al. 2019 D – – – ? – – – ? –

Elliott et al. 2019 V – – – – – – – – –

Yoo et al. 2019 D – – – + – – – + –

Li et al. 2019 D – – – – – – – – –

Kashyap et al. 2019 D – – – + – – – + –

Kong et al. 2019 D ? – – ? – – – ? –

Dryburgh et al. 2020 D – – ? + + – – + +
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Table 3 continued from previous page

Studies D/V
ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Jiang et al. 2020b D – – – + ? – – + ?

Hilger et al. 2020 D – – – + – – – + –

Fan et al. 2020 D – – – ? – – – ? –

Sripada et al. 2020 D – – – – – – – – –

Wei et al. 2020 D – – – ? – – – ? –

He et al. 2020 D – – – – – – – – –

Jiang et al. 2020a D – – – ? – – – ? –

Jiang et al. 2020a V – – – ? – – – ? –

Wu et al. 2020 D – – – + – – – + –

Lin et al. 2020 D – – – + – – – + –

Table 3: PROBAST = Prediction model Risk Of Bias ASsessment Tool; ROB = risk of bias; D = Development; V = Validation.

+ expresses low ROB/low concern regarding applicability; – expresses high ROB/high concern regarding applicability; and ?

expresses unclear ROB/unclear concern regarding applicability.
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Forest plots with individual results are shown in Appendix E. For the

Correlation coefficient obtained from fMRI, both G and GF have expected

correlations significantly different from zero, based on 66 results from 5 stud-

ies (Dubois et al. 2018a,b; Elliott et al. 2019; He et al. 2020; Sripada et al.

2020). For G, the expected correlation was 0.42 (CI95% = [0.35, 0.50], p

<0.001). For GF, the expected correlation was 0.15 (CI95% = [0.13, 0.17], p

<0.001). Both are significantly different (p <0.001). A significant difference

between HCP and UK Biobank was found: 0.086 (CI95% = [0.012, 0.16], p =

0.022). Residual heterogeneity was estimated at I2 = 77.8% for this analysis.

For R-squared, only G has expected R-squared significantly different from

zero, based on 34 results from 6 studies (Dubois et al. 2018a,b; Elliott et al.

2019; Greene et al. 2018; He et al. 2020; Sripada et al. 2020). For G, the

expected R-squared was 0.16 (CI95% = [0.13, 0.18], p <0.001). For GF, the

expected R-squared was 0.022 (CI95% = [-0.021, 0.066], p = 0.3). Both are

significantly different (p <0.001). No significant differences between HCP and

PNC or between HCP and UK Biobank were found. Residual heterogeneity

was estimated at I2 = 63.3% for this analysis.

TRIPOD has items that apply only to either validation or development

of models. Here, all studies included development of models, while a few

also included external validation. We chose to represent results together in

Figure 5, with the caveat that a few items (10e, 12, 13c, 17, 19a) only apply

to studies that include validation of models.

The histogram of TRIPOD ratings is shown in Figure 6.

Funnel plots for both the analysis of correlation coefficients and R-squared

are shown in Appendix F. Both analyses present symmetrical funnel plots,
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Figure 5: Overall results from the TRIPOD assessment of reporting quality. Bars represent

average scores across studies. Items are nested into topics which are nested within sections,

following the specification in TRIPOD. Sections and topics are shown, while items can be

inspected in more detail in Table D.5 or Heus et al. (2019) and Moons et al. (2015). Items

7a, 10b and 15a were adjusted following Wang et al. (2015). Table D.5 reflects these

adjustments.
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Figure 6: Distribution of TRIPOD overall ratings across 30 studies.

which imply low risk of publication bias, but the range of standard errors is

low, due to sample limitations, e.g. the lack of results with more subjects.

We additionally analyzed the relationship between the expected effect

size and training set size. Due to the small number of results pertaining to

R-squared, this analysis was performed only for the correlation coefficient.

Figure 7 shows the expected correlation coefficient between predicted values

and true labels as a function of approximate training set size. This com-

parison is qualitative, and does not take into account confounders, but it is

also expected that such procedures are more robust in larger sample sizes.

Compare with Figure E.8, which includes only studies with low RoB and low

concerns regarding applicability.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.19.462649doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.462649
http://creativecommons.org/licenses/by-nd/4.0/


0.00

0.25

0.50

0.75

100 300 1000 3000
Average number of samples per training iteration

M
ea

n 
co

rr
el

at
io

n 
be

tw
ee

n 
pr

ed
ic

te
d 

an
d 

tr
ue

 v
al

ue
s

Modality

dMRI

fMRI

sMRI

sMRI & fMRI

Risk of Bias

HIGH

LOW

Figure 7: The expected correlation coefficient according to the approximate training size

data employed across studies. With the exception of holdout-based studies, where the

actual training set size is known, the approximate training size data was estimated as the

total number of data available for training times by (K − 1)/K, where K is the number

of groupings. Low risk of bias refers to studies that were rated with low RoB and low

concern regarding applicability in Table 3. Modality refers to the imaging modality of

each individual result.
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4. Discussion & Conclusion

Here, we systematically reviewed available studies on the application of

ML to the prediction of human intelligence using MRI data. Most of these

studies were published very recently. See Figure 2. Namely, two-thirds were

published in 2019 and 2020. This attests the high and growing interest over

this question in the literature.

It is also very clear from Figure 3 that some highly cited studies exert

a larger influence in the literature. Later works were highly influenced by

these and, in a way, the current state of the literature reflects those earlier

successes. A few studies do not cite other earlier studies in Figure 3, likely

because not every document focused exclusively on individualized prediction

and/or intelligence. That should be taken into account when examining most

results, especially TRIPOD ratings. See the TRIPOD checklist (Heus et al.

2019).

In the case of T-fMRI, results are largely compatible across datasets, but

not across tasks. Gao et al. (2019) and Greene et al. (2018) show that FC

derived from tasks are stronger predictors of GF than RSFC. The gambling

and the working-memory tasks demonstrate higher predictive power. Sripada

et al. (2020) and Wu et al. (2020) also found that the working-memory task

is highly discriminative of G, this time using statistical spatial maps.

While some of the studies presented results on more than one MRI modal-

ity, only one study presented a model that learns from multimodal data.

Jiang et al. (2020b) presented results on both vertexwise cortical thickness

and region of interest (ROI)-based RSFC. They show that a model that uses

both modalities at once attains significantly higher predictive accuracy for
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intelligence compared to single-modality models. Choi et al. (2008) “neuro-

metric model” includes both cortical thickness and T-fMRI statistical maps

as inputs, but each part of the model was learned in isolation.

The HCP (Essen et al. 2013; Glasser et al. 2016) is the most employed

dataset, appearing in 73% of the sample. Dating its first releases back to

2013, it began being employed for the prediction of intelligence as early as

2015 (Finn et al. 2015).

The majority, encompassing 83% of eligible studies, employed linear mod-

eling for regression to some extent. Linear modeling is a strong baseline, also

appearing in studies employing non-linear models. The most popular linear

approaches include CPM and penalized linear models, each appearing in 40%

of studies using linear models. CPM (Shen et al. 2017) is a very streamlined

approach to predictive modeling. It is based on building linear models to

predict outputs from aggregate measures of correlation between inputs and

outputs, after thresholding based on significance. Features that are kept

are then divided into positive-feature and negative-feature networks (Finn

et al. 2015). Features in each network are summarized, e.g., summed or av-

eraged, for each sample. Then, linear regression is used to predict outputs

from these aggregate features, either separately or jointly for the positive-

feature and negative-feature networks. After its introduction by Finn et al.

(2015), albeit not yet named CPM, it became a staple of predictive modeling.

Even though “connectome” appears in its name, the same principle can also

be extended to other domains such as morphometry (Jiang et al. 2020b).

Penalized linear modeling, on the other hand, does not aggregate features.

Often, univariate filtering based on significance thresholding is used, akin to
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CPM. Then, however, remaining features are used as they are, without any

additional transformation. The rationale for it is that penalization of coeffi-

cients can resolve commonalities and differences in features, and effectively

attenuates overfitting.

Non-linear regression modeling appears in only few studies, 17% of the

sample. This might be due to the intrinsic high dimensionality of neuroimag-

ing data, particularly evident for fMRI. At such high dimensionality, overfit-

ting becomes a greater concern for more flexible models. The only non-linear

model appearing more than once is KRR, a kernelized penalized linear regres-

sion. It is a very flexible approach given that a similarity measure between

samples can be derived. Instead of using the base features in the model,

features are expanded to higher (potentially infinite) dimensionalities. The

kernel is the dot product between samples in this high dimensional space,

which allows for efficient computation of models, bypassing the need of ex-

plicitly computing features in the new basis. In the sample, the correlation

and the Dice overlap kernels were used in different studies. Due to the im-

plicit high dimensionality, penalization is used very often, such as the ridge

penalty, in the case of KRR.

Across studies, prediction is usually performed in aggregate measures of

the data. Abrol et al. (2021) systematically shows that deep neural net-

works when trained on raw data outperform classical linear and non-linear

ML models in the prediction of age, gender and Mini Mental State Exami-

nation scores. They also show that embeddings obtained from deep neural

networks provide strong features for classical ML. This suggests that the

choice of features in the literature has the potential of negatively biasing the
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performance of deep neural networks. Deep neural networks allow for using

structured data, due to their inductive biases, present in architectures such

as CNNs for image data or RNNs for sequence data. Only few studies use

deep neural networks for the prediction of intelligence using neuroimaging.

He et al. (2020) modeled GF based on RSFC with three deep neural networks.

Fan et al. (2020) modeled GF and GC based on dynFC with RNNs. Vieira

et al. (2021b, not in this review) implements prediction of G also with RNNs,

but based on RS-fMRI timeseries.

4.1. Limitations across studies

We must first state that limitations found in the analyzed studies have

to be examined under the light of the current review’s question, i.e. what

current literature regarding theML-based prediction of intelligence using neu-

roimaging looks like. Many studies did not focus primarily on the prediction

of intelligence, even though they included such results. Studies proposing or

benchmarking modeling choices, i.e. preprocessing, ML, and imaging meth-

ods, will often include intelligence among their results. A common occurrence

in these studies, that include several outcomes, is that they will not give re-

sults in text format. When results are shown only graphically, we decided

to not use inferred numbers. Also, when assessing the TRIPOD checklist, we

only scored items that were clearly within the scope of the document. For

example, studies not primarily concerned with prediction were not penalized

by not mentioning prediction in their title, i.e. item 1.ii in TRIPOD.

The choice of outcome may also be an object of discussion. Lohman et

al. (2012) argue that GF consists of three components: sequential reasoning,

quantitative reasoning and inductive reasoning. The latter is the core of
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RPM. For this reason, Gignac (2015) argues that RPM can be considered an

imperfect measure of GF. This is due to its rather narrow scope, since it exclu-

sively consists of figural type items. All studies that predicted GF employed

the RPM in some extent. Most, 19 out of 20, used solely the RPM, with the

remaining one employing both the RPM and NIHTB’s fluid composite score.

For this reason, their results necessitate further consideration.

For both correlation and R-squared results, G-based results are signifi-

cantly higher than GF-based ones. This alludes to Gignac et al. (2017), who

showed that higher measurement quality moderates the observed correlation

between intelligence and brain volume. In our assessment in Table 2, G de-

rived from 10-tests in the NIHTB and PennCNB was rated as excellent, while

GF or “cognitive ability” obtained from a single test was rated as fair. Fur-

thermore, Dubois et al. (2018a,b) used the same predictor data based on

RS-fMRI, but obtained very disparate results using the HCP. The authors

reported r = 0.263 and R2 = 0.047, when predicting PMAT-based GF, versus

r = 0.457 and R2 = 0.206, when predicting G based on the factor analysis of

10 tests in the PennCNB and NIHTB.

The measurement of G and GF may incur risks of bias compromising

proper estimation of intelligence. The use of a single-domain test, such as

inductive reasoning in RPM, would evaluate an isolated skill and not measure

adequately intelligence, which is by definition a set of different cognitive skills.

Furthermore, a test that assesses different skills needs to cover more than

one cognitive domain, e.g., verbal, visual or spatial, to obtain a complete

measurement (Gignac et al. 2017).

Another bias in interpreting results can occur due to the omission of infor-
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mation related to the measurement of intelligence. The article must present

the construct, e.g. intelligence, G, or GF, and the psychological test used

so that it is possible to verify whether the test is adequate to measure the

function contained in the specific construct. However, a psychological test

suitable for the construct is not necessarily suitable for the population stud-

ied. It is essential to ensure tests are adequately validated for the population

under study.

Despite the solid empirical basis of the concepts of G, GF, and GC, there

are still concerns regarding cognitive abilities associated with G (Kent 2017).

New research on the neuroimaging-based prediction of intelligence should

bring more specifications when evaluating cognitive constructs, such as the

psychological instrument, validity, and application range.

The current conceptualization of the intelligence construct does not en-

compass only GC or GF. It covers adaptability and problem-solving in real life,

considering emotional intelligence factors, decision making (Stankov 2017),

and personality (Kent 2017). The interaction of these cognitive processes

in an integrated way configures a complex multidimensional construct (Mc-

Grew 2009). Due to this characteristic, it is recommended to use as many

specifications as possible when performing the intelligence measurement.

The best model for the development of psychological instruments in in-

telligence evaluation is the Cattell-Horn-Carroll (CHC), seen as the best psy-

chometric evidence for human aptitudes (Abu-Hamour et al. 2016; Hurks

et al. 2016; James et al. 2015; Lecerf et al. 2010; Wechsler et al. 2016). CHC

theory consists of a hierarchical multidimensional model with ten factors of

cognitive functioning: Fluid intelligence (Gf), Quantitative knowledge (Gq),
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Crystallized intelligence (Gc), Reading and writing (Grw), Short-term mem-

ory (Gsm), Visual processing (Gv), Auditory Processing (Ga), Long-term

memory storage and retrieval ability (Glr), Processing Speed (Gs) and De-

cision speed (Gt). However, there is criticism over its weak explanatory

capacity, its failure to make testable predictions, and its enmeshment to the

Woodcock-Johnson battery (Wasserman 2019). The Woodcock-Johnson bat-

tery of tests (Woodcock et al. 2001) was designed to be more aligned to the

CHC theory. However, there is evidence against this alignment and the lack

of support for interpreting most of the scores suggested by its scoring sys-

tem (Dombrowski et al. 2019). To date, no psychological test measures the

broad cognitive abilities established in the CHC model which are contained

in intelligence. For an adequate measurement, one should make use of in-

struments that are most related to the CHC theory, e.g., WAIS or Woodcock-

Johnson Tests, Fourth Edition (WJ IV ACH).

The preponderance of GF has three probable causes: (1) early success, as

reported in Finn et al. (2015), which is cited by 23 out of 26 possible studies,

as can be seen in Figure 3; (2) ease of estimation, since it is often taken to

comprise the score of a single test; and (3) availability, which compounds with

the last reason, since RPM scores are available from the HCP, UK Biobank,

BGSP and PNC.

The prevalence of GF presents some challenges regarding the validity of

results. The RPM can be considered a good score to include for the esti-

mation of G and GF. Current studies show that GF and G have a strong

correlation and are often statistically indistinguishable (Caemmerer et al.

2020). In isolation, however, according to the criteria published in Gignac
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et al. (2017), the RPM would be considered at best a “fair” measure of G.

Similarly, although it is correlated with GF, it does not appear to be remark-

able in comparison with other tests that measure GF (Gignac 2015). These

findings point to the necessity of investigating what the models are learning

through the RPM, and how much of it is shared between G, GF and test

specific variance. This would better clarify how much the prediction of RPM

correlates with prediction of GF.

The literature constructs a clear picture regarding the level of expected

evidence: correlations between brain imaging data and intelligence are sub-

stantial, albeit reliably low. It hovers around between 0.12 and 0.25 in large

sample-size studies based on the UK Biobank (Cox et al. 2019; He et al.

2020), shown in Figure 7. According to our quantitative analysis, the confi-

dence interval covers between 0.35 and 0.50 for G and 0.13 and 0.17 for GF

based on fMRI data only. A possible explanation for this is that, in fact,

the current data only affords such a level of performance. This also means

that unexplained components of intelligence could be potentially learned in

other spatio-temporal resolutions and imaging contrast mechanisms. An-

other, more problematic hypothesis is that ML is capturing relationships

with other behaviors and demographics that correlate with intelligence, but

not intelligence itself. This “shortcut learning” (Geirhos et al. 2020) is a ma-

jor challenge for ML generalizability and interpretability. Possible shortcuts

could include attention and arousal, but can go much deeper, to include sub-

stance abuse, malnutrition or socioeconomic status. Population modelling is

one alternative to estimate how much brain data contributes to prediction of

mental traits, i.e. Dadi et al. (2021, not in this review) demonstrates that,
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despite statistical significance, multimodal brain data constributes little to

the prediction of GF compared with sociodemographics.

On the choice of performance metrics, we see that Pearson correlation

coefficient and R-squared are the most common in the literature. This is due

to their scale invariance and perceived ease of interpretation. Despite their

popularity, both are prone to biases. The correlation coefficient represents

the linear association between predictions and true outcomes. Its formulation

does not involve actual residuals, so models with arbitrarily large errors can

still achieve perfect unitary correlation. Since R-squared involves a ratio, the

denominator that represents the variance of true values can arbitrarily reduce

or augment it. In other words, too small (or too large) variance of intelligence

in the sample can lead to small (or large) R-squared, even under the same

model (Alexander et al. 2015). This means that comparisons between studies,

specially when their outcomes and/or populations differ, is at elevated risk

of bias. A different choice of population incurs different characteristics of the

outcome variance, possibly compromising the comparison. Model comparison

on the same data could be performed under a well-behaved metric, such as

the MSE or MAE.

We detected censoring for studies with high RoB and small sample sizes,

as can be seen in Figure 7. Their variability and the frequency of nega-

tive results diminish with models trained on less than 300 subjects. This

is a qualitative indicator of publication bias, but also of selective reporting,

since most studies report comparisons with multiple models. This selective

reporting can be a result of the issue described in Hosseini et al. (2020),

where authors perform optimization of their models on the same data that
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performance is measured, leading to inflated performance estimates due to

overfitting to the test set and leakage.

The diversity of populations under study across studies is skewed towards

a select group of countries. The 11 datasets identified can be grouped accord-

ingly into United States (HCP, NKI, PNC, BGSP, COBRE), New Zealand (the

Dunedin Study), United Kingdom (UK Biobank), China (UESTC), South

Korea (NRI, KAIST) and North America/Europe (ABIDE-I). Earlier releases

of ABIDE were for the most part based on United States populations as well

(New York University, Kennedy Krieger Institute, Stanford, Oregon Health

& Science University, University of California, Los Angeles as in Wang et

al. (2015)). This limitation stems from economic factors that affect coun-

tries differently. While some datasets sampled highly-educated young adult

populations, several others are matched samples from the local general popu-

lation, which diminishes risks of biases. The prediction of GF from the HCP,

specially that assessed by the RPM, is very predominant in the literature.

Albeit large datasets are often employed, the homogeneities across studies

raise concerns regarding generalizability to other populations. Future works

could perform validation analyses of trained models on new datasets, taking

special care of differences in imaging acquisition and pre-processing.

While earlier association works helped to foment new theories on intel-

ligence, current ML-based works have not yet contributed substantially to

this endeavor. This comes from the fact that the majority of the works do

not try to extract explanatory value from the trained models. Few works

test the leverage of different features and how these fit within or without

theories such as Parieto Frontal Integration Theory (P-FIT) and Network
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Neuroscience Theory. Future works and possibly meta-analyses can solidify

these findings, providing support for existing or new theories.

A common occurrence in the assessment of PROBAST was that studies

did not take into account the optimistic bias of confounders received high

RoB ratings for “Analysis” Table 3. A notorious confounder which should be

taken into account is kinship, in datasets like the HCP (Dubois et al. 2018a).

Other, more pervasive ones, include movement and brain volume, but also

sex and age. Two common approaches in the literature are removing the

effect of confounders using linear models and stratifying data in a way to

minimize bias due to confounders, the latter a very common approach when

dealing with family structure. While our work cannot determine optimal

strategies for treatment of confounders, low RoB studies were expected to

recognize their effects and account for it in results.

Another common factor leading to high RoB was small sample size. It is

a well-known fact from the literature that ML-based studies suffer spurious

correlation induced by small samples (Varoquaux 2018). The few studies

that report the standard error of the mean cross-validated performance also

likely underestimate it (Varoquaux 2018). Recognizing the negative impact

of small sample sizes, having fewer than 500 subjects was considered as an

indicator of possible RoB in the assessment of Table 3.

4.2. Limitations of the review

Some possible limitations can be identified in our review methodology.

Searching for manuscripts on predictive modeling on neuroimaging is par-

ticularly challenging. In the early literature, the term “predict” would often

be used to refer to studies on correlations and associations. For this reason,
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we had to use a search strategy based on domain-knowledge. This choice,

however, incurs the risk of selection bias due to missing documents. Since

we successfully retrieved a reasonable number of documents, we believe that

we minimized this risk and also obtained a representative sample. It is how-

ever expected that our selection missed documents, but we believe that this

number should be small.

The fact that most studies either did not focus solely on intelligence

or were not primarily about individualized prediction makes data retrieval

difficult. For this reason, in several instances constructs and instruments

are not readily identified in searchable text. We thoroughly searched for

information in actual figures and supplementary materials. We did not follow

citations or other sources to infer this information, since the construct should

ideally be stated by authors.

Another source of variance is the fact that terminology is flexible. Studies

will often use terms like cognitive ability or others with ambiguous meaning.

For example, in Elliott et al. (2019) “cognitive ability” refers to both FSIQ

and GF, while in Sripada et al. (2020) “general cognitive ability” names a

measurement that is identified with G in other studies. Some works will refer

to a G-like construct as general intelligence, others will refrain from using the

term intelligence altogether. We tried to disambiguate authors’ choices with

the coherence of the review in mind. This is particularly evident in Table 2,

where we tried to unify terminology.

We adopted the TRIPOD adherence assessment form (Heus et al. 2019) to

evaluate reporting quality. That benefits objectivity in this analysis. Mea-

suring adherence to a specific reporting guideline has the disadvantage of
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potentially misrepresenting studies. This guideline is not enforced by jour-

nals, reviewers or the authors themselves in this research area. This form

has been similarly applied to documents published prior to TRIPOD (Za-

manipoor Najafabadi et al. 2020). Due to the generality of TRIPOD items,

we believe that the risk of bias is low regarding the assessment of reporting

quality. Several studies achieved high ratings, as can be seen in Figure 6.

We employed PROBAST to assess RoB and applicability. PROBAST is a

tool designed primarily for studies in health and medicine, but its items are

still very applicable to our review question. Another benefit is that the use

of standardized tools minimizes biases when compared with an alternative

created by authors. This was a post-hoc adaptation from the protocol in

Vieira et al. (2021a), but, with aforementioned justification, we also consider

that the risk of inducing bias is low.

We employed the PRISMA checklist as a reporting guideline. PRISMA was

designed for studies that evaluate healthcare interventions, but most items

can be applied to our review question. We believe that this choice offers no

additional risk of bias for our review.

The quality of measurement of intelligence was evaluated by the first three

criteria of the essential guide for categorizing the quality of general intelli-

gence measurement (Gignac et al. 2017). Although the guide was proposed

for G, we also used it to assess the quality of measurement of GF.

The number of studies using modalities other than fMRI with low RoB and

low concerns regarding applicability was insufficient for quantitative analy-

sis. For this reason, we only obtained meta-estimates of correlation and

R-squared from fMRI. Figure 7 seems to point towards an approximately
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unique ceiling in performance, but the small number of studies, especially

truly multimodal ones, makes that inference inconclusive.

4.3. Future work

Future work could explore other imaging techniques, such as PET, EEG

and MEG. These imaging techniques probe different functional aspects from

fMRI. PET allows the study of slow metabolic dynamics in the brain and

was fundamental for the definition of the P-FIT, being employed in the study

of metabolic response differences under cognitively demanding tasks (Jung

et al. 2007). EEG and MEG, on the other hand, probe fast electrical cerebral

dynamics, and their importance was also acknowledged in P-FIT, albeit nei-

ther was part of its experimental foundation. In addition to other imaging

techniques, multimodality presents an avenue for future research. It is cur-

rently not possible to establish whether information learned from different

modalities overlap due to the lack of large numbers of multimodal models.

Studies employing two or more techniques or modalities at once can better

disambiguate the predictive power exclusive to each. This type of study is,

however, becoming more widespread. Jiang et al. (2020b) model anatomical

and RSFC data jointly, Dhamala et al. (2021, not in this review) use dMRI

structural connectivity and RSFC, and Dadi et al. (2021, not in this review)

includes joint modeling based on RSFC, dMRI diffusion measurements, and

sMRI global and regional volumes.

Most works employ ROI-level features. Although this “summarization”

makes ML more amenable, since it diminishes the dimensionality of data,

this level of spatial abstraction can discard useful intra-regional information.

Feilong et al. (2021, not in this review) systematically demonstrates that

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.10.19.462649doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.19.462649
http://creativecommons.org/licenses/by-nd/4.0/


accounting for fine-grained, intra-ROI task and resting-state FC differences

lead to improvements in the prediction of G and other intelligence measure-

ments. Future developments on data-efficient ML models that can robustly

learn from minimally preprocessed data have the potential of resolving this

abstraction and discovering relationships hidden by summarization.

Other ML algorithmic developments can improve prediction accuracy and

validity in the future. In particular, interpretable and explainable models can

further corroborate, falsify and augment current theories on the biological

bases of intelligence, which were majoritarily developed based on coarse-

grained spatial attributes of brain anatomy and function.

Refinements of psychometric and neuroscientific theories of intelligence

will also lead to a demand for future work. Intelligence differences do not

occur in isolation, being permeated by other human behaviors and environ-

mental factors. The extended P-FIT (ExtPFIT) was formulated in Gur et al.

(2021), and its generalizability can be tested in aML-based framework. Other

neuroscientific theories and extensions will probably emerge in the future.

Finally, larger scale datasets will diminish small sample-size biases in pre-

dictive models (Varoquaux 2018). Jointly learning across different datasets

and discarding confounding information efficiently can boost predictive ac-

curacy. Future works can help answer if the patterns observed in current

models generalize across different populations, socio-economic environments,

languages and cultures.

4.4. Conclusions

More than half of the identified studies include linear modeling to pre-

dict RPM-based GF from HCP fMRIs. This fact attests the significance and
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reliability of fMRI-based prediction studies. It also alludes to possible new

avenues of research that have been studied infrequently if at all.

By pointing out salient results across studies and limitations, we hope

that this work contributes to further developments in this area of research.

While predictive modeling “best-practices” are abound, the literature cur-

rently lacks reporting guidelines, which could be fulfilled to ease literature

search. Some gaps that can be filled by future studies include: extending

and validating the current models in new populations, developing models

using other spatiotemporal resolutions, other modalities, and imaging tech-

niques, and disambiguating the contribution of neuronal phenomena to the

predictions.
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Appendix A. SCOPUS search string

( TITLE-ABS-KEY ( ( "cortical thickness" OR "functional connectivity"

OR "structural connectivity" OR "effective connectivity" OR mri OR

fmri OR morphometry ) AND ( prediction OR predict OR cpm OR "multivariate

pattern analysis" OR bases OR variability OR mvpa ) ) AND ( TITLE

( intelligence OR behavioral OR behavior OR "cognitive ability" )

) )
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list

Section/topic # Checklist item Reported

on page #

TITLE

Title 1 Identify the report as a systematic review, meta-analysis, or both. page 1

ABSTRACT

Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study

eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results;

limitations; conclusions and implications of key findings; systematic review registration number.

page 1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of what is already known. page 5

Objectives 4 Provide an explicit statement of questions being addressed with reference to participants, interven-

tions, comparisons, outcomes, and study design (PICOS).

page 6

METHODS

Protocol and registra-

tion

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if

available, provide registration information including registration number.

page 6

Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years

considered, language, publication status) used as criteria for eligibility, giving rationale.

page 6

Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors

to identify additional studies) in the search and date last searched.

page 7

Search 8 Present full electronic search strategy for at least one database, including any limits used, such that

it could be repeated.

page 7

Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and,

if applicable, included in the meta-analysis).

page 7

Data collection process 10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate)

and any processes for obtaining and confirming data from investigators.

page 8

.
C

C
-B

Y
-N

D
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted O
ctober 28, 2021. 

; 
https://doi.org/10.1101/2021.10.19.462649

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2021.10.19.462649
http://creativecommons.org/licenses/by-nd/4.0/


Table B.4 continued from previous page

Section/topic # Checklist item Reported

on page #

Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any

assumptions and simplifications made.

page 8

Risk of bias in individ-

ual studies

12 Describe methods used for assessing risk of bias of individual studies (including specification of

whether this was done at the study or outcome level), and how this information is to be used in any

data synthesis.

page 9

Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). page 11

Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures

of consistency (e.g., I2) for each meta-analysis.

page 12

Risk of bias across

studies

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias,

selective reporting within studies).

page 12

Additional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if

done, indicating which were pre-specified.

page 12

RESULTS

Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons

for exclusions at each stage, ideally with a flow diagram.

page 13

Study characteristics 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-

up period) and provide the citations.

page 19

Risk of bias within

studies

19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item

12).

page 25

Results of individual

studies

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data

for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.

page 30

Synthesis of results 21 Present the main results of the review. If meta-analyses are done, include for each, confidence

intervals and measures of consistency

page 30
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Table B.4 continued from previous page

Section/topic # Checklist item Reported

on page #

Risk of bias across

studies

22 Present results of any assessment of risk of bias across studies (see Item 15). page 30

Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression

[see Item 16]).

page 32

DISCUSSION

Summary of evidence 24 Summarize the main findings including the strength of evidence for each main outcome; consider

their relevance to key groups (e.g., healthcare providers, users, and policy makers).

page 34

Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete

retrieval of identified research, reporting bias).

page 37

Conclusions 26 Provide a general interpretation of the results in the context of other evidence, and implications for

future research.

page 48

FUNDING

Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role

of funders for the systematic review.

page 49

Table B.4: From: Moher et al. (2009)
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Appendix C. Prediction performance metrics

Given a set of true labels y, and a set of predictions ŷ, several performance

metrics can be defined.

Appendix C.1. Continuous valued labels

The Pearson correlation coefficient, defined as

r(y, ŷ) =

∑N
i (ŷi − E[ŷ])(yi − E[y])√∑N

i (ŷi − E[ŷ])2
√∑N

i (yi − E[y])2
,

is the most popular performance metric for regression of continuous val-

ued labels.

Other metrics include the MSE,

MSE(y, ŷ) = E[(y − ŷ)2] =

∑N
i (yi − ŷi)

2

N
,

the MAE,

MAE(y, ŷ) = E[|y − ŷ|] =
∑N

i |yi − ŷi|
N

,

and Spearman rank correlation coefficient,

ρ(y, ŷ) = r(R(y), R(ŷ)),

defined in terms of Pearson’s, but based on ranks instead of values, as

denoted by the rank function R(·).

A few more metrics are linked to the MSE. These include the coefficient

of determination, or squared deviance, R-squared,
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R2(y, ŷ) = 1−
∑N

i (yi − ŷi)
2∑N

i (yi − E[yi])2
,

the RMSE,

RMSE(y, ŷ) =
√

MSE(y, ŷ),

the NRMSE,

NRMSE(y, ŷ) =
RMSE(y, ŷ)

E[y]
,

and the nRMSD,

nRMSD(y, ŷ) =
RMSE(y, ŷ)√∑N

i (yi − E[y])2
=

√
1−R2.

Appendix C.2. Binary valued labels

In our sample, the only reported performance metric for binary valued

labels yi ∈ {0, 1} was the AUC, defined mathematically as

AUROC(y, ŷ) =

∑N
i

∑N
j (yj − yi)

21ŷi>ŷj∑N
i yi

∑N
i (1− yi)

.

Notice that (yj − yi)
2 ≡ 1 only when yi ̸= yj, being 0 otherwise.
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Appendix D. Adjusted TRIPOD checklist

Section/Topic Item Checklist Item Page

Title and abstract

Title 1 Identify the study as developing and/or

validating a multivariable prediction

model, the target population, and the

outcome to be predicted.

Abstract 2 Provide a summary of objectives, study

design, setting, participants, sample

size, predictors, outcome, statistical

analysis, results, and conclusions.

Introduction

3a Explain the medical context (including

whether diagnostic or prognostic) and

rationale for developing or validating

the multivariable prediction model, in-

cluding references to existing models.

Background and

objectives

3b Specify the objectives, including

whether the study describes the devel-

opment or validation of the model or

both.

Methods
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Table D.5 continued from previous page

Section/Topic Item Checklist Item Page

4a Describe the study design or source of

data (e.g., randomized trial, cohort, or

registry data), separately for the devel-

opment and validation data sets, if ap-

plicable.

Source of data 4b Specify the key study dates, including

start of accrual; end of accrual; and, if

applicable, end of follow-up.

5a Specify key elements of the study set-

ting (e.g., primary care, secondary care,

general population) including number

and location of centres.

5b Describe eligibility criteria for partici-

pants.

Participants 5c Give details of treatments received, if

relevant.

6a Clearly define the outcome that is pre-

dicted by the prediction model, includ-

ing how and when assessed.

Outcome 6b Report any actions to blind assessment

of the outcome to be predicted.
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Table D.5 continued from previous page

Section/Topic Item Checklist Item Page

Adjusted

7a

Clearly define all predictors used in de-

veloping or validating the ML model,

including how and when they were

measured.

Predictors 7b Report any actions to blind assessment

of predictors for the outcome and other

predictors.

Sample size 8 Explain how the study size was arrived

at.

Missing data 9 Describe how missing data were han-

dled (e.g., complete-case analysis, sin-

gle imputation, multiple imputation)

with details of any imputation method.

10a Describe how predictors were handled

in the analyses.

Adjusted

10b

Specify type of model, all model-

building procedures (including any pre-

dictor selection, hyperparameter selec-

tion if needed), and method for internal

validation.

Statistical

analysis

methods

10d Specify all measures used to assess

model performance and, if relevant, to

compare multiple models.
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Table D.5 continued from previous page

Section/Topic Item Checklist Item Page

Risk groups 11 Provide details on how risk groups were

created, if done.

Results

13a Describe the flow of participants

through the study, including the num-

ber of participants with and without

the outcome and, if applicable, a sum-

mary of the follow-up time. A diagram

may be helpful.

Participants 13b Describe the characteristics of the par-

ticipants (basic demographics, clinical

features, available predictors), includ-

ing the number of participants with

missing data for predictors and out-

come.

14a Specify the number of participants and

outcome events in each analysis.

Model

development

14b If done, report the unadjusted associa-

tion between each candidate predictor

and outcome.
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Table D.5 continued from previous page

Section/Topic Item Checklist Item Page

Adjusted

15a

Present the full prediction model to

allow predictions for individuals (i.e.

links to the final model online (coding

of predictors, code and final parame-

ters/coefficients, and with the architec-

ture described in full in the article)).

Model

specification

15b Explain how to the use the prediction

model.

Model performance 16 Report performance measures (with

CIs) for the prediction model.

Discussion

Limitations 18 Discuss any limitations of the study

(such as nonrepresentative sample, few

events per predictor, missing data).

Interpretation 19b Give an overall interpretation of the

results, considering objectives, limita-

tions, and results from similar studies,

and other relevant evidence.

Implications 20 Discuss the potential clinical use of the

model and implications for future re-

search.

Other information
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Table D.5 continued from previous page

Section/Topic Item Checklist Item Page

Supplementary infor-

mation

21 Provide information about the avail-

ability of supplementary resources,

such as study protocol, Web calculator,

and data sets.

Funding 22 Give the source of funding and the role

of the funders for the present study.

Table D.5: Adjusted TRIPOD checklist for reporting quality assessment
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Appendix E. Synthesis of meta-analytic results

−0.2 0 0.2 0.4 0.6

Coefficient of determination

Elliott2019.17
Elliott2019.16
Elliott2019.15
Elliott2019.14
Elliott2019.13
Elliott2019.12
Elliott2019.11
Elliott2019.10
Elliott2019.9
Elliott2019.8
Elliott2019.7
Elliott2019.6
Elliott2019.5
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Dubois2018c.6
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Dubois2018c.4
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He2020.8
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He2020.6
He2020.5
He2020.4
He2020.3
He2020.2
He2020.1
Dubois2018b.3
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Dubois2018b.1

0.59%   0.22 [ 0.11, 0.33]
0.59%   0.23 [ 0.12, 0.34]
0.59%   0.21 [ 0.10, 0.32]
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1.75%   0.14 [ 0.08, 0.20]
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1.75%   0.07 [ 0.01, 0.13]

1.75%   0.05 [−0.01, 0.11]
1.75%   0.04 [−0.02, 0.10]
1.75%   0.03 [−0.03, 0.09]
1.75%   0.04 [−0.02, 0.10]
1.75%   0.26 [ 0.20, 0.32]
1.75%   0.18 [ 0.12, 0.24]
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Figure E.8: Forest plot for the correlation coefficient meta-analysis.
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−0.1 0.1 0.3

Coefficient of determination

Elliott2019.2
Elliott2019.1
Greene2018.6
Greene2018.5
Greene2018.4
Greene2018.3
Greene2018.2
Greene2018.1
Dubois2018c.3
Dubois2018c.2
Dubois2018c.1
Sripada2020.16
Sripada2020.15
Sripada2020.14
Sripada2020.13
Sripada2020.12
Sripada2020.11
Sripada2020.10
Sripada2020.9
Sripada2020.8
Sripada2020.7
Sripada2020.6
Sripada2020.5
Sripada2020.4
Sripada2020.3
Sripada2020.2
Sripada2020.1
He2020.4
He2020.3
He2020.2
He2020.1
Dubois2018b.3
Dubois2018b.2
Dubois2018b.1

1.04%    0.10 [−0.02, 0.21]
1.04%    0.06 [−0.06, 0.17]
1.80%    0.01 [−0.07, 0.10]
1.80%    0.04 [−0.05, 0.12]
1.80%    0.03 [−0.06, 0.11]
2.00%    0.04 [−0.04, 0.12]
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3.39%    0.05 [−0.01, 0.11]
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Figure E.9: Forest plot for the R-squared meta-analysis.
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Appendix F. Risk of bias across studies
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Figure F.10: Funnel plot for the correlation coefficient meta-analysis.
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Figure F.11: Funnel plot for the R-squared meta-analysis.
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