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17 Abstract:

18  The reaction-diffusion model constitutes one of the most influential mathematical models to study
19  distribution of morphogens in tissues. Despite its widespread use, the effect of finite tissue size on
20 model-predicted spatiotemporal morphogen distributions has not been completely elucidated. In
21  this study, we analytically investigated the spatiotemporal distributions of morphogens predicted
22 by a reaction-diffusion model in a finite 1D domain, as a proxy for a biological tissue, and
23 compared it with the solution of the infinite-domain model. We explored the reduced parameter,
24 the tissue length in units of a characteristic reaction-diffusion length, and identified two reaction-
25  diffusion regimes separated by a crossover tissue size estimated in ~3.3 characteristic reaction-
26  diffusion lengths. While above this crossover the infinite-domain model constitutes a good
27  approximation, it breaks below this crossover, whereas the finite-domain model faithfully
28  describes the entire parameter space. We evaluated whether the infinite-domain model renders
29 accurate estimations of diffusion coefficients when fitted to finite spatial profiles, a procedure
30 typically followed in Fluorescence Recovery After Photobleaching (FRAP) experiments. We found
31  that the infinite-domain model overestimates diffusion coefficients when the domain is smaller
32 than the crossover tissue size. Thus, the crossover tissue size may be instrumental in selecting the

33  suitable reaction-diffusion model to study tissue morphogenesis.
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35  Introduction

36 In their transition towards maturity, tissues are crucially regulated by molecules known as
37 morphogens, whose precise spatiotemporal distribution triggers the downstream changes in
38 protein expression responsible for the exact differentiation patterns. Nevertheless, tissues are not
39  only an inert scaffold upon which morphogens spread, but they are also fully responsible for the
40 morphogen uptake or their transformation by means of specific biochemical reactions. The
41 problem of how a morphogen propagates over a tissue while it is being eliminated was
42 mathematically encoded in the exquisite reaction-diffusion model by the great Alan Turing, who

43 coined the “morphogen” neologism to illustrate its character of “form generator” [1].

44  The reaction-diffusion model constitutes one of the most influential quantitative approaches
45  within developmental biology. From the aforementioned Turing’s seminal article and the study
46  from Gierer and Meinhardt [2], a progressive wealth of reaction-diffusion models were developed,
47 paving the way to become an essential and pivotal concept to understand tissue morphogenesis
48 [3,4,5,6]. The model was extensively used to investigate distributions of morphogens in a variety
49  of tissues and organisms such as Drosophila melanogaster wing imaginal disc [7], chick limb [8]
50 and the stripe pattern of Danio rerio [9] among other examples.

51 Previous studies have analytically investigated this model assuming an infinite domain [10,11].
52  Although the model relied on the idea that the reaction-diffusion characteristic length of the
53 morphogen pattern was reasonably smaller than the domain, it is clear that biological tissues do
54 not entail infinite lengths. Other reports investigated the model assuming a finite domain by using
55 numerical [7,12] and analytical approaches [13,14,15,16]. To our knowledge, the role played by
56  the size of the domain in the spatiotemporal patterning predicted by this model has not yet been

57 elucidated.
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58 In this study, we present the analytical solution of a reaction-diffusion model describing de novo
59  formation of a morphogen and its spread within a finite domain, as a proxy for a tissue. We
60  analytically investigated the behaviour of the model, in terms of a reduced parameter,
61 representing the tissue length in units of a characteristic reaction-diffusion length. We fully
62  characterized the finite-domain model in terms of morphological aspects of the spatial
63  distributions and the time to reach the steady state to finally compare them with the
64 corresponding predictions from the infinite-domain model. We found a crossover tissue size above
65 which both models coincide. Importantly, below this crossover size, the finite-domain model

66  becomes a better approximation.
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68 Results

69 2.1. The reaction-diffusion model in the infinite domain

70 Here we briefly summarize the well-known reaction-diffusion model assuming an infinite domain
71 and its analytic solution [10,11]. Within this model, it is assumed that the dynamics of the
72 morphogen are faster than the proliferation rate of the tissue cells and, as a consequence,
73 advective effects can be neglected. Otherwise, an advective term could be included to the model
74 [17]. Since during developmental process tissues usually organize along a particular axis [18,19],
75  this model is studied in a one dimensional setting [10,11]. It is assumed that the morphogen
76  concentration C;(x,t) can diffuse with a diffusion coefficient D and is linearly degraded with a
77  ratek.

9Ci(xnt) _ D 82Cy(xt)

78 ot dx2

—kCy(x,t) (Eq. 1)
79 It is considered that there is no morphogen at the beginning, that is, the initial condition is:
80 Ci(x,t=0)=0 (Eq. 2)

81  The only source of morphogen is a constant flux g located at the origin, represented by the first

82 boundary condition:

dC1 _ _ _g
83 E(x =0,t) = > (Eq. 3)

84  In this model, it can be assumed that there is a sink in the tip of the tissue absorbing the

85 morphogen and assumes that the spatial domain is infinite:

86 lim C;(x,t) =0 (Eq. 4)
X—>00
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This model given by Egs. 1-4 was extensively investigated by other authors, and the solution is
[10,11]:

Ci(x,t) = \/%e

=SR

1—%erfc(\/ﬁ—L)—%e\/_%erfc(\/ﬁ+%m) (Eg. 5)

2V Dt

Where erfc(x) is the complementary error function.

Space and time variables can be rewritten in terms of the following dimensionless variables ¢ =

“reil®

and 7 = kt. Consequently, the morphogen flux at the tissue origin can be rewritten as S = \/%

and the concentration as C(g,7) = % With this nondimensionalization, model equations (Eq.
1-4) take the form:
2 _2¢_¢ (Eq. 6)
at ~ 9e? Q-
Cle,t=0)=0 (Eq. 7)

Where the morphogen source at the tissue origin, in nondimensional units, € = 0, is:
dc
E(E =0,7)=-1 (Eq.8)
And a morphogen sink at infinite in the nondimensionalized units is now:
limC(e,7) =0 (Eq.9)

E—00

Which leads to this solution:

Cle,T)=e" ¢ [1 —%erfc (\/? —%) — %e 2 erfc (\/? + %)] (Eq. 10)
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104  2.2. The reaction-diffusion model in finite domains: an analytical solution

105  The previous model variant entails an infinite domain (Egs. 4 and 9). Since biological tissue sizes

106 require a finite domain, we decided to replace the condition imposed by Eq. 4 with:
107 Ci(x =Lt)=0 (Eqg. 11)

108  Where L is the length of the tissue. To our knowledge, the general solution for any given L is yet

109 unknown.

110  We defined the quantity R = iD, which is the only model parameter. This quantity represents the

2
111 tissue length L in units of the characteristic reaction-diffusion length A, defined as 1 = \/% [20,21].

112 Thus, the second boundary condition for this model in nondimensionalized units is:
113 Cle =R,7)=0 (Eq. 12)
114  This equation replaces Eq. 9 in the section 2.1 assuming the finitude of the tissue.

115  We found the analytical solution of the general model for finite tissues (Egs. 6-8 and 12) in the
116  nondimensionalized units to be as follows (see Supplementary information for the

117  demonstration):

(e[, ]
118 C(S,T)=(e—_£ e )+Z;’;O—EM£’ [< ‘ ) 1} (Eq. 13)

1+e72R  1+4e2R

119 Moreover, we also found the solution for different boundary conditions such as assuming a non-
120  null flux in € = 0 and a zero flux in € = R as well as a fixed non-null concentration in e = 0 and a
121 null concentration in € =R (see Supplementary information). To further corroborate the

122 analytical solution, we implemented the model numerically, by using a finite differences scheme
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123 (see Supplementary information). Our results indicate that the analytical solution is in agreement

124  with numerical simulations (Fig. 1 in Supplementary information).

125
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126 2.3 Transient morphogen distributions are qualitatively different between the model of infinite
127  domain and the model of finite domains when they are of the order of the characteristic length

128 A or smaller.

129  We decided to compare the reaction-diffusion model assuming a finite tissue versus an infinite
130  domain. With the selected nondimensionalization, the latter does not have any free parameters.
131 In contrast, the finite model has only one free parameter, R, which represents the tissue size in
132 units of the characteristic length of the morphogen profile A. By using our analytical solution for
133  the model of finite tissues (Eq. 13), we explored the predicted morphogen spatial profiles at
134 different tissue sizes (i.e., varying R) and compared them with those calculated from the previously
135 known solution assuming an infinite domain (Eq. 10), at three different time points (Fig. 1). We
136  observed that the morphogen concentrations predicted by the model assuming an infinite domain
137  are higher than those predicted by the model assuming a finite domain (Fig. 1 A, B). For large
138  enough tissue lengths, morphogen profiles predicted by both models are indistinguishable at each
139  time point, as expected (Fig. 1 C and Fig 1 D). Hence, the previously reported model assuming an
140 infinite domain is a reasonable description of the dynamics of morphogen profiles for larger
141  tissues. However, when addressing a tissue whose length is of the order of the characteristic

142 length A or smaller, the model introduced in the present work is a more accurate description.

143 Moreover, we observed that large tissues lead to morphogen spatial distributions temporarily
144  separated. In contrast, spatial distributions at different time points are indistinguishable in shorter
145  tissues, suggesting that they already approached the steady state (Fig. 1A). This result would
146  indicate that the larger the tissue, the longer the time necessary to reach the morphogen spatial

147 distribution at the steady state (see also sections 2.4 and 2.6).

148
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Figure 1. The morphogen spatial profile predicted from the reaction-diffusion model assuming finite domains at

lengths larger than the crossover size converges to the profile predicted from the model assuming an infinite domain.

Morphogen spatial profiles of the reaction-diffusion model assuming finite domains considering that the normalized

tissue sizes R are A) 0.1, B) 1, C) 5 and D) 10, respectively, are depicted at three different times 7= 0.1, 1 and 10 (solid

lines). The profiles from the model assuming infinite domains are also shown at the same times (dashed lines). C, eand 7

represent the normalized morphogen concentration, space and time, respectively. In panel A), all spatial concentration

profiles for finite domain overlap.
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159  2.4. Steady state morphogen spatial distributions

160  The morphogen spatial distribution assuming an infinite domain at the steady state (C7/ ™ (¢))
161 is well known [10,11] and with our nondimensionalization it is the following exponential spatial

162  decay:

163 cinrinite (o) = g~ (Eq. 14)

164  We calculated the steady state solution for our model of finite tissues,CS’;mite(s), (Supplementary

165 information):

o —-& &
166 clinite () :( e e—) (Eq. 15)

1+e 2R 1+e2R

167 Increasing the tissue size in this model modifies the steady state profile, augmenting the maximum
168  concentration at the origin and leading to a transition from a linear to an exponential curve (Fig.
169  2), in agreement with the results observed at any time (Fig. 1). Precisely, to estimate the limit
170  when the tissue size tends to zero, we calculated the Taylor series expansion of the steady state
171  solution (Eq. 15) on R to the first order. As ¢ is constrained by R, we subsequently obtained the

172  Taylor series expansion for the resulting expression on € to the first order:

173 }ziir(l) anite () = ‘lgi_r)ré[—sinh(s) + Rcosh(e)] =R —¢ (Eq. 16)
174  The limit when the tissue size tends to infinite was calculated:

175 lim cliMe(e) = e & = M (g) (Eq. 17)

176  Remarkably, the steady state morphogen distribution of the finite model converges to the

177  exponential distribution predicted by the infinite domain when the tissue length tends to infinity.

11
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178 Furthermore, by comparing the steady state solution (Eq. 15) with its complete solution (Eq. 13),

179  we can re-write Eqg. 13 as follows:

180 Cle,1) = Cs/ ™ () + X520 — = (Eq. 18)

181  Where the second term of Eq. 18 vanishes when the time 7 tends to infinity. Therefore, the
182 morphogen concentration can be expressed as the steady state solution plus a term that describes

183 a transient contribution.

— = infinite domain

R |
4

o
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ML
T T T T T T l O
0 1 2 3 4 5
3
184
185 Figure 2. Morphogen spatial profile of the reaction-diffusion model assuming finite domains at the steady state

186 transitions from a line-like to exponential-like spatial profile when the tissue size increases. Steady state profiles
187 predicted from the reaction-diffusion model at different tissue sizes (R) are depicted. The steady state profile from the
188 model assuming infinite domains and the crossover tissue size R. (defined in section 2.5) are shown as dashed black and

189 red lines, respectively.

12
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190 2.5 Geometrical characterization of the morphogen spatial distributions

191 The steady state profiles predicted by the model of finite tissues changed from linear to
192 exponential when increasing the tissue size as shown in section 2.4. In order to geometrically
193 characterize the shape of the spatial profiles in the steady state regime, we defined &4 as the
194  dimensionless spatial position & in which the morphogen concentration is 10 % of the
195  concentration at the origin. When using this definition in the model assuming infinite domains, we

196  obtain (see Supplementary information for details):

197 €10 = In(10) = 2.3 (Eq. 19)

198  While for the model of finite tissues (see Supplementary information for details):

smh(R)) (Eq. 20)

199 &o0=R- arcsinh( 10

200  Thus, in the limit of small tissues, &1 shows a linear dependence with the tissue size. However,
201  when the tissue tends to infinity, &1, becomes independent of the precise tissue size, reaching a
202  plateau (Fig. 3). Additionally, when tissue size tends to infinity, in Eq. 20, ;o recovers the value

203  from the infinite model calculated in Eq. 19.

204  We wonder whether it is possible to establish a cut-off size to distinguish both regimes. To answer
205  this question, we explore under what conditions, the shape of the morphogen spatial distribution
206  depends on the tissue size. More precisely, we asked under what crossover tissue size R. the
207 geometrical observable & would transition from linearly depending on the tissue size to
208 becoming independent of it. To this end, we Taylor-expanded &0 and arbitrarily looked for the R =
209  R.upon which the second non-zero term of the series would be about 20 % of the first linear term
210  (See Supplementary information for details). Our results show that the crossover tissue size

211 separating both regimes is about 3 times the characteristic length 4 (R, = 3.3).

13
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213 Figure 3. The geometrical factor £1(¢ characterizing the steady state spatial profiles of the reaction-diffusion model
214 assuming finite domains (solid line) linearly grows with the tissue size (R, tissue length in nondimensional units) until
215 it converges to the £;¢ predicted from the model assuming an infinite domain (horizontal dashed black line). & is
216 defined as the spatial position (&) where the morphogen concentration is 10 % of its value at the origin. The vertical

217 dashed red line shows the crossover tissue size R..

218

219  The analysis of the dependency of &0 with the tissue size can also be made before the morphogen
220  distribution achieves the steady state. Although we could not find an analytical expression for this
221  observable in the general case, we explored this dependency numerically (Fig. 4). We observed
222 that, for each tissue size, & increases in time until it reaches a plateau, which indicates that the
223 spatial profile stabilizes in the steady state. Moreover, the time needed to reach the plateau
224 monotonically increases with the tissue size until R ~ R.. For larger tissue sizes, the time to reach
225  the plateau converges to the prediction of the model for infinite domains (Fig. 4). This result is

14
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226  consistent with the fact that morphogen spatial distributions at different times are overlapped in
227  smaller tissues and separated in larger ones (Fig. 1). This is a consequence of the second term of
228  Eq. 18: the larger the tissue, the longer waiting times are required to vanish the exponential in the

229 second term.

£10

- R.
infinite domain

|
w IN w

230

231 Figure 4. The larger the tissue, the longer the time to reach the steady state. Kinetics of the geometrical factor
232 predicted from the model for finite tissues of different sizes (R, tissue length in normalized units). The kinetic of the
233 factor &, of the model for an infinite domain is also shown (dashed black line). & is defined as the spatial position (&)

234 where the morphogen concentration is 10 % of its value at the origin. The dashed red line shows the crossover value R..

235

15
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2.6 Time to reach the steady state morphogen distribution

In Section 2.5 we suggested that the larger the tissue, the longer it takes the model to reach the
steady state. To test this hypothesis, we took advantage of a method developed by Berezhkovskii
and colleagues [11] to quantify the mean time (u) it takes a morphogen profile to reach its steady
state. They applied this method to the reaction-diffusion model assuming an infinite domain and

obtained (in our nondimensional units):

() = = (Eq. 22)

That is, the mean time to reach the steady state is linear with the position within the infinite
domain. We applied the same method to our reaction-diffusion model of finite tissues and
obtained (see Supplementary information for details):

(j+%)7rs
2 COS(—R 1

:uT(S) = Zoo: s 2 2 ¢ o€ (Eq 23)
=R G T e
+1

R

Thus, for our model, the mean time to reach the steady state not only depends on the position

within the tissue but also on the tissue size.

To formally compare the mean times calculated from both reaction-diffusion models we also need
to estimate a measure of the error. Hence, we calculated the standard deviation of the time to
reach the steady state, o; (see Supplementary information for details). For the model assuming an

infinite domain, it reads:

o.(e) =22 (Eq. 24)
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254  Which coincide with the already reported result by Ellery and colleagues [15]. In contrast, for the

255 reaction-diffusion model for finite tissues, we obtain:

| (+) / (+) \2
%6 0@ = B <(> >3<H12R1;;R>"Z?°°‘§ <<> >2<1+12R11:;R>' (Fa.23
e [ )

257  As with the mean, the standard deviation of the time necessary to reach the steady state not only

258 depends on the positions along the tissue but also on the tissue size. At the origin of the tissue (=

259 0), both, u: and o, increase with R until they converge toward % and g, respectively, when R
260 tends to infinite (Fig. 5 A). These are precisely the expected values from the model assuming
261 infinite domains evaluated at the tissue origin (Egs. 22 and 24). Interestingly, the transition
262 between the domains in which x4 and o: depend on the tissue size and where they are
263 independent of it coincides with the crossover tissue size of about 3 A determined in the previous

264  section (compare Fig. 5 A with Fig. 3). The ratio between them, constituting the Coefficient of

265  Variation C,,(s)zzrg, also experiences a transition near the crossover tissue size until
T

266  converging to V2 (Fig. 5 A).

267 For tissues smaller than the crossover size, the mean time to achieve the steady state and its error
268 in each position strongly depend on tissue size (Fig. 5 B). On the contrary, for tissue sizes higher
269  than the crossover tissue size, both magnitudes become independent of the size (Fig. 5 C).
270  Importantly, for tissues smaller than the crossover size, the steady state will be reached
271  significantly faster than the prediction from the model assuming an infinite domain. For tissues
272 larger than the crossover size, both models agree in the time to achieve steady state (Fig. 5 B and

273 Q).
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275
276 Figure 5. Crossover tissue size separates two regimes of the time to reach the steady state. A) The mean time to reach
277 the steady state (black line), the standard deviation (light blue line) and the variation coefficient (brown line) as a

278 function of R predicted from the model assuming finite domains at € = 0. The vertical dashed red line indicates the
279 crossover tissue size R.. B) Spatial profile of the mean time to reach the steady state for R = 1.1 (green line) and R = 3
280 (blue line). The standard deviation (o) is represented by the shady areas surrounding the curves. C) Spatial profile of the
281 mean time to reach the steady state for R = 5.1 (red line) and R = 10 (light blue line). The result for the model of an
282 infinite domain is shown in dashed black line. The standard deviation (o) is represented by the shady areas surrounding

283 the curves.

284
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285 2.7 Finite versus infinite domains in the reaction-diffusion model used in the FRAP-based

286  determination of diffusion parameters

287 Diffusion parameters of morphogens can be experimentally determined in tissues by using
288 Fluorescence recovery after photobleaching (FRAP) experiments [22, 23]. From this technique, the
289  diffusion coefficient D and degradation constant k are obtained indirectly by fitting to
290 experimental concentration measurements the analytical solution of the model assuming a finite
291 domain [23,34] as well as an infinite domain [19, 24]. Thus, we wondered whether the election of
292  the model used in FRAP has an impact on the calculated D and k values. To that end, as a proof of
293 principle, we evaluated whether the infinite domain model could render an accurate estimation of
294 the kinetic parameters D and k, when fitted to a dataset simulated with the finite domain model
295 used as a proxy for experimental data. We simulated steady state concentration profiles by using
296  the finite-domain model (Eg. 15) rewriting the concentration in the original coordinate x = A and
297  arbitrarily setting A = 1 for different values of L. Then, we rewrote the steady state concentration
298 of the infinite-domain model (Eqg. 14) in the original coordinate x and performed a curve fitting for
299  each of the datasets obtained using Eq. 15. We used Eq. 14 in the original coordinate as fitting
300 function and A as the free parameter. We obtained the predicted value of A as a function of R =L
301 (Fig. 6). For large values of R, the predicted A is approximately 1, which is in agreement with the
302  value actually used to generate the data. In contrast, for values of R smaller than R, the predicted
303  value of A deviate from 1, converging to 0 for small values of R. We concluded that both models
304 can be used to infer the kinetic parameters D and k from FRAP experiments, provided that tissue
305 sizes are higher than R.. On the contrary, for tissues smaller than this crossover value, the model

306  assuming finite domains is the best alternative.
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308 Figure 6. The reaction-diffusion model assuming an infinite domain does not correctly predict the characteristic length

309 for tissues smaller than the crossover size. The concentration of a morphogen in steady state was simulated with the
310 model assuming finite domains along 101 equidistant positions from 0 to L, for different values of L going from 0.1 to 10.
311 A was arbitrarily set equal to 1. The simulated curves were fitted with the model assuming an infinite domain where 1
312 was the only free fitting parameter. For large values of R the infinite domain model predicts correctly the value A = 1. For

313 R smaller than R, (depicted by the vertical dashed red line) the predicted A goes to 0.

314
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315 Discussion

316  Reaction-diffusion models were conceived in the seminal article of Alan Turing to hypothesize
317 under what conditions heterogeneous patterns could emerge from a homogeneous one in tissue
318 morphogenesis [1]. After the concept of positional information was posed by Lewis Wolpert [25],
319 as illustrated by his well-known French Flag Problem ([26]; see also the review by Sharpe [27]),
320 reaction-diffusion models resurfaced to account for mechanisms capable of generating spatial
321 gradients that could serve as positional signals. Francis Crick was entertaining the hypothesis of
322 reaction-diffusion signals as probable morphogenetic driving forces [28]. Reaction-diffusion
323 models were specifically studied by Alfred Gierer and Hans Meinhardt to understand pattern
324  formation in tissue development and regeneration [2]. Thereafter, a plethora of reaction-diffusion
325 models were developed and proposed over the years to describe different morphogen gradients
326 [29,30,31,32]. Some notable examples are Bcd in the syncytial Drosophila embryo [33], Dpp in
327 developing wing imaginal disc in Drosophila [19], Fgf8 in the gastrulating Danio rerio embryo [34],
328 among other examples. Despite the controversy of whether reaction-diffusion models represent
329 an effective or accurate description of tissue pattern formation, these modelling framework
330 became an essential construct to guide mathematical approaches in development [5,35] and

331 regeneration [36].

332 In this study, we investigated the spatiotemporal distribution of a morphogen with a minimal

333 reaction-diffusion model in a finite domain, as a proxy for a tissue. The solution of the model
334  assuming an infinite domain has been already reported [10,11]. A number of reaction-diffusion
335 models were previously considered to investigate morphogen gradients in finite domains, by
336 means of numerical simulations (see, for instance, [7,12], among other examples). A reaction-

337  diffusion model assuming finite domains was exactly solved assuming Neumann boundary
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338 conditions to investigate scaling of morphogens in tissues [13] and robustness of pattern
339 formation in development [14], among other examples. A similar model was considered to
340 investigate cell migration and proliferation of a population of precursor cells on a uniformly
341  growing tissue by Simpson [37], based on the model of cell colonization in uniformly growing
342  domains [38]. In his model, Simpson [37] explored a more general case of a growing domain,
343 which can recapitulate the case of a fixed domain by setting the growth speed to zero.
344 Nevertheless, because the model focused on cells instead of morphogens, it assumed a positive
345 reaction term to account for cell proliferation and a non-zero initial condition, in contrast to our
346 negative reaction term and our zero initial condition. Hence, imposing a zero initial condition in
347  this previously reported model yields the null solution.

348  The analytical solution here reported could be instrumental in computational packages devoted to
349 multi-scale modelling, which involve a signalling scale coupled with a cellular scale. Although their
350 cellular layer could entail a Cellular Potts Model (CPM) [39, 40] in CompuCell3D [41] and
351 MORPHEUS [42], or a vertex model [43, 44] in CHASTE [45], their signalling scale is typically
352 modelled by a reaction-diffusion scheme. Since in these packages a finite domain is the only
353 possible choice, they cannot avoid a numerical implementation. While our numerical results,
354  based on a finite-difference algorithm cannot be distinguished from the analytical solution (Fig. 1
355 in Supplementary information), the last one is naturally more accurate and computationally more
356  efficient (see Supplementary information), which could prove useful for multi-scale modelling
357 implementations. Likewise, this new solution could help to improve the calculation of recovery
358 curves in FRAP experiments, as for tissues below the crossover size R., the model assuming finite

359  domains is a better approximation.

360 Our results showed that the morphogen spatial distributions predicted by our model assuming

361 finite domains depend on the only relevant model parameter: the normalized tissue size R. By
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362  determining the spatial position along the tissue where the morphogen concentration is 10 % of
363  the source concentration (&), we geometrically characterized the steady state spatial distribution.
364  This characterization led us to find two regimes within the parameters space, separated by a
365 crossover tissue size R. (Fig. 3 and Fig. 7C and 7D). For tissues longer than R, the distributions are
366 exponential-like and cannot be distinguished from those predicted from the model assuming an
367 infinite domain (Fig. 2 and Fig. 7B). In this regime of the parameter space, the mean and standard
368  deviation of the time to reach the steady state (evaluated at the tissue origin) do not change much
369  with the tissue size and converged towards the corresponding values from the model assuming an
370 infinite domain (Fig. 5 and Fig. 7F). When comparing the morphogen concentrations predicted by
371 both models we found that the difference between them is mostly negligible (Fig. 8 A and B).
372 Hence, the model assuming an infinite domain can be considered a good approximation of the

373 model assuming finite domains for tissue sizes larger than R..

374
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< Small Tissue size Large Tissu

376 Figure 7. Transition between small and large tissues: Two reaction-diffusion regimes separated by a crossover tissue

375

377 size. Sketch summarizing the main differences between small and large tissue sizes separated by a crossover tissue size
378 (Rc). Spatial profiles of morphogen concentration C (A, B) and dependency of the geometrical factor &0 (C, D) and the
379 mean time to reach the steady state u: (E, F) with the nondimensionalized tissue size R, for small (A, C, E) and large

380 tissues (B, D, F).

381

382 In contrast, for tissues smaller than R, the distributions tend to be linear and are clearly separated
383  from those predicted with the model assuming an infinite domain (Fig. 2 and Fig. 7A).
384  Furthermore, the time to reach the steady state strongly depends on the tissue size in this regime
385  (Fig. 5 and Fig. 7E). In particular, the error of using the model assuming an infinite domain

386 increases when gtends to R and the smaller the tissue the higher the error accumulated over the
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387  entire tissue (Fig. 8 A and B) (See Supplementary information for details). Thus, our results indicate
388  that to investigate tissues smaller than approximately 3 times the characteristic length A4, the

389 model assuming finite domains should be used.

error

o o o
iy [«)} [e2]
1 1 1

accumulated error

e
N
1

0.0

390

391 Figure 8. The reaction-diffusion model assuming a finite domain is a better approximation than the model assuming
392 an infinite domain when the tissue size is smaller than the crossover tissue size. A) Heat map showing the difference of
393 morphogen concentration predicted from the reaction-diffusion model assuming a finite and the infinite domain as a

394 function of the position within the tissue (&) and the tissue size (R). This difference could be considered as the error
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395 committed when utilizing the standard model assuming the infinite domain at a given position ¢ from a tissue of size R.
396 B) The difference calculated in (A) integrated over the tissue and normalized with R, as a function of R, representing the
397 global error of using the standard model assuming the infinite domain when the tissue size is R. The vertical dashed line
398 indicates the crossover tissue size R.

399  The crossover tissue size provides a straightforward criterion to decide when to use any of the two
400 models presented here. As an example, the characteristic length of Wg was estimated in 6 um in
401  the Drosophila wing disc, where the tissue size was about 50 um [19]. The resulting R ~ 8 > R,
402 indicates that the model assuming an infinite domain is a reasonable approximation in this
403  scenario. A similar conclusion can be drawn when studying Dpp in the Drosophila haltere. For this
404 morphogen, the characteristic length and the tissue size can be estimated in ~ 10 and ~ 100 um,
405 respectively [7], which leads to R ~ 10 > R.. In contrast, the last morphogen, Dpp, but in the
406  Drosophila wing disc has a characteristic length of 20 um [19] which implies R ~ 2.5 < R.. As a
407  consequence, the model assuming finite tissues is the most correct approximation to describe
408 morphogen propagation in this scenario. Something similar occurs with Fgf8 in the Danio rerio
409  embryo, whose characteristic length was estimated as 200 um while the tissue size is about 200
410  um [34], from which a R ~ 1 < R. can be calculated. By only looking at the previous examples, it is
411  clear that there is no correlation between the model selection and the morphogen under study,
412  since the same morphogen, Dpp dynamics is better explained with the model assuming finite
413  domains in the Drosophila wing disc while in the Drosophila haltere the model assuming an infinite
414  domain is actually sufficient. The same lack of correlation can be observed between the model
415 selection and the tissue of interest. Indeed, in the same tissue, Drosophila imaginal disc, Wg could
416  be described with the model assuming an infinite domain while Dpp requires the most precise

417 model of finite domains.
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418 In conclusion, we found two reaction-diffusion regimes for large and small tissues, separated by a
419  crossover tissue size. While above this crossover the infinite-domain model constitutes a good
420  approximation, it breaks below this crossover, whereas the finite-domain model faithfully
421  describes the entire parameter space. Further studies will be needed to unveil the spatiotemporal
422  distribution of morphogens in tissues whose size is not fixed. Our finding of the delineated
423 crossover tissue size could be instrumental to select the proper reaction-diffusion model in future
424  studies aimed to address tissue morphogenesis and other relevant problems regarding pattern

425  formation in biology and medicine.

426
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427  Computational methods.

428 In this article, the reaction-diffusion model assuming a finite domain and its comparison with the
429 model assuming an infinite domain were studied. The analytical derivation of the reaction-
430 diffusion model assuming a finite domain for different boundary conditions is presented in the
431 section 1 in Supplementary information. Comparison between analytical and numerical solutions
432 is described in the section 2 in Supplementary information. Steady state calculations, the
433 geometrical characterization of the spatial distribution profiles given by ;4 and the estimation of
434  the crossover tissue size R; are shown in the sections 3, 4 and 5 in Supplementary information,
435 respectively. Mean time to reach the steady state together with its standard deviation are in the
436  section 6 in Supplementary information. Details on the error of assuming an infinite domain
437 instead of a finite domain in the steady state solutions are in the section 7 in Supplementary
438 information. Finally, the efficiency of the analytical solution versus the numerical one is analysed in

439  the section 8 in Supplementary information.

440  All model calculations were encoded in Python 3.7.3 and performed using NumPy [46] and SciPy
441 [47] while visualization was executed with matplotlib [48] and seaborn [49]. The source codes for
442  all the calculations and figures were implemented in supplementary notebooks using Jupyter

443  Notebook (http://jupyter.org/) and can be found at: http://doi.org/10.5281/zenodo.4421327 [50].
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