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2 
 

Abstract: 17 

The reaction-diffusion model constitutes one of the most influential mathematical models to study 18 

distribution of morphogens in tissues. Despite its widespread use, the effect of finite tissue size on 19 

model-predicted spatiotemporal morphogen distributions has not been completely elucidated. In 20 

this study, we analytically investigated the spatiotemporal distributions of morphogens predicted 21 

by a reaction-diffusion model in a finite 1D domain, as a proxy for a biological tissue, and 22 

compared it with the solution of the infinite-domain model. We explored the reduced parameter, 23 

the tissue length in units of a characteristic reaction-diffusion length, and identified two reaction-24 

diffusion regimes separated by a crossover tissue size estimated in ~3.3 characteristic reaction-25 

diffusion lengths. While above this crossover the infinite-domain model constitutes a good 26 

approximation, it breaks below this crossover, whereas the finite-domain model faithfully 27 

describes the entire parameter space. We evaluated whether the infinite-domain model renders 28 

accurate estimations of diffusion coefficients when fitted to finite spatial profiles, a procedure 29 

typically followed in Fluorescence Recovery After Photobleaching (FRAP) experiments. We found 30 

that the infinite-domain model overestimates diffusion coefficients when the domain is smaller 31 

than the crossover tissue size. Thus, the crossover tissue size may be instrumental in selecting the 32 

suitable reaction-diffusion model to study tissue morphogenesis. 33 

34 
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Introduction 35 

In their transition towards maturity, tissues are crucially regulated by molecules known as 36 

morphogens, whose precise spatiotemporal distribution triggers the downstream changes in 37 

protein expression responsible for the exact differentiation patterns. Nevertheless, tissues are not 38 

only an inert scaffold upon which morphogens spread, but they are also fully responsible for the 39 

morphogen uptake or their transformation by means of specific biochemical reactions. The 40 

problem of how a morphogen propagates over a tissue while it is being eliminated was 41 

mathematically encoded in the exquisite reaction-diffusion model by the great Alan Turing, who 42 

coined the “morphogen” neologism to illustrate its character of “form generator” [1].  43 

The reaction-diffusion model constitutes one of the most influential quantitative approaches 44 

within developmental biology. From the aforementioned Turing´s seminal article and the study 45 

from Gierer and Meinhardt [2], a progressive wealth of reaction-diffusion models were developed, 46 

paving the way to become an essential and pivotal concept to understand tissue morphogenesis 47 

[3,4,5,6]. The model was extensively used to investigate distributions of morphogens in a variety 48 

of tissues and organisms such as Drosophila melanogaster wing imaginal disc [7], chick limb [8] 49 

and the stripe pattern of Danio rerio [9] among other examples. 50 

Previous studies have analytically investigated this model assuming an infinite domain [10,11]. 51 

Although the model relied on the idea that the reaction-diffusion characteristic length of the 52 

morphogen pattern was reasonably smaller than the domain, it is clear that biological tissues do 53 

not entail infinite lengths. Other reports investigated the model assuming a finite domain by using 54 

numerical [7,12] and analytical approaches [13,14,15,16]. To our knowledge, the role played by 55 

the size of the domain in the spatiotemporal patterning predicted by this model has not yet been 56 

elucidated. 57 
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In this study, we present the analytical solution of a reaction-diffusion model describing de novo 58 

formation of a morphogen and its spread within a finite domain, as a proxy for a tissue. We 59 

analytically investigated the behaviour of the model, in terms of a reduced parameter, 60 

representing the tissue length in units of a characteristic reaction-diffusion length. We fully 61 

characterized the finite-domain model in terms of morphological aspects of the spatial 62 

distributions and the time to reach the steady state to finally compare them with the 63 

corresponding predictions from the infinite-domain model. We found a crossover tissue size above 64 

which both models coincide. Importantly, below this crossover size, the finite-domain model 65 

becomes a better approximation. 66 

  67 
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Results 68 

2.1. The reaction-diffusion model in the infinite domain 69 

Here we briefly summarize the well-known reaction-diffusion model assuming an infinite domain 70 

and its analytic solution [10,11]. Within this model, it is assumed that the dynamics of the 71 

morphogen are faster than the proliferation rate of the tissue cells and, as a consequence, 72 

advective effects can be neglected. Otherwise, an advective term could be included to the model 73 

[17]. Since during developmental process tissues usually organize along a particular axis [18,19], 74 

this model is studied in a one dimensional setting [10,11]. It is assumed that the morphogen 75 

concentration 𝐶1(𝑥, 𝑡) can diffuse with a diffusion coefficient D and is linearly degraded with a 76 

rate k.  77 

𝜕𝐶1(𝑥,𝑡)

𝜕𝑡
= D

∂2𝐶1(𝑥,𝑡)

∂𝑥2
− 𝑘𝐶1(𝑥, 𝑡)  (Eq. 1) 78 

It is considered that there is no morphogen at the beginning, that is, the initial condition is: 79 

𝐶1(𝑥 , 𝑡 = 0) = 0 (Eq. 2) 80 

The only source of morphogen is a constant flux q located at the origin, represented by the first 81 

boundary condition: 82 

𝑑𝐶1

𝑑𝑥
(𝑥 = 0, 𝑡) = −

𝑞

𝐷
  (Eq. 3) 83 

In this model, it can be assumed that there is a sink in the tip of the tissue absorbing the 84 

morphogen and assumes that the spatial domain is infinite: 85 

lim
𝑥→∞

𝐶1(𝑥 , 𝑡) = 0  (Eq. 4) 86 
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This model given by Eqs. 1-4 was extensively investigated by other authors, and the solution is 87 

[10,11]: 88 

𝐶1(𝑥, 𝑡) =
𝑞

√𝐷𝑘
𝑒

− 
𝑥

√𝐷
𝑘

 

[1 −
1

2
𝑒𝑟𝑓𝑐 (√𝑘𝑡 −

𝑥

2√𝐷𝑡
) −

1

2
𝑒

 
2𝑥

√𝐷
𝑘

 

𝑒𝑟𝑓𝑐 (√𝑘𝑡 +
𝑥

2√𝐷𝑡
)]  (Eq. 5) 89 

Where 𝑒𝑟𝑓𝑐(𝑥) is the complementary error function. 90 

Space and time variables can be rewritten in terms of the following dimensionless variables 𝜀 =
𝑥

√
𝐷

𝑘

 91 

and 𝜏 = 𝑘𝑡. Consequently, the morphogen flux at the tissue origin can be rewritten as 𝑆 =
𝑞

√𝐷𝑘
 92 

and the concentration as 𝐶(𝜀, 𝜏) =
𝐶1(𝜀,𝜏) 

𝑆
. With this nondimensionalization, model equations (Eq. 93 

1-4) take the form: 94 

𝜕𝐶

𝜕𝜏
=

∂2𝐶

∂𝜀2
− 𝐶  (Eq. 6) 95 

𝐶(𝜀 , 𝜏 = 0) = 0  (Eq. 7) 96 

Where the morphogen source at the tissue origin, in nondimensional units, 𝜀 = 0, is: 97 

𝑑𝐶

𝑑𝜀
(𝜀 = 0, 𝜏) = −1 (Eq. 8) 98 

And a morphogen sink at infinite in the nondimensionalized units is now:  99 

lim
𝜀→∞

𝐶(𝜀 , 𝜏) = 0  (Eq. 9) 100 

Which leads to this solution: 101 

𝐶(𝜀, 𝜏) = 𝑒− 𝜀 [1 −
1

2
𝑒𝑟𝑓𝑐 (√𝜏 −

𝜀

2√𝜏
) −

1

2
𝑒  2𝜀 𝑒𝑟𝑓𝑐 (√𝜏 +

𝜀

2√𝜏
)] (Eq. 10) 102 

  103 
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2.2. The reaction-diffusion model in finite domains: an analytical solution 104 

The previous model variant entails an infinite domain (Eqs. 4 and 9). Since biological tissue sizes 105 

require a finite domain, we decided to replace the condition imposed by Eq. 4 with: 106 

𝐶1(𝑥 = 𝐿, 𝑡) = 0 (Eq. 11) 107 

Where L is the length of the tissue. To our knowledge, the general solution for any given L is yet 108 

unknown.  109 

We defined the quantity 𝑅 =
𝐿

√
𝐷

𝑘

, which is the only model parameter. This quantity represents the 110 

tissue length L in units of the characteristic reaction-diffusion length , defined as 𝜆 = √
D

𝑘
  [20,21]. 111 

Thus, the second boundary condition for this model in nondimensionalized units is: 112 

𝐶(𝜀 = R , 𝜏) = 0  (Eq. 12) 113 

This equation replaces Eq. 9 in the section 2.1 assuming the finitude of the tissue. 114 

We found the analytical solution of the general model for finite tissues (Eqs. 6-8 and 12) in the 115 

nondimensionalized units to be as follows (see Supplementary information for the 116 

demonstration): 117 

𝐶(𝜀, 𝜏) = (
𝑒−𝜀

1+𝑒−2𝑅
−

𝑒𝜀

1+𝑒2𝑅
) + ∑ −

2

𝑅

𝑐𝑜𝑠(
(𝑗+

1
2)𝜋𝜀

𝑅
)

(
(𝑗+

1
2)𝜋

𝑅
)

2

+1

𝑒
−[(

(𝑗+
1
2
)𝜋

𝑅
)

2

+1]𝜏

 ∞
𝑗=0  (Eq. 13) 118 

Moreover, we also found the solution for different boundary conditions such as assuming a non-119 

null flux in 𝜀 = 0 and a zero flux in 𝜀 = 𝑅 as well as a fixed non-null concentration in 𝜀 = 0 and a 120 

null concentration in 𝜀 = 𝑅 (see Supplementary information). To further corroborate the 121 

analytical solution, we implemented the model numerically, by using a finite differences scheme 122 
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(see Supplementary information). Our results indicate that the analytical solution is in agreement 123 

with numerical simulations (Fig. 1 in Supplementary information).  124 

  125 
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2.3 Transient morphogen distributions are qualitatively different between the model of infinite 126 

domain and the model of finite domains when they are of the order of the characteristic length 127 

 or smaller. 128 

We decided to compare the reaction-diffusion model assuming a finite tissue versus an infinite 129 

domain. With the selected nondimensionalization, the latter does not have any free parameters. 130 

In contrast, the finite model has only one free parameter, R, which represents the tissue size in 131 

units of the characteristic length of the morphogen profile . By using our analytical solution for 132 

the model of finite tissues (Eq. 13), we explored the predicted morphogen spatial profiles at 133 

different tissue sizes (i.e., varying R) and compared them with those calculated from the previously 134 

known solution assuming an infinite domain (Eq. 10), at three different time points (Fig. 1). We 135 

observed that the morphogen concentrations predicted by the model assuming an infinite domain 136 

are higher than those predicted by the model assuming a finite domain (Fig. 1 A, B). For large 137 

enough tissue lengths, morphogen profiles predicted by both models are indistinguishable at each 138 

time point, as expected (Fig. 1 C and Fig 1 D). Hence, the previously reported model assuming an 139 

infinite domain is a reasonable description of the dynamics of morphogen profiles for larger 140 

tissues. However, when addressing a tissue whose length is of the order of the characteristic 141 

length  or smaller, the model introduced in the present work is a more accurate description.  142 

Moreover, we observed that large tissues lead to morphogen spatial distributions temporarily 143 

separated. In contrast, spatial distributions at different time points are indistinguishable in shorter 144 

tissues, suggesting that they already approached the steady state (Fig. 1A). This result would 145 

indicate that the larger the tissue, the longer the time necessary to reach the morphogen spatial 146 

distribution at the steady state (see also sections 2.4 and 2.6). 147 

 148 
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 149 

 150 

 Figure 1. The morphogen spatial profile predicted from the reaction-diffusion model assuming finite domains at 151 

lengths larger than the crossover size converges to the profile predicted from the model assuming an infinite domain. 152 

Morphogen spatial profiles of the reaction-diffusion model assuming finite domains considering that the normalized 153 

tissue sizes R are A) 0.1, B) 1, C) 5 and D) 10, respectively, are depicted at three different times  = 0.1, 1 and 10 (solid 154 

lines). The profiles from the model assuming infinite domains are also shown at the same times (dashed lines). C,  and  155 

represent the normalized morphogen concentration, space and time, respectively. In panel A), all spatial concentration 156 

profiles for finite domain overlap.  157 

  158 
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2.4. Steady state morphogen spatial distributions 159 

The morphogen spatial distribution assuming an infinite domain at the steady state (𝐶𝑠𝑠
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒(ε)) 160 

is well known [10,11] and with our nondimensionalization it is the following exponential spatial 161 

decay: 162 

𝐶𝑠𝑠
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒(𝜀) = 𝑒− 𝜀   (Eq. 14) 163 

We calculated the steady state solution for our model of finite tissues,𝐶𝑠𝑠
𝑓𝑖𝑛𝑖𝑡𝑒(ε), (Supplementary 164 

information): 165 

𝐶𝑠𝑠
𝑓𝑖𝑛𝑖𝑡𝑒(𝜀) = (

𝑒−𝜀

1+𝑒−2𝑅
−

𝑒𝜀

1+𝑒2𝑅
)  (Eq. 15) 166 

Increasing the tissue size in this model modifies the steady state profile, augmenting the maximum 167 

concentration at the origin and leading to a transition from a linear to an exponential curve (Fig. 168 

2), in agreement with the results observed at any time (Fig. 1). Precisely, to estimate the limit 169 

when the tissue size tends to zero, we calculated the Taylor series expansion of the steady state 170 

solution (Eq. 15) on R to the first order. As 𝜀 is constrained by R, we subsequently obtained the 171 

Taylor series expansion for the resulting expression on 𝜀 to the first order: 172 

lim
𝑅→0

 𝐶𝑆𝑆
𝑓𝑖𝑛𝑖𝑡𝑒(𝜀) ≅ lim

𝜀→0
[−sinh(𝜀) + R cosh(𝜀)] ≅ 𝑅 − 𝜀  (Eq. 16) 173 

The limit when the tissue size tends to infinite was calculated: 174 

lim
𝑅→∞

𝐶𝑆𝑆
𝑓𝑖𝑛𝑖𝑡𝑒(𝜀) = 𝑒− 𝜀 = 𝐶𝑠𝑠

𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒(𝜀)  (Eq. 17) 175 

Remarkably, the steady state morphogen distribution of the finite model converges to the 176 

exponential distribution predicted by the infinite domain when the tissue length tends to infinity. 177 
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Furthermore, by comparing the steady state solution (Eq. 15) with its complete solution (Eq. 13), 178 

we can re-write Eq. 13 as follows: 179 

𝐶(𝜀, 𝜏) = 𝐶𝑠𝑠
𝑓𝑖𝑛𝑖𝑡𝑒(𝜀) + ∑ −

2

𝑅

𝑐𝑜𝑠(
(𝑗+

1
2
)𝜋𝜀

𝑅
)

(
(𝑗+

1
2)𝜋

𝑅
)

2

+1

𝑒
−[(

(𝑗+
1
2
)𝜋

𝑅
)

2

+1]𝜏

 ∞
𝑗=0   (Eq. 18) 180 

Where the second term of Eq. 18 vanishes when the time  tends to infinity. Therefore, the 181 

morphogen concentration can be expressed as the steady state solution plus a term that describes 182 

a transient contribution. 183 

  184 
Figure 2. Morphogen spatial profile of the reaction-diffusion model assuming finite domains at the steady state 185 

transitions from a line-like to exponential-like spatial profile when the tissue size increases. Steady state profiles 186 

predicted from the reaction-diffusion model at different tissue sizes (R) are depicted. The steady state profile from the 187 

model assuming infinite domains and the crossover tissue size Rc (defined in section 2.5) are shown as dashed black and 188 

red lines, respectively.   189 
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2.5 Geometrical characterization of the morphogen spatial distributions 190 

The steady state profiles predicted by the model of finite tissues changed from linear to 191 

exponential when increasing the tissue size as shown in section 2.4. In order to geometrically 192 

characterize the shape of the spatial profiles in the steady state regime, we defined 𝜀10 as the 193 

dimensionless spatial position  in which the morphogen concentration is 10 % of the 194 

concentration at the origin. When using this definition in the model assuming infinite domains, we 195 

obtain (see Supplementary information for details): 196 

𝜀10 = 𝑙𝑛(10) ≅ 2.3  (Eq. 19) 197 

While for the model of finite tissues (see Supplementary information for details): 198 

𝜀10 = 𝑅 − arcsinh (
𝑠𝑖𝑛ℎ(𝑅)
10

)  (Eq. 20) 199 

Thus, in the limit of small tissues, 𝜀10 shows a linear dependence with the tissue size. However, 200 

when the tissue tends to infinity, 𝜀10 becomes independent of the precise tissue size, reaching a 201 

plateau (Fig. 3). Additionally, when tissue size tends to infinity, in Eq. 20, 𝜀10 recovers the value 202 

from the infinite model calculated in Eq. 19. 203 

We wonder whether it is possible to establish a cut-off size to distinguish both regimes. To answer 204 

this question, we explore under what conditions, the shape of the morphogen spatial distribution 205 

depends on the tissue size. More precisely, we asked under what crossover tissue size Rc the 206 

geometrical observable 10 would transition from linearly depending on the tissue size to 207 

becoming independent of it. To this end, we Taylor-expanded 10 and arbitrarily looked for the R = 208 

Rc upon which the second non-zero term of the series would be about 20 % of the first linear term 209 

(See Supplementary information for details). Our results show that the crossover tissue size 210 

separating both regimes is about 3 times the characteristic length  (𝑅𝑐 ≈ 3.3). 211 
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  212 

Figure 3. The geometrical factor 𝜺𝟏𝟎 characterizing the steady state spatial profiles of the reaction-diffusion model 213 

assuming finite domains (solid line) linearly grows with the tissue size (R, tissue length in nondimensional units) until 214 

it converges to the 𝜺𝟏𝟎 predicted from the model assuming an infinite domain (horizontal dashed black line). 𝜀10 is 215 

defined as the spatial position () where the morphogen concentration is 10 % of its value at the origin. The vertical 216 

dashed red line shows the crossover tissue size Rc.  217 

 218 

The analysis of the dependency of 10 with the tissue size can also be made before the morphogen 219 

distribution achieves the steady state. Although we could not find an analytical expression for this 220 

observable in the general case, we explored this dependency numerically (Fig. 4). We observed 221 

that, for each tissue size, 10 increases in time until it reaches a plateau, which indicates that the 222 

spatial profile stabilizes in the steady state. Moreover, the time needed to reach the plateau 223 

monotonically increases with the tissue size until R ~ Rc. For larger tissue sizes, the time to reach 224 

the plateau converges to the prediction of the model for infinite domains (Fig. 4). This result is 225 
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consistent with the fact that morphogen spatial distributions at different times are overlapped in 226 

smaller tissues and separated in larger ones (Fig. 1). This is a consequence of the second term of 227 

Eq. 18: the larger the tissue, the longer waiting times are required to vanish the exponential in the 228 

second term. 229 

 230 

Figure 4. The larger the tissue, the longer the time to reach the steady state. Kinetics of the geometrical factor 𝜀10 231 

predicted from the model for finite tissues of different sizes (R, tissue length in normalized units). The kinetic of the 232 

factor 𝜀10 of the model for an infinite domain is also shown (dashed black line). 𝜀10 is defined as the spatial position () 233 

where the morphogen concentration is 10 % of its value at the origin. The dashed red line shows the crossover value Rc. 234 

  235 
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2.6 Time to reach the steady state morphogen distribution 236 

In Section 2.5 we suggested that the larger the tissue, the longer it takes the model to reach the 237 

steady state. To test this hypothesis, we took advantage of a method developed by Berezhkovskii 238 

and colleagues [11] to quantify the mean time () it takes a morphogen profile to reach its steady 239 

state. They applied this method to the reaction-diffusion model assuming an infinite domain and 240 

obtained (in our nondimensional units): 241 

𝜇𝜏(𝜀) =
𝜀+1

2
   (Eq. 22) 242 

That is, the mean time to reach the steady state is linear with the position within the infinite 243 

domain. We applied the same method to our reaction-diffusion model of finite tissues and 244 

obtained (see Supplementary information for details): 245 

𝜇𝜏(𝜀) = ∑ −
2

𝑅

𝑐𝑜𝑠(
(𝑗+

1
2
)𝜋𝜀

𝑅
)

[(
(𝑗+

1
2)𝜋

𝑅
)

2

+1]

2

1

(
𝑒−𝜀

1+𝑒−2𝑅
−

𝑒𝜀

1+𝑒2𝑅
)
 ∞

𝑗=0   (Eq. 23) 246 

Thus, for our model, the mean time to reach the steady state not only depends on the position 247 

within the tissue but also on the tissue size.  248 

To formally compare the mean times calculated from both reaction-diffusion models we also need 249 

to estimate a measure of the error. Hence, we calculated the standard deviation of the time to 250 

reach the steady state,  (see Supplementary information for details). For the model assuming an 251 

infinite domain, it reads: 252 

𝜎𝜏(𝜀) =
√𝜀+2

2
  (Eq. 24) 253 
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Which coincide with the already reported result by Ellery and colleagues [15]. In contrast, for the 254 

reaction-diffusion model for finite tissues, we obtain: 255 

𝜎𝜏(𝜀) =

√
  
  
  
  
  

∑
2
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−
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)
 ∞

𝑗=0

)

 
 

2

∞
𝑗=0    (Eq. 25) 256 

As with the mean, the standard deviation of the time necessary to reach the steady state not only 257 

depends on the positions along the tissue but also on the tissue size. At the origin of the tissue ( = 258 

0), both,  and , increase with R until they converge toward 
1

2
 and 

√2

2
, respectively, when R 259 

tends to infinite (Fig. 5 A). These are precisely the expected values from the model assuming 260 

infinite domains evaluated at the tissue origin (Eqs. 22 and 24). Interestingly, the transition 261 

between the domains in which  and  depend on the tissue size and where they are 262 

independent of it coincides with the crossover tissue size of about 3  determined in the previous 263 

section (compare Fig. 5 A with Fig. 3). The ratio between them, constituting the Coefficient of 264 

Variation 𝐶𝑣(𝜀) =
𝜎𝜏(𝜀)

𝜇𝜏(𝜀)
, also experiences a transition near the crossover tissue size until 265 

converging to √2 (Fig. 5 A). 266 

For tissues smaller than the crossover size, the mean time to achieve the steady state and its error 267 

in each position strongly depend on tissue size (Fig. 5 B). On the contrary, for tissue sizes higher 268 

than the crossover tissue size, both magnitudes become independent of the size (Fig. 5 C). 269 

Importantly, for tissues smaller than the crossover size, the steady state will be reached 270 

significantly faster than the prediction from the model assuming an infinite domain. For tissues 271 

larger than the crossover size, both models agree in the time to achieve steady state (Fig. 5 B and 272 

C). 273 
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  274 

 275 

Figure 5. Crossover tissue size separates two regimes of the time to reach the steady state. A) The mean time to reach 276 

the steady state (black line), the standard deviation (light blue line) and the variation coefficient (brown line) as a 277 

function of R predicted from the model assuming finite domains at 𝜀 = 0. The vertical dashed red line indicates the 278 

crossover tissue size Rc. B) Spatial profile of the mean time to reach the steady state for R = 1.1 (green line) and R = 3 279 

(blue line). The standard deviation () is represented by the shady areas surrounding the curves. C) Spatial profile of the 280 

mean time to reach the steady state for R = 5.1 (red line) and R = 10 (light blue line). The result for the model of an 281 

infinite domain is shown in dashed black line.  The standard deviation () is represented by the shady areas surrounding 282 

the curves. 283 

  284 
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2.7 Finite versus infinite domains in the reaction-diffusion model used in the FRAP-based 285 

determination of diffusion parameters 286 

Diffusion parameters of morphogens can be experimentally determined in tissues by using 287 

Fluorescence recovery after photobleaching (FRAP) experiments [22, 23]. From this technique, the 288 

diffusion coefficient D and degradation constant k are obtained indirectly by fitting to 289 

experimental concentration measurements the analytical solution of the model assuming a finite 290 

domain [23,34] as well as an infinite domain [19, 24]. Thus, we wondered whether the election of 291 

the model used in FRAP has an impact on the calculated D and k values. To that end, as a proof of 292 

principle, we evaluated whether the infinite domain model could render an accurate estimation of 293 

the kinetic parameters D and k, when fitted to a dataset simulated with the finite domain model 294 

used as a proxy for experimental data. We simulated steady state concentration profiles by using 295 

the finite-domain model (Eq. 15) rewriting the concentration in the original coordinate x = λε and 296 

arbitrarily setting λ = 1 for different values of L. Then, we rewrote the steady state concentration 297 

of the infinite-domain model (Eq. 14) in the original coordinate x and performed a curve fitting for 298 

each of the datasets obtained using Eq. 15. We used Eq. 14 in the original coordinate as fitting 299 

function and λ as the free parameter. We obtained the predicted value of λ as a function of R = L 300 

(Fig. 6). For large values of R, the predicted λ is approximately 1, which is in agreement with the 301 

value actually used to generate the data. In contrast, for values of R smaller than Rc, the predicted 302 

value of λ deviate from 1, converging to 0 for small values of R. We concluded that both models 303 

can be used to infer the kinetic parameters D and k from FRAP experiments, provided that tissue 304 

sizes are higher than Rc. On the contrary, for tissues smaller than this crossover value, the model 305 

assuming finite domains is the best alternative. 306 
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 307 

Figure 6. The reaction-diffusion model assuming an infinite domain does not correctly predict the characteristic length 308 

for tissues smaller than the crossover size. The concentration of a morphogen in steady state was simulated with the 309 

model assuming finite domains along 101 equidistant positions from 0 to L, for different values of L going from 0.1 to 10. 310 

λ was arbitrarily set equal to 1. The simulated curves were fitted with the model assuming an infinite domain where  311 

was the only free fitting parameter. For large values of R the infinite domain model predicts correctly the value λ = 1. For 312 

R smaller than Rc (depicted by the vertical dashed red line) the predicted λ goes to 0. 313 

  314 
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Discussion 315 

Reaction-diffusion models were conceived in the seminal article of Alan Turing to hypothesize 316 

under what conditions heterogeneous patterns could emerge from a homogeneous one in tissue 317 

morphogenesis [1]. After the concept of positional information was posed by Lewis Wolpert [25], 318 

as illustrated by his well-known French Flag Problem ([26]; see also the review by Sharpe [27]), 319 

reaction-diffusion models resurfaced to account for mechanisms capable of generating spatial 320 

gradients that could serve as positional signals. Francis Crick was entertaining the hypothesis of 321 

reaction-diffusion signals as probable morphogenetic driving forces [28]. Reaction-diffusion 322 

models were specifically studied by Alfred Gierer and Hans Meinhardt to understand pattern 323 

formation in tissue development and regeneration [2]. Thereafter, a plethora of reaction-diffusion 324 

models were developed and proposed over the years to describe different morphogen gradients 325 

[29,30,31,32]. Some notable examples are Bcd in the syncytial Drosophila embryo [33], Dpp in 326 

developing wing imaginal disc in Drosophila [19], Fgf8 in the gastrulating Danio rerio embryo [34], 327 

among other examples. Despite the controversy of whether reaction-diffusion models represent 328 

an effective or accurate description of tissue pattern formation, these modelling framework 329 

became an essential construct to guide mathematical approaches in development [5,35] and 330 

regeneration [36]. 331 

In this study, we investigated the spatiotemporal distribution of a morphogen with a minimal 332 

reaction-diffusion model in a finite domain, as a proxy for a tissue. The solution of the model 333 

assuming an infinite domain has been already reported [10,11]. A number of reaction-diffusion 334 

models were previously considered to investigate morphogen gradients in finite domains, by 335 

means of numerical simulations (see, for instance, [7,12], among other examples). A reaction-336 

diffusion model assuming finite domains was exactly solved assuming Neumann boundary 337 
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conditions to investigate scaling of morphogens in tissues [13] and robustness of pattern 338 

formation in development [14], among other examples. A similar model was considered to 339 

investigate cell migration and proliferation of a population of precursor cells on a uniformly 340 

growing tissue by Simpson [37], based on the model of cell colonization in uniformly growing 341 

domains [38]. In his model, Simpson [37] explored a more general case of a growing domain, 342 

which can recapitulate the case of a fixed domain by setting the growth speed to zero. 343 

Nevertheless, because the model focused on cells instead of morphogens, it assumed a positive 344 

reaction term to account for cell proliferation and a non-zero initial condition, in contrast to our 345 

negative reaction term and our zero initial condition. Hence, imposing a zero initial condition in 346 

this previously reported model yields the null solution. 347 

The analytical solution here reported could be instrumental in computational packages devoted to 348 

multi-scale modelling, which involve a signalling scale coupled with a cellular scale. Although their 349 

cellular layer could entail a Cellular Potts Model (CPM) [39, 40] in CompuCell3D [41] and 350 

MORPHEUS [42], or a vertex model [43, 44] in CHASTE [45], their signalling scale is typically 351 

modelled by a reaction-diffusion scheme. Since in these packages a finite domain is the only 352 

possible choice, they cannot avoid a numerical implementation. While our numerical results, 353 

based on a finite-difference algorithm cannot be distinguished from the analytical solution (Fig. 1 354 

in Supplementary information), the last one is naturally more accurate and computationally more 355 

efficient (see Supplementary information), which could prove useful for multi-scale modelling 356 

implementations. Likewise, this new solution could help to improve the calculation of recovery 357 

curves in FRAP experiments, as for tissues below the crossover size Rc, the model assuming finite 358 

domains is a better approximation. 359 

Our results showed that the morphogen spatial distributions predicted by our model assuming 360 

finite domains depend on the only relevant model parameter: the normalized tissue size R. By 361 
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determining the spatial position along the tissue where the morphogen concentration is 10 % of 362 

the source concentration (10), we geometrically characterized the steady state spatial distribution. 363 

This characterization led us to find two regimes within the parameters space, separated by a 364 

crossover tissue size Rc (Fig. 3 and Fig. 7C and 7D). For tissues longer than Rc, the distributions are 365 

exponential-like and cannot be distinguished from those predicted from the model assuming an 366 

infinite domain (Fig. 2 and Fig. 7B). In this regime of the parameter space, the mean and standard 367 

deviation of the time to reach the steady state (evaluated at the tissue origin) do not change much 368 

with the tissue size and converged towards the corresponding values from the model assuming an 369 

infinite domain (Fig. 5 and Fig. 7F). When comparing the morphogen concentrations predicted by 370 

both models we found that the difference between them is mostly negligible (Fig. 8 A and B). 371 

Hence, the model assuming an infinite domain can be considered a good approximation of the 372 

model assuming finite domains for tissue sizes larger than Rc.  373 

 374 
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   375 

Figure 7. Transition between small and large tissues: Two reaction-diffusion regimes separated by a crossover tissue 376 

size. Sketch summarizing the main differences between small and large tissue sizes separated by a crossover tissue size 377 

(Rc). Spatial profiles of morphogen concentration C (A, B) and dependency of the geometrical factor 10 (C, D) and the 378 

mean time to reach the steady state  (E, F) with the nondimensionalized tissue size R, for small (A, C, E) and large 379 

tissues (B, D, F).  380 

 381 

In contrast, for tissues smaller than Rc, the distributions tend to be linear and are clearly separated 382 

from those predicted with the model assuming an infinite domain (Fig. 2 and Fig. 7A). 383 

Furthermore, the time to reach the steady state strongly depends on the tissue size in this regime 384 

(Fig. 5 and Fig. 7E). In particular, the error of using the model assuming an infinite domain 385 

increases when  tends to R and the smaller the tissue the higher the error accumulated over the 386 
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entire tissue (Fig. 8 A and B) (See Supplementary information for details). Thus, our results indicate 387 

that to investigate tissues smaller than approximately 3 times the characteristic length , the 388 

model assuming finite domains should be used. 389 

 390 

Figure 8. The reaction-diffusion model assuming a finite domain is a better approximation than the model assuming 391 

an infinite domain when the tissue size is smaller than the crossover tissue size. A) Heat map showing the difference of 392 

morphogen concentration predicted from the reaction-diffusion model assuming a finite and the infinite domain as a 393 

function of the position within the tissue () and the tissue size (R). This difference could be considered as the error 394 
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committed when utilizing the standard model assuming the infinite domain at a given position  from a tissue of size R. 395 

B) The difference calculated in (A) integrated over the tissue and normalized with R, as a function of R, representing the 396 

global error of using the standard model assuming the infinite domain when the tissue size is R. The vertical dashed line 397 

indicates the crossover tissue size Rc.  398 

The crossover tissue size provides a straightforward criterion to decide when to use any of the two 399 

models presented here. As an example, the characteristic length of Wg was estimated in 6 m in 400 

the Drosophila wing disc, where the tissue size was about 50 m [19]. The resulting R ~ 8 > Rc 401 

indicates that the model assuming an infinite domain is a reasonable approximation in this 402 

scenario. A similar conclusion can be drawn when studying Dpp in the Drosophila haltere. For this 403 

morphogen, the characteristic length and the tissue size can be estimated in ~ 10 and ~ 100 m, 404 

respectively [7], which leads to R ~ 10 > Rc. In contrast, the last morphogen, Dpp, but in the 405 

Drosophila wing disc has a characteristic length of 20 m [19] which implies R ~ 2.5 < Rc. As a 406 

consequence, the model assuming finite tissues is the most correct approximation to describe 407 

morphogen propagation in this scenario. Something similar occurs with Fgf8 in the Danio rerio 408 

embryo, whose characteristic length was estimated as 200 m while the tissue size is about 200 409 

m [34], from which a R ~ 1 < Rc can be calculated. By only looking at the previous examples, it is 410 

clear that there is no correlation between the model selection and the morphogen under study, 411 

since the same morphogen, Dpp dynamics is better explained with the model assuming finite 412 

domains in the Drosophila wing disc while in the Drosophila haltere the model assuming an infinite 413 

domain is actually sufficient. The same lack of correlation can be observed between the model 414 

selection and the tissue of interest. Indeed, in the same tissue, Drosophila imaginal disc, Wg could 415 

be described with the model assuming an infinite domain while Dpp requires the most precise 416 

model of finite domains. 417 
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In conclusion, we found two reaction-diffusion regimes for large and small tissues, separated by a 418 

crossover tissue size. While above this crossover the infinite-domain model constitutes a good 419 

approximation, it breaks below this crossover, whereas the finite-domain model faithfully 420 

describes the entire parameter space. Further studies will be needed to unveil the spatiotemporal 421 

distribution of morphogens in tissues whose size is not fixed. Our finding of the delineated 422 

crossover tissue size could be instrumental to select the proper reaction-diffusion model in future 423 

studies aimed to address tissue morphogenesis and other relevant problems regarding pattern 424 

formation in biology and medicine. 425 

  426 
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Computational methods. 427 

In this article, the reaction-diffusion model assuming a finite domain and its comparison with the 428 

model assuming an infinite domain were studied. The analytical derivation of the reaction-429 

diffusion model assuming a finite domain for different boundary conditions is presented in the 430 

section 1 in Supplementary information. Comparison between analytical and numerical solutions 431 

is described in the section 2 in Supplementary information. Steady state calculations, the 432 

geometrical characterization of the spatial distribution profiles given by 𝜀10 and the estimation of 433 

the crossover tissue size Rc are shown in the sections 3, 4 and 5 in Supplementary information, 434 

respectively. Mean time to reach the steady state together with its standard deviation are in the 435 

section 6 in Supplementary information. Details on the error of assuming an infinite domain 436 

instead of a finite domain in the steady state solutions are in the section 7 in Supplementary 437 

information. Finally, the efficiency of the analytical solution versus the numerical one is analysed in 438 

the section 8 in Supplementary information. 439 

All model calculations were encoded in Python 3.7.3 and performed using NumPy [46] and SciPy 440 

[47] while visualization was executed with matplotlib [48] and seaborn [49]. The source codes for 441 

all the calculations and figures were implemented in supplementary notebooks using Jupyter 442 

Notebook (http://jupyter.org/) and can be found at: http://doi.org/10.5281/zenodo.4421327 [50].  443 
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