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Abstract

Genetic variations affect behavior and cause disease but understanding how these variants
drive complex traits is still an open question. A common approach is to link the genetic variants
to intermediate molecular phenotypes such as the transcriptome using RNA-sequencing
(RNA-seq). Paradoxically, these variants between the samples are usually ignored at the
beginning of RNA-seq analyses of many model organisms. This can skew the transcriptome
estimates that are used later for downstream analyses, such as expression quantitative trait
locus (eQTL) detection. Here, we assessed the impact of reference-based analysis on the
transcriptome and eQTLs in a widely-used mouse genetic population: the BXD panel of
recombinant inbred lines. We highlight existing reference bias in the transcriptome data analysis
and propose practical solutions which combine available genetic variants, genotypes, and
genome reference sequence. The use of custom BXD line references improved downstream
analysis compared to classical genome reference. These insights would likely benefit genetic
studies with a transcriptomic component and demonstrate that genome references might need
to be reassessed and improved.

Introduction

To decipher how genome leads to phenome, measuring gene expression by RNA-sequencing
(RNA-seq) is widely used. Fragments of RNA are read and then virtually mapped back onto a
reference genome to determine the transcriptomic location of origin. Read mapping is often
regarded as trivial but relies on many choices. Indeed, the user decides for example which
reference to use and how exact the alignments are required to be. Most of the time, little
information is published on how these choices are made. The mapping needs to account for
amplification and sequencing errors, and for redundancy within the genome. It is important that
the reference precisely represents the samples to guide the mapping. However, generating a
reference assembly is complex and expensive and it is common practice to map all samples of
a model organism to a single assembly provided by the genome reference consortium (GRC)
(Church et al., 2011, 2015). The expression of non-reference alleles may be altered compared
to that of reference alleles. This reference bias on the transcriptome can then spread to
downstream analyses such as expression quantitative trait loci (eQTL) detection, where gene
expression is associated to genomic variants. The genomic variations between individuals at
the core of genetic studies are thus paradoxically often ignored at the start of the analysis and
may alter interpretations and conclusions.
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The genetic characteristics of humans have been widely studied and reference bias is known to
alter DNA-seq, RNA-seq (Liu et al., 2018), and chromatin immunoprecipitation (ChlP)-seq
analyses (Groza et al., 2020; Rivas-Astroza et al., 2011). The ideal solution would be to use a
sample-specific genome assembly. Since this is currently too costly, many methods to reduce
reference bias were proposed (Ballouz et al., 2019; Chen et al., 2020; Liu et al., 2018). One
strategy notably used by the Genotype-Tissue Expression (GTEXx) consortium is to tailor the
analysis to each individual as initially implemented in the WASP suite of tools (Geijn et al.,
2015). The WASP-correction proposes to map reads to the GRC assembly and identify mapped
reads that overlap SNVs, then re-map these reads after replacing the reference alleles by
variants alleles in the assembly and discard reads that change mapping loci. Although this
strategy removes reference bias it also discards reads that are potentially informative of a
genetic effect. Nevertheless, the idea of modifying the GRC reference assembly with variants
specific to the individual or sample is used by many tools, with the difference that all the reads
are mapped to the customized references only. For example, the AlleleSeq pipeline was
developed for human trios where the variants for the two parents are known (Rozowsky et al.,
2011). One of its tools, vcf2diploid, constructs two haplotype-specific references from one
reference assembly and a list of genomic variants which can include single nucleotides variants
(SNVs), indels, and structural variants (SVs). The authors propose to map the offspring sample
separately onto its two parental references, and to retain for each read the alignment with the
highest alignment score. In case of equality the alignment is randomly taken from that of either
parent to avoid systematic bias. RefEditor offers a similar approach, but adds a genotype
imputation option (Yuan et al., 2015). Many tools aim at making the best use of large-scale
variants and genotypes databases by genotype imputation to have for each individual a more
complete set of alleles. However, these genotype imputation strategies cannot be applied to
mouse or other animal models because of a lack of genetic characterization at the individual
level.

Mouse genetic research mostly uses inbred lines, in which individuals are presumed isogenic.
Therefore, it seems logical to aim for reference customization for mouse strains rather than for
individuals. The GRC mouse assembly is mainly based on the inbred strain C57BL/6J (B6)
(Mouse Genome Sequencing Consortium, 2002) and short genomic variants for many other
inbred strains are available at dbSNP (Sherry et al., 2001). To compare retinal transcriptome in
two inbred strains (DBA/2J (D2) and B6), Wang et al. modified the GRCm38 reference genome
with D2-specific variants from dbSNP to map the D2 samples (Wang et al., 2019). This
improved slightly the mappability by reducing the fraction of unmapped reads. Seqnature
software aims at producing individualized diploid references for RNA-seq analysis and was
used on simulated and real world data of Diversity Outbred (DO) mice, in which each mouse is
a unique combination between 8 founder strains (Munger et al., 2014). It shows improvement of
the number of reads mapped, of the accuracy of transcript expression estimates, and of the
number of eQTLs detected. Unfortunately, this type of study is very rare and the R package
(DOQTL) used for the QTL analyses is specific to this mouse population, which renders
comparisons with studies on different populations challenging. The Mouse Genome Project tries
a more global approach to characterize the genetic variation among mouse strains. Many
genetic variants were discovered and strain-specific genome assemblies for sixteen mouse
strains were released (Lilue et al., 2018). However, it remains unclear how to use these
resources for mice that are intercrossed.

The BXD panel of recombinant inbred lines is a well-studied and genetically simple population
derived from the B6 and D2 strains (Peirce et al., 2004). Each BXD line has genetic markers
(genotypes) available on the GeneNetwork website (http://genenetwork.org). Although this
panel has been used in hundreds of studies, nobody to our knowledge has performed neither
BXD-specific read mapping, nor BXD genome assembly. Here, we explored different strategies
using publicly available resources to accurately represent the genetic diversity of the samples.
We assessed the influence of the reference used for read mapping in this panel and how it
impacts read mappability, gene expression, and eQTLs. We also measured how various
parameter settings would influence the number of eQTLs found. We evaluated the use of the
two parental genome assemblies and found this strategy not adequate. We implemented an
alternative strategy which enhanced the GRC assembly with known variants. This improved the
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quality of BXD transcriptomics analyses. Our approach reduces reference bias in the BXD
transcriptomics, and raises awareness about pitfalls of RNA-seq analyses.

Methods

Samples and RNA-sequencing

Male mice from 33 BXD lines, C57BL/6J (B6), DBA/2J (D2), and F1 (Figure 1A) were either
sleep-deprived (SD) for 6 hours starting at zeitgeber time (ZT) 0 (start of lights on) or not (i.e.
non-sleep deprived or NSD) (Diessler et al., 2018; Jan et al., 2019). RNA was extracted from
cerebral cortex and liver collected at ZT6 in both SD and NSD mice. Prior to sequencing, the
RNA was pooled by mouse line and experimental condition (NSD or SD). Single-end reads of
100 bp were obtained using lllumina HiSeq 2500 system. A list of samples, including which BXD
lines were used, is available (Table S1).

Genome assemblies and transcriptome annotation

Assembly refers to genomic sequences assembled from DNA reads to form chromosomes,
whereas reference simply refers to the sequences the reads are compared to during read
mapping. Therefore, an assembly can be used as reference, but different references can be
derived from the same assembly. Here, to highlight the generation methods used we reserved
the term assembly to external sets of DNA sequences and indicate original/unmodified
sequences.

Genome assemblies and transcriptomes annotations are from Ensembl release 94
(ftp://ftp.ensembl.org/pub/release-94). The classical genome sequence is GRCm38 also
referred to as mm10 and is based on the B6 strain
(Mus_musculus.GRCm38.dna_sm.primary_assembly.fa). The D2 assembly genome sequence
was used (Mus_musculus_dba2j.DBA_2J v1.dna_sm.toplevel.fa) (Lilue et al., 2018). Both
genome sequences are not containing alternative haplotypes, and repeats or low complexity
regions are soft-masked (sm), which means they are in lowercase letters. The transcriptome
annotations are corresponding to these two assemblies (Mus_musculus.GRCm38.94.gtf and
Mus_musculus_dba2j.DBA_2J_ v1.94.gtf).

Variants and genotype imputation

The 7324 BXD genotypes available from GeneNetwork are genetic markers selected to be
indicative of recombination events between the parental genomes.
(BXD_Geno-19Jan2017_forGN.xIsx, Figure 1C). The D2-specific variants are 5’872’394 SNVs
(DBA_2J.mgp.v5.snps.dbSNP142.vcf.gz) and 1°093’496 indels
(DBA_2J.mgp.v5.indels.dbSNP142.normed.vcf.gz) from dbSNP (version 142, variants version
5). To have a more complete set of genetic variants specific to the BXD lines, genotype
imputation was performed (Figure 1D and Figure S3):

1) The D2 haplotype blocks, defined as sets of at least 2 consecutive genotypes with D2
alleles without B6 or heterozygous alleles in between, were extracted from the
GeneNetwork BXD genotypes for each BXD line.

2) dbSNP D2-specific variants were checked for overlap with these D2 blocks using
bedtools (version v2.28.0).

3) Variants overlapping with D2 blocks were imputed to be D2 alleles.

During this study, it was noticed that genotypes from GeneNetwork for BXD100 (based on
GRCm38 genome assembly also called mm10) had multiple chromosomes without any D2
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alleles, which is unexpected considering this was not the case in the previous version of
genotypes (based on MGSCv37 genome assembly also called mm9). GeneNetwork has been
informed and the error was thought to have occurred during lift-over of the genotypes. We did
not try to correct this mistake and kept the erroneous BXD100 genotypes in the current
analysis. The effect, if any, on the eQTL analysis should be small, as this is concerning only one
BXD lines out of 33, and not all chromosomes are affected.

Customization of reference

A customized reference genome for each BXD was build based on the GRCm38 assembly and
BXD-specific genotypes (from GeneNetwork and imputed). The reference genome sequence
GRCm38 was customized for each BXD line with BXD-specific genotypes (from GeneNetwork
and imputed) using vcf2diploid software (version 0.2.6) with slight modifications. Prior to compiling
the software according to installation instructions, we removed the function that randomizes
unphased heterozygous variants (to determine whether there are included in the paternal or
maternal genome) and the call to this function, as follows:

File name Code removed
public void randomizeHaplotype()

{

if (_rand.nextDouble() > 0.5) return;
inttmp = _paternal;

_paternal = _maternal;

__maternal = tmp;

return;

Variant.java

}
VCF2diploid.java | if (\lvar.isPhased()) var.randomizeHaplotype();

In the modified software, all the unphased heterozygous variants are included in the maternal
genome sequence but ignored for the paternal one. We use the paternal sequence so that
heterozygous genotypes are ignored. Note that all D2-specific variants from dbSNP and the BXD
markers from GeneNetwork are unphased and heterozygous labels may be indicative of low or
uncertain quality:
¢ On GeneNetwork (January 2017), genotypes are defined as “H (heterozygous) if the
genotype was uncertain”.
o 1449 loci have H alleles over the 7320 genotypes (20%) for our 33 BXD lines.
o Our 33 BXD lines have on average 60 H alleles over 7320 loci and in total 1967
H alleles over 241560 alleles (0.82%).
e For D2-specific variants from dbSNP (version 142), Het means “Genotype call is
heterozygous (low quality)”.
o 481158 SNPs are Het over 5872394 (8%).
o 80075 indels are Het over 1093496 (7%).

A D2-specific reference genome was build based on the GRCm38 assembly and D2-specific
SNPs and indels from dbSNP (Figure 1B “2 parental references”). We refer to this modified
version as D2 reference, which is different from the D2 assembly. The coordinates of the
transcriptome annotation were adapted to the new coordinates for BXD and D2 references
using the chain files generated by vcf2diploid and the liftOver tool (version 8.28) from UCSC
(http://genome.ucsc.edu).

Read mapping and mapping parameters optimization
Read mapping was performed with STAR (version 2.7.0e) (Dobin et al., 2013).

STAR command for default (permissive) alignment:
STAR --genomeDir genomedirectoryname --outFileNamePrefix output_prefixname
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--readFilesCommand zcat --readFilesIn reads.fastq.gz

STAR command for exact matches (restrictive) alignment:

STAR --genomeDir genomedirectoryname --outFileNamePrefix output_prefixname
--readFilesCommand zcat --readFilesIn reads.fastq.gz

--scoreDelOpen -40 --scorelnsOpen -40 --alignintronMax 1 --alignEndsType EndToEnd
--outFilterMismatchNmax 0

The transcriptome annotation was not included in the genome index used for exact matches. To
count the reads after STAR, HTseq (version 0.6.1p1) was used with samtools (version 1.9) to
convert alignments from bam to sam format. Only the alignments with a quality score of 10 or
above were kept (default).

samtools view -h alignment.bam | htseq-count -s reverse -t exon -m union - reference.gtf

The “-s reverse” parameter is used for the stranded library and is specific to the library
preparation and sequencing protocol. Alternatively, for mapping using transcriptome annotation,
the HTseq counting implemented in STAR was used using --quantMode GeneCounts.

Filtering and normalization of gene counts

Lowly expressed genes were filtered by tissue: keeping only genes with counts per million (cpm)
above 0.5 (min_cpm) for at least 20 samples (on 66 BXD samples in total). The counts were
normalized with edgeR package (version 3.24.3) using the weighted trimmed mean of M-values
(TMM) method to take into account the variation in library size and in RNA population (Robinson
& Oshlack, 2010) and log transformation (log2).

Differential mapping analysis of genes

The duplicated gene names were removed, and only gene names common to both GRCm38
and BXD references transcriptome annotation were kept. A differential expression analysis was
applied on the BXD samples using voom function from R package limma (version 3.38.3). The
two groups of samples compared had only the reference used for read mapping that differed.

Local eQTL detection and comparison

Note that QTL detection is sometimes referred to as QTL mapping, but we will avoid this
terminology to avoid confusion with read mapping. Local eQTLs (often referred to as cis eQTLs)
were detected using FastQTL (version 2.184) using 2 Mb bp above and below transcription start
site (TSS). 1000 permutations were used to adjust p-values for multiple markers tested and
seed 1 was chosen to help reproducibility. Correction for multiple gene testing was performed
with R (version 3.4.2) package gvalue (version 2.10.0). The slope (allelic mean difference,
representing the direction and strength of allele-specific gene expression) of the linear
regression and gvalue of eQTLs from different references were considered similar (unaffected)
if they are within less than 5%:

(Xgxp— XGrRem3s) | < 0.05
average(Xpxp, XGRcm38) R

where X refer to slope or qvalue.

Reference bias

The percentage of skewness of local eQTLs is calculated as:

significant eQTLs with negative slope—significant eQTLs with positive slope

- 100,

expressed genes

where significant is defined as FDR < 5%.

Data availability
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Raw reads files are accessible on NCBI Gene Expression Omnibus under accession id
GSE114845. However, quality information stored in read names is lost upon deposit due to
NCBI SRA reformatting, as observed elsewhere (Davis et al., 2021).

Given that data sources are diverse and some do not have a version or identifier, we grouped
data on for reproducibility and reusability (10.5281/zenodo.5513980). This repository contains
input data: D2-specific variants from dbSNP (vcf), genotypes from GeneNetwork (tab);
intermediate and produced data: D2 blocks (bed), imputed variants (vcf), BXD-specific genome
sequences (fasta), BXD-specific transcriptome annotation (gtf), gene counts, normalized gene
expression, local eQTLs.

Code availability
The code used for the analyses is on https://github.com/nagobet/BXDmapping.

Computational requirements

Some computations were performed on the Wally cluster of the University of Lausanne with the
Vital-IT software stack (https://www.vital-it.ch) of the Swiss Institute of Bioinformatics for speed
(parallelizing multiple mapping runs) and convenience (having a functional installation of
FastQTL software). However, none of the steps require unreasonable memory or computational
power, and all softwares used in this study are freely available for reproducibility purpose.

Results

To improve genetic coherency of RNA-seq read mapping, we explored two alternative
strategies to exploit available data in the BXD panel. The first strategy uses the two parental
strains assemblies (Figure 1B “2 parental assemblies”). The second strategy uses BXD-specific
references obtained from the GRC assembly modified with BXD known and imputed variants
(Figure 1B “BXD-specific references”). An intermediate between these two strategies was used
for comparison: a D2 reference built from the GRC assembly modified with known D2 variants
(Figure 1B “2 parental references”). For each strategy, we evaluated the impact on various
downstream steps of the analytical pipeline. We looked how the strategies affected mappability
of the RNA reads (Figure 2A-C, and Figure 3A&C), gene expression estimates (Figure 2D and
Figure 3B), and eQTLs (Figure 4). In addition, we have evaluated how key mapping parameters
influence these results (Figure 2B-C, and Figure 5).

Mapping strategy with two parental strains assemblies

To explore the impact of using one reference for all samples despite their genetic differences,
we mapped all samples on the classical GRCm38 (B6) genome assembly and on the more
recent D2 assembly. We expected that more reads from D2 samples would be uniquely
mapped on D2 assembly than on the GRCm38 assembly, and that reads from BXD samples
would map approximately equally on both parental assemblies. Surprisingly, we observed that
the percentage of uniquely mapped reads, used to estimate mappability, was higher for all
samples when mapped to the D2 assembly compared to the GRCm38 assembly (Figure 2A),
even for B6 samples. We also noticed that mappability differed between the liver and the cortex
both in amplitude and in variance. To further explore the bias for the D2 assembly, we allowed
only exact matches. We observed the expected strain-specificity as B6 samples mapped higher
on B6 assembly and D2 samples mapped higher on D2 assembly (Figure 2B). Using up to 10
mismatches (the STAR default for 100 bp reads) but no insertions, deletions and trimming, we
lost strain-specificity (Figure 2C). However, the more restrictive mapping setting also importantly
reduced the number of uniquely mapped reads (Figure 2A-C). This raised the question what
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choice of parameter settings ensures both high read yield and strain specificity (see part
“Mapping parameters evaluation” below).

To determine the impact of mapping reference on gene expression, we performed a differential
mapping (DM) analysis. The principle is the same as differential expression analysis, but the
mapping references are compared instead of different groups or perturbations. Note that the
reads and the values used for the mapping parameters are identical for both references, so
differences observed are caused strictly by the reference. More than one third (38%) of genes
were affected by the mapping reference in the cortex and about a quarter (22%) in the liver
(Figure 2D). However, alignments of the top 4 highly affected genes were visually inspected and
revealed variation in the quality of the assemblies and their transcriptome annotation at these
precise places. What appeared as differences in gene expression between the two assemblies
could be artefacts and not consequences of genetic variants (two examples of artefacts in
Figure S2).

Customizing reference for D2 and BXD lines

To avoid differences of quality and completeness between B6 and D2 assemblies, we modified
the B6 reference assembly using SNPs and indels specific to the D2 strain from dbSNP. We
mapped parental and F1 samples on these two assemblies with exact matches. The percentage
of uniquely mapped reads was increased when the samples were mapped to their
corresponding strain reference, compared to the other parental strain reference (Figure 3A).
Indeed, D2 samples gained between 4.6 and 5.7% when mapped to the customized D2
reference, whereas B6 samples lost between 3.4 and 5.8%. In contrast, when mapped on the
D2 assembly (Figure 2B) D2 samples gained between 0.0% and 3.4% whereas B6 samples lost
between 8.5% and 9.8%. The D2 customized reference appears more balanced. In both cases,
the difference between the two parental references was smaller for F1 samples, which is
expected for a mix between the two parental strains. To apply the same strategy to BXD
samples, genotypes were imputed using the large amount of D2-specific variants from dbSNP
and the BXD specificity of genotypes from GeneNetwork. All BXD samples gained between 1.4
and 4.3% from having a customized reference by BXD line (Figure 3C). The amplitude of the
gain varied among BXD lines and between tissues with cortex samples having globally higher
values than liver samples. Note that it was expected for the gain to be lower for BXD samples
than for D2 samples, since in BXD lines approximately half of the alleles are D2.

To determine the impact of reference customization on gene expression, we performed a
differential mapping analysis. Around 2% of genes are affected by the mapping reference in the
cortex and in the liver (Figure 3B).

Consequences of customization on local eQTL detection

To evaluate the effect of reference customization on estimated biological phenotypes by
downstream analysis, we detected local eQTLs using gene expression estimated with the B6
reference or the BXD-specific references. The eQTLs are particularly likely to be influenced
since they correlated gene expression to genetic variants. The percentage of significant eQTLs
was slightly higher (0.1% difference) when using BXD-specific references than when using B6
assembly (Figure 4A). However, this does not necessarily mean that the eQTLs detected are
the same. They can differ by the genetic marker, the direction of gene expression (B6 or D2 as
more expressed allele), or change in the g-value (Figure 4C and Figure S4). When considering
these 3 variables, mapping reference did not affect 44% of local eQTLs in the cortex and 64% in
the liver.
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Reference bias

Next, we wanted to detect a potential reference bias, where B6 alleles get more easily mapped
than D2 alleles or the contrary. In DNA-seq studies, this can be achieved by checking the
symmetry of the distribution of allelic ratios at heterozygous loci. In RNA-seq, allele-specific
expression can also modify allelic ratio. However, we assumed that globally B6 alleles are
equally expressed than D2 alleles. Moreover, since our samples are inbred lines, the
heterozygous sites are greatly rarer than in other populations (and likely of lower quality), so we
compared samples with different homozygous alleles, rather than heterozygous alleles from one
sample. The percentage of skewness represents how many local eQTLs deviate from a
situation without reference bias (skewness 0%). A positive percentage indicates a B6 bias:
more eQTLs with the B6 allele increasing gene expression, whereas a negative percentage
indicates a D2 bias: more eQTLs with the D2 allele increasing gene expression. Using the B6
reference shows a reference bias for B6 alleles in all tested tissues and conditions while using
BXD-specific references decreased bias, and not always for B6 alleles (Figure 4B).

Mapping parameters evaluation

The reference used is not the only thing influencing read mapping. To test which values to use
for the more critical mapping parameters of STAR we varied: i) the number of mismatches
allowed, ii) the possibility to trim end of reads, iii) the possibility to splice reads, and iv) the use
of known transcriptome annotation. The ratio of eQTLs to expressed genes was used as an
evaluative measure to maximize (Figure 5), as others in eQTL field (Munger et al., 2014;
Rubinacci et al., 2021). The idea behind it is that eQTLs can be regarded as allele-specific
structured gene expression, and thus more likely to result from actual allele differences than
from unstructured general noise. The best settings in both tissues are to use trimming, splicing,
and transcriptome annotation. However, the maximal number of mismatches differed: 10
mismatches in the cortex (Figure 5A), but only 2 in the liver (Figure 5B). All top settings use
existing transcriptome annotation and thus appears to be the more important parameter.

Discussion

Genomic variations among individuals are the core of genetic studies. Yet it is common practice
in the field to use one assembly as reference for all genetically different samples. Here, we
improved genetic specificity of read mapping of BXD samples using publicly available data. Our
custom BXD-specific references detected proportionally more eQTLs and alleviated reference
bias. Below we will discuss the complexity of assessing the analytical design of RNA-seq and
the various strategies to integrate genomic variations in transcriptomic analyses.

Although the analysis of RNA-seq data is often regarded as well established, it remains a
complex procedure. For mapping of real samples, the true location of reads is unknown. The
fraction of uniquely mapped reads is used as a mapping statistic because an RNA molecule can
only come from one locus. However, this does not guaranty the correctness of mapping of
uniquely mapping reads because, due to e.g. redundancy in the genome, some reads are
expected to be correctly classified as multi-mappers. Moreover, uniqueness can have slightly
different meanings depending on the mappers and parameters used, as reads are not
necessarily exactly and fully aligned because of mismatches, indels, and sequencing errors
especially at the ends of reads (trimming).

Most studies are using standard analytical pipelines with default setting, or with slight
modifications such as the number of mismatches allowed. However, even though it has been
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shown to importantly impact genetic specificity (Yuan et al., 2015), the choice of the number of
mismatches allowed is rarely given. We showed that the mapping setting has an effect and that
surprisingly, the optimal number of mismatches allowed seems to differ between the two tissues
tested. We were unable to identify supportive literature for this phenomenon. We think that a
more thorough analysis of such tissue effects (e.g. in GTEX) is warranted. An interesting
benchmark was completed on human RNA-seq data in a differential gene expression (DE)
pipeline (Sha et al., 2015). They compared filtering methods, along with transcriptome reference
sets, normalization and DE detection, alignment and counting software. They concluded that the
optimal filtering threshold depended on the pipeline parameters. Particularly, the mapping
software had the least impact whereas the transcriptome annotation had the higher impact.
Also, our study highlighted the importance of transcriptome annotation even if our evaluating
measure differed. Our study focused on the impact of genetic differences in the reference and
assessed different combinations of mapping options. In our case, the fraction of eQTLs was
used as evaluation measure rather than DE, because we compare a genetic population and not
two fixed groups. Indeed, each BXD sample has both B6 and D2 alleles, so the samples
compared for each gene are not split the same way, depending on alleles at this locus. A
reference bias is likely to influence eQTLs because a variant in a certain gene can modify the
mapping of the reads precisely for the samples that have the alternative allele in this region.

An assembly is a global solution because it uses all genomic variants specific to a strain
regardless of their size. However, we showed that the gap in quality and completeness between
the two parental assemblies is masking the genetic specificity. In addition, the transcriptome
was more studied in B6. Even if transcriptome annotation is likely to be similar in other strains,
the different coordinate systems between the assemblies complicate the transfer. Moreover, the
actual D2 transcriptome annotation corresponding to the D2 assembly includes manual curation
steps that make it hard to update to new releases of the genome assembly or variants. Notably,
no study was published using this D2 assembly, except the group that released it. In contrast,
our customization of one assembly offers the advantage that the coordinate changes are
formalized which allows automatization of transcriptome annotation changes with the same tool
used for upgrading versions of an assembly (liftOver). For mapping reads of D2 samples and
those of other strains than B6, we currently recommend the use of GRCm38 assembly modified
with strain-specific indels and SNVs from dbSNP.

Our custom references combine the specificity of BXD genotypes with the large amount of
D2-specific short variants from dbSNP. Importantly, structural variants (SVs) are not included,
although many were detected between B6 and D2 strains (Quinlan et al., 2010). SVs can have
important phenotypic impacts (Mahmoud et al., 2019), potentially more than SNVs (Keane et
al., 2011; Scott et al., 2021). However, SVs calls require further efforts in the reporting to ensure
the confidence and the format for integration into current workflows. This is due largely to the
nature of SVs: their length and large variety implies that the possible number of SVs is greatly
superior to that of SNVs, making them less easy to validate and report. Without technologies
like long read, optical genome mapping, those SVs will be very likely inaccessible for mouse
models unless an international consortium tackles this issue.

Another limitation is that all murine assemblies are haploid whereas mice are diploid. The
diploidy is ignored at the mapping step under the assumption that the genotypes of inbred
strains are mostly homozygous. However, the homozygosity and stability of inbred mouse
strains is based on a theoretical model without occurrence of new mutations (Casellas, 2011),
but experimental estimations support a non-neglectable rate of mutations (Casellas & Medrano,
2008), with between 10 and 30 germline mutations occurring per generation (Reardon, 2017).
Unfortunately, the assumption of stability of inbred lines is so strongly anchored in the field that
its verification is compromised, because of not searching for heterozygous sites or dismiss
them. Indeed, the term heterozygous is sometimes used to call variants uncertain or low quality,
and they are always unphased. When mouse assemblies were built, regions with high density of
heterozygous sites were used to detect (haploid) assembly errors, ignoring the potential
coherence of diploid or polyploid references (Lilue et al., 2018). More systematic detection and
characterization of heterozygous regions will likely improve the accuracy of transcriptomics
studies, particularly for loci with allele-specific expression. However, the read mapping of
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different possible alleles, which could also be used for not inbred crosses between 2 strains
would require a reconciliation step, as implemented for example for human with paternal and
maternal allele (Rozowsky et al., 2011). Indeed, every read can come from one allele or another
but not from both at the same time. We made efforts to improve the D2 parts of reference to
map BXD samples, however the B6 strain itself is also susceptible to mutations and genetic
shift, as confirmed by the occurrence of substrains. It is likely that B6 samples used to build the
GRC assembly and the B6 samples used currently present some genetic drift. Therefore, a
complete characterization of genetic variants of the BXD by DNA-sequencing could improve the
customization of both D2 and B6 parts of BXD, and therefore enhance resolution of downstream
analyses.

Conclusion

In current genetic studies using the BXD population, genomic variations are paradoxically
ignored at the read mapping step, which as we show here causes a reference bias. The
genomic variations need to be explicitly integrated in the reference instead of treated as
sequencing errors. Our results show the need for a critical evaluation of the RNA-seq pipeline
and the development of more complete genomic variants databases to best approximate the
genetics of the samples. Most genetic studies with a transcriptomic component in mice and
other model organisms can suffer from reference bias, which could be attenuated by assessing
and sequencing those strains. The mouse community could follow the drosophila community
(http://dgrp2.gnets.ncsu.edu) and sequence genetic reference populations. Our study can serve
as a wake-up call for improving the characterization of genomic variations, and as a concrete
guide for analyses in BXD and other genetic populations. As RNA-seq analyses are often a
starting point to identify one or a few genes that then are studied in more detail in follow-up
experiments, it is worth the extra effort to avoid potential bias by not blindly following traditional
pipelines.
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Figure 1: Including genomic variants in inbred mouse transcriptome read map-
ping overview.
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Figure 1 | Including genomic variants in inbred mouse transcriptome read mapping overview.

A) BXD mouse recombinant inbred panel. Samples come from mice that are: BXD advanced recombinant
inbred lines, parental inbred strains which are C57BL/6J (B6) and DBA /2J (D2), and not inbred first
generation cross between the parental strains (F1).

B) RNA-seq read mapping strategies in this study.

C) BXD genotypes available from GeneNetwork and D2-specific genomic variants available from dbSNP.

D) Genotypes imputation workflow. B6 regions or alleles are in black, D2 regions or alleles are in brown.
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Figure 2: Two parental assemblies strategy.
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Figure 2 | Two parental assemblies strategy.

A) Mappability of all samples on 2 parental assemblies (samples are mapped on GRCm38: black symbols
and on D2 assembly: brown symbols) using permissive mapping setting (STAR default) in cortex (left)
and liver (right).

B) Mappability of parental and F1 (BxD and DxB) samples on 2 parental assemblies using restrictive
mapping setting allowing 0 mismatches. Same legend than in A.

C) Mappability of parental and F1 samples on 2 parental assemblies using restrictive mapping setting but
allowing up to 10 mismatches. Same legend than in A.

D) Differential mapping (DM) analysis of D2 assembly compared to GRCm38 in the cortex (left) or in
the liver (right). Genes are classified as DM genes if FDR adjusted p-value < 0.05 (red) or non DM
genes otherwise (black).
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Figure 3: Line-specific references strategy.

Mappability change DM in Cortex (GRCm38 vs BXD) DM in Liver (GRCm38 vs BXD)

<]
i Cortex Liver
g 6 492 54°
E 4 2 - °
a 2 _
g 2 04 2 0

0 - [=2) [=2)
> o o
© -2 = | -2 ]
=]
g 4 -5
s 4 H
£ -6~ -6 e °
£ T T T T T T T T T 1
= PR RR222% 0 5000 10000 15000 0 4000 8000 12000

a a 1) a
rank of adjusted p-value rank of adjusted p-value

=S
g 6
g O Cortex NSD B Cortex_ SD B Liver NSD W Liver_SD
s 5
8
o 4
©
€ 3 -
>
g 24
g
5 14
£
£ 0 -
©
(o))

BXD43
BXD44
BXD45
BXD48
BXD48a
BXD49
BXD50
BXD51
BXD55
BXD56
BXD61
BXD64
BXD65
BXD65a
BXD66
BXD67
BXD70
BXD71
BXD73
BXD73b
BXD75
BXD79
BXD81
BXD83
BXD84
BXD85
BXD87
BXD89
BXD90
BXD95
BXD98
BXD100
BXD101

Figure 3 | Line-specific references strategy.

A) Relative mappability of customized D2-specific reference (GRCm38 modified with D2-specific indels
and SNVs from dbSNP) compared to GRCm38 on parental and F1 samples with exact matches.
Samples are all NSD. Colors indicate genetic of the samples: B6 (black), D2 (light brown), and F1
(white) between B6 and D2 strains. The F1 samples are BxD if the mother is B6 and the father is D2
(as for the BXD lines), or the reverse for DxB.

B) Differential mapping (DM) analysis of customized BXD specific references compared to GRCm38, in
the cortex (left) or in the liver (right). Genes are classified as DM genes if FDR adjusted p-value <
0.05 (red) or non DM genes otherwise (black).

C) Relative mappability of BXD-specific references (GRCm38 modified for each BXD line with GeneNet-
work genotypes and imputed variants) compared to GRCm38 on BXD samples with exact matches.


https://doi.org/10.1101/2021.10.01.462776
http://creativecommons.org/licenses/by/4.0/

Figure 4: Consequences of mapping reference at local eQTL level.
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Figure 4 | Consequences of mapping reference at local eQTL level.

A) Percentage of significant (FDR 5%) local eQTLs with GRCm38 or BXD-specific references.

B) Percentage of skewness of significant(FDR 5%) local eQTLs slope with GRCm38 or BXD-specific
references.

C) Local eQTLs overlapping between GRCm38 and BXD-specific references in cortex NSD (left) or in
liver NSD (right). The sign of the slope measures the direction of gene expression (B6 or D2 as more
expressed allele).
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Figure 5: Evaluating mapping parameters.
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Figure 5 | Evaluating mapping parameters.

A) The performance on local eQTLs of selected mapping settings on cortex samples (average between
NSD and SD conditions) is measured by the percentage of expressed genes than have a significant local

eQTLs.
B) The performance on local eQTLs of selected mapping settings on liver samples (average between NSD

and SD conditions) is measured by the percentage of expressed genes than have a significant local
eQTLs.
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