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ABSTRACT

A prominent aspect of most, if not all, central nervous systems
(CNSs) is that anterior regions (brain) are larger than poste-
rior ones (spinal cord). Studies in Drosophila and mouse have
revealed that the Polycomb Repressor Complex 2 (PRC2), a
protein complex responsible for applying key repressive his-
tone modifications, acts by several mechanisms to promote an-
terior CNS expansion. However, it is unclear what the full spec-
trum of PRC2 action is during embryonic CNS development
and how PRC2 integrates with the epigenetic landscape. We
removed PRC2 function from the developing mouse CNS, by
mutating the key gene Eed, and generated spatio-temporal tran-
scriptomic data. To decode the role of PRC2, we developed
a method that incorporates standard statistical analyses with
probabilistic deep learning to integrate the transcriptomic re-
sponse to PRC2 inactivation with epigenetic information from
ENCODE. This multi-variate analysis corroborates the central
involvement of PRC2 in anterior CNS expansion, and reveals
layered regulation via PRC2. These findings uncover a differ-
ential logic for the role of PRC2 upon functionally distinct gene
categories that drive CNS anterior expansion. To support the
analysis of emerging multi-modal datasets, we provide a novel
bioinformatics package that integrates transcriptomic and epi-
genetic datasets to identify regulatory underpinnings of hetero-
geneous biological processes.
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Introduction

The embryonic central nervous system (CNS) is patterned
along the anterior-posterior (A-P) axis, evident by the ex-
pression of brain-specific transcription factors (TFs) in ante-
rior regions and the Hox homeotic genes in posterior regions
(Figure 1A). A-P patterning of the CNS has two key conse-
quences: first, the generation of distinct cell types in different
regions, and second, the striking expansion of the brain rel-
ative to the spinal cord. Studies in Drosophila have revealed
that anterior CNS expansion is driven by a longer phase of
neural progenitor proliferation, more prevalent daughter cell
divisions and faster cell cycle speeds in anterior regions,
combining to generate much larger average lineages anteri-

orly (1). This A-P “stemness” gradient further manifests, and
is driven, by an A-P gradient of neural stemness TF (e.g.,
SoxB family) and cell cycle gene expression (1, 2, 3). These
expression gradients are in turn promoted by the selective
expression of the A-P patterning TFs (3, 4, 5). However,
it is unclear if the principles uncovered in Drosophila are
fully conserved in mammals. The selective expression of TFs
along the A-P axis is under control of epigenetic cues, where
the Polycomb Repressive Complex 2 (PRC2) plays a promi-
nent role (6). PRC2 mono-, di- and tri-methylates Histone 3
upon residue Lysine 27 (H3K27me1/2/3), typically resulting
in proximal gene repression (Figure 1B) (7, 8).

Inactivating PRC2 during Drosophila or vertebrate CNS de-
velopment, by mutating either one of the core complex genes
Ezh2 or Eed (Drosophila E(z) and esc, respectively), in-
duces ectopic expression of Hox genes in the anterior CNS
(5, 9), and reduces brain-specific TFs expression (4, 5).
PRC?2 inactivation leads to undergrowth of the anterior CNS
(5,9, 10, 11, 12), while not affecting the spinal cord growth
(5). The reduced brain growth following PRC2 inactivation
appears to be, at least in part, due to reduced proliferation,
in particular of daughter cells (5, 13). The reduced prolif-
eration observed in both mouse and Drosophila PRC2 mu-
tants appears to result from (1) the down-regulation of brain-
specific TFs, (2) upregulation of Hox genes, and (3) down-
regulation of neural progenitor stemness genes, such as the
SoxB genes, (4) decreased expression of pro-proliferative
genes and (5) increased expression of anti-proliferative genes
(2, 4, 5). However, it is unclear if PRC2 acts directly and/or
indirectly upon the five gene groups associated with these
roles, what the full spectrum of PRC2 action is during em-
bryonic CNS development, and how PRC2 intersects with
the epigenetic landscape.

Data integration across multi-modal datasets typically occurs
after statistical tests have been used to group data points, of-
ten referred to as “late integration”. However, this approach
can obscure inter-dataset dependencies. In contrast, “early
integration” aims to retain these dependencies, by identify-
ing salient patterns across datasets prior to statistical analysis
(14), (15). However, a lack of generalisability, interpretabil-
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ity and capacity to manage realistic scales of data have so far
hindered widespread use of early integration across modali-
ties (16).

Motivated by the need to integrate multiple epigenetic marks
to label the chromatin landscape, ChromHMM (Chromatin
Hidden Markov Model) uses a multivariate hidden Markov
model. The model is trained from genome-wide assays, such
as ChIP-seq of histone modifications, across conditions to
capture latent chromatin states manifested in co-occurring
marks (17). ChromHMM was recently used to recover two
distinct states that implicate H3K27me3 during mouse em-
bryonic development (18). However, as the transcriptome
was not incorporated at an early stage it is unclear how
ChromHMM chromatin states relate to gene expression dur-
ing development. Moreover, how distinct chromatin states
support the biological heterogeneity and the A-P patterning
of the CNS was not investigated. Variational Autoencoders
(VAEs) (19) are generative latent variable models able to
encode relationships in mixed and multimodal data types,
crossing them via successive layers of representation with
“deep” learning (20, 21, 22). When “shallow” e.g., contain-
ing only a single layer, VAEs learn to map data into a lower-
dimensional space akin to how principal component analy-
sis (PCA) is commonly used. VAEs have been applied to
omics data, such as single cell RNA-seq (23), bulk RNA-seq
(24, 25), DNA methylation arrays (26), and histone modi-
fication ChIP-seq (27). VAESs have also been applied as an
early integration method for multi-omics cancer patient data:
integrating DNA methylation, bulk RNA, and copy number
variation (25). However, VAEs have hitherto not been used
to decode transcriptional and epigenomic events collectively,
nor applied to the integration of temporal and tissue informa-
tion during embryogenesis.

To understand the role of PRC2 in establishing the CNS A-
P axis we generated 64 transcriptomes from wild type (WT)
and PRC2 knock-out (Eed-cKO) mouse embryos, at differ-
ent developmental stages, and from the forebrain, midbrain,
hindbrain, and spinal cord regions of the CNS. We developed
a workflow to analyse these data, which incorporated three
stages: (1) differential analysis of transcriptomes; (2) statis-
tical analysis of genes stratified by expression changes and
wild type histone modification data; (3) VAE analysis to ex-
tract latent gene descriptors from transcriptomic and epige-
netic data. The VAE analysis identified functionally hetero-
geneous gene cohorts with shared dependency on PRC2 and
revealed the level of regulation of each gene category. Our
collective findings revealed a central role of PRC2 in CNS
A-P axis establishment, using a novel multi-modal, integra-
tive approach that identifies genes driving dynamic biological
processes.

Material & Methods

In vivo mouse models. Eed/!//! (28) was obtained from
the Jackson Laboratory Stock Center (Bar Harbor, Maine;
stock number #022727). SoxI-Cre (29) was provided by J.
Dias and J. Ericson, Karolinska Institute, Stockholm. Both
lines were maintained on a B6:129 Figure S1 background.
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Mice were housed at the Linkoping University animal fa-
cility in accordance with regional animal ethics regulations
(Dnr 69-14). Pregnant females were sacrificed and embryos
dissected between stages E11.5 and E18.5. Primers used for
genotyping were: Crel: GCG GTC TGG CAG TAA AAA
CTA TC. Cre2: GTG AAA CAG CAT TGC TGT CAC TT.
Eedl: GGG ACG TGC TGA CAT TTT CT. Eed2: CTT GGG
TGG TTT GGC TAA GA.

16 mouse embryos were extracted from 8 female mice (16
Eedf!/T1). Two embryos were extracted from each mouse at
E11.5,E13.5, E15.5, and E18.5 respectively.

RNA-seq. Mouse embryos (E11.5, E13.5, E15.5 and E18.5)
were dissected to extricate the CNS (the posterior-most part
of the SC was not included). The CNS was then cut into four
pieces, forebrain (FB), midbrain (MB), hindbrain (HB), and
spinal cord (SC) (Figure 1H). The E18.5 embryos were killed
by decapitation, and then dissected (in line with ethical per-
mits and regulations). The samples were stored at -80°C un-
til RNA isolation, using Qiagen RNeasy Mini kit Cat.74104.
RNA sequencing library preparation used the NEBNext Ul-
tra RNA Library Prep Kit for Illumina by following man-
ufacturer’s recommendations (NEB, Ipswich, MA, USA).
The sequencing libraries were multiplexed and clustered.
Samples were sequenced on Illumina HiSeq 2500, using a
50bp Single End (SE) read configuration for E13.5 embryos,
150bp Paired End (PE) read configuration for E11.5, E15.5
and E18.5, with a depth of 50-60 million reads (GeneWiz,
New Jersey, NJ). The RNA-seq files are available at GEO
(GSE123331). Samples from the same age were litter mates,
to ensure that the WT and Eed-cKO are as close as possible
stage-wise.

Immunohistochemistry. Embryos were fixed for 18-36h in
fresh 4% PFA at 4°C. After this they were transferred to
30% sucrose at 4°C' until saturated. Embryos were em-
bedded and frozen in OCT Tissue Tek (Sakura Finetek,
Alphen aan den Rijn, Netherlands) and stored at —80°C.
20 and 40um cryosections were captured on slides, and
treated with 4% fresh PFA for 15 min at room tempera-
ture. They were thereafter blocked and processed with pri-
mary antibodies in PBS with 0.2% Triton-X100 and 4%
horse serum overnight at 4°C'. Secondary antibodies, con-
jugated with AMCA, FITC, Rhodamine-RedX or Cy5, were
used at 1:200 (Jackson ImmunoResearch, PA, US). Slides
were mounted in Vectashield (Vector, Burlingame, CA, US).
Primary antibodies were: Goat a-Sox2 (1:250, #SC-17320,
Santa Cruz Biotechnology, Santa Cruz, CA, USA), Rabbit a-
H3K27me3 (1:500, #9733, Cell Signaling Technology, Lei-
den, Netherlands), Isolectin GS-IB4-ALEXAG647 conjugate
(“IB4”) (5-20ug/ml, #132450, Molecular Probes, Thermo
Fisher Scientific, Waltham, MA, USA), Rabbit anti-Pax2
(1:100, #ab232460, Abcam, Cambridge, UK). IB4 and DAPI
were included in the secondary antibody solutions. Confocal
microscopes (Zeiss LSM700 or Zeiss LSM800) were used
for fluorescent images. Confocal series were merged using
LSM software or Fiji software (30). Images and graphs were
compiled in Adobe Illustrator.
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RNA-seq processing. FastQC (31) (version 0.11.9) was
used to perform quality control (QC), along with multiQC
(32) (version 1.8). The PE samples contained adapter
content thus were trimmed using cutadapt (33) (version
2.10).  Adapters used for trimming were: AGATCG-
GAAGAGCACACGTCTGAACTCCAGTCA (read 1) and
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT
(read 2), these were trimmed with an error tolerance of 5%,
overlap of 3, and minimum Phred quality of 20. FastQC
on the trimmed sequences passed QC for adapter content.
RNA-seq data were then aligned to the mm10 genome using
Hisat2 (34) (version 2.1.0), mm10 index was generated using
the Hisat2 scripts. Reads from E13.5 were aligned using de-
fault parameters for SE reads (-U), with the other time points
using default parameters for PE reads, the only parameters
changed were: number of seeds set to 5; and number of
primary alignments (k) also set to 5. Hisat2 reported an
overall alignment rate > 90% for all files. Reads were sorted
using samtools (35) (version 1.10). FeatureCounts from
subread (11) was used to count the reads mapping to genes.
Exon feature was used for both SE and PE reads. The PE
reads were aligned such that pair fragments with both ends
successfully aligned were counted without considering the
fragment length constraint and excluding chimeric fragments
(-p -C -B -t exon -T). Default parameters were used for the
E13.5 reads (-t exon). FeatureCounts reported an average
mapping to genes of ~70% for PE and ~60% for SE.

Differential Expression. Differential expression analysis
was performed using DESeq2 (36) (version 1.28.1), R (ver-
sion 4.0.2). Genes were filtered if they had less than 10
counts in half of the samples. DE analysis was performed
on each tissue to compare between WT and KO, where the
condition (WT or Eed-cKO) was used as the factor and time
as a batch factor. For each tissue (FB, MB, HB, SC) we
used the three later time-points, E13.5, E15.5 and E18.5,
for differential expression (resulting in six replicates for each
test). E11.5 samples were omitted from DE owing to resid-
ual H3K27me3. We performed a similar analysis on the time
points, grouping anterior tissues (FB, MB) and posterior tis-
sues (HB, SC), resulting in eight DE analyses on WT vs Eed-
cKO for timepoints. We performed DE between time points,
such that we compare anterior time point E11.5 to anterior
time point E18.5 (resulting in four replicates (two biologi-
cal) for each test), using the tissue as a batch factor. Results
were considered significant if a gene had an adjusted p-value
of less than or equal to 0.05. Py-venn (37) (version 0.1.3)
and matplotlib-venn (38) (version 0.11.5) were used for dis-
playing Venn diagrams and seaborn (39) (version 0.10.0) was
used for all other visualisations.

ChIP-seq processing. ChIP-seq data (NarrowPeak files,
IDR reproducible peaks selected) for mm10 mouse FB, MB,
and HB tissues at embryonic timepoints were downloaded
from ENCODE (November 2019). Peaks were annotated to
entrez (40) (NCBI, database) gene IDs by using scie2g (ver-
sion 1.0.0), and scibiomart (version 1.0.0) (both developed as
part of the package we publish with this paper) using the an-
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notation (mmusculus Ensembl GRCm38) from biomart, En-
sembl (41). Peaks were assigned to a gene if they were lo-
cated within 2.5kB upstream of the TSS or within 500bp of
the gene body, except for H3K36me3 which was assigned if it
fell on the gene body (upstream 2.5kB of the TSS and 500bp
window after the gene ends). Peaks were retained if their
adjusted p-value was less than 0.05. If multiple peaks were
assigned to a gene then the peak with the greatest signal was
retained. Signal and widths were recorded for each peak. If
no peak was mapped to a gene, this gene was assigned a zero
value. Annotations from Gorkin et al. were assigned to genes
when overlapping the TSS (+-10 base pairs) using scie2g. If
a gene had multiple annotations, the first one was considered,
thereby reducing the number of annotated genes (by Ensembl
ID) from 53,254 to 52,772. These were merged to the genes
using the Entrez ID. Fisher’s Exact test in scipy (42) (version
1.5.3) was used to compare annotations between a foreground
and background dataset, p-values were adjusted for multiple
tests using statsmodels (43) (0.12.1) package, with alpha as
0.1 and Benjamini-Hochberg (FDR-BH) correction used.

Label stratified analysis. Integration was performed in
Python (version 3.8.2). Code and visualisations are made
available and documented as a fully executable Jupyter Note-
book (Jupyter Core 4.6.3). Analysis results are fully repro-
duced by stepping through the Notebook. Pandas (44) (ver-
sion 1.0.3) was used to merge the FeatureCounts files on En-
trez gene ID, yielding a dataset of 27,179 rows. Gene names
were annotated to merged data frame using ensembl map-
pings from entrez to gene name, from this, there were 6279
genes without gene names (predicted or nc-RNA), which
were omitted from the subsequent analysis, leaving 20900
genes. RNA-seq data were normalised by using EdgeR’s
(45) (version 3.30.3) TMM method, the log2 + 1 was then
taken of the TMM counts using numpy (46) (version 1.18.2).
Peak data were merged on assigned entrez ID as per the ChIP-
processing section above.

We performed a simple stratification to annotate genes based
on changes in expression and repressive mark presence. We
labelled each gene as unaffected, partly affected or consis-
tently affected, by using the expression response to PRC2
in-activation as per the DE analyses. Partly affected genes
refers to genes displaying a significant difference in expres-
sion, an absolute log, F'C' greater than 1.0, between WT and
Eed-cKO in one to three of the DE analyses of FB, MB, HB,
SC, or the anterior temporal analyses (E11.5, E13.5, E15.5,
E18.5). Consistently affected refers to genes exhibiting an
absolute logy F'C' > 1.0 in > 3 of the eight DE analyses. To
annotate genes with WT histone modification profiles we col-
lected publicly available WT ChIP-seq H3K27me3 data for
a range of embryonic mouse tissues (47). We then labelled
each gene as marked or unmarked based on the presence of a
H3K27me3 peak in WT, E16.5 ChIP-seq within 2.5kB of the
transcriptional start site (TSS).

VAE analysis. VAEs are implemented in scivae (developed

by us for this project) (version 1.0.0), which in turn uses ten-
sorflow (48) (version 2.3.1) and Keras (49) (version 2.4.3).
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VAEs were created using the consistently affected genes as
input (randomly sub-divided into a training set with 85%
genes). Input was the normalised transcriptome (64 features),
the log2 of the H3K27me3 signal (21 features), and the log
fold change from the DE analyses was used (12 features). All
input data were normalised between 0 and 1. Mean squared
error was used as the loss metric, with MMD (kernel) as the
distance metric for the sampling function, with a weight of
1.0 was used. The VAE was trained for 250 epochs using
a batch size of 50. Different numbers of latent nodes were
tested, ranging from 1 to 32. Selu activation functions were
used for the first input and final output layers with Relu used
for internal layers; adam optimiser was used with parame-
ters: betal = 0.9, beta2 = 0.999, decay = 0.01, and a learn-
ing rate of 0.01. Gene cohorts were calculated for each la-
tent dimension from the 3 node, consistently affected dataset,
with genes having a value greater than one standard devi-
ation (+1.25SD) from the mean (0). This resulted in six
gene cohorts (two for each node) with 152, 238, 154, 352,
214 and 187 genes, respectively, these were used in subse-
quent functional analyses. For comparisons to other meth-
ods, PCA and tSNE from sklearn (version 0.0) was used,
UMAP from umap-learn (50) (version 0.4.2), PHATE from
phate (51) (version 1.0.7). Default parameters were used, ex-
cept for changing the number of components (3 or 6) and
for tSNE, running “method=exact”, when n_components=6.
Given tSNE, UMAP and the VAEs may vary in terms of pro-
jection based on the initiating seed 30 runs were completed.
For each of these tools a random seed was generated per it-
eration and then the separability was quantified. Separability
was determined as able to put gene markers from the same
tissue “near” and those from less similar tissues “far away”.
Far away is defined as having a significant difference between
the within cluster distance (sum of square differences to the
mean) and between cluster distance (pooling the two groups).
The % correct out of the 30 runs were reported for each tool.
For PCA (deterministic) and PHATE (while PHATE did al-
low for a seed to be set the result was the same for each itera-
tion) a binary result was reported for each separability metric.

Functional analysis. Over representation analysis on the
gene cohorts was performed in R using enrichGO from clus-
terprofiler (52), (version 3.16.1). Entrez IDs were used and
BH correction with FDR alpha of 0.1, using all GO anno-
tations. Gene set enrichment analysis was performed using
fgsea (53) (version 1.14.0), genes were ranked by each of the
VAE:s latent dimensions.

Reproducible, generative methods applicable for
other dynamic systems. Our model of the developing
mouse CNS is available as a downloadable package where
the profile of any mouse gene can be queried in terms of
its PRC2 response. In addition to this, we provide a Python
package with tutorials in R and Python for using the VAE for
other dynamic systems where researchers are interested in
integrating epigenetic and expression information. Our pack-
ages have been optimised for reproducibility by enabling sav-
ing of the VAE state, visualisation, and logging.
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Results

PRC2 is critical for the anterior-posterior CNS axis. To
inactivate the PRC2 complex in the mouse CNS, SoxI-Cre
was used to conditionally delete Eedf /fin the CNS (de-
noted Eed-cKO herein). This resulted in the inactivation of
Eed at E8.5, with a gradual reduction of the H3K27me3 mark
(Figure 1B), presumably due to replication-mediated dilu-
tion, until it is undetectable by immunostaining in the CNS
proper, at E11.5 (5), visualized at E13.5 herein (Figure 1D-
F). Eed-cKO embryos displayed a striking up-regulation of
posterior genes, such as Pax2 (Figure 1F), in the FB/MB, and
severe brain underdevelopment (Figure 1C), in large part due
to a truncated proliferation phase (5).

We conducted a total of 64 bulk-RNA-seq experiments across
wild type (Eedf e I. referred to as WT) and Eed-cKO, at
four developmental stages; E11.5, E13.5, E15.5 and E18.5,
and of four tissues: forebrain (FB), midbrain (MB), hind-
brain (HB), and spinal cord (SC) (Figure 1G). Analysing the
WT bulk-RNA-seq data for expression of the neural progen-
itor stemness genes Sox1/2/3 (54) underscored the spatio-
temporal stemness gradient (Figure 11-J). In Eed-cKO, both
the FB and MB displayed a more rapid downregulation of
Sox1/2/3, while the HB and SC were less affected (Figure
11). Analysis of spatial TF markers in WT revealed the ex-
pected selective gene expression (Figure 1A) along the A-P
axis (Figure 1H). In contrast, in Eed-cKO mutants FB, MB
and HB markers were downregulated in their specific regions,
and ectopically upregulated in adjacent regions (Figure 1H-
I). SC markers (e.g., Hox genes) were ectopically expressed
in all anterior regions (Figure 1H-I). The mutant effects were
less pronounced at E11.5 (Figure 1H), in line with the gradual
loss of the H3K27me3 mark during E10.5-E11.5 (5). These
results revealed that Eed-cKO mutants displayed a striking
“flattening” of the CNS A-P axis, evident from the downreg-
ulation of brain TFs, the ectopic expression of Hox genes in
the brain, and anterior downregulation of stemness genes.

PRC2 inactivation results in posteriorization of the an-
terior CNS. Analysing the global gene expression differ-
ences along the CNS A-P axis, we found major differences
in the baseline WT transcriptomes, with FB and MB being
strikingly different from the SC (Figure 2A). When compared
to SC, the FB showed 4,771 differentially expressed genes
(DEGs) and MB 2,555 DEGs (log, F'C > 0.5, P < 0.05,
where log, F'C is the log2 transformed fold change; pooled
time-points) (Figure 2A). In addition, all other comparisons
revealed substantial gene expression differences, underscor-
ing the uniqueness of each axial level (Figure 2A).

These axial differences were reduced in Eed-cKO mutants,
with gene expression differences almost halved when com-
paring FB to SC, and MB to SC (Figure 2A). The FB was
most affected, with 4,414 DEGs, while SC displayed con-
siderably smaller effects, with only 717 DEGs (Figures 2A,
S1, 52, S3). Surprisingly, only 342 genes were shared across
all four tissue analyses, indicating that for the majority of
DEGs the role of PRC2 is specific to each axial level (Figure
2B). While PRC2 inactivation generally caused upregulation
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Fig. 1. PRC2 gates the CNS A-P landscape (A) In situ hybridization data from Allen Brain Atlas show tissue specific expression of marker genes along the AP-axis at E13.5
(B) Inactivation of PRC2, by deletion of Eed from Sox1-Cre, results in a gradual loss of H3K27me3. (C) WT and Eed-cKO littermate brains show undergrowth in the mutant.
(D-E) Immunostaining for H3K27me3, Sox2 (progenitors) and IB4 (microglia) in the WT and Eed-cKO telencephalon at E13.5. At E13.5, deletion of Eedf/f1 by Sox1-Cre
results in loss of H3K27me3 from the CNS and staining is only observed outside of the CNS and in infiltrating microglia. (F) Staining for DAPI (nuclei) and Pax2 in WT and
Eed-cKO at E18.5 reveals ectopic expression of Pax2 in the entire FB and MB in the mutant. (G) The Ezh2 methyltransferase in the PRC2 complex adds H3K27me1/2/3,
which in turn interacts with the complex via EED. Other epigenetic marks are important for PRC2-chromatin interaction and/or PRC2 activity. (H) Dissection of the mouse
CNS at E18.5 shows the four tissues used for bulk-RNA-seq. (1) In WT, expression of spatial marker genes is restricted to specific A-P regions, exemplified by trends in E18.5.
In Eed-cKO, posterior genes (e.g. Hox homeotic genes) are ectopically expressed in the brain, and anterior genes are reduced in the FB and MB and ectopically expressed
in the HB and SC. The effects are less pronounced at E11.5, in line with the gradual loss of H3K27me3 at E10.5-E11.5. (J) A flattening of the expression is observed (mean
and standard error) for each of the marker gene groups along the A-P axis. (K) In WT, there is a spatio-temporal gradient of progenitor gene expression (Sox1/2/3) i.e., a
gradient of “stemness” in the CNS, evident by prolonged expression of Sox7/2/3 in the FB and MB. In Eed-cKO, the stemness phase in the FB and MB is shortened and the
anterior CNS becomes similar to the posterior region.
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Fig. 2. Eed-cKO mutation flattens the CNS A-P gradient (A; left side) Comparative DEG analysis between different CNS levels, in WT and Eed-cKO, based upon pooled
time points. In WT, adjacent CNS tissues display fewer differences than distal ones, especially when compared to SC (DEGs; log, F'C > 0.5, P < 0.05, where log, F'C
is the log2 transformed change between mutant and WT). In Eed-cKO, the number of comparative DEGs are strongly reduced. (right side) Eed-cKO strongly affects anterior
tissues e.g., FB (4,414 DEGs) while the SC is less affected (717 DEGs). (B) Venn diagram depicting DEG overlap in WT vs. Eed-cKO for each tissue. FB is most severely
affected while more posterior tissues display more overlap in their response. (C) PCA of normalised RNA-seq count profiles labelled with tissue, condition (WT vs Eed-cKO)
and time (E13.5-E18.5; E11.5 omitted); arrows indicate the A-P shift induced by Eed mutation. (D) DEG analysis over time for combined anterior (FB and MB) and posterior
(HB and SC) tissues reveals that Eed-cKO affects the anterior more than the posterior CNS, and that the effects increase over time. (E) Volcano plot of Eed-cKO vs. WT
expression in FB, showing that Hox genes are upregulated while brain-specific genes are downregulated. (F) Correlation between late stage anterior tissues showing a

reduction of tissue specificity in Eed-cKO.

(e.g., Hox genes), analysis of the FB revealed that a number
of brain-specific TFs were downregulated (Figure 2E).

To investigate temporal variation throughout development,
we grouped the FB and MB into “anterior”, and the HB
and SC into “posterior” sections. This revealed that the A-P
axis differences between WT and Eed-cKO were most pro-
nounced in the anterior CNS at E18.5 (Figure 2D). How-
ever, the largest increase in DEGs occurred between E11.5
and E13.5, in both the anterior and posterior tissues (Figure
2D).

In line with the effects on specific marker genes (Figure 1H-
J), PCA (Figure 2C) revealed transcriptome wide changes
supporting the notion that Eed-cKO mutants were posterior-
ized along the A-P axis. Specifically, the mutant FB tran-
scriptome was more similar to the WT MB, and the mutant
MB to the WT HB. This trend was most evident at E13.5 but
observed at all later stages (Figure 2C). The posteriorization
of each Eed-cKO tissue was also evidenced by quantification
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of the normalised sum of square differences between the tran-
scriptomes (Table S2) and correlation between anterior sam-
ples (Figure 2F).

PRC2 inactivation does not trigger extensive ec-
topic expression of non-CNS genes. To address if CNS-
specific PRC2 inactivation resulted in ectopic expression of
peripherally expressed genes, we surveyed for genes that
were not expressed in the CNS at any axial level or stage but
were activated in Eed-cKO mutants. Somewhat surprisingly,
we only identified 213 genes in this category (Figure S4, Ta-
ble S2). Hence, in contrast to the extensive A-P gene expres-
sion changes within the CNS, inactivation of PRC2 in the
CNS did not result in widespread breakdown of germ layer
barriers of gene expression (Figure S4).

H3K27me3 only partly explains widespread effects
of PRC2 inactivation. Publicly available WT H3K27me3
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Fig. 3. Direct and indirect control by PRC2 (A) H3K27me3 signal for three markers genes, at E16.5 in WT, showing correlation between H3K27me3 and expression
patterns. (B) Gene categorising flow based upon the expression response to Eed-cKO mutation and the presence of H3K27me3. (C) Heatmaps showing the percentage
of genes with different histone modifications at the TSS for each defined gene category, in the CNS and reference tissues. (D) Correlation between FB log, F'C' and
repressive (H3K27me3) and activating (H3K27ac) marks, of the consistently affected gene category, reveals limited correlation. (E) Enrichment of ChromHMM chromatin
states, expressed as the odds ratio between positives in each gene category vs. all genes. (F) Functional Gene Ontology (GO) enrichment analysis by clusterProfiler of
“partly affected” and “unaffected” genes shows greater similarity between “marked” groups irrespective of repsonse to PRC2. (G) GO enrichment of “Consistently affected”
and “unmarked” genes reveals “inflammatory response” and “positive regulation of immune system process” (edges represent shared genes between GO terms). (H) GO
enrichment analysis of “consistently affected” and “marked” genes identifies terms related to embryonic development along the A-P axis.
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ChIP-seq data (47) revealed that the region- and gene-specific
profiles for several of the spatially restricted genes, Foxgl,
En2 and Hoxc9, were consistent with a direct repressive role
of the PRC2 complex (Figure 3A). However, gene expres-
sion changes caused by PRC2 inactivation may result from
layers of regulation when considered across the developmen-
tal trajectory. To begin addressing this issue in a systematic
manner, we performed a “label-stratified” analysis, compar-
ing gene expression with histone modification profiles. We
labelled each gene as unaffected, partly affected or consis-
tently affected, by using the expression response to PRC2 in-
activation as per the DE analyses (Figure 3B). Thereby, the
H3K27me3 state and expression response to Eed-cKO jointly
defined six exclusive categories of genes (Figure 3B), see
Methods for details.

Given PRC2’s role in maintaining tissue specificity, we hy-
pothesised that genes in each category would display chro-
matin profiles that were specific to tissue. Within each
gene category histone modifications in FB, MB, HB, neu-
ral crest (¢CNS), embryonic facial prominence (E.F.P), limb,
heart and liver, at E16.5 (47) were surprisingly similar,
but between categories differences appeared (Figure 3C).
Specifically, genes in the three H3K27me3-marked cate-
gories were commonly marked with H3K4me?2/3 marks, but
not H3K36me3, indicating their bivalent status (Figure 3C).
Within the three H3K27me3-unmarked categories, active
marks (H3K36me3, H3K27ac, H3K4me?2/3) were primarily
observed in the partly affected category (Figure 3C).

To further investigate the relationship between the
H3K27me3 mark and gene expression, we analysed the
correlation between FB logy, F'C' and H3K27me3 signal in
the “consistently affected” gene category (Figure 3D). We
found a limited positive correlation (p = 0.35, P < 0.01)
between H3K27me3 and FB log, F'C. This exceeded the
correlation between the FB log, F'C' and H3K27ac signal,
which reported minimal negative correlation (p = —0.24,
P <0.01).

The limited correlation between H3K27me3 and gene ex-
pression prompted us to investigate whether a combination of
histone marks i.e., chromatin states in a gene promoter could
provide greater insight into the FB gene response to PRC2 in-
activation. To this end, we assigned ChromHMM-predicted
epigenetic states to each gene, based upon FB at E16.5 (18).
We found that genes in all three H3K27me3-marked cate-
gories (unaffected, partly affected and consistently affected)
exhibited similar epigenetic states, with strong signals for
the Pr-B (Promoter-Bivalent) and Hc-P (Heterochromatin-
Permissive) states (Figure 3E). The enrichment of these
H3K27me3-implicated states was considerably higher for
the consistently affected category, showing that if a gene is
marked by H3K27me3 at E16.5 in the FB, it is likely to be af-
fected by knocking out Eed (Figure 3E). The consistently af-
fected unmarked genes stood out, with higher enrichment of
enhancer states: En-Sd (Enhancer-Strong-TSS-distal), En-W
(Enhancer-Weak-TSS-distal) and En-PD (Enhancer-Poised-
TSS-distal) (Figure 3E), suggesting that these genes are indi-
rectly regulated by PRC2. There were approximately equiva-
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lent numbers of genes in the consistently affected categories
that were unmarked and marked, indicating that lack of the
H3K27me3 mark did not rule out effects in Eed-cKO.

To understand the functional heterogeneity of genes within
and between each category, we also tested for over-
represented Gene Ontology (GO) terms associated with
their proteins (Figure 3F). For the H3K27me3-marked, both
partly and consistently affected genes were enriched for A-
P axis related terms, (e.g., pattern specification). Surpris-
ingly, H3K27me3-marked but unaffected genes were also en-
riched for regulation and development, indicating that not all
marked developmental genes were affected by Eed-cKO (Fig-
ure 3F). Unmarked and partly affected genes were associated
with RNA processing terms (Figure 3F), while the unmarked,
consistently affected genes were primarily enriched for im-
mune response genes (Figure 3G-H).

Variational Autoencoder finds latent codes for mix-
ture of features. Genes marked by H3K27me3 in the CNS
tended to be affected by Eed-cKO. However, the effect on un-
marked genes was nebulous e.g., correlating the log, F'C' of
the response with the experiment-wide median H3K27me3
state revealed only a weak correlation (p = 0.35, P < 0.01),
underscoring the limited ability of the H3K27me3 mark
alone for predicting the expression response to Eed-cKO
(4A). These findings suggested that labelling genes without
jointly including details of developmental stage and tissue
obscured features required to identify co-regulated genes.

To more comprehensively understand gene co-regulation,
while avoiding exhaustively screening all possible permu-
tations of features, we developed an approach using a
variational autoencoder (VAE). Similar to PCA, Uniform
Manifold Approximation and Projection (UMAP) (50), t-
Distributed Stochastic Neighbour Embedding (tSNE) (55),
and Potential of Heat-diffusion for Affinity-based Transi-
tion Embedding (PHATE) (51), VAEs map data to a lower-
dimensional latent space to thereby facilitate interpretation
(Figure S5). We opted to use a VAE to integrate the signal
and response data owing to VAEs reported abilities of ex-
tracting biologically meaningful features from non-linearly
dependent data (24). We defined a PRC2 profile of prioritised
features (97) representing each gene for input to the VAE:
RNA-seq data for WT and Eed-cKO, and WT H3K27me3
signal. Our goal was to integrate the data into a relatively
small set of features and use the model to interrogate rela-
tionships between the WT H3K27me3 signal and the gene
expression response to Eed-cKO (Figure 4B).

VAE was trained on PRC2 profiles, to find a latent “code”
for each gene deemed salient once all data points were con-
sidered (Figure 4B). Because the results were reproducible
and robust to parameter perturbations, the VAE architecture
and parameters were chosen with minimal tuning. When the
VAE used three or more hidden nodes, referred to as latent
dimensions (D), we observed only minor reconstruction loss
(Figure S4G). Hence, at D > 3, intermediate layers captured
sufficient information to successfully decode essential varia-
tion across the full data set. We tested two versions of the
data set: the 1,159 consistently affected genes (as defined
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Fig. 4. Integrated PRC2 profile forms latent A-P axis (A) Heatmap of Spearman correlation coefficients across all consistently affected genes between VAE latent codes
and selected annotations. (B) Simplified VAE model and the gene-specific input to the VAE, supplying a range of experimental observations (example genes shown) to a
(non-linear, trainable) “encoding function”, which defines a latent code for each gene. A “decoding function” is trained to reconstruct profiles for each gene, subject to VAE
constraints. (C) Selected marker genes plotted in VAE D=3 latent space, showing an A-P gradient. (D) Consistently affected genes plotted in VAE latent space, coloured (top

row) by log, F'C Eed-cKO vs. WT in FB, MB, and HB, and (bottom row) the median signal in H3K27me3 across development.

above), and all of the 13,019 affected genes, with D=3 and
D=6. We found that the consistently affected genes provided
the better training data set; data points occupying the “mid-
dle ground” had little effect on the resulting organisation of
statistically highlighted genes, but challenged ocular assess-
ment (Table S2, Figure S5A-B). Based upon these findings,
we subsequently used the VAE with D = 3, trained with the
consistently affected gene data set.

VAE latent code places genes along A-P axis. While
no pair of VAE dimensions correlated measurably (|p| < 0.1
for all pairs), as anticipated, each VAE dimension correlated
with a number of input features (Figure 4A). For instance, di-
mension 2 correlated negatively with the median H3K27me3
signal (p = —0.93, P < 0.01) and weakly with FB log, F'C

Mora etal. | Epigenetic control of CNS anterior-posterior patterning

(p = —0.42, P < 0.01). This basic trend was easier to ac-
cess in the model compared with FB log, F'C' and median
H3K27me3 when measured directly and linearly (p = 0.35,
P <0.01).

To further validate that the VAE latent code uncovered bi-
ologically relevant CNS features, we tracked the aforemen-
tioned marker genes (Table S1). We measured their separa-
bility as distinct groups, and noted that the FB, MB, HB and
SC genes were placed along a latent version of the A-P axis
(Figure 4C). In addition, investigating the placement of pro-
liferation genes (Table S1) we noticed that pro-proliferative
genes were placed in the vicinity of FB genes , while anti-
proliferative genes were placed adjacent to the SC genes, in
agreement with the enhanced anterior proliferation (Figure
4C). Logically, markers for neurons and glia did not group
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along the A-P axis, in line with the generation of these cell
types at all axial levels during the embryonic stages ana-
lyzed (Figure 4C). We confirmed VAE codes at D = 6, find-
ing that both configurations distinguished between the cho-
sen marker gene set and showed similar reconstruction loss
(Figure S4G).

The VAE latent space also captured several other key features
of PRC2 control of the developing CNS. These included the
graded involvement of PRC2 along the A-P axis, with ex-
tensive gene up-regulation in the Eed-cKO FB and smaller
effects in the HB (Figure 4D). We also observed a temporal
reduction in the H3K27me3 mark, as evident in the MB from
E10.5 to E16.5 (4D).

The posterior gene cohort was repressed in the FB and MB
in WT and upregulated in Eed-cKO (Figure 5A). This co-
hort was enriched for ChromHMM bivalent promoter states,
suggesting that these genes are directly controlled by PRC2
and are selectively expressed (Figure 5SA). The anterior gene
cohort tended to exhibit an opposing RNA expression pro-
file to the posterior genes, with a decrease in expression over
time, and limited enrichment of H3K27me3-associated chro-
matin states (Figure 5B). The development cohort included a
mixture of genes that were mostly upregulated in Eed-cKO,
and whose ChromHMM profile indicated both direct and in-
direct PRC2 effects (Figure 5C). The unmarked prolifera-
tion cohort was enriched for cell cycle genes, mostly those
with pro-proliferative function (Figure 5D). In WT, genes in
this cohort displayed a logical downregulation as neurogen-
esis comes to an end in both FB and SC. Relative to WT,
PRC2 inactivation accelerated the decrease in expression of
this cohort in all tissues, but most distinctly in FB (Figure
5D). Lastly, the immune response cohort was weakly upreg-
ulated in Eed-cKO and enriched for the absence of PRC2-
associated ChromHMM marks, indicating an indirect effect
of PRC2 (Figure 5E).

VAE latent dimensions identify allied but functionally
diverse genes. The variation captured by the VAE enabled
the discovery of new categories of genes that were coincid-
ing in each latent dimension. We grouped genes by their ex-
istence at the extremes of each dimension, with membership
determined by being in the tail of the distribution (SD > 1.25
from mean), resulting in six non-exclusive cohorts of genes.
One cohort was omitted from further analysis, as it contained
genes that extensively overlapped with the other five cohorts
(Figure S11). For the five remaining cohorts we used GO
term enrichment and selective gene expression to manually
label the cohorts, yielding: (1) posterior genes, (2) anterior
genes, (3) development genes, (4) unmarked proliferation
genes, and (5) immune response genes (Figure SA-E).

The posterior gene cohort was repressed in the FB and MB
in WT and upregulated in Eed-cKO (Figure 5A). This co-
hort was enriched for ChromHMM bivalent promoter states,
suggesting that these genes are directly controlled by PRC2
and are selectively expressed (Figure 5A). The anterior gene
cohort tended to exhibit an opposing RNA expression pro-
file to the posterior genes, with a decrease in expression over
time, and limited enrichment of H3K27me3-associated chro-
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matin states (Figure 5B). The development cohort included a
mixture of genes that were mostly upregulated in Eed-cKO,
and whose ChromHMM profile indicated both direct and in-
direct PRC2 effects (Figure 5C). The unmarked prolifera-
tion cohort was enriched for cell cycle genes, mostly those
with pro-proliferative function (Figure 5D). In WT, genes in
this cohort displayed a logical downregulation as neurogen-
esis comes to an end in both FB and SC. Relative to WT,
PRC2 inactivation accelerated the decrease in expression of
this cohort in all tissues, but most distinctly in FB (Figure
5D). Lastly, the immune response cohort was weakly upreg-
ulated in Eed-cKO and enriched for the absence of PRC2-
associated ChromHMM marks, indicating an indirect effect
of PRC2 (Figure 5E).

To address if the WT profile of gene cohorts were conserved
in humans, in particular regarding the expression of the genes
in the marked anterior cohort, we analysed publicly available
data from PsychEncode (56). We found similar expression
patterns across the mouse and human orthologs, with a sig-
nificantly greater expression in human FB tissue of the genes
we identify to be FB specific, than in other brain tissues (Fig-
ure S10).

VAE uniquely recovers allied genes in A-P axis de-
velopment. Similar to its “deep” neural network cousin, the
VAE allows low-dimensional codes to capture non-linear re-
lationships from a high-dimensional input space, staggered at
each intermediate layer (57). To quantify the level of organ-
isation of the VAE relative to other dimensionality methods:
PCA, UMAP, tSNE, and PHATE, we performed a number of
tests.

We asked if each method at D = 3 had the capacity to find
latent codes that distinguished marker genes by their known
A-P association. Only the distances in the VAE projection
were able significantly distinguish between marker gene sets
in both the consistently affected and partly affected datasets
(Figure S5A-B).

The insights reported in previous sections were based on five
gene cohorts that were evident in VAE at D = 3. We next
confirmed that VAE reproduced similar biological meaning
at D = 6, and asked if alternative methods were able to ex-
tract groups also with similar biological meaning. Finally,
each method was used to select the tailing 200 genes in each
latent component at D=3, these gene groups were then tested
for functional enrichment. All methods were able to extract
the most salient functional groups, e.g., the posterior group.
However, only the VAE and tSNE were able to distinguish
an anterior gene cohort (Figure 5B, S8). PCA and UMAP
contained duplications in encoding for the cell cycle (Figure
S6, S7), while PHATE uniquely identified a group contain-
ing “membrane” and “signalling” terms (Figure S9). While
tSNE functions at a comparable level to the VAE in terms of
pathway and GO enrichment, it was unable to separate gene
sets when used as a distance metric (Figure S5).

PRC2 regulates cell cycle genes directly or by proxy

TFs. A key phenotype of Eed-cKO mutants is a striking re-
duction of proliferation of the FB (Figure 11-J) ((5)). More-
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Fig. 5. VAE identifies functionally diverse gene cohorts (A-E) Different “cohorts” of genes identified at tails of one or more VAE latent dimensions (+ 1.25 SD). (A) In the
WT, the marked posterior gene cohort is repressed in the FB and expressed in the SC. In the Eed-cKO mutants, they are overexpressed in FB, while the SC is unaffected.
Top-10 genes in this group are predominantly Hox genes, marked by H3K27me3 in both FB and HB. Enrichment of ChromHMM chromatin states and GO terms show bivalent
and repressive states, and gene regulation, respectively. (B) In WT, the marked anterior gene cohort is repressed in SC and expressed in FB. In the Eed-cKO mutants, they
are mostly downregulated in FB and upregulated in SC. Top-10 genes display tissue specific response to Eed-cKO. They show no enrichment of specific chromatin states,
but FB differentiation and development GO terms. (C) The development gene cohort increases in expression over time and is more highly expressed in SC than FB, a trend
that is more pronounced in the mutant. Top-10 genes display upregulation in the mutant and are both marked and unmarked. Enrichment analyses show no enrichment
of specific chromatin states, but GO terms for embryonic development. (D) The unmarked proliferation gene cohort decreases in expression over time, in both the WT and
Eed-cKO, which is pronounced in Eed-cKO. These genes are enriched for active and weak promoter chromatin states and cell cycle functions, suggesting that active genes
are important for cell growth and the rate of proliferation. (E) The unmarked immune response gene cohort displays no specific expression profile in WT, but are upregulated in
the mutant. Top-10 genes show a homogenous response to Eed-cKO, in particular a strong upregulation in HB. These genes are enriched for the no signal (NS) ChromHMM
chromatin state. Enrichment for defence and immune response GO terms indicates functional homogeneity. (F) Genes ordered by each VAE dimension enrich in KEGG
pathways (top-5 shown, plotted by normalised enrichment score (NES) v. transformed P-value), which concord with GO analysis and reinforce the characterisation of each
gene cohort, e.g., unmarked proliferation genes map to large tail of dimension 1, and intersect with pathways for “cell cycle” and “oocyte meiosis”.
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Fig. 6. Layered cell control by PRC2 (A) Cell cycle gene response to PRC2 inactivation shows strong upregulation of some marked and consistently affected anti-proliferative
genes, while the majority of pro-proliferative genes are downregulated and unmarked. Sox genes are marked and downregulated. (B) Proposed mechanism of action for the
indirect regulation of the Sox genes on the cell cycle genes. (C) Consistently affected pro-proliferative genes (E2f1, Ccna2, Ccnb1, Cdc25c and Ccnd1) exhibit a reduction in
expression over embryonic development. This trend is observed in mice across the brain (FB and MB), and in human embryonic samples, also across the brain (dorsolateral
prefrontal cortex). (D) Select cell cycle genes exhibit evidence of an A-P gradient in WT. (E) Grouping all affected cell cycle genes reveals a trend (mean and standard error)
for to A-P flattening in expression. (F) PRC2 ensures that Hox homeotic genes are only expressed in the SC and HB, and brain TFs only in the FB and MB, and promotes
gradients of stemness, anti- and pro-proliferative gene expression. These A-P differences in gene expression drives an earlier progenitor proliferation stop and more limited
daughter cell proliferation in the posterior CNS, creating a gradient of growth.

over, the VAE analysis identified many genes (180 genes),
in the “unmarked proliferation” cohort (5D). These findings
prompted us to focus on the expression of the main cell
cycle genes (32 genes; Table S1), to explore the regula-
tion of pro- and anti-proliferative genes. Looking first at
WT, we observed that the majority of pro-proliferative and
anti-proliferative genes were expressed in opposing gradients
along the A-P axis (Figure 6A, D). In Eed-cKO mutants, we
found that the majority of cell cycle genes (29/32) were af-
fected, with 8 consistently affected and 21 partly affected
(Figure 6). With few exceptions, pro-proliferative genes were
downregulated while anti-proliferative genes were upregu-
lated relative to WT, and these effects were most pronounced
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in the anterior CNS (FB and MB), resulting in a general
flattening of the gene expression gradients (Figure 6A, 6D).
Two outliers were the pro-proliferative genes Ccnd1/2, which
were strongly upregulated in the posterior CNS (HB and SC)
(Figure 6A). The H3K27me3 profiles of the anti-proliferative
genes were comparatively pronounced, although several pro-
proliferative genes, such as Ccndl/2 and Ccnal, were also
marked (Figure 6A).

Because the majority of pro-proliferative genes appeared to
be indirectly affected by PRC2, we sought to identify which
TFs could be targeting the proliferation genes. We again
focused on the Sox1/2/3 stemness genes, as well as E2f1,
a core TF in the cell cycle machinery (58). Sox1/2/3 were
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marked by H3K27me3, while E2f] showed little if any marks
(Figure 6A). However, all four genes were downregulated
in Eed-cKO (Figure 6A). Previous ChIP-seq studies have
probed the genome-wide occupancy of three of these four
TFs (59, 60, 61). These data revealed that Sox2 and -3 bind
to a number of proliferation genes, including E2f1 and other
E2f genes, and that E2f1 binding showed extensive overlap
with the Sox2/3 binding profiles (Figure 6B). These findings
suggest that PRC2 action is layered — acting both directly
and indirectly, via Sox1/2/3 and E2f1/2/3, to control cell cy-
cle gene expression.

To investigate whether the cell cycle gene expression profiles
are evolutionarily conserved, we tested whether the WT pro-
file of early activation of pro-proliferative genes is conserved
in humans. We again used the publicly available data from
PsychEncode (56) and confirmed a significant reduction over
time in the pro-proliferative genes in human embryonic brain
development (Figure 6C).

Discussion

PRC2 promotes the developing CNS A-P axis. The de-
veloping CNS displays a striking and evolutionarily con-
served patterning along the A-P axis, evident by the selective
expression of brain-specific TFs anteriorly and Hox homeotic
genes posteriorly (62, 63). Studies in Drosophila have also
revealed an A-P expression gradient of neural stemness genes
e.g., the SoxB family (2). In Drosophila, the selective ex-
pression of brain-TFs, Hox genes and neural stemness genes
is accompanied by and (to a great extent) drives gradients
in pro- and antiproliferative gene expression, which in turn
results in a gradient of progenitor and daughter cell prolif-
eration, faster cell cycles, and the expansion of the anterior
CNS (2, 3, 4, 5). Studies in mouse have indicated that many
of these developmental features are conserved in mammals,
although the degree of conservation is unclear (5). More-
over, while PRC2 plays a key role in promoting these A-P
differences, its precise roles have hitherto not been compre-
hensively addressed.

We created a transcriptomic dataset of the WT and Eed-cKO
mutant developing mouse CNS, covering the major phase
of neurogenesis. We observed the anticipated WT expres-
sion of brain-TFs and Hox genes, anteriorly and posteri-
orly, respectively. In addition, we observed striking gene
expression gradients of stemness, pro- and anti-proliferative
genes, demonstrating that these features are also conserved
from Drosophila to mouse. We found that PRC2 inactivation
resulted in profound gene expression changes in the CNS,
which are particularly pronounced in the anterior CNS, with
the FB displaying 4,414 DE genes compared to 771 DE genes
in the SC. Looking specifically at the aforementioned de-
velopmental genes we found that PRC2 inactivation reduced
brain-TF expression and upregulated Hox genes anteriorly.
In addition, we observed a flattening of the gene expression
gradient of stemness and pro-proliferative genes, and an up-
regulation of anti-proliferative genes. Hence, PRC2 plays a
fundamental role in promoting anterior CNS development,
with anterior tissues posteriorizing and reducing their stem-
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ness in Eed-cKO mutants (Figure 6F). These regulatory ef-
fects generally accumulate over time i.e., once a gene be-
comes dysregulated it remains so, and hence the maximum
difference in DEGs between WT and Eed-cKO is at E18.5,
the latest stage sampled herein.

PRC2 inactivation causes extensive direct and indirect
effects. To understand if PRC2 acts in a direct or indirect
manner upon the affected genes, we integrated our transcrip-
tomic dataset with histone modification profiles, generated by
ENCODE. This label-stratified analysis identified six gene
categories, based upon genes being H3K27me3-marked or
not, and upon genes having expression levels that are unaf-
fected, partly or consistently affected.

All partly/consistently affected genes with H3K27me3
(2,494 combined) were enriched for GO terms related to em-
bryonic patterning, which aligns well with the observed ef-
fect of Eed mutation i.e., a flattening of the CNS A-P axis.
This finding, combined with their ChromHMM states, indi-
cates that this gene group is directly regulated by PRC2. The
category of H3K27me3-marked and unaffected genes (410
genes) was enriched for similar GO terms i.e., regulation and
development, showing that a subset of H3K27me3-marked
developmental genes are not affected by Eed-cKO.

There were many partly/consistently affected genes without
H3K27me3 (10,525 genes combined), suggesting an exten-
sive indirect effect of PRC2 inactivation. The consistently
affected genes primarily included immune response genes
(many of which were also identified by the VAE analysis,
see below), while the partly affected category included RNA
processing genes.

VAEs distinguish allied gene cohorts relevant to A-P
axis control. To further address the function of PRC2 and to
tease apart the layered roles of PRC2 we used a deep learn-
ing approach. To this end, we applied a VAE to exhaustively
probe gene expression and H3K27me3 patterns along A-P
development, over several timepoints, in control and PRC2
mutant. The VAE was able to distinguish between cohorts
of genes with qualitatively different functional profiles and
multi-variate trends across the datasets. Moreover, despite
sharing at least one latent label, several genes within each
cohort were surprisingly varied in terms of both expression
changes and chromatin state, indicating that the multi-variate
nature of the VAE analysis uncovers a spectrum of biolog-
ically relevant, gene groupings across gene expression and
histone modification features. While we could have extended
our label stratified analysis to include other factors, e.g., “up”
or “down” in each DE analysis, the number of gene categories
increases exponentially. In contrast, the VAE identified func-
tionally enriched gene groups important for CNS develop-
ment using only three dimensions.

When comparing the VAE analysis to the initial, label-
stratified analysis, the VAE identified additional gene co-
horts and was able to tease apart the functional roles iden-
tified within the label-stratified categories. This includes the
separation of the “marked, consistently affected” group, con-
taining both anteriorly and posteriorly expressed genes, into
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the “marked anterior” and “marked posterior” cohorts. When
comparing the VAE to other dimensionality reduction meth-
ods we found that only the VAE and tSNE recovered func-
tionally enriched anterior and posterior groups. However, the
VAE methods were most accurate at distinguishing between
“like” and “unlike” gene sets both the consistently and partly
affected datasets. We developed our analysis workflow and
package to be applicable to other biological domains. In par-
ticular, this analysis is amenable to any system where a bio-
logical features profile (e.g. representing the state of a gene)
across an assay of experiments is indicative of function and
mode of regulation. For example, to identify distinct regu-
latory responses between patients cohorts in tumours, under-
standing TF activation through development, or regulatory
responses to drugs.

Immune response genes may be affected by several
mechanisms. Unexpectedly, both the label-stratified and
VAE analyses identified immune response genes as a salient
function affected by PRC2. Using Sox/-Cre to delete Eed
only removes gene function in the CNS itself, and not in the
blood or blood vessels (Figure 1E; (5)). It is therefore possi-
ble that the undergrown FB and MB in Eed-cKO mutants re-
sulted in a higher ratio of blood vessels/immune cells to CNS
cells, thereby increasing the transcriptome signal for immune
response genes in an indirect manner. However, two other
plausible causes of activation of immune response genes are
(1) a CNS-autonomous effect, as PRC2 has been linked to
immune responses in human cancer (64) and/or (2) that the
developmental defects in Eed-cKO mutants lead to a break-
down of the blood brain barrier and/or an immune response to
a malforming CNS. Further studies i.e., spatio-temporal sin-
gle cell RNA-seq, would be required to determine why the
immune response genes are activated.

Multi-layered control of proliferation by PRC2. While
the label-stratified analysis identified many cell cycle genes,
they were distributed across several gene categories. In con-
trast, the VAE grouped them into a consistent gene cohort:
the proliferation cohort. In general, pro-proliferative genes
were downregulated and anti-proliferative genes upregulated,
and there was a general flattening of their A-P expression gra-
dients. These gene expression changes are likely directly re-
sponsible for the undergrowth phenotype observed in the mu-
tant FB and MB. Analysis of the H3K27me3 profiles revealed
that PRC2 may be acting directly on a subset of marked pro-
liferation genes, and likely indirectly, via e.g., the Sox1/2/3
and E2f1/2/3 TFs, on un-marked proliferation genes.

The tendency for PRC2 to directly regulate anti-proliferative
genes and indirectly regulate pro-proliferative genes, points
to an uneven involvement of the epigenetic machinery in
cell cycle regulation. This finding is not surprising given
the different evolutionary age of the cell cycle genes and
the gradual emergence of the epigenetic machinery. Specifi-
cally, while the basic core cassette of cyclins and Cdks is an-
cient in eukaryotes (65) the Kip/Cip family evolved later, and
INK4 even more recently (the INK4 family is not present in
Drosophila). The Kip/Cip and INK4 families likely evolved
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to provide the increasingly refined control of proliferation
necessary in larger metazoans. Indeed, evolution of the cell
cycle machinery has gone hand in hand with, and one may
argue been facilitated by, an increasingly elaborate epige-
netic machinery. Against this backdrop, it is logical that
PRC?2 is heavily engaged in directly regulating the Cip/Kip
and INK4 families, but indirectly regulating the ancient cell
cycle genes.

PRC2 gates an ancient CNS stemness gradient. One of
the key features of the developing CNS A-P axis is a stem-
ness gradient, which drives CNS anterior expansion. PRC2
plays five key roles herein: (1) promoting brain-specific TF
expression, (2) repressing anterior Hox gene expression, (3)
promoting a gradient of neural stemness TF expression, (4),
repressing anterior anti-proliferative gene expression and, (5)
promoting anterior pro-proliferative genes (1). Our findings
herein suggest that PRC2 regulates the first four categories
directly by application of H3K27me3; PRC2 regulates pro-
proliferative genes by also relying on proxy TFs.

Our spatio-temporal transcriptomic and epigenomic analysis
provides an in-depth view into the strikingly different regula-
tory landscape present in the anterior versus posterior regions
of the CNS, and the profound importance of PRC2 in estab-
lishing and driving these differences. Previous studies show
that the role of PRC2 in gating A-P gene expression is inte-
gral for mouse, fly, and zebrafish development (8, 66, 67).
Our work extends upon this, revealing that the FB genes
dysregulated in the developing mouse PRC2 mutant CNS
are also selectively expressed during human FB embryonic
development, underscoring the evolutionary conservation of
brain development across bilateria.

A number of observations in different species, including gene
expression analysis, and anatomical and phylogenetic consid-
erations, have led to the proposal that the anterior and pos-
terior CNS may have originated from different parts of the
nervous system present in the Bilaterian ancestor, the apical
and basal nervous systems (62, 68, 69, 70). If true, this brain-
nerve cord “fusion” concept may help explain the strikingly
different gene expression and neurogenesis properties of the
brain, when compared to the nerve cord, as well as the appar-
ent “brain-preoccupation” of the PRC2 complex.

Data and code availability. Raw RNA-seq files are avail-
able at the NCBI/Gene Expression Omnibus under the acces-
sion GSE123331. Python code including Jupyter Notebooks
(both as HTML and ipynb) used to generate all results are
available at: https://arianemora.github.io/mouseCNS_vae/

Lead contacts. Further information and requests for ex-
perimental protocols should be directed Stefan Thor
(s.thor@ug.edu.au), information and requests for compu-
tational methods should be directed to Mikael Bodén
(m.boden@ugq.edu.au).
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Supplemental information

Supplemental Table 1. Gene lists

Gene group Gene names

Anti-proliferation (all) Cdknla, Cdkn2a, Cdkn2b, Cdkn2c, Cdknlb, Cdknlc, Cdkn2d, Rb1, Checkl, Weel

Proliferation genes (all) Ccnal, Cendl, Cdc25a, E2f1, Mem10, Cip2a, Ccna2, Cenbl, Cenb2, Cend2, Cend3, Cenel, Cene2, Cdc25b,
Cdc25c¢, E2f2, E2f3, Mcm5, Mcm3, Mcm2, Cdk1, Cdk2, Cdk4, Cdk6

SC genes Hoxb13, Hoxb9, Hoxb8, Hoxc13, Hoxc12, Hoxcl1, Hoxc10, Hoxc9, Hoxc8, Hoxd11, Hoxd10, Hoxd9,
Hoxa7, Hoxa9, Hoxal0, Hoxb7, Hoxb6, Hoxb5, Hoxd13, Hoxd8, Hoxa6, Hoxal 1, Hoxal3

HB genes Phox2b, Krox20, Fev, Hoxb1, Hoxd3

MB genes Enl, En2, Lmx1a, Bhlhe23, Sall4

FB genes Emx1, Eomes, Tbrl, Foxgl, Lhx6

Progenitors Sox2, Sox1, Sox3, Hesl1, Hes5

Neurons Snap25, Sytl, Slc32al, Slc17a6, Synl

Glia Aqp4, Cspg4, Slcball, Oligl, Igfbp3

Ectopic unmarked Gsta3, Rfx8, Aox3, Mdhlb, Mogatl, Sp100, Ugtla7c, Ugtla6a, Iqca, Cfap221, Lax1, Fcgrd, Cd48, Vsig8,

Ccdc170, Vip, Zc3h12d, Lilrb4a, Oit3, Aire, Lif, Ifi47, Slc36a2, Nmur2, Slc35g3, Mgl2, Clec10a, Tm4sf5,
Ccl2, Ccll2, SIfn8, Krt26, Asb16, Aanat, Card14, Cbr2, Cdhr3, Efcab10, Acot4, Batf, Gpr65, Ifi2712a, Ser-
pina3g, Omd, Fam81b, Bhmt, I131ra, Dhrs2, Arl11, Rubcnl, Epstil, Slc45a2, Gpr20, Lypd2, Meltf, Cd80,
Cd200rl1, Btla, Wdr27, Tff3, H2-DMb1, H2-Eb2, C4b, Ly6g6d, H2-T22, Ankrd66, Gucala, Plin4, Psma8,
Zfp474, ligpl, Ifit3b, Ifitl, Spaca9, Morn5, Spol1, Tnfsf10, Sptssb, Chial, Ubl4b, 1700013F07Rik, Bankl1,
Cyp4bl, Rhbdl2, Pla2g5, Cedc27, Slc26a5, TIr6, Rhoh, Ppef2, Fam47e, Gbp11, Selplg, Cfap73, Lrrc43, Ccl24,
Muc3a, Cardl1, Clec5a, Reg3b, Cacna2d4, Clec4a3, Clec4n, Clrl, Clra, Fgf23, BC035044, Lmntd1, Apocl,
Capnl2, Secl, Isg20, Wdr93, Cfap161, OIfr558, Trim34b, F10, Gdf15, Abccl2, Dnaafl, Keng4, Caspl2,
1700012B09Rik, Bcl2alb, Gadll, Hhatl, Ccr2, Akap14, Xlr, Dmrtcla, Cysltrl, Tex16, Lhfpll, Ace2

Ectopic marked Tcf24, Cryba2, Ihh, Ferlb, Tcf21, Nodal, Npffrl, Fstl3, Gipc3, Hand1, Alox12b, Hnflb, Gegr, Tc2n, Gsc,
Lbhd2, Prss16, Susd3, Dmgdh, Ltb4r2, Gja3, Gata4, Fam83f, Ttll8, Wnt10b, Gsc2, Ildrl, Prss41, Hs3st6,
Gngl3, Nkx2-5, Mpigbb, Lta, Abcg8, Dmrtl, Acbd7, Spag6, Lrrc26, Cutal, Rspo4, Rem1, Fgf2, Hapln2,
Rhbg, Slc44a3, Foxel, Cdkn2a, Kdfl, Lrrc38, Gabrd, Cwh43, Nmu, Cfap299, Gfil, Tbx5, Hoxal3, Vax2,
Zfp541, Ppmln, Phldb3, Lypd3, Nccrpl, Slc6al6, AC151602.1, Ano9, Ascl2, Rab20, Htra4, Adrb3, Hand?2,
Comp, Ttc29, 1115, MIkl, 4833427G06Rik, C2cd4a, Ankrd34c, Prss50, Ccr9

Genes sets used throughout the paper, bolded genes were used for display in Figure 4. Display genes were chosen based upon
published gene expression patterns. Ectopic genes were identified computationally and indicates that the gene had a mean expression
less than 0.5 TMM in the WT and greater than 0.5 TMM in the mutant.

Supplemental Table 2. Normalised SSQ distance between tissues

Eed-cKO | Most similar WT condition | Distance
kol1fb wtl1mb 32.689
ko13fb wt13mb 67.778
kol5fb wt15mb 60.334
ko18fb wt18hb 66.041
kol1lmb wtl1hb 29.972
ko13mb wtl3sc 56.335
kol5mb wt15mb 54.135
kol18mb wt18hb 57.589
kol1lhb wtl1hb 36.108
ko13hb wtl3sc 58.831
ko15hb wt18hb 60.739
ko18hb wt18hb 54.093
kollsc wtllsc 24458
ko13sc wtl3sc 37.104
kol5sc wt18sc 51.529
kol18sc wt18sc 39.241

For each Eed-cKO condition the distance (normalised sum of square differences between gene expression) between the mutant’s
merged replicates and all WT conditions is shown. The WT condition with the smallest distance is used. There is an evident regression
along the A-P axis of FB samples, and some MB samples (highlighted in bold).
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Supplemental Fig 1. Tissue specific response to Eed-cKO (A) In MB Hox genes are upregulated in Eed-cKO for E13.5 — E18.5
as show by a standard Volcano plot (log-fold change v. log P-value). (B) In HB Hox genes and select FB genes, such as Tbr1,
are upregulated in Eed-cKO, plotted by normalised enrichment score (NES) v. transformed P-value. (C) In SC FB specific genes
upregulated in Eed-cKO, with an overall smaller response than in MB and HB. (D) Using the logFC for each tissue to rank the significant
genes for the given experiment, in FB and MB there is negative enrichment for the cell cycle pathway and RNA biology pathways, such
as “ribosome” and “spliceosome” (these do not appear to be negatively enriched in the HB and SC). In all four tissues the top positively
enriched pathways are associated with immune response. In the posterior tissues there is negative enrichment of some overlapping
pathways with the anterior tissues, such as “DNA replication”.
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Supplemental Fig 2. Temporal response to Eed-cKO in anterior CNS (A) Anterior (FB, MB) regions at E11.5 shows limited upreg-
ulation of Hox genes and overall minor effects. (B) At E13.5, there is strong downregulation of progenitor markers Sox3 and Sox7 and
upregulation of Hox genes. (C) At E15.5 there are fewer downregulated genes, however displaying a stronger upregulation response, in
particular of Hox genes. (D) At E18.5 there is a similar upregulation as the earlier time points of Hox genes and strong downregulation
of forebrain marker, Eomes. (E) At E13.5 and E15.5 there is downregulation of the “cell cycle” pathway. At E18.5 “cell cycle” is no
longer a significant term but other terms such as “DNA replication” are shared. In the positively enriched pathways there is enrichment
of immune associated pathways, and a response to a disrupted system (e.g., “allograft rejection”)
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Supplemental Fig 3. Temporal response to Eed-cKO in posterior CNS (A) The logFC response in the posterior (HB, SC) regions

at E11.5 shows minimal effects in Eed-cKO. (B) At E13.5 there is upregulation of both SC and FB markers.
(D) At E18.5 the same effects of ubiquitous upregulation are observed.

upregulation of markers from across brain regions.

(C) At E15.5 there is
(E) At

E13.5 there is a downregulation of RNA pathways (“RNA degradation”, “RNA polymerase”), and an upregulation of immune response
or cancer terms, as well as of “blood cells” and “hematopoietic cell lineage”. At E15.5 and E18.5 there is upregulation of the cell cycle
pathway and also of blood cancer associated pathways, such as “chromic myeloid leukemia”. At the later stages there is negative
enrichment for brain associated pathways, such as “neuroactive ligand receptor interaction” and “axon guidance”.
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Supplemental Fig 4. Ectopically expressed peripheral genes in Eed-cKO (A) Marked peripherally expressed genes that were
ectopically expressed in Eed-cKO, are upregulated over time in both FB and SC. (B) Unmarked peripherally expressed genes that were
ectopically expressed in Eed-cKO are upregulated over time in FB, but with limited effects in SC. (C) Marked genes are enriched for
ChromHMM signature of bivalency, while (D) unmarked genes are enriched for no signal (NS), and permissive transcription state (Tr-P).
(E) GO analysis of marked genes shows a diverse range of terms. (F) Few terms were associated with the unmarked group. (G) Loss
of the VAE on the 1,371 dataset shows the loss stabilises at 3 latent dimensions, with marginal improvements for greater numbers.
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A Marker genes projected onto top three dimensions for different dimensionality reduction methods
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Supplemental Fig 5. Marker genes projected into alternate spaces (A) Marker genes were projected onto 3-dimensional latent
spaces produced by five methods: PCA, tSNE, UMAP, PHATE and a shallow VAE (a VAE with only one internal layer). Separability
between FB, MB, HB, and SC is most apparent when using the consistently affected gene set (1,371 genes). Separability is reduced
with most tools when using the larger dataset (all affected genes). The VAE and PCA appear most robust to adding partly affected
genes. (B) Testing separability between the most diverse gene groups over 30 runs for non-deterministic tools (tSNE, VAE, UMAP), and
from deterministic tools PCA and PHATE revealed that VAE methods were most accurate at assigning small distances within a marker
group and larger distances between marker groups (i.e. large distance within a cluster when combining un-related gene groups).
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A Pathway enrichment for consistently affected genes ranked by PCs
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Supplemental Fig 6. Enrichment for PCA (A) Genes were ranked by each Principal Component (PC) (up to 3) to identify negatively
and positively enriched pathways. PC 1 is negatively enriched for immune associated pathways, and positively enriched for brain dys-
regulation, “WNT signalling, Hedgehog signalling” and cancer pathways. PC 2 is negatively enriched for only two pathways: “Nod like
receptor” and “arachidonic acid metabolism”, which is associated with neurotransmitter systems. The top five positive pathways in PC
2 are diverse, including “cell cycle”, “axon guidance” and cancer pathways. PC 3 is negatively enriched for diverse pathways, including
cell cycle, carcinoma, and Hedgehog signalling. PC 3 is positively enriched for brain associated pathways, including “Alzheimers”
and “axon guidance”. (B) The top and bottom 200 genes along each PC were tested for enriched GO terms. PC 1 agrees with the
enrichment of pathways, e.g., with RNA metabolism associated GO terms positively enriched (contain Hox genes). In PC 2 the top
200 genes are not enriched for any GO terms, while the bottom 200 enriched predominately for cell cycle terms. PC 3 is negatively
enriched for similar terms that PC 2 enriched for, and positively enriched for transport associated and development terms. There is no
enrichment for anterior specific function.

Supplemental 24 | bioRxiv Mora etal. | Epigenetic control of CNS anterior-posterior patterning


https://doi.org/10.1101/2021.06.22.449386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449386; this version posted August 30, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Pathway enrichment for consistently affected genes ranked by UMAP dimensions
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Supplemental Fig 7. Enrichment for UMAP (A) Genes were ranked by each UMAP dimension (up to 3) and to identify negatively
and positively enriched pathways. UMAP 1 is negatively enriched for cancer associated pathways, and positively enriched for immune
response. UMAP 2 is negatively enriched for a diverse range of pathways, including “cell cycle” and the immune associated “systemic
lupus erythematosus”. UMAP 2 is only enriched for two pathways: “TGF beta signalling”, which is associated with development, and
“pathogenic Escherichia coli infection”. The top five positive pathways in UMAP 3 covers similar pathways to UMAP 2 i.e., “cell cycle”
and immune associated pathways. UMAP 3 is positively enriched for terms from UMAP 1 and UMAP 2. (B) The top and bottom
200 genes along each UMAP dimension were tested for enriched GO terms. UMAP 1 is positively enriched with RNA metabolism
associated GO terms (contain the Hox genes), which does not overlap strongly with the enriched pathways. The top genes from UMAP
1 predominantly enrich in immune response terms and agree with pathways. The bottom genes from UMAP 2 are associated with cell
cycle terms, while the opposing side of the dimension are development associated. In UMAP 3 both bottom and top terms overlap with
UMAP 2. There is no enrichment for anterior specific function.
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A Pathway enrichment for consistently affected genes ranked by TSNE dimensions
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Supplemental Fig 8. Enrichment for tSNE (A) Genes were ranked by each tSNE dimension (up to 3) to identify negatively and
positively enriched pathways. TSNE 1 is negatively enriched for cell cycle associated pathways and positively enriched for one pathway:
“neuroactive ligand receptor interaction”. tSNE 2 is negatively enriched for immune response pathways and positively enriched for

cancer associated pathways. TSNE 3 is negatively enriched for one pathway; “tight junction”, whil

e positively enriched for diverse

terms, including “cell cycle” and brain pathways. (B) The top and bottom 200 genes along each tSNE dimension were tested for
enriched GO terms. TSNE 1 aligns with cell cycle associated terms, fitting with the enriched pathways along dimension 1, while
not enriched for any terms in the top genes. In dimension 2, the bottom genes enrich immune response genes, and the top RNA
metabolism associated GO terms (contain the Hox genes), all of which agree with enriched pathways. The terms for bottom genes
in tSNE 3 overlap with forebrain development, while the terms for the top are more diverse, analogous to pathways, enriching for cell
projection as well as development terms. None of the gene cohorts appear to directly encode for development terms.
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A Pathway enrichment for consistently affected genes ranked by PHATE dimensions
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Supplemental Fig 9. Enrichment for PHATE (A) Genes were ranked by each PHATE dimension (up to 3) to identify negatively and
positively enriched pathways. PHATE 1 is negatively enriched in cancer and brain associated pathways and positively enriched in
immune associated pathways. PHATE 2 is negatively enriched in immune response pathways and positively enriched in cancer and
cell cycle associated pathways. PHATE 3 is negatively enriched in signalling pathways and positively enriched in cell cycle pathways.
(B) The top and bottom 200 genes along each PHATE dimension were tested for enriched GO terms. PHATE 1 bottom genes enrich for
RNA metabolism associated GO terms (contain the Hox genes), the top genes of this dimension are enriched for immune response. In
dimension 2 the top genes enrich for cell cycle terms similarly to the pathways in (A). The bottom genes from PHATE 3 overlap with cell
periphery, and membrane terms, these terms are not enriched in any of the other methods as such would be a unique group. The top
genes are associated with development, which does not overlap with the most significant pathways (cell cycle). There is no enrichment
of the groups for anterior specific function.
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B Overlap between gene groups
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Supplemental Fig 10. Results for repressed cohort (A) Genes from the repressed gene cohort show overall low gene expression
in both FB and SC. They are marked and enriched for the no-signal (NS) ChromHMM chromatin state. (B) Overlap between extreme
groups of genes identified by the VAE shows that the repressed group strongly overlaps with the posterior group.
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Supplemental Fig 11. Evolutionary conservation into humans (A) The top 10
trends across human and mouse data.
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