
 

Regulatory and Functional Genomics 
DECODE: A Deep-learning Framework for Condensing 
Enhancers and Refining Boundaries with Large-scale 
Functional Assays 
Zhanlin Chen1,†, Jing Zhang2,†*, Jason Liu3, Yi Dai2, Donghoon Lee5, Martin Renqiang Min6, 
Min Xu7, Mark Gerstein1,3,4,* 
1Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA 
2Department of Computer Science, University of California, Irvine, CA 92617, USA 
3Department of Molecular Biophysics and Biochemistry, 4Department of Computer Science, Yale University, New Haven, 
CT 06520, USA 
5Genetics and Genomic Sciences, the Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574 
6NEC Laboratories America, Princeton, NJ 08540, USA 
7Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, 
USA 
*To whom correspondence should be addressed; †These authors made equal contributions 

Abstract 
Summary: Mapping distal regulatory elements, such as enhancers, is the cornerstone for investigating ge-
nome evolution, understanding critical biological functions, and ultimately elucidating how genetic variations 
may influence diseases. Previous enhancer prediction methods have used either unsupervised approaches 
or supervised methods with limited training data. Moreover, past approaches have operationalized enhancer 
discovery as a binary classification problem without accurate enhancer boundary detection, producing low-
resolution annotations with redundant regions and reducing the statistical power for downstream analyses 
(e.g., causal variant mapping and functional validations). Here, we addressed these challenges via a two-step 
model called DECODE. First, we employed direct enhancer activity readouts from novel functional character-
ization assays, such as STARR-seq, to train a deep neural network classifier for accurate cell-type-specific 
enhancer prediction. Second, to improve the annotation resolution (~500 bp), we implemented a weakly-su-
pervised object detection framework for enhancer localization with precise boundary detection (at 10 bp res-
olution) using gradient-weighted class activation mapping.  
Results: Our DECODE binary classifier outperformed the state-of-the-art enhancer prediction methods by 
24% in transgenic mouse validation. Further, DECODE object detection can condense enhancer annotations 
to only 12.6% of the original size, while still reporting higher conservation scores and genome-wide associa-
tion study variant enrichments. Overall, DECODE improves the efficiency of regulatory element mapping with 
graphic processing units for deep-learning applications and is a powerful tool for enhancer prediction and 
boundary localization. 
Availability: DEOCDE is available at decode.gersteinlab.org  
Contact: pi@gersteinlab.org 

 
1 Introduction  
Transcriptional regulation in eukaryotes is the most common and 
fundamental form of gene regulation for maintaining cell identity 
during differentiation, determining how cells or organisms re-
spond to intra- and extra-cellular signals, and coordinating various 
cellular activities (Cramer, 2019; Sperling, 2007). It undergoes 
precise spatial and temporal regulations via complex interactions 
of numerous cis-regulatory elements, such as enhancers and pro-
moters, transcription factors (TFs), and chromatin remodelers 
(Abeel et al., 2009; Dao and Spicuglia, 2018; Jothi et al., 2009; 

Lewis et al., 2019; Klemm et al., 2019). Hence, enhancer discov-
ery is the cornerstone for understanding transcription control and 
gene regulation. 

The computational methods traditionally utilized for enhancer 
discovery mainly fall into two categories. First, some methods use 
the combinatory patterns of various epigenetic features within a 
genomic region (e.g., 200 bp bins) to infer the existence of en-
hancers with unsupervised approaches (Ernst and Kellis, 2012; 
Hoffman et al., 2012; Moore et al., 2020). These methods use un-
labeled datasets to characterize chromatin states and require 
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human interpretation of the discovered states. They are highly 
transferrable for predicting enhancers in a new cell type because 
the epigenetic patterns are dynamic and analogous across cell 
types. However, the simple combinatory, and usually binary, epi-
genetic patterns may not fully capture the complexity of transcrip-
tional regulation. Second, some methods employ supervised ap-
proaches to identify target regulatory elements using hypothetical 
enhancer loci or a limited number of validated enhancers, which 
are underpowered for training a reliable model for accurate pre-
diction (Alipanahi et al., 2015; Chen et al., 2018; Li et al., 2018; 
Lu et al., 2015; Min et al., 2017; Tang et al., 2020). We recently 
developed a linear predictive model based on shape-matching fil-
ters from multiple epigenetic features trained from genome-scale 
STARR-seq experiments on Drosophila (Sethi et al., 2020). How-
ever, most existing methods can only make binary predictions 
within a given region (>200 bp) and do not have a high enough 
resolution for more precise enhancer localization and boundary 
detection. Previous studies have shown that enhancers can range 
from 50-1,500 bp long (Dao et al., 2017; Li and Wunderlich, 
2017). Hence, current enhancer annotations usually contain both 
active enhancer regions and redundant non-functional regions, in-
troducing noise and reducing statistical power for downstream 
analyses such as casual variant mapping and functional validation. 

Distinct from previous binary classification efforts, we refor-
mulate the enhancer discovery problem into a weakly supervised 
object detection problem originated from computer vision by an-
swering two questions: 1) Is there an enhancer within a given ge-
nomic region? 2) If yes, where is the enhancer? To accomplish 
these tasks, we take advantage of recent advances in functional 
characterization assays and utilize direct human enhancer activity 
readouts from STARR-seq experiments as fuzzy ground-truth la-
bels (Muerdter et al., 2015). First, we propose a deep convolu-
tional neural network (CNN) using epigenetic feature signals as 
input based on a simple but validated hypothesis – the magnitude, 
shape patterns, and cross feature coordination are important as-
pects of characterizing the identity of an enhancer (Schmidhuber, 
2015). Concretely, we hypothesize that the interaction of open 
chromatin and histone marks provides a platform for TF binding, 
which allows epigenetic features to be predictive of enhancers 
(Mahony et al., 2005; Saeys et al., 2007; Spitz and Furlong, 2012). 
Second, we add a weakly supervised object detection module to 
precisely localize the target enhancer in the input genomic region. 
Specifically, we use the visual explanations created by gradient-
weighted class activation mapping (Grad-CAM) for interpreting 
decisions from CNNs, which allows us to impute high-resolution 
enhancer coordinates that were never exposed to the model during 
training from fuzzy and coarsely labeled STARR-seq data (Selva-
raju et al., 2017). 

In the following sections, we describe our weakly supervised 
Deep-learning framework for Condensing enhancers and refining 
boundaries (DECODE) implemented in Python with TensorFlow. 
We performed extensive benchmarking using cell-line and trans-
genic mouse tissue validation data, and demonstrate that 
DECODE outperforms the state-of-the-art enhancer discovery 
models. We also validated the regulatory impact of our refined 
enhancer annotations using phylogenic conservation scoring, rare 
single-nucleotide polymorphism (SNP) enrichment, and genome-
wide association study (GWAS) variant enrichment via stratified 
linkage disequilibrium score regression (LDSC).  

2 Methods 
We structured the task of cell-type-specific enhancer discovery as 
a weakly-supervised object detection problem with two modules. 
First, we constructed a CNN binary classifier to predict the ex-
istence of enhancers. The model takes a matrix of high-resolution 
epigenetic features over a large genomic window as input. Sec-
ond, we developed an object detection module to locate the en-
hancer boundaries in the positive genomic windows based on 
the most informative subset of epigenetic features indicated by 
Grad-CAM. With a trained model, we can carry out cell-type-spe-
cific enhancer discovery in a novel cell type with common epige-
netic profiles and obtain high-resolution core enhancer coordi-
nates. We thoroughly benchmarked and validated our framework 
using various internal and external evaluation metrics. By evalu-
ating through different biological perspectives, we demonstrate 
DECODE’s ability to generate high-quality cell-type-specific en-
hancer annotations with a strong regulatory impact.  

2.1 Training data processing 
We collected STARR-seq data for five human cell lines (HepG2, 
K562, A549, MCF-7, HCT116), along with chromatin accessibil-
ity (ATAC-seq and/or DNase-seq) and ChIP-seq for H3K27ac, 
H3K4me3, H3K4me1, and H3K9ac, from the ENCODE data por-
tal (Appendix Table 1) (ENCODE Project Consortium and others, 
2004). To call STARR-seq peaks, we applied STARRpeaker, 
which adjusts for GC content and RNA thermodynamic stability 
during peak calling (Lee et al., 2020). STARR-seq peaks overlap-
ping with a chromatin peak and a peak of an active histone en-
hancer mark were defined as active enhancers and were consid-
ered positive training samples (Zhang et al., 2008). Negative re-
gions were down-sampled from the background at a 1:10 positive 
to negative ratio. The positive and negative samples were ex-
tended to 4 kb, and the signals were aggregated over 10 bp bins.  

The resolution of signal aggregation determines the precision 
of boundary detection. Here, every value in the input matrix rep-
resents the average epigenetic signal of a 10 bp bin. In the end, 
each input value is assigned a Grad-CAM importance score. 
Hence, filtering by the importance score obtains core enhancers at 
a 10 bp resolution. It is possible to extract higher-resolution sig-
nals for higher precision, but 10 bp was the experimentally deter-
mined optimum resolution and the highest resolution for most 
ChIP-seq experiments.  

For the ATAC-seq version, there were 211,097 STARR-seq 
peaks and 459,321 ATAC-seq peaks for both (HepG2, K562) cell 
types. Only 25,420 of the STARR-seq and ATAC-seq overlap re-
gions intersected with another ChIP-seq, which were selected as 
the positives. For the DNase-seq version, there were 912,967 
DNase-seq peaks for all five cell types. Only 73,271 of the 
STARR-seq and ATAC-seq overlap regions intersected with an-
other ChIP-seq, which were selected as the positives. For the se-
lected positive regions, we observed a distinct signal shape for 
each assay. The peak in chromatin accessibility and peak-trough-
peak in other histone marks validate our selection for the training 
regions and provide a basis for CNN pattern recognition (Fig. 4).  

2.2 Binary classifier construction 
As shown in Fig. 1, the model is a ResNet-inspired CNN that con-
tains convolutional layers, pooling layers, and dense fully con-
nected layers (He et al., 2016). The input is a data matrix (of size 
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5x400) containing values from the signal tracks of the five epige-
netic assays extracted from a 4 kb region by aggregating the sig-
nals over 10 bp bins. Each value in the input matrix represents the 
signal of an epigenetic assay at a genomic location. We use only 
epigenetic features because they are more generalizable compared 
to sequence-based features, especially when transferring predic-
tions to unseen cell types (Zhou et al., 2011). Our model contains 
seven convolutional layers, each of which uses its 𝑘 convolutional 
filters to produce 𝑘 activation maps of width 𝑖 and height	𝑗: 𝐀! ∈
	ℝ" ⨉ $ with weights 𝐖! and bias 𝐁! from an input 𝐗 in layer 𝑙.  

𝐀",$
!,& 	= 	∑ ∑ 𝐖! ∙ 𝐗",$& +𝐁!$"          (1) 

The first several convolutional layers extensively capture alti-
tude and shape-based features from either chromatin accessibility 
or ChIP-seq with different convolution filters. Moreover, the fil-
ters blend signals across different tracks to allow for combinato-
rial feature extraction. Then, max-pooling layers are used to re-
duce the number of parameters and abstract features trained in the 
previous convolutional layers. If ℎ,𝑤 denotes the dimensions of a 
pooling operation, then max-pooling over the activation map 
takes the max value of each ℎ,𝑤 window to produce an output of 
size 𝑚 = 𝑖/ℎ and 𝑛 = 𝑗/ℎ as input for the next layer. 

𝐗',(&)* 	= 	𝑚𝑎𝑥'+,..."//,(+,...$/0
1/...(1)*)/,4/...(4)*)/𝐀",$

!,&              (2) 
We hypothesize that the interaction of open chromatin states 

and histone marks coordinate TF binding in enhancers (Spitz and 
Furlong, 2012). Therefore, we placed chromatin accessibility in 
the middle of the input data matrix to allow for maximal interac-
tion with other histone marks. The first few filters have a kernel 
size of 5x10 in order to span all five assays. With padding 

removed, the features are then convoluted and down-sampled to 
one dimension to represent linear genomic windows. Further con-
volutions on the linear feature use a one-dimensional (1D) filter 
of size 1x4. The pooled layers are then fed into fully connected 
layers to make a sigmoid prediction on the probability of enhanc-
ers being in the region.  

 𝑃(𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑟) 	= 	1 (1 + 𝑒5𝐗)⁄       (3) 
Between every convolution layer are squeeze-and-excitation 

blocks that calculate the residual features and act as a gate for how 
much original feature is passed through (Hu et al., 2018).  

2.3 Object boundary detection via weakly supervised 
learning framework (Grad-CAM) 
We operationalized the task of enhancer localization using a 
weakly supervised object detection method in computer vision. 
Grad-CAM extracts the implicit localization of the target from 
classification models and obtains a high-resolution subset of the 
image with the most informative content regarding the target (Sel-
varaju et al., 2017). For a genomic region with a positive classifi-
cation, we used Grad-CAM to extract the implicit enhancer local-
ization as a subset of the original input genomic region, thereby 
increasing the resolution of our core enhancer annotations (Fig. 2). 
Utilizing Grad-CAM to revisit the positive predictions can refine 
our annotations by finding the most salient enhancer regions. Fur-
ther, our method is much more interpretable compared to previous 
supervised black-box prediction models because we can trace and 
visualize the process of decision-making in our network.  

During the training process, each convolutional filter learns to 

 
Figure 1. DECODE Model Schematics: DECODE has three major components. First, the model uses epigenetic features and low-resolution STARR-
seq peaks as training data. Second, it uses the epigenetic profiles to predict the presence of enhancers with a CNN. The architecture is composed of 
two sets of convolution-pooling layers followed by two dense layers. The input consists of a matrix of signals from five epigenetic experiments. The 
output is a sigmoid probability of the 4 kb input region containing enhancers. Third, feature-wise and position-wise Grad-CAM scores are calculated 
for interpretability and boundary detection. Position-wise Grad-CAM scores are used to extract the core enhancer regions.  
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extract features that are important in accurately predicting enhanc-
ers in the genomic window and outputs an activation feature map. 
Each activation feature map highlights genomic regions that con-
tain important features for enhancer prediction. Superimposing all 
activation feature maps sums together all the highlighted regions 
and forms a silhouette of locations, with respect to the original 
input, that activated the greatest number of neurons in our neural 
network, thereby extracting the implicit localization information 
underlying a classification task. 

In detail, we produce a scalar importance score for each acti-
vation map using the global-average-pooled gradient of the posi-
tive class with respect to the feature map activation (Equation 4).  

a!" =
#
$
∑ ∑ %&!"#

%𝐀$,&
',(()     (4) 

We use the scalar importance scores as weights for the linear 
combination of all 𝑘 activation feature maps. We then multiply 
each importance score with its respective activation feature map 
and sum element-wise over all activation feature maps in the 
layer. Next, we apply RELU to filter for only positive values, and 
interpolate to obtain a Grad-CAM score map of size 𝑖 ⨉ 𝑗, the 
same size as the input of the convolutional layers (Equation 5).  

𝐋*+,-./01"2# = RELU(∑ a!"𝐀!,4! )         (5)  
Grad-CAM maps can be generated for different convolutional 

layers in our architecture. Concisely, the Grad-CAM map from 
the last 1D convolutional layer is a 1D map, or a position-wise 
score, describing the highest-level feature importance of each 10 
bp bin in the genomic window. To refine our predictions, we use 
the position-wise score to select a subset of the input region (or a 
subset of the 10 bp bins) that corresponds to a high Grad-CAM 
score. Here, our cutoff is set as the average Grad-CAM score over 
all positive genomic positions; hence, the filtering is performed 
after all predictions have been processed by Grad-CAM. Further-
more, Grad-CAM maps can also be generated using gradients 
from the first few convolutional layers to observe how much each 
epigenetic assay contributes to a positive prediction, or a feature-
wise score. We constructed our custom CNN such that the high- 
and low-level Grad-CAM maps correspond to position-wise or 
feature-wise biological interpretations, respectively. This enables 
us to study the epigenetic features of enhancers by visualizing and 
interpreting the process of decision-making of our model.  

2.4 Model training configurations 
We used the Adam optimizer at a learning rate of 5e-5 and added 
dropout layers to prevent overfitting. The model is set to train for 
100 epochs, but we included early stopping with monitoring of 
validation loss to prevent overfitting. The data was split 80-20 for 
training and validation. We also added class weights to address 

the 1:10 positive and negative sample imbalance in our dataset. 
Training and model prediction were accelerated using NVIDIA 
Tesla K80 GPUs.  

2.5 Enhancer challenge data for benchmarking against 
the state-of-the-art model 
We used transgenic mouse enhancer data from the VISTA en-
hancer database to benchmark against the state-of-the-art method 
(Visel et al., 2007). Hypothesized enhancers were cloned into a 
plasmid with a promoter and lacZ reporter gene, which were in-
jected into mouse embryos. After reimplantation with surrogate 
mothers, the transgenic embryos at e11.5 to score for enhancer 
activity. Target regions were considered positive for enhancers if 
at least three transgenic embryos had reporter-gene expression 
across three sample tissues and were considered negative if we 
observed no reproducible pattern across at least five samples. Tis-
sue-specific enhancers were pooled from all six tissues (forebrain, 
heart, hindbrain, limb, midbrain, neural tube). In order to mediate 
cross-species effects, DECODE was trained with all available hu-
man cell line data, and then fine-tuned with out-of-sample mouse 
enhancers. 

2.6 Cell-line case study evaluation 
We utilized a variety of methods to evaluate the accuracy of our 
supervised model and the regulatory impact of our core enhancer 
annotations. As a case study, we predicted enhancers in neural 
progenitor cells (NPCs), which lack STARR-seq data. These cells 
play an important role in psychiatric disorders.  
    The NPC signal tracks for DNase-seq and four active histone 
marks (H3K27ac, H3K4me3, H3K9ac, H3K4me1) were down-
loaded from the ENCODE portal. We created sliding windows of 
size 4 kb with 500 bp steps across the whole genome. For 
DECODE classifier input, the average signal was extracted for 10 
bp bins in each genomic window. After classification, the positive 
4 kb genomic windows made up the original annotation. We then 
applied Grad-CAM to refine each positive 4 kb window to define 
our core enhancer annotation.  
GWAS LDSC Enrichment: We characterized the disease-vari-
ant impact of our NPC annotations by calculating stratified LDSC 
enrichment from GWAS (Bulik-Sullivan et al., 2015). LDSC re-
gresses the chi-square statistics (𝛸7) with the linkage disequilib-
rium (LD, 𝑟7) to estimate the heritability in a disease-specific 
manner. This method calculates the partitioned heritability of cer-
tain regions or annotations using GWAS summary statistics. We 
utilized LD scores from the 1,000 Genomes Project and GWAS 
summary statistics from Bulik-Sullivan et al. and the Psychiatric 
Genomic Consortium (Siva, 2008; Turley et al., 2018).  
Conservation Score Analysis: We measured inter- and intra-spe-
cie conservation by 100-way PhastCons and rare derived allele 
frequency (DAF) SNP enrichment, respectively. The PhastCons 
score is a phylogenetic hidden Markov model trained on genetic 
sequences across 100 different species and quantifies the conser-
vation of a given genetic annotation (Yang, 1995). We calculated 
the ratio of DAF (<0.5%) SNP enrichment using SNPs from the 
Genome Aggregation Database (gnomAD) and Pan-Cancer Anal-
ysis of Whole Genomes (PCAWG) resources (Campbell et al., 
2020; Karczewski et al., 2020). 

3 Results 
In contrast to traditional enhancer classification methods, we 

 
Figure 2. Grad-CAM for Enhancer Localization: After a positive 
prediction, we can use Grad-CAM to extract epigenetic features and ge-
nomic locations that were important in making the positive prediction. 
By superimposing activation maps (Ak) weighted by an importance 
score (ak), Grad-CAM maps highlight the most salient features in mak-
ing a final output, which we used to generate high resolution core en-
hancer annotations. 
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reformulated enhancer discovery into a two-step weakly super-
vised object detection problem. Specifically, we first utilized the 
direct enhancer activity readout from novel functional characteri-
zation assays to train a deep neural network. Result sections 3.1 
and 3.2 demonstrate the ability of our deep learning binary classi-
fier to make accurate predictions. Then, for the object detection 
module, we used Grad-CAM to define high-resolution enhancer 
boundaries; sections 3.3 to 3.6 describe our results for enhancer 
localization. In short, we applied our two-step DECODE model to 
various real-world datasets for comprehensive performance 
benchmarking and demonstrate its benefits in constructing com-
pact genome annotations to facilitate variant interpretations.  

3.1 The DECODE binary classifier is a transferrable 
model for accurate cell-type-specific enhancer predic-
tion 
A trained binary classifier can predict enhancers on sliding win-
dows across the genome. We merged and shuffled positive- and 
negative-labeled data from all cell types to train a binary classifier 
for predicting the existence of enhancers in any given 4 kb ge-
nomic region using cell-type-matched epigenetic features (details 
in Methods 2.4). To verify our results, we performed five-fold 
cross-validation by partitioning the merged data into five folds 
and iteratively using each fold as the out-of-sample validation set. 
High out-of-sample area under the receiver operating characteris-
tic curve (auROC; ATAC-seq: 0.999, DNase-seq: 0.998) and area 
under the precision-recall curve (auPRC; ATAC-seq: 0.972, 
DNase-seq: 0.989) metrics demonstrate that the binary classifier 
module in DECODE can accurately predict enhancers using com-
binatory epigenetic features. In addition, we did not observe any 
divergence between training and validation loss during backprop-
agation. Moreover, the validation metrics remained high across all 
folds (>0.95), suggesting that there was no overfitting under our 
training configurations. 
    In real-world scenarios, a model would predict enhancers in cell 
types that it has not yet seen during training. Therefore, we further 
tested the robustness of the DECODE binary classifier in transfer-
ring the learned features to new cell types. In other words, we 
evaluated whether the high validation metrics are specific only to 
the cell types used in training or whether they can be easily gen-
eralized to other cell types. Hence, we performed cross cell-line 
validation by leaving out one cell type for validation while train-
ing on the rest of the cell types (for both ATAC-seq and DNA-
seq). Similar to the validation performance trained from merged 
cell type data, we observed consistently high cross-cell-type vali-
dation metrics in all cell types, demonstrating our model's ability 
to transfer its predictions across cell types (Table 1). For instance, 

our DECODE model trained on DNase-seq and four other ChIP-
seq datasets achieved consistently high validation auROC (0.996-
0.999) and auPRC (0.954-0.998) scores. The performance re-
mained high even when using ATAC-seq for chromatin accessi-
bility. Therefore, our DECODE model can accurately predict en-
hancers and robustly transfer the predictions onto a novel, unex-
plored cell line.  

3.2 DECODE outperforms the existing state-of-the-art 
method on experimentally validated mouse enhancers  
In addition to making accurate predictions for internal evalua-
tions, we further compared the efficacy of our model with existing 
methods on an external experimentally validated dataset. To do 
so, we applied DECODE binary classifier on 3,244 experimen-
tally validated regions from six mouse tissues, which were also 
used in the official ENCODE enhancer challenge. Specifically, 
we downloaded the signal tracks for the five epigenetic features 
from the ENCODE portal, extracted the signals for each given re-
gion as input, and predicted for the existence of enhancers using 
our trained model. We compared our predictions with Matched-
Filter, the leading method in the ENCODE enhancer challenge 
(Sethi et al., 2020). 

As shown in Fig. 3, our DECODE model obtained an average 
auPRC of 0.46, which was 24% higher than the auPRC of 
Matched-Filter on the same dataset (Fig. 3a). It is also worth 
pointing out that DECODE outperformed Matched-Filter in all six 
tissues with a decent margin. Specifically, our model demon-
strated higher auROC scores ranging from 0.82-0.85 in all six tis-
sues (vs. 0.76-0.85 for Matched-Filter) and noticeably improved 
auPRC scores (0.39-0.57 in DECODE vs. 0.27-0.43 in Matched-
Filter) with an average margin ranging from 0.02-0.18.   

Two main reasons could explain DECODE's improvement in 
performance over existing methods. First, we used genome-wide 
large-scale training data from direct human enhancer readouts of 

Table 1. DECODE training and testing performance: Out-of-sam-
ple validation performance metrics for each chromatin accessibility and 
cell type. 

 

 
Figure 3. Benchmarking Against Matched Filter-Based Model: We 
benchmarked our trained model against the state-of-the-art model using 
transgenic mouse enhancers. DECODE produced validation metrics (a, 
auROC; b, auPRC) that outperformed the state-of-the-art model in all 
tissue types. 
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five cell types compared to the Drosophila data used for the train-
ing of Matched-Filter. This allows our model to recognize more 
complicated features that are important for enhancer predictions. 
Second, we believe the interactions among epigenetic features 
guarantee active regulatory activity in functional enhancer re-
gions, which is demonstrated in previous literature (Mahony et al., 
2005; Saeys et al., 2007; Spitz and Furlong, 2012). As a result, we 
designed the convolutional filters in our deep learning framework 
to span multiple epigenetic marks to model non-linear epigenetic 
interactions. In contrast, Matched-Filter considers different epige-
netic marks independently with its linear support vector machine-
based methods. The capacity of DECODE to learn complex com-
binations of features provides the basis for achieving better per-
formance than the current state-of-the-art method.  

3.3 DECODE’s object detection module generates inter-
pretable visual explanations for enhancer boundary re-
finements 
After demonstrating the efficacy of DECODE’s binary classifier 
for accurate enhancer predictions, we seek to uncover more infor-
mation regarding the basis of neural network decisions through 
our weakly supervised framework. The DECODE object detec-
tion module extracts interpretable feature-wise and position-wise 
importance scores as a visual explanation. Here, we examine the 
benefits of feature-wise importance scores generated by Grad-
CAM from the lower-level convolutional layers.  
    Grad-CAM uses gradients to identify input locations that acti-
vate the greatest number of neurons in a given layer. We extracted 
the feature-wise Grad-CAM scores from the positive training 
samples to assess the basis of model predictions. A high feature-
wise Grad-CAM score corresponds to higher importance placed 
on that epigenetic feature. Grad-CAM scores peak at the center of 
the 4 kb windows for each epigenetic assay (Fig. 4), which corre-
sponds to the greatest amount of regulatory activity as indicated 
by the original signal. This result shows that DECODE predicts 
the presence of enhancers using highly active regulatory regions.  
    Next, we compared the Grad-CAM scores across different epi-
genetic features to show that our model prioritizes key features for 
enhancer prediction. As shown in Fig. 4, DNase-seq and H3K27ac 
ChIP-seq demonstrate the highest Grad-CAM scores (mean at 
center >0.35) as compared to other features (mean at center 
<0.25), indicating their important role in defining enhancers in the 
genome. Our finding recapitulates known biology, as these fea-
tures were also used in the official ENCODE3 encyclopedia an-
notation (Moore et al., 2020). In contrast, H3K4me1 exhibited the 

lowest feature-wise Grad-CAM score (mean from 0.05-0.2), 
which implies that it played a relatively less important role in our 
model decision.  

3.4 DECODE provides high-resolution enhancer 
boundary localization 
Position-wise Grad-CAM importance scores from DECODE’s 
object detection module can be used to interpolate high-resolution 
cell-type-specific enhancer coordinates and condense the annota-
tion of an enhancer to its core functional regions. In contrast, this 
feature is missing in most existing methods.  

To demonstrate this function, we utilized DECODE to predict 
compact enhancers in NPCs, which play important roles in neuro-
development and have been implicated in a wide variety of psy-
chiatric disorders (Castrén, 2014; Das et al., 2020). Specifically, 
we utilized the five epigenetic marks on NPCs to predict enhanc-
ers using our DECODE framework trained on all available data 
(see details in Methods 2.4). We divided the genome into 4 kb 
windows with 500 bp steps between each window. The 

 
Figure 4. Feature-wise Grad-CAM score: Original signal (top row) and feature-wise Grad-CAM score (bottom row) over a 4 kb window for 

the five types of input epigenetic marks.  
 

 
Figure 5. Feature-wise and Position-wise Grad-CAM Values: a) 
5-D and b) 1-D Grad-CAM justification of a positive prediction.  
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corresponding epigenetic signals were extracted at a 10 bp reso-
lution from each window as inputs to our model. Windows with a 
binary classifier output greater than 0.5 were identified as positive 
predictions. In total, we identified 1,515,431 overlapping win-
dows across the genome, and 1.1% (17,622) among them showed 
predicted enhancer activities. We merged the positive predictions 
to create the original prediction set, which contained 16,522 ele-
ments with a mean length of 4,188 bp.  

To condense the annotation using DECODE’s object detection 
module, we extracted the position-wise Grad-CAM scores from 
the positive regions for each 10 bp bin (Fig. 6a). Bins with Grad-
CAM scores larger than the mean across all windows were 
merged to create the refined set. This process resulted in a total of 
23,505 refined positive elements with a mean length of 371 bp.  

In Fig. 5, we show an example positive genomic window 
(chr1:8680000-8684000) and its feature-wise and position-wise 
Grad-CAM values. The example shows the process by which 
high-level position-wise scores are derived from low-level fea-
ture-wise scores, which increases interpretability by tracking neu-
ron activation through our neural network classifier.  

In addition, the true enhancer in the example is shifted to the 
right of the genomic window. Due to the lack of a quantitative 
boundary detection algorithm, most existing methods take the en-
tire input window as an enhancer region, which potentially 

confounds various downstream analyses such as validation region 
selection and disease causal variant mapping. In contrast, the ob-
ject detection module in our DECODE model does not rely on 
interpolating from the center, but rather localizes enhancer coor-
dinates based on the importance of the loci using the Grad-CAM 
outputs. Therefore, we are still able to rescue the shifted enhancers 
and discover true functional regions with high regulatory impacts. 
    This boundary detection module can remove a significant por-
tion of the noise regions in our enhancer prediction and noticeably 
condense our genome annotation. For instance, analysis on the re-
fined set shows that it is only 12.6% in coverage as compared to 
the original set but includes a disproportionately large amount 
(71%) of transcription start sites, which indicate a more enriched 
transcriptional regulatory footprint (Fig. 6b). In the following sec-
tions, we demonstrate the compactness of the refined set through 
conservation and GWAS variant enrichment analysis.  

3.5 DECODE’s compact enhancer predictions are 
highly conserved across species and populations 
To test whether the object detection module accurately selects true 
regulatory regions, we compared cross-species conservation 
scores of the original positive input regions vs. condensed core 
enhancer regions. If the enhancer annotations serve important reg-
ulatory functions, then those annotations should be conserved, as 

 
Figure 6. NPC Whole Genome Prediction Validation: a) Procedure to predict enhancer windows and generate refined regions. b) Total nucleotide 
coverage and total transcriptional start site overlap for the original versus refined set. c) Conservation analysis of the PhastCons score distribution 
and the rare DAF SNP enrichment of the refined set compared with original set. d) LDSC enrichment of psychiatric and neurodevelopmental 
phenotypes for the original and refined set. 
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any negative mutations would increase the likelihood of disad-
vantage phenotypes that eliminate that allele from the gene pool. 
Hence, higher conservation usually indicates higher enhancer 
quality (Yang, 1995).  
    Specifically, we downloaded the 100-way PhastCons scores 
and calculated the average PhastCons conservation scores within 
each original and refined region. The median PhastCons score in 
the refined core regions was 0.117, which is significantly higher 
than those in the original positive regions (median 0.092, one-
sided Wilcoxon test P < 0.001, Fig. 6c).  
    We further evaluated the quality of our compact enhancer an-
notation from DECODE via the enrichment of rare variants with 
a simple but validated assumption – key functional regions in the 
genome are under strong negative selection and hence are de-
pleted in common variants (Fu et al., 2014; Zhang, Liu, et al., 
2020). Therefore, we compared the rare variant enrichment in the 
refined and original positive enhancer regions. Specifically, we 
downloaded the entire human genetic variation set from gnomAD 
and PCAWG (Campbell et al., 2020; Karczewski et al., 2020), 
and defined rare variants as those with a DAF less than 0.5% over 
the entire population. We calculated the percentage of rare vari-
ants within each merged annotation set. The refined enhancer re-
gions demonstrated significantly higher percentages of rare vari-
ants in both the gnomAD and PCAWG dataset. For instance, we 
observed a rare variant percentage of 0.922 and 0.857 in gnomAD 
and PCAWG, respectively; this number decreased to 0.910 and 
0.843 for the original positive input regions (P < 105877.9 for bi-
nomial test in both datasets). 
    Altogether, the condensed compact enhancers refined in our 
model showed higher cross-species and cross-population conser-
vations, indicating DECODE’s ability to remove noisy regions in 
our enhancer predictions and provide high-quality genome anno-
tations. 

3.6 Compact enhancer annotations predicted by 
DECODE can better explore GWAS variants in psychi-
atric disorders 
Disease-causal variant mapping is one of the most important ap-
plications of distal regulatory element mapping. Lines of evidence 
have demonstrated that accurate and compact annotations can sig-
nificantly increase the statistical power for both somatic and 
germline variant mapping in disease studies (Fu et al., 2014; 
Zhang, Liu, et al., 2020; Zhang, Lee, et al., 2020). Therefore, we 
further tested whether our condensed enhancer definitions can 
benefit variant prioritization and interpretations. 
    Here, we predicted two set of enhancers in NPCs – a coarse set 
of predictions using the binary classifier (similar to existing meth-
ods) and a refined set of core predictions using the DECODE ob-
ject detection module. We extracted the summary statistics from 
GWAS for around 2 million SNPs for four NPC relevant traits – 
bipolar disorder, neuroticism, schizophrenia, and years of second-
ary education. For each phenotype, we used stratified LDSC to 
test whether the heritability of a phenotype is enriched in one set 
of annotated genome regions in NPCs, where a high LDSC en-
richment for a GWAS trait would indicate that the set of annota-
tions has a high partitioned heritability for the corresponding trait. 
Using these summary statistics, we calculated the enrichment of 
the original and refined set for each trait, represented by the P-
value (Fig. 6d). We found that both datasets demonstrated 

significant LDSC enrichment for three of the four phenotypes 
(with log P-value ranging from 5.28 to 12.87), but the refined set 
showed consistently higher LDSC scores for all four phenotypes. 
For example, the P-value enrichment of the original set for bipolar 
disorder was 0.052, while the condensed enhancer set increased 
the statistical power by about 10x (P-value < 0.005). Even with 
only 12.6% of the coverage, the refined set improved the overall 
quality of the annotations and obtained a range of 2- to 10-fold 
increases in GWAS enrichment compared to the original set of 
annotations.  

We believe the compactness of our refined annotation accounts 
for the increase in statistical power compared to the original set. 
Because of Grad-CAM, we are able to remove regions of variable 
lengths that do not contribute to the identity of an enhancer and 
shrink the prediction to 12.6% of its original size. Therefore, the 
refined annotations are more condensed and are more suitable for 
a wider range of analyses because many calculations, such as 
functional validation, require compact definitions to obtain statis-
tical power.  

4 Discussion 
Here, we propose a Deep-learning framework for Condensing en-
hancers and refining boundaries with large-scale functional as-
says (DECODE). Our model has two distinct parts: a binary clas-
sifier and an object detection module, both of which provide sub-
stantial benefits over previous methods.  

For the binary classifier, we trained a deep learning model on 
direct readouts of human enhancer data to classify enhancer win-
dows based on common epigenetic profiles. The classifier outper-
formed the state-of-the-art method in predicting cell-type-specific 
enhancers by using a larger set of training data and a deep learning 
model. CNNs have a larger capacity to learn non-linear, complex 
feature interactions compared to previous linear methods. We also 
emphasize that our deep learning-based DECODE model will 
benefit from the rapid development of novel functional character-
ization assays (e.g., MPRA and CRISPR-based screens) and the 
exponential growth of training data to further improve the accu-
racy and performance in enhancer predictions. 
    In addition to an improvement in prediction accuracy, our 
DECODE model also has a unique boundary detection module via 
Grad-CAM, which is not found in previous methods. The result-
ant feature-wise importance scores increase the interpretability by 
visualizing feature prioritization, while the position-wise im-
portance scores can be used to condense the coarse enhancer an-
notations to the core functional regions. In particular, we show 
that our compact enhancer definitions have strong regulatory im-
pact and are essential for disease causal variant mapping in dis-
ease studies.  

In summary, we introduce a powerful tool that could be widely 
deployed for enhancer discovery. With corresponding epigenetic 
features, DECODE can not only accurately predict the existence 
of enhancers in any given genomic region, but also pinpoint the 
core functional regions, which greatly facilitates variant mapping 
and interpretation.  
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Appendix 
 

 
Table 1. Data availability matrix from ENCODE. Data was available 

for all four histone marks across all cell types, but ATAC-seq was only 
available for K562 and HepG2 cells. 
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