bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge: Integrated and extensible neuron morphology analysis in
Python

Logan A Walker'?*, Jennifer S Williams>*, Ye Li*, Douglas H Roossien®, Nigel S Michki', and
Dawen Cai'*&"

1 Biophysics Program, University of Michigan LS&A

2 Department of Computational Medicine and Bioinformatics, University of Michigan Medical School
3 Electrical Engineering and Computer Science, University of Michigan Engineering

4 Cell and Developmental Biology, University of Michigan Medical School

5 Department of Biology, Ball State University

6 Neuroscience Graduate Program, University of Michigan LS&A

* These two authors contributed equally

1T Correspondence to: D.C., dwcai@umich.edu

ORCIDs LAW 0000-0002-5378-3315; JSW 0000-0002-3541-2756; YL 0000-0002-8647-384X; DR
0000-0003-1184-2919; NSM 0000-0003-0403-0648; DC 0000-0003-4471-2061.

Abstract The study of neuron morphology requires robust and comprehensive methods to quantify the
differences between neurons of different subtypes and animal species. Several software packages
have been developed for the analysis of neuron tracing results stored in the standard SWC format.
However, providing relatively simple quantifications and their non-extendable architecture prohibit their
use for advanced data analysis and visualization. We developed nGauge, a Python toolkit to support
the parsing and analysis of neuron morphology data. As an application programming interface (API),
nGauge can be referenced by other popular open-source software to create custom informatics
analysis pipelines and advanced visualizations. nGauge defines an extendable data structure that
handles volumetric constructions (e.g. soma), in addition to the SWC linear reconstructions, while
remaining light-weight. This greatly extends nGauge’s data compatibility.

Keywords: Neuron reconstruction, Neuron morphometrics, Neuron visualization

Introduction

The comparative study of neuron morphology has been a definitive aspect of contemporary
neuroscience (Ramon y Cajal, 1892). Recent technological advances have enabled huge increases in
the number of neuron reconstructions that can be performed in a single study into the hundreds
(Gouwens et al., 2019, 2020; Jiang et al., 2021; BRAIN Initiative Cell Census Network (BICCN) et al.,
2020). Multispectral labeling (Shen et al., 2020; Li et al., 2020) and large-volumetric electron
microscopy (Motta et al., 2019; Yin et al., 2020; Phelps et al., 2021), in principle, allow reconstructing
many more neurons within one brain or within a single common coordinate system (Wang et al., 2020).
As a result, analysis techniques must be developed which allow these data to be integrated, with
specific focuses on the ability to customize, automate and quickly expand processing workflows to
handle large batches of individual neurons, including those reconstructed from various methods.

mailto:dwcai@umich.edu
https://paperpile.com/c/wdkEjF/cYGLL
https://paperpile.com/c/wdkEjF/lMEC6+LBsJp+ZDahs+NpOxq
https://paperpile.com/c/wdkEjF/lMEC6+LBsJp+ZDahs+NpOxq
https://paperpile.com/c/wdkEjF/77qNz+DKGz2
https://paperpile.com/c/wdkEjF/pBzSH+Dh1Yk+6uWp4
https://paperpile.com/c/wdkEjF/fpWF0
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

Neuron reconstructions are commonly abstracted as connected linear branches and stored using the
SWC file format (Nanda et al., 2018). SWC files are light-weight and text-formatted that contain
tab-delimited lines. Each line represents a point in the neuronal tree structure, which contains the
record ID, record type (i.e., soma, axon, dendrite, etc.), X coordinate, Y coordinate, Z coordinate, the
radius of the point, and the ID of the parent node to which this node links. Previously, we have also
defined a volumetric SWC format where soma records are defined as a series of X-Y contour tracings
along the Z axis to allow a more precise representation of soma shape (Roossien ef al., 2019). Notably,
the parent-child branch linkages present in SWC files result in a data model that can be understood as
a directed graph, where no cycles are allowed to form. Many traditional data analysis tools do not take
advantage of the underlying tree-like structure of the data, instead treating the data as a “point-cloud”.

Despite this growing need, current tools for neuron morphology calculations are largely limited to
closed-form and predefined analyses, such as the popular L-Measure (Scorcioni et al., 2008) package
and tools included with the various community (Peng et al., 2014; Roossien et al., 2019; Cuntz et al.,
2010) or commercially-available (e.g. Neurolucida, MBF Biosciences; Imaris, Bitplane) neuron
reconstruction software and plugins. Several libraries exist for the manipulation of neuron models after
reconstruction, such as the TREES Toolbox (Cuntz et al., 2010) and the NeuroAnatomy Toolbox (NAT)
(Bates et al., 2020), however, their APIs preclude beginner use due to their complexity. Several analysis
toolkits have been introduced, such as BTMORPH (Torben-Nielsen, 2014), PyLMeasure’, the NAVis?
package, and python-Lmeasure®, in order to enable the quantification of neuron morphology inside of
the Python programming language, which has rapidly emerged as the lingua franca of machine learning
and data science. However, all of these tools are either limited in extensibility, or simply run other
binaries in the background (which lead to large software dependencies). The recent MorphoPy
(Laturnus, von Daranyi, et al., 2020; Laturnus, Kobak, et al., 2020) package solves these problems by
implementing many functions in native Python code, but has only limited ability to be extended to novel
metric definitions, no standardized memory structure, and no ability to produce 3D visualizations.
Several software packages, such as NeuroMorphoVis (Abdellah et al., 2018) and the recent
Brainrender (Claudi et al., 2020) package provide tools to prepare SWC files for complex 3D rendered
figures, however, these tools are not designed to also perform quantitative analysis in the native Python
environment. This data integration process for larger projects largely relies on bespoke methodologies
which are limited in their reuse and accessibility.

In this report, we present nGauge, a software library that serves as a Python toolkit for quantifying
neuron morphology. Included in the library are a collection of tools to perform standard and advanced
morphometric calculations, manipulate reconstructed tree structures via SWC files, and generate
visualizations within Python-native graphics libraries. We have applied nGauge to the analysis of
several collections of published reconstructions, demonstrating the ability to build high throughput,
easily understood, and reproducible bioinformatics pipelines. nGauge exposes a well-documented API,
allowing complex morphometry analyses to be programmed quickly in conjunction with other popular
bioinformatics Python software, making the library extensible and customizable to new applications.
nGauge also operates within the Blender 3D modeling software, allowing the creation of
publication-quality animations without the need for 3D rendering expertise. Finally, nGauge defines an

' https://pypi.ora/project/pylmeasure/
2 https://navis.readthedocs.io/en/latest/source/other_libraries.html
3 https://qgithub.com/ajkswamy/python-Lmeasure

Page 2 of 11

https://paperpile.com/c/wdkEjF/uQCol
https://paperpile.com/c/wdkEjF/lyh2H
https://paperpile.com/c/wdkEjF/ErpoR
https://paperpile.com/c/wdkEjF/DqBya+lyh2H+UyuXj
https://paperpile.com/c/wdkEjF/DqBya+lyh2H+UyuXj
https://paperpile.com/c/wdkEjF/UyuXj
https://paperpile.com/c/wdkEjF/tIkBF
https://paperpile.com/c/wdkEjF/a0H1q
https://paperpile.com/c/wdkEjF/8p8t7+YoKal
https://paperpile.com/c/wdkEjF/h7WK
https://paperpile.com/c/wdkEjF/Z65F
https://github.com/ajkswamy/python-Lmeasure
https://navis.readthedocs.io/en/latest/source/other_libraries.html
https://pypi.org/project/pylmeasure/
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

extendable data structure to handle volumetric and linear neuronal constructions to greatly extend its
data compatibility while remaining light-weight.

Materials and Methods

Library implementation
nGauge was implemented in Anaconda Python 3.7.6 using standard object-oriented coding practices.
The results presented herein are produced using the latest version of nGauge as of the time of writing
(0.1.2). The library makes use of other numerical methods from dependencies NumPy (Harris et al.,
2020) and SciPy (Virtanen et al., 2020). Additionally, the matplotlib (Hunter, 2007) library is used for
library plotting functions.

We implemented 103 (at time of writing) API functions which consist of single- and multivariate
morphometrics, utility functions, and data structures, as described in Results. All implemented methods
were tested with the Python unittest library* to ensure library self-consistency. We compared the
results with the output from similar functions from two previously published tools to ensure their validity
(Laturnus, von Daranyi, et al., 2020; Scorcioni et al., 2008). Selected comparisons are presented in
Results.

Previously published data access

Previously-published neuron reconstruction data was downloaded using the bulk downloading tools on
the Neuromorpho.org (Ascoli et al., 2007) website in SWC format (Nanda et al., 2018) from several
previously-published articles (Fukunaga et al., 2012; Miyamae et al., 2017; Stokes et al., 2014). The
standardized version of these SWC files was used to ensure format adherence. Additional SWC and
image data were obtained from our previous study (Li et al., 2020).

Cell type clustering

To provide a use case for how nGauge would be applied in a typical experiment, cell type clustering
was performed using the above-referenced released datasets with custom python scripts. For each
SWC file, the following vector of morphological parameters was calculated using nGauge: number of
branch points, number of branch tips, cell dimensions, number of cell stems, average branch thickness,
total path lengths, neuron volume, maximum neurite length, maximum branch order, path angle
statistics, branch angle statistics, maximum branching degree, tortuosity statistics, and tree asymmetry.
This collection of vectors was then used as input into the scikit-learn (Pedregosa et al., 2011)
PCA implementation. Visual inspection of distributions was used to ensure individual clusters formed.

Cell Mask Generation

Our cell mask generation process contains two major steps. First, a minimum convex hull of all points in
the SWC file is calculated using the implemented methods in SciPy (Virtanen et al., 2020), namely the
quickhull algorithm (Barber et al., 1996). This hull represents a 3D polygon that includes all points in
the SWC file, represented as a series of lines in 3D space. After the hull is generated, the second step
runs a filling. This process is applied for each neuron with a different fill value, resulting in a single-color
TIFF file that can be visualized as a segmentation mask of the same size as the original image,
allowing it to easily be overlaid.

4 https://docs.python.org/3/library/unittest.html
Page 3 of 11

https://paperpile.com/c/wdkEjF/gZW44
https://paperpile.com/c/wdkEjF/gZW44
https://paperpile.com/c/wdkEjF/B7cJq
https://paperpile.com/c/wdkEjF/Gutcw
https://paperpile.com/c/wdkEjF/8p8t7+ErpoR
https://paperpile.com/c/wdkEjF/Kz5ZS
https://paperpile.com/c/wdkEjF/uQCol
https://paperpile.com/c/wdkEjF/sY5LT+0HPL3+BGYzM
https://paperpile.com/c/wdkEjF/DKGz2
https://paperpile.com/c/wdkEjF/LoGsX
https://paperpile.com/c/wdkEjF/B7cJq
https://paperpile.com/c/wdkEjF/pp5Dv
https://docs.python.org/3/library/unittest.html
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

3D Neuron visualization

All 3D visualizations were generated using the Blender 2.82.2 (Blender Foundation; blender.org)
software package, following a compositing method similar to previously described (Kent, 2014). Briefly,
3D models are exported by representing each segment in an SWC file as a series of rounded cylinders,
after a percentile downsampling to reduce the total number of points rendered in the 3D mesh. A
decimation filter is applied to generated models to optimize the number of rendered surface points,
reducing rendering time and storage requirements significantly. Standard Blender compositing
techniques are then used to apply keyframes and animate scenes, as per the software documentation.

Visualizing of raw TIFF microscopy data (Figure 7C) was performed as follows: First, individual z-slices
were exported as RGB PNG files using a script in the Fiji (Schindelin et al., 2012) image analysis
software. Each slice was mapped onto the 3D model using a custom Open Shader Language (OSL)
plugin (see Information Sharing Statement). This allows the rendering engine to access individual
z-slices without the requirement that the entire TIFF file be stored in memory.

Performance testing

Measurement of calculation runtimes within Python was performed with the t imeit library® to run each
function 4 times and automatically calculate the standard deviation using custom testing scripts
(available in the “testing’ folder of the Github repository). L-Measure performance was measured using
the Linux time utility to time only the compiled 1measure binary, with 4 runs manually recorded from
the terminal. All tests were performed on a Ubuntu Linux 20.04 server with two AMD EPYC 7351
processors, 512 GB of RAM, and all data stored on SSDs to minimize bottlenecks.

Results

nGauge is the center of a complete analysis environment

Neuron reconstruction experiments include three primary steps (Figure 1A). First, images are acquired
containing the neurons of interest. Next, tracing software is used to reconstruct the neuron topology,
and, finally, bioinformatic hypotheses can be tested from the resulting neuron reconstructions. These
neuron reconstruction files are generally represented by the SWC format, which has been formally
defined as a tabular linked list of the coordinates (Nanda et al., 2018). Because of the unique structure
of this format, many general-purpose data science tools and data structures can not be efficiently
applied for the analysis of neuron morphology. For this reason, we developed nGauge to simplify the
wide variety of bioinformatics tasks, such as morphometry, model manipulation, visualization, as well as
statistical analysis with the help of other python numerical libraries (Figure 1B).

Library structure

nGauge is implemented as 3 different modules, which can be installed in a single step from the Python
package repository (Figure 2A). Each module represents an abstraction of either a single neuron, a
single line in an SWC file, or the collection of utility functions used throughout the library (Figure 2B-D).
The Neuron module (Figure 2B) stores two primary data structures. The first is a dictionary map
between all soma Z-coordinates and the points which make up that “slice” of the 3D model. This data
model is adapted from (Roossien et al., 2019), where the SWC format was extended to store volumetric

5

https://docs.python.org/3/library/timeit.html
Page 4 of 11

https://paperpile.com/c/wdkEjF/AeJLQ
https://paperpile.com/c/wdkEjF/iiXYb
https://paperpile.com/c/wdkEjF/uQCol
https://paperpile.com/c/wdkEjF/lyh2H
https://docs.python.org/3/library/timeit.html
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

models of somata. The second data structure stores the locations of each branch’s root node, i.e. the
point at which it contacts the soma. Because each branch is a directed linked list, the only node which
is needed by the Neuron module for a complete model of each of its branches is the root node of the
branch. The TracingPoint class (Figure 2C) is used to represent a single SWC entry, or what would
be recorded in a single line of an SWC file (Figure 1A), including the X, Y, and Z coordinates, as well
as the point radius, and links to the TracingPoint’s that serve as the parent and child nodes in the
linked list.

In Table 1, we present a summarized list of 103 functions that are available in the current version of
nGauge. Functions are located such that their use can match industry-standard object-oriented
programming practices, leading to more readable and maintainable code. Some methods’ scope
logically apply to both Neurons and TracingPoint structures (e.g., functions to calculate structure size)
and are implemented in both classes.

Introduction to nGauge usage

Care has been taken to make the use of nGauge as beginner-friendly as possible. To demonstrate this,
we analyzed a collection of neurons from (Li et al., 2020) with our library (Figure 3). First, the library
and data are loaded (Figures 3A-B). Single named morphometrics can be calculated easily by calling
the methods associated with the Neuron class--in this case, the width and height of the loaded neuron
(Figure 3C). Creating a plot of the neuron is also a single command (Figure 3D). While it is not shown
here, plot axes and appearance parameters can be modified to get different views of the same data.
Upon execution, matplotlib (Hunter, 2007) is loaded, allowing plots to be customized. When
analyzing entire experiments or sample groups, Python list comprehension can be used to generate
whole figures quickly (Figures 3E-F).

Comparison with L-Measure

We chose to first compare our tool with L-Measure (Scorcioni et al., 2008) because it is one of the most
widely-adopted and established tools for neuron morphology analysis (Figure 4). Additionally, several
existing Python tools, such as PyLMeasure and python-Lmeasure run L-measure binaries to perform
calculations in the software backend. For this comparison, we downloaded the SWC files of 42 neurons
from (Stokes et al., 2014) and (Fukunaga et al., 2012), which are curated on Neuromorpho.org (Ascoli
et al., 2007) (Figure 4A, Methods). Three representative metrics were selected to compare the tools:
the number of neurite tips in the entire neuron (Figure 4B), the path distance of all segments of the
neuron (Figure 4C), and the total neuron width (Figure 4D). As expected, the number of neurite tips
and path distances are the same as calculated between the two tools (Figures 4B-C). The result for
the total neuron width (Figure 4D) is more nuanced, however. The L-Measure width function is defined
as the maximum distance between any two of the center 95% points along the X axis, to prevent small
structures from interfering with quantification. In nGauge, this percentile becomes an option that ranges
up to 100%. Finally, comparable methods between the two software packages perform faster in the
nGauge implementation, although the speed difference varies (Figure 4 Insets).

Performing advanced analysis with nGauge

In addition to quantifying basic morphometric parameters, nGauge includes comprehensive utility
functions for advanced neuroinformatics analysis (Table 1). For instance, nGauge implements the
widely used Principal Component Analysis (PCA) to identify the differences between vectors of

Page 5 of 11

https://paperpile.com/c/wdkEjF/DKGz2
https://paperpile.com/c/wdkEjF/Gutcw
https://paperpile.com/c/wdkEjF/ErpoR
https://paperpile.com/c/wdkEjF/BGYzM
https://paperpile.com/c/wdkEjF/sY5LT
https://paperpile.com/c/wdkEjF/Kz5ZS
https://paperpile.com/c/wdkEjF/Kz5ZS
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

morphometrics (Gouwens et al., 2019; Laturnus, Kobak, et al., 2020). We performed PCA on a
collection of pyramidal cells and basket cells (Miyamae et al., 2017) (Figure 5A) and a collection of
tufted cells and mitral cells (Fukunaga et al., 2012) (Figure 5B). Both groups are expected to form
distinct morphological categories, due to their anatomical differences. We find that both comparisons
yield group separation along the X-axis (principal component 1), matching what has been reported in
the previous literature.

Beyond single-value morphometrics, many tools have been integrated into nGauge for performing
advanced analysis techniques. Influenced by recent work (Laturnus, Kobak, et al., 2020), nGauge
includes tools to calculate 2D morphometric histograms; two example cells from (Miyamae et al., 2017)
are shown (Figure 6). These plots can serve as “fingerprints” for the morphological properties of
individual neurons. In the given example the top cell is a mouse chandelier cell (NeuroMorpho ID
NMO_104470) whereas the bottom cell is a Basket cell (NeuroMorpho ID NMO_104476). The
difference between these two neurons can be seen in how the density of bifurcation points is much
higher in the chandelier cell and also located farther from the soma (Figure 6, red dots).

Finally, we show an example to demonstrate that nGauge can be extended to work with other
Python-based scientific computation packages to create complex statistics. Using the SciPy library
combined with a simple nGauge script, we created a unique tool for the generation of TIFF 3D masks to
represent the convex hulls that enclose the extent of individual neurons. In Figure 7, the tool is applied
to identify the neurite fields of individual Drosophila ventral nerve cord serotonergic neurons
reconstructed from (Li et al., 2020). As serotonin can act as a diffusive volume transmitter (Quentin et
al.,, 2018), each neurite field may be used to estimate the range of that serotonergic neuron’s
modulation. The TIFF masks can also be used to quantify more complex geometric properties. For
instance, the intersection volume between two neurons’ projection fields can be calculated using
NumPy (Harris et al., 2020) as ‘np.sum(np.and(a, b)), orusing Fiji’'s ImageCalculator
library (Schindelin et al., 2012). Figure 7E plots the total arborization volume of each neuron as a bar
chart of total voxels (bottom) and displays this intersection volume as a heatmap between each pair of
cells (top). Together, this demonstrates the utility of nGauge as a data structure API.

Blender and nGauge enable advanced visualization

Visualizing neuron reconstructions in their physical context is highly valuable as it can create a direct
perspective of how these neurons interact with each other and with other unreconstructed objects in the
brain. We used nGauge’s API to create a script that renders publication-quality images and movies in
the Blender 3D modeling software, which is an industry-standard open-source tool for 3D animation
and visualization. We rendered the full tracing results of 182 Brainbow-labeled neurites from the CA1
region of the mouse hippocampus (Roossien et al., 2019) in two different projections (Figures 8A-B).
These renderings, generated by only a few lines of code (available in the Github repository, Methods),
visualize the density of the reconstruction, as well as how different somata in the reconstructed volume
are positioned relative to each other. More advanced rendering techniques were used (Li et al., 2020)
to visualize reconstructed serotonergic neurons of the Drosophila ventral nerve cord (VNC) in the
context of the Bitbow fluorescence microscopy data (Figure 8C). Because Blender is designed for
rendering still images and animations, it was possible to create a movie to display multiple angles of the
neuron models (see Movie S2 in (Li et al., 2020) for example). Finally, we note that because this

Page 6 of 11

https://paperpile.com/c/wdkEjF/lMEC6+YoKal
https://paperpile.com/c/wdkEjF/0HPL3
https://paperpile.com/c/wdkEjF/sY5LT
https://paperpile.com/c/wdkEjF/YoKal
https://paperpile.com/c/wdkEjF/0HPL3
https://paperpile.com/c/wdkEjF/DKGz2
https://paperpile.com/c/wdkEjF/q4EHZ
https://paperpile.com/c/wdkEjF/q4EHZ
https://paperpile.com/c/wdkEjF/gZW44
https://paperpile.com/c/wdkEjF/iiXYb
https://paperpile.com/c/wdkEjF/lyh2H
https://paperpile.com/c/wdkEjF/DKGz2
https://paperpile.com/c/wdkEjF/DKGz2
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

method is a way to convert SWC files into 3D models, it could also be used in conjunction with 3D
printing technology to produce physical models of neural circuits for, e.g., educational purposes.

Discussion and Conclusion

In biomedical image processing, the Fiji package (Schindelin et al., 2012) has simplified creating
reproducible image processing protocols through an open environment of plugins and tools which use
the Fiji data models to perform novel analyses. The development of extensible libraries such as
nGauge are an important step to produce the same standardization in the pipelines used to analyze
neuron reconstruction experiments. In its current form, nGauge’s library implements more than 100
morphometric calculation functions as well as provides APIls for developing new informatics tools.
Notably, this simplifies the number of software tools that need to be managed and connected together
to complete morphometry analysis, which lowers the learning barrier and saves time for non-informatics
specialists. Combined with visualization tools, nGauge empowers the creation of publication-quality
figures with ease. In fact, during the development of the nGauge project, we have already applied all of
the individual modules to produce results both in publication and in preparation, finding it to be a very
effective toolkit for efficient data science (Shen et al., 2020; Li et al., 2020; Dizaji et al., 2020; Duan et
al., 2020).

Large-scale programs such as the NIH BRAIN Initiative Cell Census Network (BICCN) are providing
the neuroscience community with ever-expanding collections of reconstructed neuron morphology, like
many other data types and modalities. Making use of this data will require a new generation of
neuroinformatic data science tools that are optimized for contemporary programming techniques and
are easily extensible. We believe that nGauge represents a significant step toward this goal, by both
providing an easy way to run a large collection of “canned” analyses and by providing a platform for the
experimentation and development of new metrics through a well-documented data API. As a Python
library, nGauge can be seamlessly integrated into the most popular machine learning and data science
pipelines.

In the future, we plan to continue the development of additional features for nGauge, such as adding
tools for identifying synapse locations and performing connectivity analyses. Due to the lightweight data
structure definition described here, it is straightforward to include new annotation types, such as
volumetric segmentation (used in the soma here) or connectivity between tracing points in nGauge. We
envision that nGauge’s open-source and expandability nature will attract contributions from the
community to its public repository to make it an important toolkit of neuroscience research.

Information Sharing Statement

nGauge is developed for Python 3.7 and has been tested for compatibility on the most recent version of
Python at the time of writing (Python 3.9). The library is available from the Python pip package
manager by executing the following command in a terminal: 'pip install ngauge'. The source
code, documentation, and issue tracker are also available from the following Github repo:
https://github.com/Cai-Lab-at-University-of-Michigan/nGauge. The provided Blender rendering tools are
compatible with any version of Blender which uses a Python 3.6+ scripting interface. Installation
instructions are included within the above-referenced Github repo. All data is available through the
Github repository above or from the corresponding author upon reasonable request.

Page 7 of 11

https://paperpile.com/c/wdkEjF/iiXYb
https://paperpile.com/c/wdkEjF/77qNz+DKGz2+Uze7w+b4IGg
https://paperpile.com/c/wdkEjF/77qNz+DKGz2+Uze7w+b4IGg
https://github.com/Cai-Lab-at-University-of-Michigan/nGauge
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

Author Contributions

LAW and DC conceptualized the nGauge library, which was then implemented by LAW and JSW. YL
and DR provided imaging and neuron reconstruction datasets which were used in library testing. LAW,
JSW, YL, and NM contributed to beta testing of early versions of nGauge and provided comments on
the library design. LAW, JSW, and DC wrote the manuscript, which was edited and approved by all
authors.

Acknowledgments

JSW received support from the University of Michigan Women in Science and Engineering Residence
Program (WISE-RP) Judith Cram Memorial Fund Research Award. LAW and DC received support from
NSF-1707316 (Neuronex-MINT), NIH-RF1MH123402, and NIH-RF1MH124611. The authors thank
Fred Shen for his comments on an early version of the library. LAW thanks Chris Midkiff for his
comments on figure design and example code clarity.

Figure and Table Captions

Figure 1 Introduction to nGauge

A Individual neuron morphologies that have been reconstructed are represented by SWC files. Each
SWC file consists of a tabular list of individual points that make up the neuron tree structure; B The
nGauge library serves as a facilitator for a variety of common Neuroinformatic tasks.

Figure 2 nGauge Library Schema

A nGauge is a publicly-available python library that can be installed easily in one shell command. The
library is composed of 3 separate modules: Neuron (B), TracingPoint (C), and util (D). These
modules implement models for an entire Neuron, a single SWC datapoint, and utility/math functions,
respectively. Arrows represent cross-references between the module variables. Each module is labeled
with the number of functions available at time of writing (see Table 1 for more information).

Figure 3 nGauge Usage Examples

Several code examples are included to demonstrate the processes of using nGauge. A Importing the
library is a single command; B SWC files can be directly imported as Neuron objects; C morphometrics
can be easily calculated, in this case, neuron width and height (including 100% of neuron points) are
calculated as members of the Neuron class; D Interaction with Python graphical libraries such as
Matplotlib allows the generation of publication-quality figures; E, F Entire lists of files can be processed
at once to run statistical analyses using python list comprehensions.

Figure 4 Comparing nGauge with L-Measure

A An overview of the comparison study; B, C Two example functions (tip node count and maximum
path distance) produce identical output between nGauge and L-Measure; D Another example function
(neuron width) produces similar output between nGauge and L-Measure, however, a difference of
definitions produces a slight bias. Two parameter choices are shown for the nGauge result, as indicated
by marker style; Inset for each plot nGauge scripts complete faster than their L-Measure equivalent
(avg. +/- std., n = 4 per script).

Figure 5 nGauge for Cell Type Discrimination

Page 8 of 11

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

nGauge can be used to perform unbiased exploratory data analysis based on morphological
parameters; A Pyramidal Cells are compared against Basket Cells (Miyamae et al., 2017); B Tufted
Cells are compared against Mitral Cells (Fukunaga et al., 2012). We note that in both of these
comparisons, groups form along PC1 based on cell type. Each comparison is displayed as a principal
component scatter plot and a projection of each SWC file is shown adjacent to each datapoint.

Figure 6 2D Histograms of Cell Morphology

Two cells (see Results for descriptions) are plotted as 2D histograms comparing the path distance from
the soma to the branch angle for each bifurcation point in the neuron. To the left of each plot is a
projection of the source SWC file, with the soma point highlighted in red.

Figure 7 Projection Field Mapping of Multiple Neurons

We developed a novel tool for rendering the projection field volume of a specific SWC file. A A
maximum projection of an example image from (Li et al., 2020); B An overview of neuron tracing
reconstructed in (Li et al., 2020); C 4 randomly-chosen neuron reconstructions; D nGauge’s domain
mapping tool was used to identify volumes corresponding to each SWC file in C; E A heatmap of the
volume overlap percentage between each pair of samples in the experiment. Nonnegative matrix
values identify cells which have overlapping domains. Each square is normalized to the volume of the
cell identified in the X-axis, which is depicted in the bar plot to the bottom of the figure.

Figure 8 3D Modeling with nGauge and Blender

nGauge includes utilities to render publication-quality images and movies in the Blender 3D modeling
software; A, B All somas and neurites (n=182) reconstructed in Roossien, et al. 2019 are modeled.
Each panel displays a separate view of the same data; C Data from (Li et al., 2020) is plotted atop the
raw data. A full animation of this figure is available as Movie S2 in (Li et al., 2020).

Table 1 Implemented nGauge Functions

All functions implemented in nGauge. Along the left hand side, functions are divided into different
modules and function types.

Page 9 of 11

https://paperpile.com/c/wdkEjF/0HPL3
https://paperpile.com/c/wdkEjF/sY5LT
https://paperpile.com/c/wdkEjF/DKGz2
https://paperpile.com/c/wdkEjF/DKGz2
https://paperpile.com/c/wdkEjF/DKGz2
https://paperpile.com/c/wdkEjF/DKGz2
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.
References

Abdellah,M. et al. (2018) NeuroMorphoVis: a collaborative framework for analysis and visualization of
neuronal morphology skeletons reconstructed from microscopy stacks. Bioinformatics, 34,
i574-i582.

Ascoli,G.A. et al. (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci.,
27, 9247-9251.

Barber,C.B. et al. (1996) The quickhull algorithm for convex hulls. ACM Trans. Math. Softw., 22,
469-483.

Bates,A.S. et al. (2020) The natverse, a versatile toolbox for combining and analysing neuroanatomical
data. Elife, 9.

BRAIN Initiative Cell Census Network (BICCN) et al. (2020) A multimodal cell census and atlas of the
mammalian primary motor cortex. bioRxiv, 2020.10.19.343129.

Claudi,F. et al. (2020) Brainrender. A python based software for visualisation of neuroanatomical and
morphological data. bioRxiv, 2020.02.23.961748.

Cuntz,H. et al. (2010) One rule to grow them all: a general theory of neuronal branching and its
practical application. PLoS Comput. Biol., 6.

Dizaji,A.S. et al. (2020) TraceMontage: A method for merging multiple independent neuronal traces. J.
Neurosci. Methods, 332, 108560.

Duan,B. et al. (2020) Unsupervised Neural Tracing in Densely Labeled Multispectral Brainbow Images.
bioRxiv, 2020.06.07.138941.

Fukunaga,l. et al. (2012) Two distinct channels of olfactory bulb output. Neuron, 75, 320-329.

Gouwens,N.W. et al. (2019) Classification of electrophysiological and morphological neuron types in the
mouse visual cortex. Nat. Neurosci., 22, 1182—1195.

Gouwens,N.W. et al. (2020) Integrated Morphoelectric and Transcriptomic Classification of Cortical
GABAergic Cells. Cell, 183, 935-953.e19.

Harris,C.R. et al. (2020) Array programming with NumPy. Nature, 585, 357-362.

Hunter,J.D. (2007) Matplotlib: A 2D Graphics Environment. Computing in Science Engineering, 9,
90-95.

Jiang,S. et al. (2021) Petabyte-Scale Multi-Morphometry of Single Neurons for Whole Brains. bioRXxiv,
2021.01.09.426010.

Kent,B.R. (2014) 3D Scientific Visualization with Blender Morgan & Claypool Publishers.

Laturnus,S., Kobak,D., et al. (2020) A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination. Neuroinformatics.

Laturnus,S., von Daranyi,A., et al. (2020) MorphoPy: A python package for feature extraction of neural
morphologies. J. Open Source Softw., 5, 2339.

Li,Y. et al. (2020) Bitbow: a digital format of Brainbow enables highly efficient neuronal lineage tracing
and morphology reconstruction in single brains. bioRxiv, 2020.04.07.030593.

Miyamae,T. et al. (2017) Distinct Physiological Maturation of Parvalbumin-Positive Neuron Subtypes in
Mouse Prefrontal Cortex. J. Neurosci., 37, 4883—4902.

Motta,A. et al. (2019) Dense connectomic reconstruction in layer 4 of the somatosensory cortex.
Science.

Nanda,S. et al. (2018) Design and implementation of multi-signal and time-varying neural
reconstructions. Sci Data, 5, 170207.

Pedregosa,F. et al. (2011) Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res., 12,
2825-2830.

Peng,H. et al. (2014) Extensible visualization and analysis for multidimensional images using Vaa3D.
Nat. Protoc., 9, 193-208.

Phelps,J.S. et al. (2021) Reconstruction of motor control circuits in adult Drosophila using automated
transmission electron microscopy. Cell, 184, 759-774.e18.

Page 10 of 11

http://paperpile.com/b/wdkEjF/h7WK
http://paperpile.com/b/wdkEjF/h7WK
http://paperpile.com/b/wdkEjF/h7WK
http://paperpile.com/b/wdkEjF/Kz5ZS
http://paperpile.com/b/wdkEjF/Kz5ZS
http://paperpile.com/b/wdkEjF/pp5Dv
http://paperpile.com/b/wdkEjF/pp5Dv
http://paperpile.com/b/wdkEjF/tIkBF
http://paperpile.com/b/wdkEjF/tIkBF
http://paperpile.com/b/wdkEjF/NpOxq
http://paperpile.com/b/wdkEjF/NpOxq
http://paperpile.com/b/wdkEjF/Z65F
http://paperpile.com/b/wdkEjF/Z65F
http://paperpile.com/b/wdkEjF/UyuXj
http://paperpile.com/b/wdkEjF/UyuXj
http://paperpile.com/b/wdkEjF/Uze7w
http://paperpile.com/b/wdkEjF/Uze7w
http://paperpile.com/b/wdkEjF/b4IGg
http://paperpile.com/b/wdkEjF/b4IGg
http://paperpile.com/b/wdkEjF/sY5LT
http://paperpile.com/b/wdkEjF/lMEC6
http://paperpile.com/b/wdkEjF/lMEC6
http://paperpile.com/b/wdkEjF/LBsJp
http://paperpile.com/b/wdkEjF/LBsJp
http://paperpile.com/b/wdkEjF/gZW44
http://paperpile.com/b/wdkEjF/Gutcw
http://paperpile.com/b/wdkEjF/Gutcw
http://paperpile.com/b/wdkEjF/ZDahs
http://paperpile.com/b/wdkEjF/ZDahs
http://paperpile.com/b/wdkEjF/AeJLQ
http://paperpile.com/b/wdkEjF/YoKal
http://paperpile.com/b/wdkEjF/YoKal
http://paperpile.com/b/wdkEjF/8p8t7
http://paperpile.com/b/wdkEjF/8p8t7
http://paperpile.com/b/wdkEjF/DKGz2
http://paperpile.com/b/wdkEjF/DKGz2
http://paperpile.com/b/wdkEjF/0HPL3
http://paperpile.com/b/wdkEjF/0HPL3
http://paperpile.com/b/wdkEjF/pBzSH
http://paperpile.com/b/wdkEjF/pBzSH
http://paperpile.com/b/wdkEjF/uQCol
http://paperpile.com/b/wdkEjF/uQCol
http://paperpile.com/b/wdkEjF/LoGsX
http://paperpile.com/b/wdkEjF/LoGsX
http://paperpile.com/b/wdkEjF/DqBya
http://paperpile.com/b/wdkEjF/DqBya
http://paperpile.com/b/wdkEjF/6uWp4
http://paperpile.com/b/wdkEjF/6uWp4
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.13.443832; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

nGauge — Walker LA, Williams JS, et al.

Quentin,E. et al. (2018) Somato-Dendritic Regulation of Raphe Serotonin Neurons; A Key to
Antidepressant Action. Front. Neurosci., 12, 982.

Ramoén y Cajal,S. (1892) La rétine des vertébrés Van In [etc.], Lierre [etc.].

Roossien,D.H. et al. (2019) Multispectral tracing in densely labeled mouse brain with nTracer.
Bioinformatics, 35, 3544—-3546.

Schindelin,J. et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9,
676-682.

Scorcioni,R. et al. (2008) L-Measure: a web-accessible tool for the analysis, comparison and search of
digital reconstructions of neuronal morphologies. Nat. Protoc., 3, 866—876.

Shen,F.Y. et al. (2020) Light microscopy based approach for mapping connectivity with molecular
specificity. Cold Spring Harbor Laboratory, 2020.02.24.963538.

Stokes,C.C.A. et al. (2014) Single dendrite-targeting interneurons generate branch-specific inhibition.
Front. Neural Circuits, 8, 139.

Torben-Nielsen,B. (2014) An efficient and extendable python library to analyze neuronal morphologies.
Neuroinformatics, 12, 619—-622.

Virtanen,P. et al. (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat.
Methods, 17, 261-272.

Wang,Q. et al. (2020) The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.
Cell, 181, 936-953.e20.

Yin,W. et al. (2020) A petascale automated imaging pipeline for mapping neuronal circuits with
high-throughput transmission electron microscopy. Nat. Commun., 11, 4949.

Page 11 of 11

http://paperpile.com/b/wdkEjF/q4EHZ
http://paperpile.com/b/wdkEjF/q4EHZ
http://paperpile.com/b/wdkEjF/cYGLL
http://paperpile.com/b/wdkEjF/lyh2H
http://paperpile.com/b/wdkEjF/lyh2H
http://paperpile.com/b/wdkEjF/iiXYb
http://paperpile.com/b/wdkEjF/iiXYb
http://paperpile.com/b/wdkEjF/ErpoR
http://paperpile.com/b/wdkEjF/ErpoR
http://paperpile.com/b/wdkEjF/77qNz
http://paperpile.com/b/wdkEjF/77qNz
http://paperpile.com/b/wdkEjF/BGYzM
http://paperpile.com/b/wdkEjF/BGYzM
http://paperpile.com/b/wdkEjF/a0H1q
http://paperpile.com/b/wdkEjF/a0H1q
http://paperpile.com/b/wdkEjF/B7cJq
http://paperpile.com/b/wdkEjF/B7cJq
http://paperpile.com/b/wdkEjF/fpWF0
http://paperpile.com/b/wdkEjF/fpWF0
http://paperpile.com/b/wdkEjF/Dh1Yk
http://paperpile.com/b/wdkEjF/Dh1Yk
https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

? Col.

~
Description

NG A WN =

"Raw Data

Line ID
Type

X Coord.
Y Coord.
Z Coord.
Radius
Parent ID

Neuron Reconstructions

Structure
Manipulation
Morphometric
Calculations

oy s3e nGauge.py
jupyter |59
&= NumPy
Compatibility
with 39 Party

Tools
Figure 1: Introduction to nGauge

@
'

Statistical
Comparison

3D Visualization

A Individual neuron morphologies that have been
reconstructed are represented by SWC files. Each
SWOC file consists of a tabular list of individual points
that make up the neuron tree structure; B The nGauge
library serves as a facilitator for a variety of common

Neuroinformatic tasks.

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

A bash$ pip install ngauge

' N ~
B nGauge.Neuron C nGauge.TracingPoint

—

.soma_layers a3 e Uz U E o

Dz ipt Ly pE2
e gegelln eRedl s 55 s
- paEentE

J
NS P IR = O R
.children)
branches —>

root 1 34 Functions
.
root N dl

D nGauge.util

59 Functions 10 Functions
e J g o

.

Figure 2: nGauge Library Schema

A nGauge is a publicly-available python library that
can be installed easily in one shell command. The
library is composed of 3 separate modules: Neuron
(B), TracingPoint (C),andutil (D). These mod-
ules implement models for an entire Neuron, a single
SWC datapoint, and utility/math functions, respectively.
Arrows represent cross-references between the
module variables. Each module is labeled with the
number of functions available at time of writing (see
Table 1 for more information).

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

[\ from ngauge import Neuron

B n = Neuron.from swc(’A.swc’)

print(n)

C n.width(), n.height()

Figure 3: nGauge Usage Examples

import seaborn as sns
sns.boxplot (x=[
n.max branching order()
for n in files 1)

sns.boxplot (x=[
n.soma_ volume ()
for n in files 1)

2500 5000 7500 10000

Several code examples are included to demonstrate the processes of
using nGauge. A Importing the library is a single command; B SWC files
can be directly imported as Neuron objects; C morphometrics can be easily
calculated, in this case, neuron width and height (including 100% of neuron
points) are calculated as members of the Neuron class; D Interaction with
Python graphical libraries such as Matplotlib allows the generation of
publication-quality figures; E, F Entire lists of files can be processed at
once to run statistical analyses using python list comprehensions.

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

A
X / nGauge
% .J | Vs-

" \‘ L-Measure
n =42
T. Miyamae, et al. 2017
. Fukunaga, et al. 2012

C

8 w 5. == -

é 1500 - § 2

a 5

£ (74 @

= 0 . . I

% 1000 nGauge L-M "

2 o~

7] .'

= 5001 o~

% '

g ®
0 -

0 250 500 750
Max of nGauge path_dist function

Figure 4: Comparing nGauge with L-Measure
A An overview of the comparison study; B, C Two example functions (tip hode count and

1000 1250 1500 1750

1500 A s =
§ 1250 2 °] "
15} = —_—
3 10004 &
@ %o ; ' P
= 7504 nGauge L-M ®
z
o L]
5 500+ o’
3 .,
= 250
—
o] &
0 200 400 600 800 1000 1200 1400
nGauge total_tip_nodes function
%5 - + + e ..
sooof £°] __ "
® g + @
S x 0 T T
:_::: 600 - nGauge L-M , o9
b 4 e ..'.
o 400 - P
5 +
2 .- Y g + 95%
= 200 _,_1:’:»%' ° ® 100%
S) >
0-
0 200 400 600 800 1000 1200

nGauge total_width function

maximum path distance) produce identical output between nGauge and L-Measure; D
Another example function (neuron width) produces similar output between nGauge and
L-Measure, however, a difference of definitions produces a slight bias. Two parameter choic-
es are shown for the nGauge result, as indicated by marker style; Inset for each plot
nGauge scripts complete faster than their L-Measure equivalent (avg. +/- std., n = 4 per

script).

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

A 1e3
3 -
x
S -
c
2 L
S 4. Pyramidal
£ Cells
3 x
g O
S N Basket
5 -11 Vi ; (?ells .
-2 0 2
Principal Component 1 1e7
B 1e3
Tufted ®
o~ 4 Cells
=
(] »®
[o
g 2
=
S
g 07
2 /
O]
£ o] x Mitral
& e Cells
gt
-4 - x
-0.5 0.0 0.5 1.0

Principal Component 1 1e9

Figure 5: nGauge for Cell Type
Discrimination

nGauge can be used to perform unbi-
ased exploratory data analysis based on
morphological parameters; A Pyramidal
Cells are compared against Basket Cells
(Miyamae et al., 2017); B Tufted Cells
are compared against Mitral Cells
(Fukunaga et al., 2012). We note that in
both of these comparisons, groups form
along PC1 to based on cell type. Each
comparison is displayed as a principal
component scatter plot and a projection
of each SWC file is shown adjacent to
each datapoint.

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

Path Distance From Soma (um)

0 4— Branch Angle (deg) — 180

Figure 6: 2D Histograms of Cell Morphology
Two cells (see Results for descriptions)
are plotted as 2D histograms comparing
the path distance from the soma to the
branch angle for each bifurcation point in
the neuron. To the left of each plot is a
projection of the source SWC file, with
the soma point highlighted in red.

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

Cell Number

- (]
5xm,| I E __
banthal hinid 2

o N axA R annls kel S %
o s 10 15 20 3

Cell Number 8

Figure 7: Projection Field Mapping of Multiple Neurons
We developed a novel tool for rendering the projection field volume of a specific SWC file.
A A maximum projection of an example image from (Li et al., 2020); B An overview of
neuron tracing reconstructed in (Li et al., 2020); C 4 randomly-chosen neuron reconstruc-
tions; D nGauge’s domain mapping tool was used to identify volumes corresponding to
each SWC file in C; E A heatmap of the volume overlap percentage between each pair of
samples in the experiment. Nonnegative matrix values identify cells which have overlap-
ping domains. Each square is hormalized to the volume of the cell identified in the X-axis,
which is depicted in the bar plot to the bottom of the figure.

Volume Overlap (fraction)

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

Figure 8: 3D Modeling with nGauge and Blender

nGauge includes utilities to render publication-quality images and movies in the Blender 3D mod-
eling software; A, B All somas and neurites (n=182) reconstructed in Roossien, et al. 2019 are
modeled. Each panel displays a separate view of the same data; C Data from (Li et al., 2020) is
plotted atop the raw data. A full animation of this figure is available as Movie S2 in (Li et al., 2020).

https://doi.org/10.1101/2021.05.13.443832
http://creativecommons.org/licenses/by-nc/4.0/

