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Abstract 

The Coronavirus Disease 2019 (COVID-19) epidemic was first detected in late- 

December 2019. So far, it has caused 203,815,431 confirmed cases and 4,310,623 

deaths in the world. We collected sequences from 150,659 COVID-19 patients. Based 

on the previous phylogenomic analysis, we found three major branches of the virus 

RNA genomic mutation located in Asia, America, and Europe which is consistent with 

other studies. We selected sites with high mutation frequencies from Asia, America, and 

Europe. There are only 13 common mutation sites in these three regions. It infers that 

the viral mutations are highly dependent on their location and different locations have 

specific mutations. Most mutations can lead to amino acid substitutions, which 

occurred in 3/5'UTR, S/N/M protein, and ORF1ab/3a/8/10. Thus, the mutations may 

affect the pathogenesis of the virus. In addition, we applied an ARIMA model to predict 

the short-term frequency change of these top mutation sites during the spread of the 

disease. We tested a variety of settings of the ARIMA model to optimize the prediction 

effect of three patterns. This model can provide good help for predicting short-term 

mutation frequency changes. 
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INTRODUCTION 

The Coronavirus Disease 2019 (COVID-19) has become a severe epidemic, 

claiming 203,815,431 cases and 4,310,623 deaths worldwide until August 20211. 

Modern transportation and more frequent personnel exchanges have accelerated the 
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spread of COVID-19. The second outbreak of this disease has plagued many countries 

where the epidemic is not serious. One of the main reasons is the long-distance 

migration of the mutated viral host, causing the new types of COVID-19 to spread 

across regions. 

The COVID-19 is caused by a novel evolutionary divergent RNA virus, called 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which triggers a 

respiratory tract infection and spreads mainly through person-to-person contact2. The 

genetic information of SARS-CoV-2 mutates much more dramatically than DNA due 

to RNA viruses’ mechanisms3. Until now, the new mutations of the virus. The 

worldwide outbreak happens to provide good environments for SARS-CoV-2 mutations. 

The accumulation of these mutations may cause the COVID-19 to develop in an 

uncertain direction, which will have a huge impact on society and personal life 4. 

According to other epidemiological studies, mutations in the genome of an 

epidemic will be inherited from the spreader to the next generation of patients. The 

spread of the disease generally has regional characteristics, which leads to the diversity 

of the genome with regional traits. Thus, the SARS-CoV-2 genome mutation should 

have divergent mutation patterns in different geographic locations. Our purpose is to 

study the mutation patterns of SARS-CoV-2 in the world and try to predict the trend of 

the mutation so that to provide a reference for other researchers and may be helpful to 

the choice of the vaccine. To compare the mutation patterns quantitatively, we consider 

the cumulative mutation frequency on every single genome site as a time series. 

Previous studies in the aspect of mutation patterns and mutation predictions had focused 

on the protein mutation and functional changes of a certain genetic variant3, and there 

is no overview on the whole genomic sequence. Also, the studies had only limited 

prediction powers. They had not predicted all unknown mutations which could escape 

the vaccines already developed. Therefore, in this work we address this problem by 

employing a robust time series model, known as the ARIMA model for genetic mutation 

predictions. Finally, we shall develop a visualizing system to model the SARS-CoV-2 

mutation trend based on geographical regions and time. 

 

METHODS 

Sample data filtering 

As of January 31, 2021, the China National Center for Bioinformation (CNCB) 

database hosted 528,611 SARS-COV-2 sequences. Low-quality data (as assessed by 

the database) was removed. The data that required authorization by the submitting 

agencies were excluded. At last, 184,475 entries of the raw sequence were download5. 

An entry of raw sequence data directly downloaded from the CNCB database does not 

contain all the necessary metadata information such as host, sampling location, or date. 

The information was documented in a set of sequence metadata information, which 

needed to be downloaded separately. We performed a complete paring search to match 

the raw sequence data to the sequence metadata information and obtained 183,850 data 

entries with metadata information. 

We discarded irrelevant metadata information and kept the following information 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.11.455941doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455941
http://creativecommons.org/licenses/by/4.0/


for analysis and modeling: sequence name, detection time, detection region, base name 

before mutation, location of mutation site, base name after mutation. The base names 

and site also guarantee an easy retrieval of information needed for amino acid 

substitution analysis.  

The data was divided based on the continent of the detection region and then sorted 

by time. We performed a further data cleaning and dropped those data with the non-

standard format or incomplete metadata information. For example, we dropped a group 

of data reported from Japan which labeled detection time with only the year and the 

month but not the date. After the cleaning, 150,659 data entries remained. 

We focused on data from Europe, Asia, and North America due to sufficient data 

quantity and high data quality in these regions. For analysis and modeling, we selected 

those sites which have more than 0.1% mutation rate on the last day and larger than 10% 

mutation rate on average.  

 

Development of prediction model  

For the prediction model, the ARIMA (i.e, Auto Regressive Integrated Moving 

Average) model is used because of its advantages in time series forecasting. An ARIMA 

model contains three parameters – p, d, and q, or written as ARIMA(p,d,q). The p 

represents the number of lag observations in the auto-regression (AR) part of the model, 

indicating a relation between an observation (or data) to the past observations. The q 

represents the size of the moving average window in the moving average (MA) part of 

the model, indicating the relation between an observation to the past error. The d 

represents the integration order of the I(Integrated) part of the model, indicating the 

number of times that the raw observations are differenced. If we let 𝑦̂  be the 

𝑑𝑡ℎ difference of Y (the observation or data), then the model can be expressed as 𝑦𝑡̂ =
𝜇 + 𝜙1𝑦𝑡−1+⋯+ 𝜙𝑝𝑦𝑡−𝑝 − 𝜃1𝑒𝑡−1 −⋯− 𝜃𝑞𝑒𝑡−𝑞. 

We developed an automatic parameter scan for 87 groups of data so that each 

mutation site had its model parameters fitted independently. For the mutation rate data 

of each site, the program tests 5 different parameters for p and q, respectively, and 

number 1 or 2 for parameter d. In total, there were 50 parameter combinations tested 

for every of the high-frequency sites. Values of p are first determined from the ACF 

(autocorrelation function) of the mutation rate. The best parameter set (p, q, d) which 

has the lowest MSE value is used as parameter for the prediction. 

 

RESULTS 

Data collection and description 

Since COVID-19 has been circulating for more than a year, virus samples from 

many countries have been sequenced. The samples range from dozens of countries, and 

the sampling time covers several months. This gives us great convenience to study gene 

mutations in different regions and their changing trends over time. We downloaded 

mutation data of the disease from a public database: China National Center for 

Bioinformation, 2019nCoVR (https://bigd.big.ac.cn/ncov/?lang=en)5. In total, 

mutation information from 150,659 patients was downloaded from the database. We 
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used the SARS-CoV-2 sequence, NC_045512, of the first COVID-19 patient as the 

reference sequence in this study. The genome is with the length of 29,903 bp ss-RNA 6. 

We obtained the corresponding sample location (country) and sampling time as well. 

According to the sample source, 74% of the samples are from Europe, 15% of the 

samples are from North America, and 7% of the samples are from Asia (Figure 1A). In 

terms of time span, the sample starts from January 2020 to January 2021 (Figure 1B). 

The samples in Europe increase dramatically after July 2020, while samples in Asia and 

North America slightly increase from April 2020. Samples from Europe accounted for 

the largest proportion. Although some countries, such as the USA have carried out 

large-scale COVID-19 positive tests for their citizens, only a few whole-genome 

sequences were available. Although the proportion of the sequences in America and 

Asia are low, there are still 22,599 sequences in America and 10,546 sequences in Asia, 

and the mutation frequency calculation should be precise. 

 
Figure 1. Distribution of downloaded SARA-Cov-2 sequence mutation data. 

 

 

Different patterns of single nucleotide polymorphisms (SNPs) in Asia, Europe, and 

North America 
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Figure 2. Distribution of SNPs on SARS-CoV-2 genome. 

 

We focused on the single-site mutation (SNP) and calculated the frequencies of all 

mutation sites (Figure 2). The mutations are ubiquitous in most regions of the genome 

and the sites with the highest mutation frequencies are in Polyprotein (ORF1ab), S 

protein, ORF3a, M protein, ORF8, N protein, ORF10 (Figure 2). 

We selected the sites with top mutation frequencies in Asia, Europe, and North America. 

There are 27 sites in Asia samples, 30 sites in Europe samples, and 30 sites in North 

America samples (Figure S1). Only 13 sites are shared by all three regions suggesting 

that the mutation patterns may be different in three regions. We also calculated the 

mutation frequency changes with time (Figure S2). Three main clusters can be observed: 

1) The mutation frequency gradually increases with time, and finally reaches a plateau. 

This pattern likes a classic logistic curve. 2) The mutation frequency has a high peak at 

the beginning of the outbreak, and then the frequency decreases to a low level with time. 

3) The mutation frequency has a high peak at the beginning of the outbreak, and then 

the frequency decreases with time but maintains a high level. Cluster 1 takes for a little 

more than 30% of each group. Cluster 2 takes about 30% of Asia and Europe samples, 

while it takes more than two-thirds of North America samples. Cluster 3 takes around 

30% in Asia and 20% in Europe (Figure S1). It confirms the different patterns in Asia, 

Europe, and North America samples. 

 

Most of the mutation can lead to amino acid substitution 

Non-synonymous and synonymous mutations can lead to different results. Thirty-eight 

SNPs in the SARS-CoV-2 genome can contribute to amino acid substitution (Table S1). 

Three genes, ORF1ab, Spike protein, and N protein, contain the most non-synonymous 

mutations (Table 1). Spike protein mediates host cell receptor recognition and binding. 

It is the key for vaccine design and development against SARS-CoV-2 infection7. The 

enrichment of SNPs in the Spike protein gene could lead to the subsequent evolution 

of the virus. Three regions display different mutation directions which makes the 

prediction of the mutation valuable (Table 1).  
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Table 1. Non-synonymous mutations enriched in three gene loci. 

Gene Asia Europe America 

ORF1ab 9 9 11 

Spike protein 1 3 2 

N protein 4 4 4 

Cluster (1/2/3) 7/2/5 6/5/5 7/10/0 

 

 

Model of predicting the mutation frequency 

Based on a regression method, we developed a model to predict the frequency change 

with time in a short period (Figure S1). The MSE values represent the accuracy and 

stability of the model (Table 2). The model proposes the mutation trends of each site in 

three regions. The method considers multiple factors: disease outbreak region, number 

of days in the training set, and number of days for out-of-sample prediction, and 

predicted the mutation frequency for specific sites. It could be a reference for 

researchers on different continents.  

 

 

 

 

 

 

 

The mutations in Spike protein may affect the off-target effect of the vaccine. We 

selected a few genome positions for detailed modeling analysis in the range 21,000 to 

26,000, which is believed to encode the spike protein. 

Figure 3. The ARIMA model fitting and forecast of the genome position 23403. The matrix of plots 

(p, q) all have a fixed difference order d=2. The real data (blue curve) and the in-sample prediction 

(black curve) for the training data set (from the date of the first mutation report to the 200th day 

after that data) fits well, and the out-of-sample forecast from the 201st to the 280th day (orange 

curve) achieves minimum MSE with parameters (p, d, q) = (2, 2, 3).  

 

Table 2. MSE of the prediction model. 

MSE Average (-log10) SD 

Asia 6.97 0.95 

Europe 4.62 1.50 

America 6.93 0.86 
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Figure 4. ARIMA model fitting and forecast of the genome position 22227. The matrix of plots (p,q) 

all have a fixed difference order d=1. The real data (blue curve) and the in-sample prediction (black 

curve) for the training data set fits well, and the short period forecast (orange curve) from 131st day 

to the 210th day reproduces the correct real data for (p, d, q) = (3, 1, 1). 

 

We selected the A23403G mutation which is the D614G spike protein mutation. We 

used the ARIMA model to predict the short-term mutation frequency. The training data 

set was defined from the first day of non-zero mutation rate to the 200th day. We tested 

three ARIMA model parameters (p, d, q), and d = 2 followed the rising trend of the real 

mutation rate data (Figure S3). The ARIMA model parameters (p, d, q) = (2, 2, 3) were 

fitted on the training set and the optimized parameters were selected to minimize the 

MSE on the test set from the 201st day to the 280th day, between the out-of-sample 

forecast and the real data (Figure 3). When the forecast is performed in a much longer 

period from the 201st day to the 360th day, the ARIMA model can only capture the rising 

trend but failed to fit the plateau of the real data (Figure S4). Another genome position 

is 22,227 (C-to-T, also called A222V), of which the mutation rate shows a logistic curve 

and reaches a steady rate beyond the 160th day. ARIMA models with parameters d = 1 

can capture this steady rate and the best forecast occurs at (p, d, q) = (3, 1, 1) (Figure 

4). The training set of this position had a different length compared to position 23403 

because the mutation rate stabilizes much faster, and we used the time range from the 

first date of non-zero mutation rate to the 130th day after the first day. The optimized 

parameters are sensitive to the choice of the training set length, which invites further 

study into the modeling stability.  

Based on the similarity of genomes and the prediction of mutation trends, we hope that 

our work can provide an alternative reference for residents to choose vaccines produced 

in different brands and different countries. Overall, we expect our approach to be a 

fundamental solution in the literature and contribute as reliable quantitative benchmarks. 

 

Discussion 

We focused on the Spike protein which is the most important region in the SARS-CoV-

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.11.455941doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455941
http://creativecommons.org/licenses/by/4.0/


2 genome related to human immune response (Figure 5) 8. The angiotensin-converting 

enzyme 2 (ACE2) proteins can bind the glycosylated S proteins on the surface of 

SARS-CoV-2 and mediates the viral cell entry9. The SARS-CoV-2 S protein consists of 

1273 amino acids, including a signal peptide in the N-terminus, the S1 and S2 subunits 

(Figure 5). In the S1 subunit, a receptor-binding domain (RBD) is responsible for 

binding the ACE2. Fusion peptide (FP) plays an essential role in mediating membrane 

fusion10. HR1 and HR2 form the six-helical bundle (6-HB) with the entry function of 

the S2 subunit11. The transmembrane (TM) domain of the S protein anchors in the viral 

membrane.  

 
Figure 5. Structure of Spike protein in SARS-CoV-2 genome. 

 

We found three patterns of the SARS-Cov-2 mutation patterns. We have tested the 

ARIMA model in cluster 1 and the model exhibits good performance in the short-term 

prediction. We further applied the ARIMA model mutation sites of the other two 

clusters. The genome mutation C27046T (T175M) is a typical cluster 2 cases in Europe. 

The prediction for the training data set fits well with the real data, and the short-term 

prediction with (p, d, q) = (3, 1, 1) in the range from 116th day to the 176th day 

reproduces the correct real data (Figure S5). Another typical cluster 3 case in Asia is 

C28311T (P13L). With the settings (p, d, q) = (3, 1, 2), the short-term prediction from 

the 200th day to the 260th day reproduces the correct real data (Figure S6). 

In summary, we collected SARS-Cov-2 sequence mutations and summarized 3 

mutation patterns. We screened out non-synonymous mutation sites and found that the 

patterns of mutations on different continents are different. We fitted the mutation 

frequencies to the ARIMA model, and the model can forecast well in the short term. It 

would be a good basis for other studies of COVID-19 in terms of genomic mutation 

patterns and prediction. 
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Figure S1. Sites with top mutation frequencies in Asia, Europe, and North America.
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Figure S2. Frequencies and prediction of top mutated sites in Asia, Europe, and North America. 
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Figure S3. ARIMA model fitting and forecast of the genome position 23403. The matrix of plots (d, 

q) all have a fixed p=2. The real data (blue curve) and the in-sample prediction (black curve) for the 

training data set fits well, and the out-of-sample forecast from the 201st to the 280th day (orange 

curve) only follow the correct trend of real data at d=2.  
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Figure S4. ARIMA model fitting and forecast of the genome position 23403. The matrix of plots (p, 

q) all have a fixed difference order d=2. The real data (blue curve) and the in-sample prediction 

(black curve) for the training data set fits well, but the long period forecast (orange curve) from 

201st day to the 360th day shows that none of the parameter combinations of the ARIMA model can 

reproduce the plateau beyond 300th day after the mutation onset. 
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Table S1. Most mutated sites in the SARS-CoV-2 genome.   

Position Gene SNP Codon change 
Amino acid 

position 

Amino 

acid 

change 

Non-

synonymous 

313 ORF1ab C -> T CTC->CTT 16 L->L No 

445 ORF1ab T -> C GTT->GTC 60 V->V No 

490 ORF1ab T -> A GAT->GAA 75 D->E yes 

1059 ORF1ab C -> T ACC->ATC 265 T->I yes 

1397 ORF1ab G -> A GTA->ATA 378 V->I yes 

2416 ORF1ab C -> T TAC->TAT 717 Y->Y No 

2480 ORF1ab A -> G ATT->GTT 739 I->V yes 

2558 ORF1ab C -> T CCA->TCA 765 P->S yes 

3037 ORF1ab C -> T TTC->TTT 924 F->F No 

3177 ORF1ab C -> T CCT->CTT 971 P->L yes 

5572 ORF1ab G -> T ATG->ATT 1769 M->I yes 

6286 ORF1ab C -> T ACC->ACT 2007 T->T No 

6310 ORF1ab C -> A AGC->AGA 2015 S->R yes 

6312 ORF1ab C -> A ACA->AAA 2016 T->K yes 

6446 ORF1ab G -> T GTT->TTT 2061 V->F yes 

8782 ORF1ab C -> T AGC->AGT 2839 S->S No 

9891 ORF1ab C -> T GCT->GTT 3209 A->V yes 

11083 ORF1ab G -> T TTG->TTT 3606 L->F yes 

13730 ORF1ab C -> T CTA->TTA 4489 A->L yes 

14408 ORF1ab C -> T CTA->TTA 4715 P->L yes 

14805 ORF1ab C -> T ACT->ATT 4847 Y->I yes 

17747 ORF1ab C -> T CTG->TTG 5828 P->L yes 

17858 ORF1ab A -> G ATG->GTG 5865 Y->V yes 

18060 ORF1ab C -> T TCT->TTT 5932 L->F yes 

18877 ORF1ab C -> T GTC->GTT 6204 C->V yes 

19524 ORF1ab C -> T TCG->TTG 6420 L->L No 

20268 ORF1ab A -> G TAG->TGG 6668 L->W yes 

21255 ORF1ab G -> C CGT->CCT 6997 A->P yes 

21614 Spike protein C -> T CTT->TTT 18 L->F yes 

21707 Spike protein C -> T CAT->TAT 49 H->Y yes 

22227 Spike protein C -> T GCT->GTT 222 A->V yes 

23403 Spike protein A -> G GAT->GGT 614 D->G yes 

23929 Spike protein C -> T TAC->TAT 789 Y->Y No 

24034 Spike protein C -> T AAC->AAT 824 N->N No 

25563 ORF3a G -> T CAG->CAT 57 Q->H yes 

26144 ORF3a G -> T GGT->GTT 251 G->V yes 

26729 M protein T -> C GCT->GCC 69 A->A No 

26735 M protein C -> T TAC->TAT 71 Y->Y No 

26801 M protein C -> G CTC->CTG 93 L->L No 

27046 M protein C -> T ACG->ATG 175 T->M yes 
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27944 ORF8 C -> T CAC->CAT 17 H->H No 

27964 ORF8 C -> T TCA->TTA 24 S->L yes 

28077 ORF8 G -> C GTG->CTG 62 V->L yes 

28144 ORF8 T -> C TTA->TCA 84 L->S yes 

28253 ORF8 C -> T TTC->TTT 120 F->F no 

28311 N protein C -> T CCC->CTC 13 P->L yes 

28688 N protein T -> C TTG->CTG 139 L->L no 

28854 N protein C -> T TCA->TTA 194 S->L yes 

28881 N protein G -> A AGG->AAA 203 R->K yes 

28882 N protein G -> A AGG->AAA 203 R->K yes 

28883 N protein G -> C GGA->CGA 204 G->R yes 

28932 N protein C -> T GCT->GTT 220 A->V yes 

29095 N protein C -> T TTC->TTT 274 F->F no 

29645 ORF10 G -> T GTA->TTA 30 V->L yes 

 

 

 

Figure S5. ARIMA model fitting and forecast of the genome position 27046, a typical cluster 2 case 

in Europe. The matrix of plots (p, q) all have a fixed difference order d=1. The real data (blue curve) 

and the out-of-sample prediction (orange curve) for the training data set fits well, and the short 

period forecast (orange curve) from 116th day to the 176th day reproduces the correct real data for 

(p, d, q) = (3, 1, 1).  

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.11.455941doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.11.455941
http://creativecommons.org/licenses/by/4.0/


 

Figure S6. ARIMA model fitting and forecast of the genome position 28311, a typical cluster 3 case 

in Asia. The matrix of plots (p, q) all have a fixed difference order d=1. The real data (blue curve) 

and the out-of-sample prediction (orange curve) for the training data set fits well, and the short 

period forecast (orange curve) from 200th day to the 260th day reproduces the correct real data for 

(p, d, q) = (3, 1, 2). 
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