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Abstract

The Coronavirus Disease 2019 (COVID-19) epidemic was first detected in late-
December 2019. So far, it has caused 203,815,431 confirmed cases and 4,310,623
deaths in the world. We collected sequences from 150,659 COVID-19 patients. Based
on the previous phylogenomic analysis, we found three major branches of the virus
RNA genomic mutation located in Asia, America, and Europe which is consistent with
other studies. We selected sites with high mutation frequencies from Asia, America, and
Europe. There are only 13 common mutation sites in these three regions. It infers that
the viral mutations are highly dependent on their location and different locations have
specific mutations. Most mutations can lead to amino acid substitutions, which
occurred in 3/5'UTR, S/N/M protein, and ORF1ab/3a/8/10. Thus, the mutations may
affect the pathogenesis of the virus. In addition, we applied an ARIMA model to predict
the short-term frequency change of these top mutation sites during the spread of the
disease. We tested a variety of settings of the ARIMA model to optimize the prediction
effect of three patterns. This model can provide good help for predicting short-term
mutation frequency changes.
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INTRODUCTION

The Coronavirus Disease 2019 (COVID-19) has become a severe epidemic,
claiming 203,815,431 cases and 4,310,623 deaths worldwide until August 2021'.
Modern transportation and more frequent personnel exchanges have accelerated the


mailto:david.wei@prismsus.org
mailto:xiang.gong@prismsus.org
https://doi.org/10.1101/2021.08.11.455941
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455941; this version posted September 2, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

spread of COVID-19. The second outbreak of this disease has plagued many countries
where the epidemic is not serious. One of the main reasons is the long-distance
migration of the mutated viral host, causing the new types of COVID-19 to spread
across regions.

The COVID-19 is caused by a novel evolutionary divergent RNA virus, called
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which triggers a
respiratory tract infection and spreads mainly through person-to-person contact?. The
genetic information of SARS-CoV-2 mutates much more dramatically than DNA due
to RNA viruses’ mechanisms®. Until now, the new mutations of the virus. The
worldwide outbreak happens to provide good environments for SARS-CoV-2 mutations.
The accumulation of these mutations may cause the COVID-19 to develop in an
uncertain direction, which will have a huge impact on society and personal life 4.

According to other epidemiological studies, mutations in the genome of an
epidemic will be inherited from the spreader to the next generation of patients. The
spread of the disease generally has regional characteristics, which leads to the diversity
of the genome with regional traits. Thus, the SARS-CoV-2 genome mutation should
have divergent mutation patterns in different geographic locations. Our purpose is to
study the mutation patterns of SARS-CoV-2 in the world and try to predict the trend of
the mutation so that to provide a reference for other researchers and may be helpful to
the choice of the vaccine. To compare the mutation patterns quantitatively, we consider
the cumulative mutation frequency on every single genome site as a time series.
Previous studies in the aspect of mutation patterns and mutation predictions had focused
on the protein mutation and functional changes of a certain genetic variant®, and there
is no overview on the whole genomic sequence. Also, the studies had only limited
prediction powers. They had not predicted all unknown mutations which could escape
the vaccines already developed. Therefore, in this work we address this problem by
employing a robust time series model, known as the ARIMA model for genetic mutation
predictions. Finally, we shall develop a visualizing system to model the SARS-CoV-2
mutation trend based on geographical regions and time.

METHODS

Sample data filtering

As of January 31, 2021, the China National Center for Bioinformation (CNCB)
database hosted 528,611 SARS-COV-2 sequences. Low-quality data (as assessed by
the database) was removed. The data that required authorization by the submitting
agencies were excluded. At last, 184,475 entries of the raw sequence were download”.
An entry of raw sequence data directly downloaded from the CNCB database does not
contain all the necessary metadata information such as host, sampling location, or date.
The information was documented in a set of sequence metadata information, which
needed to be downloaded separately. We performed a complete paring search to match
the raw sequence data to the sequence metadata information and obtained 183,850 data
entries with metadata information.

We discarded irrelevant metadata information and kept the following information
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for analysis and modeling: sequence name, detection time, detection region, base name
before mutation, location of mutation site, base name after mutation. The base names
and site also guarantee an easy retrieval of information needed for amino acid
substitution analysis.

The data was divided based on the continent of the detection region and then sorted
by time. We performed a further data cleaning and dropped those data with the non-
standard format or incomplete metadata information. For example, we dropped a group
of data reported from Japan which labeled detection time with only the year and the
month but not the date. After the cleaning, 150,659 data entries remained.

We focused on data from Europe, Asia, and North America due to sufficient data
quantity and high data quality in these regions. For analysis and modeling, we selected
those sites which have more than 0.1% mutation rate on the last day and larger than 10%
mutation rate on average.

Development of prediction model

For the prediction model, the ARIMA (i.e, Auto Regressive Integrated Moving
Average) model is used because of its advantages in time series forecasting. An ARIMA
model contains three parameters — p, d, and ¢, or written as ARIMA(p,d,q). The p
represents the number of lag observations in the auto-regression (AR) part of the model,
indicating a relation between an observation (or data) to the past observations. The ¢
represents the size of the moving average window in the moving average (MA) part of
the model, indicating the relation between an observation to the past error. The d
represents the integration order of the I(Integrated) part of the model, indicating the
number of times that the raw observations are differenced. If we let y be the
d" difference of Y (the observation or data), then the model can be expressed as y, =
U+ Pr1ye1t -+ dpyip — 018021 — - — Oger_q.

We developed an automatic parameter scan for 87 groups of data so that each
mutation site had its model parameters fitted independently. For the mutation rate data
of each site, the program tests 5 different parameters for p and ¢, respectively, and
number 1 or 2 for parameter d. In total, there were 50 parameter combinations tested
for every of the high-frequency sites. Values of p are first determined from the ACF
(autocorrelation function) of the mutation rate. The best parameter set (p, g, d) which
has the lowest MSE value is used as parameter for the prediction.

RESULTS

Data collection and description

Since COVID-19 has been circulating for more than a year, virus samples from
many countries have been sequenced. The samples range from dozens of countries, and
the sampling time covers several months. This gives us great convenience to study gene
mutations in different regions and their changing trends over time. We downloaded
mutation data of the disease from a public database: China National Center for
Bioinformation, 2019nCoVR (https://bigd.big.ac.cn/ncov/?lang=en)’. In total,
mutation information from 150,659 patients was downloaded from the database. We
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used the SARS-CoV-2 sequence, NC 045512, of the first COVID-19 patient as the
reference sequence in this study. The genome is with the length of 29,903 bp ss-RNA °.
We obtained the corresponding sample location (country) and sampling time as well.
According to the sample source, 74% of the samples are from Europe, 15% of the
samples are from North America, and 7% of the samples are from Asia (Figure 1A). In
terms of time span, the sample starts from January 2020 to January 2021 (Figure 1B).
The samples in Europe increase dramatically after July 2020, while samples in Asia and
North America slightly increase from April 2020. Samples from Europe accounted for
the largest proportion. Although some countries, such as the USA have carried out
large-scale COVID-19 positive tests for their citizens, only a few whole-genome
sequences were available. Although the proportion of the sequences in America and
Asia are low, there are still 22,599 sequences in America and 10,546 sequences in Asia,
and the mutation frequency calculation should be precise.
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Figure 1. Distribution of downloaded SARA-Cov-2 sequence mutation data.

Different patterns of single nucleotide polymorphisms (SNPs) in Asia, Europe, and
North America
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Figure 2. Distribution of SNPs on SARS-CoV-2 genome.

We focused on the single-site mutation (SNP) and calculated the frequencies of all
mutation sites (Figure 2). The mutations are ubiquitous in most regions of the genome
and the sites with the highest mutation frequencies are in Polyprotein (ORF1ab), S
protein, ORF3a, M protein, ORF8, N protein, ORF10 (Figure 2).

We selected the sites with top mutation frequencies in Asia, Europe, and North America.
There are 27 sites in Asia samples, 30 sites in Europe samples, and 30 sites in North
America samples (Figure S1). Only 13 sites are shared by all three regions suggesting
that the mutation patterns may be different in three regions. We also calculated the
mutation frequency changes with time (Figure S2). Three main clusters can be observed:
1) The mutation frequency gradually increases with time, and finally reaches a plateau.
This pattern likes a classic logistic curve. 2) The mutation frequency has a high peak at
the beginning of the outbreak, and then the frequency decreases to a low level with time.
3) The mutation frequency has a high peak at the beginning of the outbreak, and then
the frequency decreases with time but maintains a high level. Cluster 1 takes for a little
more than 30% of each group. Cluster 2 takes about 30% of Asia and Europe samples,
while it takes more than two-thirds of North America samples. Cluster 3 takes around
30% in Asia and 20% in Europe (Figure S1). It confirms the different patterns in Asia,
Europe, and North America samples.

Most of the mutation can lead to amino acid substitution

Non-synonymous and synonymous mutations can lead to different results. Thirty-eight
SNPs in the SARS-CoV-2 genome can contribute to amino acid substitution (Table S1).
Three genes, ORF1ab, Spike protein, and N protein, contain the most non-synonymous
mutations (Table 1). Spike protein mediates host cell receptor recognition and binding.
It is the key for vaccine design and development against SARS-CoV-2 infection’. The
enrichment of SNPs in the Spike protein gene could lead to the subsequent evolution
of the virus. Three regions display different mutation directions which makes the
prediction of the mutation valuable (Table 1).
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Table 1. Non-synonymous mutations enriched in three gene loci.

Gene Asia Europe America
ORF1lab 9 9 11
Spike protein 1 3 2
N protein 4 4 4
Cluster (1/2/3) 71215 6/5/5 7/10/0

Model of predicting the mutation frequency

Based on a regression method, we developed a model to predict the frequency change
with time in a short period (Figure S1). The MSE values represent the accuracy and
stability of the model (Table 2). The model proposes the mutation trends of each site in
three regions. The method considers multiple factors: disease outbreak region, number
of days in the training set, and number of days for out-of-sample prediction, and
predicted the mutation frequency for specific sites. It could be a reference for
researchers on different continents.

Table 2. MSE of the prediction model.

MSE Average (-1ogio) SD
Asia 6.97 0.95
Europe 4.62 1.50
America 6.93 0.86

The mutations in Spike protein may affect the off-target effect of the vaccine. We
selected a few genome positions for detailed modeling analysis in the range 21,000 to
26,000, which is believed to encode the spike protein.
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Figure 3. The ARIMA model fitting and forecast of the genome position 23403. The matrix of plots
(p, q) all have a fixed difference order d=2. The real data (blue curve) and the in-sample prediction
(black curve) for the training data set (from the date of the first mutation report to the 200th day
after that data) fits well, and the out-of-sample forecast from the 201st to the 280th day (orange
curve) achieves minimum MSE with parameters (p, d, ¢) = (2, 2, 3).
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Figure 4. ARIMA model fitting and forecast of the genome position 22227. The matrix of plots (p,q)
all have a fixed difference order d=1. The real data (blue curve) and the in-sample prediction (black
curve) for the training data set fits well, and the short period forecast (orange curve) from 1315 day
to the 210" day reproduces the correct real data for (p, d, ¢) = (3, 1, 1).

We selected the A23403G mutation which is the D614G spike protein mutation. We
used the ARIMA model to predict the short-term mutation frequency. The training data
set was defined from the first day of non-zero mutation rate to the 200" day. We tested
three ARIMA model parameters (p, d, ¢), and d = 2 followed the rising trend of the real
mutation rate data (Figure S3). The ARIMA model parameters (p, d, g) = (2, 2, 3) were
fitted on the training set and the optimized parameters were selected to minimize the
MSE on the test set from the 201% day to the 280™ day, between the out-of-sample
forecast and the real data (Figure 3). When the forecast is performed in a much longer
period from the 201° day to the 360" day, the ARIMA model can only capture the rising
trend but failed to fit the plateau of the real data (Figure S4). Another genome position
15 22,227 (C-to-T, also called A222V), of which the mutation rate shows a logistic curve
and reaches a steady rate beyond the 160" day. ARIMA models with parameters d = 1
can capture this steady rate and the best forecast occurs at (p, d, g) = (3, 1, 1) (Figure
4). The training set of this position had a different length compared to position 23403
because the mutation rate stabilizes much faster, and we used the time range from the
first date of non-zero mutation rate to the 130" day after the first day. The optimized
parameters are sensitive to the choice of the training set length, which invites further
study into the modeling stability.

Based on the similarity of genomes and the prediction of mutation trends, we hope that
our work can provide an alternative reference for residents to choose vaccines produced
in different brands and different countries. Overall, we expect our approach to be a
fundamental solution in the literature and contribute as reliable quantitative benchmarks.

Discussion

We focused on the Spike protein which is the most important region in the SARS-CoV-
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2 genome related to human immune response (Figure 5) 8. The angiotensin-converting
enzyme 2 (ACE2) proteins can bind the glycosylated S proteins on the surface of
SARS-CoV-2 and mediates the viral cell entry’. The SARS-CoV-2 S protein consists of
1273 amino acids, including a signal peptide in the N-terminus, the S1 and S2 subunits
(Figure 5). In the S1 subunit, a receptor-binding domain (RBD) is responsible for
binding the ACE2. Fusion peptide (FP) plays an essential role in mediating membrane
fusion!®. HR1 and HR2 form the six-helical bundle (6-HB) with the entry function of
the S2 subunit!!. The transmembrane (TM) domain of the S protein anchors in the viral
membrane.
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SP: signal peptide. RBD: receptor-binding domain. FP: fusion peptide.
HR: heptad repeat. TM: transmembrane domain. CP: cytoplasm domain.

Figure 5. Structure of Spike protein in SARS-CoV-2 genome.

We found three patterns of the SARS-Cov-2 mutation patterns. We have tested the
ARIMA model in cluster 1 and the model exhibits good performance in the short-term
prediction. We further applied the ARIMA model mutation sites of the other two
clusters. The genome mutation C27046T (T175M) is a typical cluster 2 cases in Europe.
The prediction for the training data set fits well with the real data, and the short-term
prediction with (p, d, ¢) = (3, 1, 1) in the range from 116" day to the 176™ day
reproduces the correct real data (Figure S5). Another typical cluster 3 case in Asia is
C28311T (P13L). With the settings (p, d, q) = (3, 1, 2), the short-term prediction from
the 200" day to the 260" day reproduces the correct real data (Figure S6).

In summary, we collected SARS-Cov-2 sequence mutations and summarized 3
mutation patterns. We screened out non-synonymous mutation sites and found that the
patterns of mutations on different continents are different. We fitted the mutation
frequencies to the ARIMA model, and the model can forecast well in the short term. It
would be a good basis for other studies of COVID-19 in terms of genomic mutation
patterns and prediction.
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Figure S1. Sites with top mutation frequencies in Asia, Europe, and North America.
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Figure S2. Frequencies and prediction of top mutated sites in Asia, Europe, and North America.
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Figure S3. ARIMA model fitting and forecast of the genome position 23403. The matrix of plots (d,
q) all have a fixed p=2. The real data (blue curve) and the in-sample prediction (black curve) for the

training data set fits well, and the out-of-sample forecast from the 201 to the 280" day (orange

curve) only follow the correct trend of real data at d=2.
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Figure S4. ARIMA model fitting and forecast of the genome position 23403. The matrix of plots (p,
q) all have a fixed difference order d=2. The real data (blue curve) and the in-sample prediction
(black curve) for the training data set fits well, but the long period forecast (orange curve) from
201% day to the 360" day shows that none of the parameter combinations of the ARIMA model can

reproduce the plateau beyond 300" day after the mutation onset.
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Table S1. Most mutated sites in the SARS-CoV-2 genome.

. . Amino
Position Gene SNP Codon change Amm.O. acid acid Non-
position change synonymous
313 ORF1lab C->T CTC->CTT 16 L->L No
445 ORF1lab T->C GTT->GTC 60 V->V No
490 ORF1lab T->A GAT->GAA 75 D->E yes
1059 ORF1lab C->T ACC->ATC 265 T->1 yes
1397 ORF1lab G->A GTA->ATA 378 V->| yes
2416 ORF1lab C->T TAC->TAT 717 Y->Y No
2480 ORF1lab A->G ATT->GTT 739 I->V yes
2558 ORFlab C->T CCA->TCA 765 P->S yes
3037 ORF1lab C->T TTC->TTT 924 F->F No
3177 ORFlab C->T CCT->CTT 971 P->L yes
5572 ORF1lab G->T ATG->ATT 1769 M->| yes
6286 ORF1ab C->T ACC->ACT 2007 T->T No
6310 ORF1ab C->A AGC->AGA 2015 S->R yes
6312 ORF1lab C->A ACA->AAA 2016 T->K yes
6446 ORFlab G->T GTT->TTT 2061 V->F yes
8782 ORF1lab C->T AGC->AGT 2839 S->S No
9891 ORFlab C->T GCT->GTT 3209 A->V yes
11083 ORFlab G->T TTG->TTT 3606 L->F yes
13730 ORFlab C->T CTA->TTA 4489 A->L yes
14408 ORFlab C->T CTA->TTA 4715 P->L yes
14805 ORFlab C->T ACT->ATT 4847 Y->I yes
17747 ORFlab C->T CTG->TTG 5828 P->L yes
17858 ORF1lab A->G ATG->GTG 5865 Y->V yes
18060 ORFlab C->T TCT->TTT 5932 L->F yes
18877 ORF1lab C->T GTC->GTT 6204 C->V yes
19524 ORF1lab C->T TCG->TTG 6420 L->L No
20268 ORFlab A->G TAG->TGG 6668 L->W yes
21255 ORF1lab G->C CGT->CCT 6997 A->P yes
21614 Spike protein C->T CTT->TTT 18 L->F yes
21707 Spike protein C->T CAT->TAT 49 H->Y yes
22227 Spike protein C->T GCT->GTT 222 A->V yes
23403 Spike protein A->G GAT->GGT 614 D->G yes
23929 Spike protein C->T TAC->TAT 789 Y->Y No
24034 Spike protein C->T AAC->AAT 824 N->N No
25563 ORF3a G->T CAG->CAT 57 Q->H yes
26144 ORF3a G->T GGT->GTT 251 G->V yes
26729 M protein T->C GCT->GCC 69 A->A No
26735 M protein C->T TAC->TAT 71 Y->Y No
26801 M protein C->G CTC->CTG 93 L->L No

27046 M protein C->T ACG->ATG 175 T->M yes
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27944 ORF8 C->T CAC->CAT 17 H->H No
27964 ORF8 C->T TCA->TTA 24 S->L yes
28077 ORF8 G->C GTG->CTG 62 V->L yes
28144 ORF8 T->C TTA->TCA 84 L->S yes
28253 ORF8 C->T TTC->TTT 120 F->F no
28311 N protein C->T CCC->CTC 13 P->L yes
28688 N protein T->C TTG->CTG 139 L->L no
28854 N protein C->T TCA->TTA 194 S->L yes
28881 N protein G->A AGG->AAA 203 R->K yes
28882 N protein G->A AGG->AAA 203 R->K yes
28883 N protein G->C GGA->CGA 204 G->R yes
28932 N protein C->T GCT->GTT 220 A->V yes
29095 N protein C->T TTC->TTT 274 F->F no
29645 ORF10 G->T GTA->TTA 30 V->L yes
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Figure S5. ARIMA model fitting and forecast of the genome position 27046, a typical cluster 2 case
in Europe. The matrix of plots (p, q) all have a fixed difference order d=1. The real data (blue curve)
and the out-of-sample prediction (orange curve) for the training data set fits well, and the short
period forecast (orange curve) from 116™ day to the 176" day reproduces the correct real data for

(P, d, =G, L, 1.
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Figure S6. ARIMA model fitting and forecast of the genome position 28311, a typical cluster 3 case
in Asia. The matrix of plots (p, q) all have a fixed difference order d=1. The real data (blue curve)
and the out-of-sample prediction (orange curve) for the training data set fits well, and the short
period forecast (orange curve) from 200" day to the 260" day reproduces the correct real data for

(P, d, =G, 1,2).
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