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Abstract 

When acquiring information about choice alternatives, decision makers may have varying 

levels of control over which and how much information they sample before making a choice. 

How does control over sampling affect the quality of experience-based decisions? Here, 

combining variants of a numerical sampling task with neural recordings, we show that control 

over when to stop sampling can enhance (i) behavioral choice accuracy, (ii) the build-up of 

parietal decision signals, and (iii) the encoding of numerical sample information in multivariate 

electroencephalogram (EEG) patterns. None of these effects were observed when 

participants could only control which alternatives to sample, but not when to stop sampling. 

Furthermore, levels of control had no effect on early sensory signals or on the extent to which 

sample information leaked from memory. The results indicate that freedom to stop sampling 

can amplify decisional evidence processing from the outset of information acquisition and lead 

to more accurate choices. 

 

Keywords: active sampling, decision making, electroencephalography, information search, 

number processing 
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Introduction 

Humans routinely acquire information about choice alternatives before deciding between 

them. In many situations, decision makers can control which and how much information they 

sample. For example, when deciding which of two products to buy, a customer may 

deliberately study reviews and testimonials before making a final choice. In other situations, 

the availability and amount of relevant information is determined by external factors. For 

instance, when selecting job applicants in an organization that uses standardized interviews, 

an employer must decide based on the applicants’ answers to the same set of predefined 

questions. More generally, decision scenarios can differ in the extent to which an agent has 

control over sampling, in terms of which and how much information is sampled before a choice 

is made. 

 

One experimental setup suitable for studying how control over sampling may affect decision 

making is a numerical sampling paradigm (Hertwig et al. 2004; Hertwig and Erev 2009) in 

which participants can view sequential samples of possible choice outcomes before deciding 

for one or the other option. The paradigm has been used extensively in behavioral studies of 

risky choice to examine how decision makers choose between options they learned about 

from experience (i.e., through sampling the payoff distribution) as opposed to from formal 

description (e.g., “25% chance to obtain €10, otherwise €0”; Hertwig 2015; Wulff et al. 2018). 

Across these studies, researchers have also varied the extent to which participants were able 

to control the sampling process themselves. While the standard paradigm allows participants 

to decide freely which alternatives to sample and how often (Hertwig and Erev 2009), some 

studies have pre-specified the total number of samples to be taken (Hau et al. 2008; 

Ungemach et al. 2009; Fleischhut et al. 2014; Gonzalez and Mehlhorn 2016) or included 

matched (“yoked”) conditions in which participants had no control at all over the sampling 

sequence (Rakow et al. 2008). However, the latter variants of the sampling paradigm have 

been devised primarily to reduce confounds in comparisons with decisions from description 

(Rakow and Newell 2010); it remains unclear how control over sampling may alter experience-

based decision making itself. 

 

Several lines of evidence suggest that a sense of control can be beneficial in cognitive tasks 

(Gureckis and Markant 2012; Murayama et al. 2016). Agency in information acquisition has, 

for instance, been found to improve subsequent memory performance (Voss et al. 2011), even 

when exposure to the information was held constant (Murty et al. 2015). Another line of work 

has shown better performance in tasks self-selected by the participant than when the same 

tasks were selected by an experimenter (Murayama et al. 2015). More generally, various 

studies have identified performance benefits associated with volitional control per se and 

indicated that such effects could be mediated by motivational factors (Patall et al. 2008; Patall 

2012). However, the effects of control cannot easily be generalized across domains. In several 

contexts, control does not seem to impact task performance (Flowerday and Schraw 2003; 

Flowerday et al. 2004) or can be detrimental—for instance, when control is perceived as 

irrelevant or as too complex (Katz and Assor 2007; but see Murayama et al. 2015). In the 

domain of decisions from experience using the sampling paradigm, evidence regarding the 

role of agency in the sampling process is still sparse. One recent meta-analysis suggested 

that control over sampling may alter the temporal weighting of numerical samples in 

subsequent choice (Wulff et al. 2018). However, this analysis was limited to comparisons 
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across studies and did not address the performance benefits (or drawbacks) that may be 

associated with control over sampling, or the neurocognitive processes that might underlie 

them. 

 

Here, we used specially designed variants of a numerical sampling paradigm combined with 

EEG recordings to study how control over sampling affects experience-based decision 

making. We systematically varied whether participants were free to decide which and how 

much information to sample (full control), or only which information to sample (partial control; 

with a pre-specified total number of samples), or whether they had no control over sampling 

at all. Critically, our design controlled for differences in stimulus presentation by matching the 

sample sequences in the no-control conditions with those in the self-controlled tasks. We 

found that full, but not partial control over sampling had a distinct beneficial effect on choice 

accuracy, and that this benefit was associated with a stronger encoding of numerical sample 

information from the outset of information acquisition. 

Materials and Methods 

Participants 

 

Forty healthy volunteers took part in the experiment (20 female, 20 male; mean age 26.3 ± 

3.7 years; all right-handed). All participants provided written informed consent and received a 

flat fee of €10 and €10 per hour as compensation, as well as a performance-dependent bonus 

(€9.35 ± €0.48 on average). The study was approved by the ethics committee of the Max 

Planck Institute for Human Development. 

 

Experimental design 

 

On each trial, in all experimental conditions, participants were asked to decide between one 

of two choice options (left/right). Each choice option yielded one of two numerical outcomes 

(drawn from the range 1, 2, …, 9) with probability p (0.1, 0.2, …, 0.9), and the other outcome 

with probability 1 − p. The outcome values and probabilities on each trial were constrained 

such that (i) no two of the four numerical outcome values were identical and (ii) the difference 

in expected value between the two options was always 0.9 (derived from piloting). Under these 

constraints, the choice problems presented on each trial were selected pseudorandomly, with 

the additional restriction that each sample value (1, 2, …, 9) occurred with approximately equal 

probability across the experiment. 

 

Half of the participants were assigned to the “full control” condition, where they were free to 

sample from the left or right option as often as they wished before making a final choice. The 

only restriction on sampling in the full-control condition was that a sample had to be taken 

within 3 seconds (otherwise the trial was restarted) and that the total number of samples could 

not exceed 19. The other half of participants were assigned to the “partial control” condition, 

which was identical to the full control condition except that a fixed number of 12 samples had 

to be drawn on every trial. The number of samples was based on pilot data where free-

sampling participants took approximately 12 samples on average. In other words, participants 

in the partial control condition were also free to sample from the left or right option, but had no 
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control over when to stop (or continue) sampling: They were always prompted to make a final 

choice after the 12th sample. 

 

In both sampling conditions, the beginning of a new trial was signalled by a green fixation 

stimulus (a combination of bulls eye and cross hair; Thaler et al. 2013) that turned white after 

one second. Upon pressing the left or right button on a USB response pad (using the left or 

right hand respectively), participants were shown a black circular disk (diameter 5° visual 

angle) 4.5° to the left (choice option 1) or right (choice option 2) of fixation after 0.2 to 0.4 s 

(randomly varied). After another delay of 0.8 s, the number sample was presented in white 

(font Liberation Sans, height 4°) in the disk area for 0.5 s (see Figure 1 for a schematic 

illustration). After this, the disk disappeared and participants were given 3 s to draw the next 

sample. The black disk served as a spatial cue to minimize differences in surprise about the 

sample location (left/right) in yoked conditions without sampling control (see below). The 

sampling procedure was repeated depending on condition (partial control: 12 samples; full 

control: up to 19 samples), and the resulting sample sequences (including their precise timing) 

were recorded (see yoked conditions below). In the full control condition, a third button on the 

response pad (above the “right” button) was available to stop the sampling sequence. In all 

conditions, after the sampling was finished, the fixation stimulus changed color to blue for 1 s 

and participants were asked to make a final choice between the left and right options. The 

button and display procedure for the final choice was identical to that for drawing samples, 

except that the final choice outcome was displayed in green to indicate the eventually obtained 

reward. The rewards (i.e., the payouts from the final choices) were converted to Euros with a 

factor of 0.005 and added as a bonus to participant's reimbursement after the experiment (see 

Participants above). 

 

Within both groups (full and partial control), each participant additionally performed the task in 

a “yoked” condition, where they had no control over sampling. Here, participants made 

decisions based on replays of previously recorded sampling streams (without any control over 

which and how many samples were shown or their timing). Accordingly, we refer to the yoked 

conditions as the no-control baseline conditions. In each group, half of the participants first 

performed the self-controlled sampling task (full or partial) and subsequently performed the 

no-control task with a replay of their own sampling sequences. In informal debriefing after the 

experiment, none of these participants reported having noticed that they had viewed exact 

replays of their own sampling sequences. The other half of the participants in each group 

performed the no-control task first (yoked to the sampling sequences of another participant in 

the same group) and the self-controlled task second. Control analysis showed no differences 

in choice accuracy between participants who performed the baseline task first (yoked to 

another participant’s sequences) or second (yoked to their own sequences) (all p > 0.05). 

Furthermore, in the subset of participants who were yoked to another participant, the difficulty 

of active versus yoked sampling sequences did not differ (all p > 0.05). Each participant 

performed 100 trials (five blocks of 20 trials with short breaks between blocks) in the self-

controlled and yoked task variant, respectively. 

 

Participants in the full control group drew on average 8.6 samples (SD = 4.2, median = 8), 

compared with the 12 samples that had to be drawn in the partial control group. Due to the 

principled impossibility of matching full and partial control trials (e.g., with respect to the 

precise length and timing of the sampling sequences on individual trials), all our analyses 

focus on comparisons of differences to the matched (yoked) baseline condition within each 
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group. This analysis strategy rules out stimulus confounds that may arise, for instance, due to 

“amplification effects” under full control, where stopping decisions may be more likely when 

the momentary difference between the accumulated option values happens to be large 

(Hertwig and Pleskac 2010). 

 

The experiment was programmed in Python using the Psychopy package (Peirce et al. 2019) 

and run on a Windows 10 PC. The experiment code is available on Zenodo 

(https://doi.org/10.5281/zenodo.3354368). Behavioral responses were recorded using a USB 

response pad (The Black Box ToolKit Ltd, UK). Throughout the experiment, eye movements 

were recorded using a Tobii 4C eye-tracker (Tobii Technology, Sweden; sampling rate 90 Hz). 

To reduce eye movements, participants’ gaze position was analyzed online while the 

experiment was run in all sampling conditions. The program displayed a warning message 

and restarted the trial whenever the gaze left an elliptical area centered on the central fixation 

stimulus (width 5° visual angle, height 2.85° visual angle) more than four times during a trial. 

Saccades towards the outcome samples were robustly detected with these settings. On 

average 3% of trials per participant were restarted due to lack of fixation, or failure to draw a 

sample within 3 seconds (see above). Offline analyses confirmed that participants generally 

held fixation in the remaining trials. 
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Fig. 1 Experimental task and behavioral results. (a) Schematic illustration of an example trial. 

Participants were asked to decide between two choice options (left/right). Before committing to a choice, 

participants could draw up to 19 samples (full control group) or were required to draw a fixed number 

of 12 samples (partial control group). In yoked baseline conditions, participants judged replays of 

previously recorded sampling streams. (b) Mean accuracy (proportion of times the sampled sequence 

was judged correctly) in each condition. (c) Decision weights (see Materials and Methods) of samples 

occurring early, mid, or late in the sampling sequence, for each sampling condition. (d) Difference in 

decision weight between late and early samples. Higher values indicate that late samples had a stronger 

relative influence on choice than early samples (“recency” effect). Error indicators in all panels show 

SE. 
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Supplementary tasks 

 

After the main experiment, participants performed an additional short task on the same choice 

problems, where the options were not explored through sampling but described formally on 

screen (e.g., “8 with 60% or 4 with 40%?”). Due to a coding error, much of the data (84%) from 

this task was incorrectly recorded and the results are thus not reported here. Participants 

further completed a brief numeracy questionnaire (Berlin Numeracy Test, BNT (Cokely et al. 

2012)). Exploratory analysis showed no significant correlations of the effects reported in our 

main analysis with BNT scores. 

 

EEG recording 

 

The experiment was performed in an electrically shielded and soundproof cabin. Scalp EEG 

was recorded with 64 active electrodes (actiCap, Brain Products GmbH Munich, Germany) 

positioned according to the international 10% system. Electrode FCz was used as the 

recording reference. We additionally recorded the horizontal and vertical electrooculogram 

(EOG) and electrocardiogram (ECG) using passive electrode pairs with bipolar referencing. 

All electrodes were prepared to have an impedance of less than 10kΩ. The data were recorded 

using a BrainAmp DC amplifier (Brain Products GmbH Munich, Germany) at a sampling rate 

of 1000 Hz, with an RC high-pass filter with a half-amplitude cutoff at 0.016Hz (roll-off: 

6dB/octave) and low-pass filtered with an anti-aliasing filter of half-amplitude cutoff 450Hz 

(roll-off: 24dB/octave). The dataset is organized in Brain Imaging Data Structure format (BIDS; 

Gorgolewski et al. 2016) according to the EEG extension (Pernet et al. 2019), and is available 

from https://gin.g-node.org/sappelhoff/mpib_sp_eeg/. 

 

Behavioral data analysis 

 

Participants’ behavioral accuracy in each sampling condition was calculated with respect to 

the arithmetic mean of the samples that were presented for each option. Differences in 

accuracy between sampling conditions were analyzed using a mixed 2×2 ANOVA (self-

controlled/yoked; full/partial), followed up with Bonferroni-corrected pairwise t-tests. All 

statistical tests reported (including in the EEG analyses, see below) are two-tailed. 

 

To examine recency effects in the behavioral data, we used a reverse correlation approach 

(Neri et al. 1999; Spitzer et al. 2016) based on logistic regression. We first divided the samples 

in a trial into early, mid, and late samples. The first and last two samples in a trial were defined 

as early and late samples, respectively, and the remaining samples as “mid” samples. Trials 

with fewer than 5 samples overall were discarded in this analysis (between 1% and 41.5% of 

trials per participant, mean = 13.3%). For each participant, task condition, and time window, 

we regressed the participant’s final choices (left: 0, right: 1) onto the number sample values 

(numbers 1, 2, …, 9 rescaled to −4, −3, ..., 4), where the values for the left option were sign-

flipped to reflect their opposite impact on the probability of choosing the right option (Spitzer 

et al. 2017). We interpret the regression coefficients resulting from this analysis as a measure 

of “decision weight”, that is, of the influence that number samples (early, mid, or late) had on 

choice. 

 

EEG preprocessing 
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The EEG recordings were visually inspected for noisy segments and bad channels. Ocular 

and cardiac artifacts were corrected using independent component analysis (ICA). To this end, 

we high-pass filtered a copy of the raw data at 1 Hz and downsampled it to 250 Hz. We then 

ran an extended infomax ICA on all EEG channels and time points that were not marked as 

bad in the prior inspection. Using the EOG and ECG recordings, we identified stereotypical 

eye blink, eye movement, and heartbeat artifact components through correlation with the 

independent component time courses. We visually inspected and rejected the artifact 

components before applying the ICA solution to the original raw data (Winkler et al. 2015). We 

then filtered the ICA-cleaned data between 0.1 and 40 Hz, interpolated bad channels, and re-

referenced each channel to the average of all channels. Next, the data were epoched from 

−0.2 to 0.8 s relative to each individual number sample onset. Remaining bad epochs were 

rejected using a thresholding approach from the FASTER pipeline (Step 2; Nolan et al. 2010). 

On average, n = 1925 clean epochs (93.85%) per participant were retained for analysis. The 

epochs were downsampled to 250 Hz and baseline corrected relative to the period from −0.2 

to 0 s before stimulus onset. All EEG analyses were performed in Python using MNE-Python 

(Gramfort et al. 2013), MNE-BIDS (Appelhoff et al. 2019), and custom code. All analysis code 

is available at https://github.com/sappelhoff/sp_code. 

 

Event-related potential (ERP) analysis 

 

EEG analyses are reported for the epochs around the onset of the individual number samples. 

We first examined lateralized visual ERP components to test whether early visual processing 

differed between the sampling conditions. To this end, we subtracted the ERP for stimuli 

presented on the right from the ERP for stimuli presented on the left, and then subtracted the 

mean signal of right-hemispheric (O2, PO4, PO8, PO10) occipito-parietal channels of interest 

(based on previous literature; Eimer 1998) from the corresponding left-hemispheric (O1, PO3, 

PO7, PO9) channels. Mean amplitudes of the lateralized evoked potential were extracted from 

prototypical time windows (P1 ERP component: 80 ms to 130 ms, N1 ERP component: 140 

ms to 200 ms) for each sampling condition and analyzed in a mixed 2×2 ANOVA (self-

controlled/yoked; full/partial). 

 

We further examined centro-parietal evoked responses (CPP/P3, averaged over the early, 

mid, and late samples in each trial) as a potential correlate of decisional evidence 

accumulation (O’Connell et al. 2012; Twomey et al. 2015; Pisauro et al. 2017). To this end, 

we averaged the signal over centro-parietal channels (Cz, C1, C2, CPz, CP1, CP2, CP3, CP4, 

Pz, P1, P2) and focused on a time window from 300 ms to 600 ms, based on previous analyses 

of CPP/P3 responses during visual stimulus sequences (Spitzer et al. 2017; Wyart et al. 2015; 

Polich 2007). 

 

Representational similarity analysis (RSA) 

 

To examine the encoding of numerical sample value in multivariate EEG patterns, we used an 

approach based on representational similarity analysis (RSA; Kriegeskorte and Kievit 2013). 

To this end, the ERPs were additionally smoothed (Grootswagers et al. 2016) with a Gaussian 

kernel (35 ms half duration at half maximum). We then computed multivariate (dis)similarity in 

terms of the pairwise Euclidean distance between the ERP patterns associated with each 

sample value (numbers 1–9), yielding a 9×9 representational dissimilarity matrix (RDM) for 

each time point of the analysis epoch. The EEG RDMs at each time point were compared with 
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model RDMs reflecting (1) the samples’ numerical magnitude (“numerical distance”; upper 

panel Fig. 3a) and (2) their “extremity” (i.e., a sample’s absolute difference from the midpoint 

of the sample range, 5; Fig. 3d). To avoid confounds by potential deviations from a uniform 

distribution of sample values across the experiment, we additionally orthogonalized each 

model RDM to an RDM of the relative frequency of numerical sample occurrences (Spitzer et 

al. 2017). Qualitatively similar results were obtained when this orthogonalization step was 

omitted. 

 

For quantitative analysis, we extracted the lower triangle (excluding the diagonal) from each 

model RDM and compared it with the EEG RDM data at each time point using the Pearson 

correlation coefficient. To analyze the overall encoding of numerical distance and extremity, 

we used t-tests against zero with cluster-based permutation testing (Maris and Oostenveld 

2007) to control for multiple comparisons over time points (10,000 iterations, cluster-defining 

threshold = 0.05). We then re-computed the EEG RSA separately for each sampling condition 

to test for differences in number encoding. Differences between conditions were examined 

using mixed 2×2 ANOVAs (self-controlled/yoked; full/partial), again using cluster-based 

permutation testing to control for multiple comparisons over time points. Analogous RSA 

analyses were performed separately on the first and second half of samples from each trial 

(Fig. 3c). 

Results 

Participants (n = 40) observed sequential samples (Arabic digits 1–9) of the potential payouts 

of choice options (left/right) before deciding on one of them (Fig. 1a). In different conditions, 

participants (i) could determine from which option(s) to sample and when to stop sampling 

(“full control”, 1–19 samples/trial, n = 20 participants) or (ii) could determine only from which 

option to sample for a fixed number of samples (“partial control”, 12 samples/trial, n = 20 

participants). Each participant additionally performed the task in a “yoked” condition with 

matched sample sequences (see Materials and Methods) that they could not control. Our 

behavioral and EEG analyses focus on the effects of control (full or partial) relative to the 

matched (yoked) no-control conditions. 

 

Behavior 

 

We examined choice accuracy with respect to the average value of the samples observed in 

each option. Mean choice accuracy was 83.8% under full control (SE = 1.4%, yoked baseline: 

80.3%, SE = 1.2%) and 79.6% under partial control (SE = 1.6%, yoked baseline: 80.3%, SE 

= 1.6%). A mixed 2×2 ANOVA with the factors control over sampling (self-controlled or yoked; 

within participants) and control type (full or partial; between participants) showed no main 

effects [self-controlled/yoked: F(1,38) = 2.143, p = 0.151, ηp² = 0.053; full/partial: F(1,38) = 

1.321, p = 0.258, ηp² = 0.034], but a significant interaction of the two factors [F(1,38) = 5.108, 

p = 0.03, ηp² = 0.118)]. Post hoc tests showed significantly higher accuracy under full control 

than in the yoked baseline [t(19) = 2.644, p = 0.032, d = 0.605, Bonferroni corrected], but no 

such effect under partial control [t(19) = −0.561, p > 0.9, d = −0.108]. Thus, relative to matched 

baseline conditions, we found an accuracy benefit of control over sampling under full control, 

but not under partial control. 
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We next examined if and to what degree the integration of sample information over time 

differed between conditions. To this end, we examined the samples’ decision weights (see 

Materials and Methods, Behavioral data analysis) separately for early, mid-, and late portions 

of the sampling sequence (Fig. 1c). We found a pronounced “recency” pattern (Tsetsos et al. 

2012; Cheadle et al. 2014), with decision weight increasing over the course of the trial. In other 

words, later samples generally had a higher impact on the final choice than earlier samples. 

For comparison between sampling conditions, we quantified recency as the difference in 

decision weight between late and early samples (Fig 1d). A mixed 2×2 ANOVA, specified 

analogously as for accuracy above, showed no significant main effects [self-controlled/yoked: 

F(1,38) = 0.8, p=0.377, ηp² = 0.021; full/partial: F(1,38) = 3.363, p = 0.075, ηp² = 0.081], and 

no interaction between the two factors [F(1,38) = 1.483, p = 0.231, ηp² = 0.038]. Thus, we 

found no impact of control over sampling on recency. Together, full control over sampling was 

characterized by increased choice accuracy but was not distinguished in the extent to which 

sample information “leaked”(Usher and McClelland 2001), or was forgotten, in the course of a 

trial. 

 

Visual evoked responses 

 

Turning to the EEG data, we first examined visual evoked responses to test whether the 

sampling conditions differed in terms of early sensory processing of the sample stimuli (e.g., 

due to potential differences in stimulus-directed visual attention; Luck et al. 2000). Figure 2a 

shows the occipitoparietal ERP difference between stimuli occurring in the right and left visual 

fields, subtracted between contralateral channels (see Materials and Methods, ERP analysis). 

Statistical analysis showed no differences between sampling conditions in the time window of 

either the P1 (80–130ms) or the N1 component (140–200ms) of the visual ERP [all F(1,38) < 

1.71, all p > 0.20, all ηp² < 0.044; mixed 2×2 ANOVAs specified as in the behavioral analysis 

above]. We thus found no evidence for differences in early visual processing between the 

sampling conditions. 
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Fig. 2 Univariate EEG results with ERPs time-locked to number sample onset. (a) Early visual 

ERPs (left − right stimuli, right channels subtracted from left channels) in each sampling condition. Gray 

shadings indicate time windows of the P1 and N1 components, respectively (80–130 ms and 140–200 

ms). (b) The difference in centro-parietal (CPP) amplitudes between samples occurring late vs. early in 

the trial (see panels c–d), plotted separately for each sampling condition (including yoked). (c) The 

“ramping up” of CPP amplitudes over early, mid, and late samples in the partial control condition. Gray 

shadings indicate the time window from which average amplitudes were extracted in panel b. (d) same 

as c, for the full-control condition. Error indicators in all panels show SE. 
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Centro-parietal positivity (CPP) / P3  

 

We next examined CPP responses over centro-parietal channels between 300 ms and 600 

ms after stimulus onset. The amplitude of the CPP response to a sample generally increased 

in the course of the trial (Figures 2b–d), which is in line with previous studies implicating the 

CPP in decisional evidence accumulation (O’Connell et al. 2012; Twomey et al. 2015). Figures 

2c and 2d illustrate the monotonic ramping-up of CPP across samples occurring early, mid, 

and late in the trial (see Materials and Methods) under partial and full control. Descriptively, 

the build-up of CPP was stronger under full control. For statistical analysis, we examined the 

increase in CPP amplitude from early to late samples in the individual sampling conditions 

(Fig. 2b). A significant increase in amplitude was evident in each condition (including yoked; 

Fig 2b, all p < 0.02, t-tests against zero, uncorrected). A mixed 2×2 ANOVA comparing the 

amplitude difference between conditions showed no significant main effects [self-

controlled/yoked: F(1,38) = 1.579, p = 0.217 ηp² = 0.04; full/partial: F(1,38) = 1.534, p = 0.223, 

ηp² = 0.039], but a significant interaction [F(1,38) = 11.408, p = 0.002, ηp² = 0.231]. Post-hoc 

t-tests showed that the CPP increased more steeply in the full control condition than in the 

yoked baseline [t(19) = 2.772, p = 0.024, d = 0.687, paired t-test, corrected], whereas no such 

effect was evident under partial control [t(19) = −1.932, p = 0.137, d = −0.355]. These findings 

suggest that the increased choice accuracy under full control was associated with a stronger 

build-up of a cumulative decision variable (Twomey et al. 2015), as indicated by a steeper 

increase of centro-parietal decision signals within trials. 

 

RSA 

 

Our results so far show that decisions made with full control over sampling were more accurate 

and accompanied by a stronger build-up of parietal choice signals (Fig. 2c–d), but there was 

no evidence for differences in early visual processing (Fig. 2a) or in the leakage of sample 

information over time (Fig. 1b–c). One possibility is that a benefit of full control may have arisen 

at the stage of numerical processing, in encoding the abstract decisional value of the sampled 

number information proper. We used an RSA-based approach (see Materials and Methods) 

to examine the neural encoding of numerical sample values, building on previous findings of 

numerical distance effects in multivariate EEG patterns (Spitzer et al. 2017; Teichmann et al. 

2018; Luyckx et al. 2019; Sheahan et al. 2021). Specifically, we correlated the multivariate 

similarity structure of samples (1–9) in our EEG data with theoretical models reflecting (i) 

numerical distance and (ii) extremity of the sample values (see Materials and Methods). 

 

Numerical distance. We found robust encoding of numerical distance in multivariate EEG 

signals between approximately 160 and 800 ms after sample onset (Fig. 3b, pcluster < 0.001, t-

test against zero), replicating previous findings in tasks without sampling control (Spitzer et al. 

2017; Teichmann et al. 2018; Luyckx et al. 2019; Sheahan et al. 2021). To test whether the 

strength of this effect differed between levels of sampling control, we examined its time course 

in the various conditions (full, partial, yoked baselines) using mixed 2×2 ANOVAs (specified 

analogously as above). The analysis showed no main effects (all pcluster > 0.05) but a significant 

interaction cluster between 320 ms and 580 ms (pcluster = 0.009). We further compared the 

average numerical distance effects in the time window of this cluster. We found the effect to 

be significantly larger (relative to yoked baseline) under full control [t(19) = 3.65, p = 0.003, d 

= 1.05, corrected], but not under partial control [t(19) = −1.065, p = 0.6, d = −0.340, corrected]. 

In other words, the encoding of number information in sample-level neural signals was 
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enhanced under full control, mirroring the pattern of findings for CPP build-up (Fig. 2b) and 

choice accuracy (Fig. 1b). 

 
 

Fig. 3 RSA Results. (a) Upper: Model RDM reflecting the pairwise numerical distance between sample 

values. Lower: Grand mean EEG RDM averaged across participants and sampling conditions in a 

representative time window between 300 and 600 ms after sample onset. (b) Time course of numerical 

distance effects in multivariate EEG patterns, plotted separately for each sampling condition. Black bar 

indicates time windows of significant numerical distance encoding (collapsed across sampling 

conditions). Purple bar indicates the time window of significant differences between sampling conditions 

(interaction effect, see Results). (c) Mean numerical distance effects by condition. Left: First half of 

samples in each choice trial. Right: Second half. (d) Model RDM reflecting the sample values’ extremity 

in terms of their absolute distance from the midpoint of the sample range (i.e., 5). (e) Time course of 

extremity encoding in multivariate EEG, plotted separately for each sampling condition. All error bars 

and shadings show SE. 
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We next asked whether the enhanced number encoding under full control was driven solely 

by late samples occurring near the time of the decision to stop sampling. To this end, we 

repeated the RSA analysis separately for the first (Fig. 3c, left) and second (Fig. 3c, right) half 

of the samples in a trial. Importantly, a significant enhancement under full control was already 

evident in the first half of samples [t(19) = 2.279, p = 0.034, d = 0.707], that is, long before 

participants stopped sampling. The effect in the second half of samples was similar [t(19) = 

2.237, p = 0.037, d = 0.673; partial control: both p > 0.24]. In sum, we found no indication that 

enhanced number encoding under full control occurred only near the time of deliberate (vs. 

forced) stopping. Rather, the effect appeared to emerge early in the sampling sequence. We 

note again that we only interpreted effects in relation to the respective matched (yoked) control 

conditions, as other comparisons may suffer from non-trivial confounds (see Materials and 

Methods, Experimental design). 

 

Extremity. Inspection of the empirically observed RDM (Fig. 3a, lower) suggests that besides 

numerical distance, the multivariate EEG patterns also encoded the extremity of the sample 

values (i.e., their absolute distance from the mid-point of the sample range (Spitzer et al. 2017; 

Luyckx et al. 2019)). Using a model RDM of numerical extremity (Fig. 3d; note that the model 

is orthogonal to the numerical distance RDM in Fig. 3a, upper), we found a significant effect 

between approximately 260 ms and 800 ms (t-test against zero, pcluster < 0.001) in the EEG 

data collapsed across conditions. However, testing for differences between sampling 

conditions yielded no significant results (all pcluster > 0.05). Together, while both numerical 

distance and numerical extremity were reflected in our multivariate EEG data, only numerical 

distance mirrored the enhancement under full control that was observed in CPP build-up and 

in behavior. 

 

Neurometric distortions. Recent studies of sequential number comparisons (without 

participant control over sampling) have shown that neural number representations can be 

distorted (e.g., anti-compressed) away from the linearly monotonic distance structure of our 

idealized model RDMs (Fig. 3a). We used a “neurometric” approach (Spitzer et al. 2017) to 

test (i) whether such distortions were replicated in our task and (ii) whether they differed 

between levels of control. To this end, we parameterized our model RDMs to reflect the 

distance structure of transformed values 𝑣 = 𝑠𝑖𝑔𝑛(𝑥 + 𝑏) |𝑥 + 𝑏|𝑘, where 𝑥 are the numerical 

sample values (1–9 normalized to the range [−1, 1]), exponent 𝑘 determines the shape of the 

transformation (𝑘 < 1 compression; 𝑘 = 1 linear; 𝑘 > 1 anti-compression), and 𝑏 reflects a 

bias towards smaller (𝑏 < 0) or larger numbers (𝑏 > 0). Our EEG data, averaged across all 

conditions, were best explained by parameterizations 𝑘 > 1 and 𝑏 > 0 (Fig. 4a; both p < 0.003, 

t-tests of individual subject maxima against 1 and 0, respectively, averaged over 

parameterized distance and extremity). Thus, the neural number representation was anti-

compressed and biased towards larger magnitudes (Fig. 4b), strongly resembling the 

distortions observed in previous work (Spitzer et al. 2017; Luyckx et al. 2019). In comparisons 

between levels of control, however, we found no evidence for differences in the degree of anti-

compression (Fig. 4c, left; both p > 0.545, t-tests of 𝑘 against yoked baselines or bias; Fig. 4c, 

right; both p > 0.131, t-tests of 𝑏 against yoked baselines). In other words, under full control, 

the encoding of numerical sample information was amplified (Fig. 3) without any notable 

changes in its general representational geometry. 
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Fig. 4 Neurometric distortions. (a) Grand mean neurometric map, combined across all task 

conditions. Color scale indicates change in EEG encoding strength (𝛥 𝑟, averaged over distance- and 

extremity models) as a function of non-linear distortions of numerical value (𝑘 < 1: compression; 𝑘 > 1: 

anti-compression, 𝑏: bias). Dashed lines indicate linear (𝑘 = 1) and unbiased (𝑏 = 0) models. Parts of 

the map that are not overlaid with a slightly opaque mask contain values with a significant increase 

relative to unbiased linear encoding (p < 0.001, corrected using false discovery rate). White markers 

show maxima (diamond: mean; dots, individual participants). (b) Neurometric function, parameterized 

according to the maximum mean correlation identified in a. (c) Neurometric parameter estimates in the 

individual sampling conditions, left: exponent (𝑘); right: bias (𝑏). Error bars show SE. 
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Discussion 

Using variants of a numerical sampling paradigm and controlling for stimulus confounds, we 

observed increased choice accuracy when participants had control over the sampling process 

before committing to a choice. On the neural level, the behavioral benefit was reflected in a 

stronger encoding of the numerical sample information in multivariate EEG patterns and in a 

steeper build-up of centroparietal choice signals. The key determinant of these effects was 

participants’ control over how much information to sample. Freedom to decide only which 

options to sample, but not when to stop sampling, did not bring about the same effects, in 

either behavior or neural signals. 

 

Drawing on a well-established sequential sampling framework (Gold and Shadlen 2007; 

Ratcliff and McKoon 2008; O’Connell et al. 2012), our behavioral and neural findings provide 

a neurocognitive perspective on how control over sampling may boost choice accuracy. We 

observed no differences in early visual ERPs known to be modulated by top-down visual 

attention (Mangun and Hillyard 1991; Luck et al. 1994, 2000), but a robust enhancement 

further downstream in the processing hierarchy, at the level of symbolic number encoding 

(Ansari et al. 2005; Nieder and Dehaene 2009). Our results replicate recent findings of a 

“neuronal numberline” in multivariate EEG patterns, where the neural representation of for 

example, number “6” is more similar to that of “7”, than to that of “9” (Spitzer et al. 2017; 

Teichmann et al. 2018; Luyckx et al. 2019; Sheahan et al. 2021). We found this representation 

of numerical magnitude to be amplified under full control, mirroring the pattern observed in 

behavioral performance. Importantly, number encoding was already enhanced for samples 

occurring early in the trial, long before participants stopped sampling to make a final choice. 

Consistent with this finding, we also observed a steeper rise in parietal indices of evidence 

accumulation (CPP/P3; O’Connell et al. 2012; Twomey et al. 2015) across samples, as if each 

individual sample contributed stronger evidence to the ongoing decision formation. In a 

sequential sampling framework where evidence is accumulated into a running decision 

variable (Gold and Shadlen 2007; Kiani et al. 2008; Ratcliff and McKoon 2008; O’Connell et 

al. 2012; Glickman and Usher 2019), our EEG and behavioral findings may thus both be 

attributable to an improvement in numerical evidence processing. 

 

One possible explanation for our findings relates to motivational factors. Previous work has 

shown that the ability to actively control the environment and/or one’s subjective experiences 

can have beneficial effects, for example on memory (Voss et al. 2011; Murty et al. 2015), self-

regulation and error monitoring (Legault and Inzlicht 2013), learning and inductive inference 

(Gureckis and Markant 2012; Markant and Gureckis 2014), and various other aspects of 

cognition and behavior (Patall et al. 2008; Leotti et al. 2010; Leotti and Delgado 2011; Patall 

2012; Murayama et al. 2016). Our findings add to these literatures by showing that control can 

also confer benefits in sample-based decision making, specifically when participants can 

control when to stop sampling. While the extrinsic rewards for choice accuracy were identical 

across our task conditions, control over stopping can add an incentive to optimize the time 

spent on a trial (Ostwald et al. 2015; Tickle et al. 2020). There is typically a trade-off between 

speed and accuracy of task execution (Heitz 2014), such that faster decisions come at the 

cost of lower accuracy (but see Gigerenzer et al. 2011). However, the present findings under 

full control cannot be explained by such a trade-off, given that we observed benefits relative 

to yoked trials of identical length. As we used exact copies of the participant-generated 
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sampling sequences in our baseline conditions, we can also rule out the possibility that the 

results are attributable to “amplification effects” (Hertwig and Pleskac 2010), where 

participants tend to stop sampling when the cumulative difference between options happens 

to be large (leading to objectively easier trials; see below). With these simpler explanations 

ruled out, our findings suggest that control per se may lead to more efficient sample encoding, 

potentially through increased task engagement when decision time can be optimized on a trial 

by trial basis. 

 

We found no differences between conditions in the temporal weighting of sample information 

over the course of a trial. A clear recency effect (relative overweighting of late samples) was 

evident in all task conditions, including yoked baselines. This pattern appears to be at odds 

with a previous meta-analysis of numerical sampling studies (Wulff et al. 2018), where recency 

effects were observed solely in conditions with full agency over sampling. However, the 

present pattern is consistent with established findings of recency effects in other sequential 

integration tasks where sample presentation is entirely experimenter-controlled (Tsetsos et al. 

2012; Cheadle et al. 2014; Wyart et al. 2015; Spitzer et al. 2017; Glickman and Usher 2019; 

Luyckx et al. 2019; Kang and Spitzer 2021). We found no evidence that the extent to which 

sample information presented early in the sequence is down-weighted (or “leaks” from 

memory; Usher and McClelland 2001) was affected by control over sampling. We also found 

no indication of differences in the representational geometry of the sampled information in 

neural signals. Neurometric analysis showed an anti-compression of numerical values (Spitzer 

et al. 2017; Luyckx et al. 2019) in all conditions, regardless of the level of control. The absence 

of differences in these more qualitative aspects of information processing in our tasks 

suggests that the cognitive benefits of full control may best be described as an overall increase 

in the gain of neural processing (Donner and Nieuwenhuis 2013; Eldar et al. 2013; Murphy et 

al. 2016), which amplify the critical decisional information in a sample (here, numerical 

magnitude). 

 

None of the benefits observed under full control were evident in our partial control condition, 

where participants could only decide which option to sample next, but not when to terminate 

sampling. Although the partial control condition gave participants some level of agency 

(relative to the yoked conditions without control; Chambon et al. 2020; Weiss et al. 2021), we 

suspect that it may not have induced a strong sense of control over the task. It even seems 

possible that participants may have perceived the requirement to perform a prescribed number 

of sampling actions as externally controlled and a cognitive burden (see also Sullivan-Toole 

et al. 2017). Indeed, post hoc examination of left/right sampling patterns showed that our 

participants resorted to stereotypical sampling routines (either alternating between options: 

“a-b-a-b-...” or sampling first one option and then the other: “a-a-a-...-b-b-b”) in 67.61% of trials 

(relative to the yoked conditions without control; for related findings see Hills and Hertwig 

2010). In other words, participants made little use of the freedom to vary their left/right 

sampling strategy trial by trial (and/or sample by sample), potentially due to a lack of perceived 

benefits (Dixon and Christoff 2012). In this light, it is perhaps not surprising that we found no 

processing enhancements under partial control, in either behavior or neural signals. 

 

Numerical sampling tasks similar to ours have been used extensively in the past to study 

decisions from experience (Hertwig et al. 2004) in complement to the common use of symbolic 

descriptions to study risky choice (Kahneman and Tversky 1979; Juechems et al. 2021). 

Experience-based choices can differ systematically from description-based choice, especially 
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in terms of probability weighting (Hertwig and Erev 2009; Wulff et al. 2018). A much-discussed 

aspect of this “description–experience gap” is that participants in experience-based tasks tend 

to rely on relatively few samples (Hau et al. 2010; Plonsky et al. 2015; Wulff et al. 2018). Also 

in our experiment, participants in the full-control condition chose to sample less than they could 

have (Furl and Averbeck 2011). Although one explanation is that small samples can render 

choices objectively simpler (Hertwig and Pleskac 2008, 2010), our findings suggest that small 

samples may also defy typical accuracy trade-offs if the decision to stop sampling lies in the 

autonomy of the sampling agent (see also Petitet et al. 2021). Granting participants full control 

over sampling may thus not only enable but directly promote reliance on small samples 

through more efficient processing of the sample evidence. 

 

Finally, next to an encoding of the numerical sample information in multivariate EEG patterns, 

we also found an apparent encoding of “extremity” (Fig. 3d-e), which did not differ between 

levels of control over sampling. Future research may further investigate this effect with regards 

to extreme events in decisions from experience (Ludvig and Spetch 2011; Ludvig et al. 2014, 

2018). 

 

In summary, we found that control over sampling can enhance the neural encoding of decision 

information and improve choice accuracy. The results add to a growing collection of findings 

that exercising agency can benefit performance in cognitive tasks and shed light on the neural 

processes that support such benefits. 

 

Data availability 

 

All data in BIDS format are available at https://gin.g-node.org/sappelhoff/mpib_sp_eeg. 

 

Code availability 

 

All analysis code is available at https://github.com/sappelhoff/sp_code. The experiment 

presentation code is available on Zenodo (https://doi.org/10.5281/zenodo.3354368). 

 

Ethics information 

 

The study was approved by the ethics committee of the Max Planck Institute for Human 

Development. 

 

Acknowledgements 

 

We thank Agnessa Karapetian, Clara Wicharz, Jann Wäscher, Yoonsang Lee, and Zhiqi Kang 

for help with data collection, Dirk Ostwald and Casper Kerrén for helpful discussions and 

feedback, and Susannah Goss for editorial assistance. 

 

Author contributions 

 

SA, RH, BS: Conceptualization, Project Administration, Writing - review & editing 

SA, BS: Methodology, Writing - original draft 

SA: Formal analysis, Investigation, Validation, Visualization, Data curation, Software 

BS: Supervision 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.06.03.446960doi: bioRxiv preprint 

https://gin.g-node.org/sappelhoff/mpib_sp_eeg
https://github.com/sappelhoff/sp_code
https://doi.org/10.5281/zenodo.3354368
https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/


20 

RH: Resources 

 

Competing interests 

 

The authors declare no competing interests. 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.06.03.446960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/


21 

References 

Ansari D, Garcia N, Lucas E, Hamon K, Dhital B. 2005. Neural correlates of symbolic 
number processing in children and adults. NeuroReport. 16:1769–1773. 

Appelhoff S, Sanderson M, Brooks TL, Vliet M van, Quentin R, Holdgraf C, Chaumon M, 
Mikulan E, Tavabi K, Höchenberger R, Welke D, Brunner C, Rockhill AP, Larson E, 
Gramfort A, Jas M. 2019. MNE-BIDS: Organizing electrophysiological data into the 
BIDS format and facilitating their analysis. J Open Source Softw. 4:1896. 

Chambon V, Théro H, Vidal M, Vandendriessche H, Haggard P, Palminteri S. 2020. 
Information about action outcomes differentially affects learning from self-determined 
versus imposed choices. Nat Hum Behav. 1–13. 

Cheadle S, Wyart V, Tsetsos K, Myers N, de Gardelle V, Herce Castañón S, Summerfield C. 
2014. Adaptive Gain Control during Human Perceptual Choice. Neuron. 81:1429–
1441. 

Cokely ET, Galesic M, Schulz E, Ghazal S, Garcia-Retamero R. 2012. Measuring risk 
literacy: The Berlin Numeracy Test. Judgm Decis Mak. 7:25–47. 

Dixon ML, Christoff K. 2012. The Decision to Engage Cognitive Control Is Driven by 
Expected Reward-Value: Neural and Behavioral Evidence. PLoS ONE. 7:e51637. 

Donner TH, Nieuwenhuis S. 2013. Brain-wide gain modulation: the rich get richer. Nat 
Neurosci. 16:989–990. 

Eimer M. 1998. The lateralized readiness potential as an on-line measure of central 
response activation processes. Behav Res Methods Instrum Comput. 30:146–156. 

Eldar E, Cohen JD, Niv Y. 2013. The effects of neural gain on attention and learning. Nat 
Neurosci. 16:1146–1153. 

Fleischhut N, Artinger F, Olschewski S, Volz K, Hertwig R. 2014. Sampling of Social 
Information: Decisions from Experience in Bargaining. In: Program of the 36th Annual 
Conference of the Cognitive Science Society. Austin, Texas: Cognitive Science 
Society. p. 1048–1053. 

Flowerday T, Schraw G. 2003. Effect of Choice on Cognitive and Affective Engagement. J 
Educ Res. 96:207–215. 

Flowerday T, Schraw G, Stevens J. 2004. The Role of Choice and Interest in Reader 
Engagement. J Exp Educ. 72:93–114. 

Furl N, Averbeck BB. 2011. Parietal Cortex and Insula Relate to Evidence Seeking Relevant 
to Reward-Related Decisions. J Neurosci. 31:17572–17582. 

Gigerenzer G, Hertwig R, Pachur T. 2011. Heuristics. Oxford University Press. 
Glickman M, Usher M. 2019. Integration to boundary in decisions between numerical 

sequences. Cognition. 193:104022. 
Gold JI, Shadlen MN. 2007. The Neural Basis of Decision Making. Annu Rev Neurosci. 

30:535–574. 
Gonzalez C, Mehlhorn K. 2016. Framing From Experience: Cognitive Processes and 

Predictions of Risky Choice. Cogn Sci. 40:1163–1191. 
Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, 

Glatard T, Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, 
Maumet C, Nichols BN, Nichols TE, Pellman J, Poline J-B, Rokem A, Schaefer G, 
Sochat V, Triplett W, Turner JA, Varoquaux G, Poldrack RA. 2016. The brain imaging 
data structure, a format for organizing and describing outputs of neuroimaging 
experiments. Sci Data. 3:160044. 

Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, 
Brooks T, Parkkonen L, Hämäläinen M. 2013. MEG and EEG data analysis with 
MNE-Python. Front Neurosci. 7. 

Grootswagers T, Wardle SG, Carlson TA. 2016. Decoding Dynamic Brain Patterns from 
Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time 
Series Neuroimaging Data. J Cogn Neurosci. 29:677–697. 

Gureckis TM, Markant DB. 2012. Self-Directed Learning: A Cognitive and Computational 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.06.03.446960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/


22 

Perspective. Perspect Psychol Sci. 7:464–481. 
Hau R, Pleskac TJ, Hertwig R. 2010. Decisions from experience and statistical probabilities: 

Why they trigger different choices than a priori probabilities. J Behav Decis Mak. 
23:48–68. 

Hau R, Pleskac TJ, Kiefer J, Hertwig R. 2008. The description-experience gap in risky 
choice: the role of sample size and experienced probabilities. J Behav Decis Mak. 
21:493–518. 

Heitz RP. 2014. The speed-accuracy tradeoff: history, physiology, methodology, and 
behavior. Front Neurosci. 8. 

Hertwig R. 2015. Decisions from Experience. In: Keren G,, Wu G, editors. The Wiley 
Blackwell Handbook of Judgment and Decision Making. Chichester, UK: John Wiley 
& Sons, Ltd. p. 239–267. 

Hertwig R, Barron G, Weber EU, Erev I. 2004. Decisions from Experience and the Effect of 
Rare Events in Risky Choice. Psychol Sci. 15:534–539. 

Hertwig R, Erev I. 2009. The description–experience gap in risky choice. Trends Cogn Sci. 
13:517–523. 

Hertwig R, Pleskac TJ. 2008. The game of life: How small samples render choice simpler. In: 
Chater N,, Oaksford M, editors. The Probabilistic Mind: Prospects for Bayesian 
cognitive science. Oxford University Press. p. 209–236. 

Hertwig R, Pleskac TJ. 2010. Decisions from experience: Why small samples? Cognition. 
115:225–237. 

Hills TT, Hertwig R. 2010. Information Search in Decisions From Experience: Do Our 
Patterns of Sampling Foreshadow Our Decisions? Psychol Sci. 21:1787–1792. 

Juechems K, Balaguer J, Spitzer B, Summerfield C. 2021. Optimal utility and probability 
functions for agents with finite computational precision. Proc Natl Acad Sci. 118. 

Kahneman D, Tversky A. 1979. Prospect Theory: An Analysis of Decision under Risk. 
Econometrica. 47:263–292. 

Kang Z, Spitzer B. 2021. Concurrent visual working memory bias in sequential integration of 
approximate number. Sci Rep. 11:5348. 

Katz I, Assor A. 2007. When Choice Motivates and When It Does Not. Educ Psychol Rev. 
19:429–442. 

Kiani R, Hanks TD, Shadlen MN. 2008. Bounded Integration in Parietal Cortex Underlies 
Decisions Even When Viewing Duration Is Dictated by the Environment. J Neurosci. 
28:3017–3029. 

Kriegeskorte N, Kievit RA. 2013. Representational geometry: integrating cognition, 
computation, and the brain. Trends Cogn Sci. 17:401–412. 

Legault L, Inzlicht M. 2013. Self-determination, self-regulation, and the brain: Autonomy 
improves performance by enhancing neuroaffective responsiveness to self-regulation 
failure. J Pers Soc Psychol. 105:123–138. 

Leotti LA, Delgado MR. 2011. The Inherent Reward of Choice. Psychol Sci. 22:1310–1318. 
Leotti LA, Iyengar SS, Ochsner KN. 2010. Born to choose: the origins and value of the need 

for control. Trends Cogn Sci. 14:457–463. 
Luck SJ, Hillyard SA, Mouloua M, Woldorff MG, Clark VP, Hawkins HL. 1994. Effects of 

spatial cuing on luminance detectability: Psychophysical and electrophysiological 
evidence for early selection. J Exp Psychol Hum Percept Perform. 20:887–904. 

Luck SJ, Woodman GF, Vogel EK. 2000. Event-related potential studies of attention. Trends 
Cogn Sci. 4:432–440. 

Ludvig EA, Madan CR, McMillan N, Xu Y, Spetch ML. 2018. Living near the edge: How 
extreme outcomes and their neighbors drive risky choice. J Exp Psychol Gen. 
147:1905–1918. 

Ludvig EA, Madan CR, Spetch ML. 2014. Extreme Outcomes Sway Risky Decisions from 
Experience: Risky Decisions and Extreme Outcomes. J Behav Decis Mak. 27:146–
156. 

Ludvig EA, Spetch ML. 2011. Of Black Swans and Tossed Coins: Is the Description-
Experience Gap in Risky Choice Limited to Rare Events? PLoS ONE. 6:e20262. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.06.03.446960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/


23 

Luyckx F, Nili H, Spitzer B, Summerfield C. 2019. Neural structure mapping in human 
probabilistic reward learning. eLife. 8:e42816. 

Mangun GR, Hillyard SA. 1991. Modulations of sensory-evoked brain potentials indicate 
changes in perceptual processing during visual-spatial priming. J Exp Psychol Hum 
Percept Perform. 17:1057–1074. 

Maris E, Oostenveld R. 2007. Nonparametric statistical testing of EEG- and MEG-data. J 
Neurosci Methods. 164:177–190. 

Markant DB, Gureckis TM. 2014. Is it better to select or to receive? Learning via active and 
passive hypothesis testing. J Exp Psychol Gen. 143:94–122. 

Murayama K, Izuma K, Aoki R, Matsumoto K. 2016. Your Choice Motivates You in the Brain: 
The Emergence of Autonomy Neuroscience. In: Recent Developments in 
Neuroscience Research on Human Motivation. Emerald Group. p. 95–125. 

Murayama K, Matsumoto M, Izuma K, Sugiura A, Ryan RM, Deci EL, Matsumoto K. 2015. 
How Self-Determined Choice Facilitates Performance: A Key Role of the 
Ventromedial Prefrontal Cortex. Cereb Cortex. 25:1241–1251. 

Murphy PR, Boonstra E, Nieuwenhuis S. 2016. Global gain modulation generates time-
dependent urgency during perceptual choice in humans. Nat Commun. 7:13526. 

Murty VP, DuBrow S, Davachi L. 2015. The Simple Act of Choosing Influences Declarative 
Memory. J Neurosci. 35:6255–6264. 

Neri P, Parker AJ, Blakemore C. 1999. Probing the human stereoscopic system with reverse 
correlation. Nature. 401:695–698. 

Nieder A, Dehaene S. 2009. Representation of Number in the Brain. Annu Rev Neurosci. 
32:185–208. 

Nolan H, Whelan R, Reilly RB. 2010. FASTER: Fully Automated Statistical Thresholding for 
EEG artifact Rejection. J Neurosci Methods. 192:152–162. 

O’Connell RG, Dockree PM, Kelly SP. 2012. A supramodal accumulation-to-bound signal 
that determines perceptual decisions in humans. Nat Neurosci. 15:1729–1735. 

Ostwald D, Starke L, Hertwig R. 2015. A normative inference approach for optimal sample 
sizes in decisions from experience. Front Psychol. 6. 

Patall EA. 2012. The Motivational Complexity of Choosing: A Review of Theory and 
Research. In: Ryan RM, editor. The Oxford Handbook of Human Motivation. Oxford 
University Press. p. 247–279. 

Patall EA, Cooper H, Robinson JC. 2008. The effects of choice on intrinsic motivation and 
related outcomes: A meta-analysis of research findings. Psychol Bull. 134:270–300. 

Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, Kastman E, Lindeløv 
JK. 2019. PsychoPy2: Experiments in behavior made easy. Behav Res Methods. 
51:195–203. 

Pernet CR, Appelhoff S, Gorgolewski KJ, Flandin G, Phillips C, Delorme A, Oostenveld R. 
2019. EEG-BIDS, an extension to the brain imaging data structure for 
electroencephalography. Sci Data. 6:103. 

Petitet P, Attaallah B, Manohar SG, Husain M. 2021. The computational cost of active 
information sampling before decision-making under uncertainty. Nat Hum Behav. 

Pisauro MA, Fouragnan E, Retzler C, Philiastides MG. 2017. Neural correlates of evidence 
accumulation during value-based decisions revealed via simultaneous EEG-fMRI. 
Nat Commun. 8:15808. 

Plonsky O, Teodorescu K, Erev I. 2015. Reliance on small samples, the wavy recency effect, 
and similarity-based learning. Psychol Rev. 122:621–647. 

Polich J. 2007. Updating P300: An Integrative Theory of P3a and P3b. Clin Neurophysiol. 
118:2128–2148. 

Rakow T, Demes KA, Newell BR. 2008. Biased samples not mode of presentation: Re-
examining the apparent underweighting of rare events in experience-based choice. 
Organ Behav Hum Decis Process. 106:168–179. 

Rakow T, Newell BR. 2010. Degrees of uncertainty: An overview and framework for future 
research on experience-based choice. J Behav Decis Mak. 23:1–14. 

Ratcliff R, McKoon G. 2008. The Diffusion Decision Model: Theory and Data for Two-Choice 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.06.03.446960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/


24 

Decision Tasks. Neural Comput. 20:873–922. 
Sheahan H, Luyckx F, Nelli S, Teupe C, Summerfield C. 2021. Neural state space alignment 

for magnitude generalization in humans and recurrent networks. Neuron. 109:1214–
1226. 

Spitzer B, Blankenburg F, Summerfield C. 2016. Rhythmic gain control during supramodal 
integration of approximate number. NeuroImage. 129:470–479. 

Spitzer B, Waschke L, Summerfield C. 2017. Selective overweighting of larger magnitudes 
during noisy numerical comparison. Nat Hum Behav. 1:1–8. 

Sullivan-Toole H, Richey JA, Tricomi E. 2017. Control and Effort Costs Influence the 
Motivational Consequences of Choice. Front Psychol. 8. 

Teichmann L, Grootswagers T, Carlson T, Rich AN. 2018. Decoding Digits and Dice with 
Magnetoencephalography: Evidence for a Shared Representation of Magnitude. J 
Cogn Neurosci. 30:999–1010. 

Thaler L, Schütz AC, Goodale MA, Gegenfurtner KR. 2013. What is the best fixation target? 
The effect of target shape on stability of fixational eye movements. Vision Res. 
76:31–42. 

Tickle H, Tsetsos K, Speekenbrink M, Summerfield C. 2020. Optional Stopping in a 
Heteroscedastic World (preprint). PsyArXiv. 

Tsetsos K, Chater N, Usher M. 2012. Salience driven value integration explains decision 
biases and preference reversal. Proc Natl Acad Sci. 109:9659–9664. 

Twomey DM, Murphy PR, Kelly SP, O’Connell RG. 2015. The classic P300 encodes a build-
to-threshold decision variable. Eur J Neurosci. 42:1636–1643. 

Ungemach C, Chater N, Stewart N. 2009. Are Probabilities Overweighted or Underweighted 
When Rare Outcomes Are Experienced (Rarely)? Psychol Sci. 20:473–479. 

Usher M, McClelland JL. 2001. The time course of perceptual choice: The leaky, competing 
accumulator model. Psychol Rev. 108:550–592. 

Voss JL, Gonsalves BD, Federmeier KD, Tranel D, Cohen NJ. 2011. Hippocampal brain-
network coordination during volitional exploratory behavior enhances learning. Nat 
Neurosci. 14:115–120. 

Weiss A, Chambon V, Lee JK, Drugowitsch J, Wyart V. 2021. Interacting with volatile 
environments stabilizes hidden-state inference and its brain signatures. Nat 
Commun. 12:2228. 

Winkler I, Debener S, Müller K, Tangermann M. 2015. On the influence of high-pass filtering 
on ICA-based artifact reduction in EEG-ERP. In: 2015 37th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 
Presented at the 2015 37th Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society (EMBC). p. 4101–4105. 

Wulff D, Mergenthaler-Canseco M, Hertwig R. 2018. A meta-analytic review of two modes of 
learning and the description-experience gap. Psychol Bull. 144:140–176. 

Wyart V, Myers NE, Summerfield C. 2015. Neural Mechanisms of Human Perceptual Choice 
Under Focused and Divided Attention. J Neurosci. 35:3485–3498. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.06.03.446960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/

