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Abstract

When acquiring information about choice alternatives, decision makers may have varying
levels of control over which and how much information they sample before making a choice.
How does control over sampling affect the quality of experience-based decisions? Here,
combining variants of a numerical sampling task with neural recordings, we show that control
over when to stop sampling can enhance (i) behavioral choice accuracy, (ii) the build-up of
parietal decision signals, and (iii) the encoding of numerical sample information in multivariate
electroencephalogram (EEG) patterns. None of these effects were observed when
participants could only control which alternatives to sample, but not when to stop sampling.
Furthermore, levels of control had no effect on early sensory signhals or on the extent to which
sample information leaked from memory. The results indicate that freedom to stop sampling
can amplify decisional evidence processing from the outset of information acquisition and lead
to more accurate choices.

Keywords: active sampling, decision making, electroencephalography, information search,
number processing
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Introduction

Humans routinely acquire information about choice alternatives before deciding between
them. In many situations, decision makers can control which and how much information they
sample. For example, when deciding which of two products to buy, a customer may
deliberately study reviews and testimonials before making a final choice. In other situations,
the availability and amount of relevant information is determined by external factors. For
instance, when selecting job applicants in an organization that uses standardized interviews,
an employer must decide based on the applicants’ answers to the same set of predefined
guestions. More generally, decision scenarios can differ in the extent to which an agent has
control over sampling, in terms of which and how much information is sampled before a choice
is made.

One experimental setup suitable for studying how control over sampling may affect decision
making is a numerical sampling paradigm (Hertwig et al. 2004; Hertwig and Erev 2009) in
which participants can view sequential samples of possible choice outcomes before deciding
for one or the other option. The paradigm has been used extensively in behavioral studies of
risky choice to examine how decision makers choose between options they learned about
from experience (i.e., through sampling the payoff distribution) as opposed to from formal
description (e.g., “25% chance to obtain €10, otherwise €0”; Hertwig 2015; Wulff et al. 2018).
Across these studies, researchers have also varied the extent to which participants were able
to control the sampling process themselves. While the standard paradigm allows participants
to decide freely which alternatives to sample and how often (Hertwig and Erev 2009), some
studies have pre-specified the total number of samples to be taken (Hau et al. 2008;
Ungemach et al. 2009; Fleischhut et al. 2014; Gonzalez and Mehlhorn 2016) or included
matched (“yoked”) conditions in which participants had no control at all over the sampling
sequence (Rakow et al. 2008). However, the latter variants of the sampling paradigm have
been devised primarily to reduce confounds in comparisons with decisions from description
(Rakow and Newell 2010); it remains unclear how control over sampling may alter experience-
based decision making itself.

Several lines of evidence suggest that a sense of control can be beneficial in cognitive tasks
(Gureckis and Markant 2012; Murayama et al. 2016). Agency in information acquisition has,
for instance, been found to improve subsequent memory performance (Voss et al. 2011), even
when exposure to the information was held constant (Murty et al. 2015). Another line of work
has shown better performance in tasks self-selected by the participant than when the same
tasks were selected by an experimenter (Murayama et al. 2015). More generally, various
studies have identified performance benefits associated with volitional control per se and
indicated that such effects could be mediated by motivational factors (Patall et al. 2008; Patall
2012). However, the effects of control cannot easily be generalized across domains. In several
contexts, control does not seem to impact task performance (Flowerday and Schraw 2003;
Flowerday et al. 2004) or can be detrimental—for instance, when control is perceived as
irrelevant or as too complex (Katz and Assor 2007; but see Murayama et al. 2015). In the
domain of decisions from experience using the sampling paradigm, evidence regarding the
role of agency in the sampling process is still sparse. One recent meta-analysis suggested
that control over sampling may alter the temporal weighting of numerical samples in
subsequent choice (Wulff et al. 2018). However, this analysis was limited to comparisons


https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446960; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

4

across studies and did not address the performance benefits (or drawbacks) that may be
associated with control over sampling, or the neurocognitive processes that might underlie
them.

Here, we used specially designed variants of a numerical sampling paradigm combined with
EEG recordings to study how control over sampling affects experience-based decision
making. We systematically varied whether participants were free to decide which and how
much information to sample (full control), or only which information to sample (partial control,
with a pre-specified total number of samples), or whether they had no control over sampling
at all. Critically, our design controlled for differences in stimulus presentation by matching the
sample sequences in the no-control conditions with those in the self-controlled tasks. We
found that full, but not partial control over sampling had a distinct beneficial effect on choice
accuracy, and that this benefit was associated with a stronger encoding of numerical sample
information from the outset of information acquisition.

Materials and Methods

Participants

Forty healthy volunteers took part in the experiment (20 female, 20 male; mean age 26.3 £
3.7 years; all right-handed). All participants provided written informed consent and received a
flat fee of €10 and €10 per hour as compensation, as well as a performance-dependent bonus
(€9.35 + €0.48 on average). The study was approved by the ethics committee of the Max
Planck Institute for Human Development.

Experimental design

On each trial, in all experimental conditions, participants were asked to decide between one
of two choice options (left/right). Each choice option yielded one of two numerical outcomes
(drawn from the range 1, 2, ..., 9) with probability p (0.1, 0.2, ..., 0.9), and the other outcome
with probability 1 — p. The outcome values and probabilities on each trial were constrained
such that (i) no two of the four numerical outcome values were identical and (i) the difference
in expected value between the two options was always 0.9 (derived from piloting). Under these
constraints, the choice problems presented on each trial were selected pseudorandomly, with
the additional restriction that each sample value (1, 2, ..., 9) occurred with approximately equal
probability across the experiment.

Half of the participants were assigned to the “full control” condition, where they were free to
sample from the left or right option as often as they wished before making a final choice. The
only restriction on sampling in the full-control condition was that a sample had to be taken
within 3 seconds (otherwise the trial was restarted) and that the total number of samples could
not exceed 19. The other half of participants were assigned to the “partial control” condition,
which was identical to the full control condition except that a fixed number of 12 samples had
to be drawn on every trial. The number of samples was based on pilot data where free-
sampling participants took approximately 12 samples on average. In other words, participants
in the partial control condition were also free to sample from the left or right option, but had no
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control over when to stop (or continue) sampling: They were always prompted to make a final
choice after the 12th sample.

In both sampling conditions, the beginning of a new trial was signalled by a green fixation
stimulus (a combination of bulls eye and cross hair; Thaler et al. 2013) that turned white after
one second. Upon pressing the left or right button on a USB response pad (using the left or
right hand respectively), participants were shown a black circular disk (diameter 5° visual
angle) 4.5° to the left (choice option 1) or right (choice option 2) of fixation after 0.2 to 0.4 s
(randomly varied). After another delay of 0.8 s, the number sample was presented in white
(font Liberation Sans, height 4°) in the disk area for 0.5 s (see Figure 1 for a schematic
illustration). After this, the disk disappeared and participants were given 3 s to draw the next
sample. The black disk served as a spatial cue to minimize differences in surprise about the
sample location (left/right) in yoked conditions without sampling control (see below). The
sampling procedure was repeated depending on condition (partial control: 12 samples; full
control: up to 19 samples), and the resulting sample sequences (including their precise timing)
were recorded (see yoked conditions below). In the full control condition, a third button on the
response pad (above the “right” button) was available to stop the sampling sequence. In all
conditions, after the sampling was finished, the fixation stimulus changed color to blue for 1 s
and participants were asked to make a final choice between the left and right options. The
button and display procedure for the final choice was identical to that for drawing samples,
except that the final choice outcome was displayed in green to indicate the eventually obtained
reward. The rewards (i.e., the payouts from the final choices) were converted to Euros with a
factor of 0.005 and added as a bonus to participant's reimbursement after the experiment (see
Participants above).

Within both groups (full and partial control), each participant additionally performed the task in
a “yoked” condition, where they had no control over sampling. Here, participants made
decisions based on replays of previously recorded sampling streams (without any control over
which and how many samples were shown or their timing). Accordingly, we refer to the yoked
conditions as the no-control baseline conditions. In each group, half of the participants first
performed the self-controlled sampling task (full or partial) and subsequently performed the
no-control task with a replay of their own sampling sequences. In informal debriefing after the
experiment, none of these participants reported having noticed that they had viewed exact
replays of their own sampling sequences. The other half of the participants in each group
performed the no-control task first (yoked to the sampling sequences of another participant in
the same group) and the self-controlled task second. Control analysis showed no differences
in choice accuracy between participants who performed the baseline task first (yoked to
another participant’s sequences) or second (yoked to their own sequences) (all p > 0.05).
Furthermore, in the subset of participants who were yoked to another participant, the difficulty
of active versus yoked sampling sequences did not differ (all p > 0.05). Each participant
performed 100 trials (five blocks of 20 trials with short breaks between blocks) in the self-
controlled and yoked task variant, respectively.

Participants in the full control group drew on average 8.6 samples (SD = 4.2, median = 8),
compared with the 12 samples that had to be drawn in the partial control group. Due to the
principled impossibility of matching full and partial control trials (e.g., with respect to the
precise length and timing of the sampling sequences on individual trials), all our analyses
focus on comparisons of differences to the matched (yoked) baseline condition within each
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group. This analysis strategy rules out stimulus confounds that may arise, for instance, due to
“amplification effects” under full control, where stopping decisions may be more likely when
the momentary difference between the accumulated option values happens to be large
(Hertwig and Pleskac 2010).

The experiment was programmed in Python using the Psychopy package (Peirce et al. 2019)
and run on a Windows 10 PC. The experiment code is available on Zenodo
(https://doi.org/10.5281/zenodo.3354368). Behavioral responses were recorded using a USB
response pad (The Black Box ToolKit Ltd, UK). Throughout the experiment, eye movements
were recorded using a Tobii 4C eye-tracker (Tobii Technology, Sweden; sampling rate 90 Hz).
To reduce eye movements, participants’ gaze position was analyzed online while the
experiment was run in all sampling conditions. The program displayed a warning message
and restarted the trial whenever the gaze left an elliptical area centered on the central fixation
stimulus (width 5° visual angle, height 2.85° visual angle) more than four times during a trial.
Saccades towards the outcome samples were robustly detected with these settings. On
average 3% of trials per participant were restarted due to lack of fixation, or failure to draw a
sample within 3 seconds (see above). Offline analyses confirmed that participants generally
held fixation in the remaining trials.
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Fig. 1 Experimental task and behavioral results. (a) Schematic illustration of an example trial.
Participants were asked to decide between two choice options (left/right). Before committing to a choice,
participants could draw up to 19 samples (full control group) or were required to draw a fixed number
of 12 samples (partial control group). In yoked baseline conditions, participants judged replays of
previously recorded sampling streams. (b) Mean accuracy (proportion of times the sampled sequence
was judged correctly) in each condition. (c) Decision weights (see Materials and Methods) of samples
occurring early, mid, or late in the sampling sequence, for each sampling condition. (d) Difference in
decision weight between late and early samples. Higher values indicate that late samples had a stronger
relative influence on choice than early samples (“recency” effect). Error indicators in all panels show
SE.
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Supplementary tasks

After the main experiment, participants performed an additional short task on the same choice
problems, where the options were not explored through sampling but described formally on
screen (e.g., “8 with 60% or 4 with 40%7?”). Due to a coding error, much of the data (84%) from
this task was incorrectly recorded and the results are thus not reported here. Participants
further completed a brief numeracy questionnaire (Berlin Numeracy Test, BNT (Cokely et al.
2012)). Exploratory analysis showed no significant correlations of the effects reported in our
main analysis with BNT scores.

EEG recording

The experiment was performed in an electrically shielded and soundproof cabin. Scalp EEG
was recorded with 64 active electrodes (actiCap, Brain Products GmbH Munich, Germany)
positioned according to the international 10% system. Electrode FCz was used as the
recording reference. We additionally recorded the horizontal and vertical electrooculogram
(EOG) and electrocardiogram (ECG) using passive electrode pairs with bipolar referencing.
All electrodes were prepared to have an impedance of less than 10kQ. The data were recorded
using a BrainAmp DC amplifier (Brain Products GmbH Munich, Germany) at a sampling rate
of 1000 Hz, with an RC high-pass filter with a half-amplitude cutoff at 0.016Hz (roll-off:
6dB/octave) and low-pass filtered with an anti-aliasing filter of half-amplitude cutoff 450Hz
(roll-off: 24dB/octave). The dataset is organized in Brain Imaging Data Structure format (BIDS;
Gorgolewski et al. 2016) according to the EEG extension (Pernet et al. 2019), and is available
from https://gin.g-node.org/sappelhoff/mpib_sp _eedq/.

Behavioral data analysis

Participants’ behavioral accuracy in each sampling condition was calculated with respect to
the arithmetic mean of the samples that were presented for each option. Differences in
accuracy between sampling conditions were analyzed using a mixed 2x2 ANOVA (self-
controlled/yoked; full/partial), followed up with Bonferroni-corrected pairwise t-tests. All
statistical tests reported (including in the EEG analyses, see below) are two-tailed.

To examine recency effects in the behavioral data, we used a reverse correlation approach
(Neri et al. 1999; Spitzer et al. 2016) based on logistic regression. We first divided the samples
in a trial into early, mid, and late samples. The first and last two samples in a trial were defined
as early and late samples, respectively, and the remaining samples as “mid” samples. Trials
with fewer than 5 samples overall were discarded in this analysis (between 1% and 41.5% of
trials per participant, mean = 13.3%). For each participant, task condition, and time window,
we regressed the participant’s final choices (left: 0, right: 1) onto the number sample values
(numbers 1, 2, ..., 9 rescaled to -4, -3, ..., 4), where the values for the left option were sign-
flipped to reflect their opposite impact on the probability of choosing the right option (Spitzer
et al. 2017). We interpret the regression coefficients resulting from this analysis as a measure
of “decision weight”, that is, of the influence that number samples (early, mid, or late) had on
choice.

EEG preprocessing
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The EEG recordings were visually inspected for noisy segments and bad channels. Ocular
and cardiac artifacts were corrected using independent component analysis (ICA). To this end,
we high-pass filtered a copy of the raw data at 1 Hz and downsampled it to 250 Hz. We then
ran an extended infomax ICA on all EEG channels and time points that were not marked as
bad in the prior inspection. Using the EOG and ECG recordings, we identified stereotypical
eye blink, eye movement, and heartbeat artifact components through correlation with the
independent component time courses. We visually inspected and rejected the artifact
components before applying the ICA solution to the original raw data (Winkler et al. 2015). We
then filtered the ICA-cleaned data between 0.1 and 40 Hz, interpolated bad channels, and re-
referenced each channel to the average of all channels. Next, the data were epoched from
-0.2 to 0.8 s relative to each individual number sample onset. Remaining bad epochs were
rejected using a thresholding approach from the FASTER pipeline (Step 2; Nolan et al. 2010).
On average, n = 1925 clean epochs (93.85%) per participant were retained for analysis. The
epochs were downsampled to 250 Hz and baseline corrected relative to the period from -0.2
to O s before stimulus onset. All EEG analyses were performed in Python using MNE-Python
(Gramfort et al. 2013), MNE-BIDS (Appelhoff et al. 2019), and custom code. All analysis code
is available at https://github.com/sappelhoff/sp_code.

Event-related potential (ERP) analysis

EEG analyses are reported for the epochs around the onset of the individual number samples.
We first examined lateralized visual ERP components to test whether early visual processing
differed between the sampling conditions. To this end, we subtracted the ERP for stimuli
presented on the right from the ERP for stimuli presented on the left, and then subtracted the
mean signal of right-hemispheric (02, PO4, PO8, PO10) occipito-parietal channels of interest
(based on previous literature; Eimer 1998) from the corresponding left-hemispheric (01, PO3,
PO7, PO9) channels. Mean amplitudes of the lateralized evoked potential were extracted from
prototypical time windows (P1 ERP component: 80 ms to 130 ms, N1 ERP component: 140
ms to 200 ms) for each sampling condition and analyzed in a mixed 2x2 ANOVA (self-
controlled/yoked,; full/partial).

We further examined centro-parietal evoked responses (CPP/P3, averaged over the early,
mid, and late samples in each trial) as a potential correlate of decisional evidence
accumulation (O’Connell et al. 2012; Twomey et al. 2015; Pisauro et al. 2017). To this end,
we averaged the signal over centro-parietal channels (Cz, C1, C2, CPz, CP1, CP2, CP3, CP4,
Pz, P1, P2) and focused on a time window from 300 ms to 600 ms, based on previous analyses
of CPP/P3 responses during visual stimulus sequences (Spitzer et al. 2017; Wyart et al. 2015;
Polich 2007).

Representational similarity analysis (RSA)

To examine the encoding of numerical sample value in multivariate EEG patterns, we used an
approach based on representational similarity analysis (RSA; Kriegeskorte and Kievit 2013).
To this end, the ERPs were additionally smoothed (Grootswagers et al. 2016) with a Gaussian
kernel (35 ms half duration at half maximum). We then computed multivariate (dis)similarity in
terms of the pairwise Euclidean distance between the ERP patterns associated with each
sample value (numbers 1-9), yielding a 9x9 representational dissimilarity matrix (RDM) for
each time point of the analysis epoch. The EEG RDMs at each time point were compared with
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model RDMs reflecting (1) the samples’ numerical magnitude (“numerical distance”; upper
panel Fig. 3a) and (2) their “extremity” (i.e., a sample’s absolute difference from the midpoint
of the sample range, 5; Fig. 3d). To avoid confounds by potential deviations from a uniform
distribution of sample values across the experiment, we additionally orthogonalized each
model RDM to an RDM of the relative frequency of numerical sample occurrences (Spitzer et
al. 2017). Qualitatively similar results were obtained when this orthogonalization step was
omitted.

For quantitative analysis, we extracted the lower triangle (excluding the diagonal) from each
model RDM and compared it with the EEG RDM data at each time point using the Pearson
correlation coefficient. To analyze the overall encoding of numerical distance and extremity,
we used t-tests against zero with cluster-based permutation testing (Maris and Oostenveld
2007) to control for multiple comparisons over time points (10,000 iterations, cluster-defining
threshold = 0.05). We then re-computed the EEG RSA separately for each sampling condition
to test for differences in number encoding. Differences between conditions were examined
using mixed 2x2 ANOVAs (self-controlled/yoked; full/partial), again using cluster-based
permutation testing to control for multiple comparisons over time points. Analogous RSA
analyses were performed separately on the first and second half of samples from each trial
(Fig. 3c).

Results

Participants (n = 40) observed sequential samples (Arabic digits 1-9) of the potential payouts
of choice options (left/right) before deciding on one of them (Fig. 1a). In different conditions,
participants (i) could determine from which option(s) to sample and when to stop sampling
(“full control”, 1-19 samples/trial, n = 20 participants) or (ii) could determine only from which
option to sample for a fixed number of samples (“partial control”, 12 samples/trial, n = 20
participants). Each participant additionally performed the task in a “yoked” condition with
matched sample sequences (see Materials and Methods) that they could not control. Our
behavioral and EEG analyses focus on the effects of control (full or partial) relative to the
matched (yoked) no-control conditions.

Behavior

We examined choice accuracy with respect to the average value of the samples observed in
each option. Mean choice accuracy was 83.8% under full control (SE = 1.4%, yoked baseline:
80.3%, SE = 1.2%) and 79.6% under partial control (SE = 1.6%, yoked baseline: 80.3%, SE
=1.6%). A mixed 2x2 ANOVA with the factors control over sampling (self-controlled or yoked;
within participants) and control type (full or partial; between participants) showed no main
effects [self-controlled/yoked: F(1,38) = 2.143, p = 0.151, np2 = 0.053; full/partial: F(1,38) =
1.321, p = 0.258, np? = 0.034], but a significant interaction of the two factors [F(1,38) = 5.108,
p = 0.03, np2 = 0.118)]. Post hoc tests showed significantly higher accuracy under full control
than in the yoked baseline [t(19) = 2.644, p = 0.032, d = 0.605, Bonferroni corrected], but no
such effect under partial control [t(19) = -0.561, p > 0.9, d = -0.108]. Thus, relative to matched
baseline conditions, we found an accuracy benefit of control over sampling under full control,
but not under partial control.
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We next examined if and to what degree the integration of sample information over time
differed between conditions. To this end, we examined the samples’ decision weights (see
Materials and Methods, Behavioral data analysis) separately for early, mid-, and late portions
of the sampling sequence (Fig. 1c). We found a pronounced “recency” pattern (Tsetsos et al.
2012; Cheadle et al. 2014), with decision weight increasing over the course of the trial. In other
words, later samples generally had a higher impact on the final choice than earlier samples.
For comparison between sampling conditions, we quantified recency as the difference in
decision weight between late and early samples (Fig 1d). A mixed 2x2 ANOVA, specified
analogously as for accuracy above, showed no significant main effects [self-controlled/yoked:
F(1,38) = 0.8, p=0.377, np? = 0.021; full/partial: F(1,38) = 3.363, p = 0.075, ny? = 0.081], and
no interaction between the two factors [F(1,38) = 1.483, p = 0.231, np? = 0.038]. Thus, we
found no impact of control over sampling on recency. Together, full control over sampling was
characterized by increased choice accuracy but was not distinguished in the extent to which
sample information “leaked”(Usher and McClelland 2001), or was forgotten, in the course of a
trial.

Visual evoked responses

Turning to the EEG data, we first examined visual evoked responses to test whether the
sampling conditions differed in terms of early sensory processing of the sample stimuli (e.g.,
due to potential differences in stimulus-directed visual attention; Luck et al. 2000). Figure 2a
shows the occipitoparietal ERP difference between stimuli occurring in the right and left visual
fields, subtracted between contralateral channels (see Materials and Methods, ERP analysis).
Statistical analysis showed no differences between sampling conditions in the time window of
either the P1 (80—-130ms) or the N1 component (140—-200ms) of the visual ERP [all F(1,38) <
1.71, all p > 0.20, all ny? < 0.044; mixed 2x2 ANOVAs specified as in the behavioral analysis
above]. We thus found no evidence for differences in early visual processing between the
sampling conditions.
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Fig. 2 Univariate EEG results with ERPs time-locked to number sample onset. (a) Early visual
ERPs (left - right stimuli, right channels subtracted from left channels) in each sampling condition. Gray
shadings indicate time windows of the P1 and N1 components, respectively (80-130 ms and 140-200
ms). (b) The difference in centro-parietal (CPP) amplitudes between samples occurring late vs. early in
the trial (see panels c—d), plotted separately for each sampling condition (including yoked). (c) The
‘ramping up” of CPP amplitudes over early, mid, and late samples in the partial control condition. Gray
shadings indicate the time window from which average amplitudes were extracted in panel b. (d) same
as c, for the full-control condition. Error indicators in all panels show SE.
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Centro-parietal positivity (CPP) / P3

We next examined CPP responses over centro-parietal channels between 300 ms and 600
ms after stimulus onset. The amplitude of the CPP response to a sample generally increased
in the course of the trial (Figures 2b—d), which is in line with previous studies implicating the
CPP in decisional evidence accumulation (O’Connell et al. 2012; Twomey et al. 2015). Figures
2c and 2d illustrate the monotonic ramping-up of CPP across samples occurring early, mid,
and late in the trial (see Materials and Methods) under partial and full control. Descriptively,
the build-up of CPP was stronger under full control. For statistical analysis, we examined the
increase in CPP amplitude from early to late samples in the individual sampling conditions
(Fig. 2b). A significant increase in amplitude was evident in each condition (including yoked;
Fig 2b, all p < 0.02, t-tests against zero, uncorrected). A mixed 2x2 ANOVA comparing the
amplitude difference between conditions showed no significant main effects [self-
controlled/yoked: F(1,38) = 1.579, p = 0.217 np? = 0.04; full/partial: F(1,38) = 1.534, p = 0.223,
Ne® = 0.039], but a significant interaction [F(1,38) = 11.408, p = 0.002, ny,2 = 0.231]. Post-hoc
t-tests showed that the CPP increased more steeply in the full control condition than in the
yoked baseline [t(19) = 2.772, p = 0.024, d = 0.687, paired t-test, corrected], whereas no such
effect was evident under partial control [t(19) = -1.932, p = 0.137, d = —0.355]. These findings
suggest that the increased choice accuracy under full control was associated with a stronger
build-up of a cumulative decision variable (Twomey et al. 2015), as indicated by a steeper
increase of centro-parietal decision signals within trials.

RSA

Our results so far show that decisions made with full control over sampling were more accurate
and accompanied by a stronger build-up of parietal choice signals (Fig. 2c—d), but there was
no evidence for differences in early visual processing (Fig. 2a) or in the leakage of sample
information over time (Fig. 1b—c). One possibility is that a benefit of full control may have arisen
at the stage of numerical processing, in encoding the abstract decisional value of the sampled
number information proper. We used an RSA-based approach (see Materials and Methods)
to examine the neural encoding of numerical sample values, building on previous findings of
numerical distance effects in multivariate EEG patterns (Spitzer et al. 2017; Teichmann et al.
2018; Luyckx et al. 2019; Sheahan et al. 2021). Specifically, we correlated the multivariate
similarity structure of samples (1-9) in our EEG data with theoretical models reflecting (i)
numerical distance and (ii) extremity of the sample values (see Materials and Methods).

Numerical distance. We found robust encoding of numerical distance in multivariate EEG
signals between approximately 160 and 800 ms after sample onset (Fig. 3b, pciuster < 0.001, t-
test against zero), replicating previous findings in tasks without sampling control (Spitzer et al.
2017; Teichmann et al. 2018; Luyckx et al. 2019; Sheahan et al. 2021). To test whether the
strength of this effect differed between levels of sampling control, we examined its time course
in the various conditions (full, partial, yoked baselines) using mixed 2x2 ANOVAs (specified
analogously as above). The analysis showed no main effects (all peuster > 0.05) but a significant
interaction cluster between 320 ms and 580 ms (Pcuster = 0.009). We further compared the
average numerical distance effects in the time window of this cluster. We found the effect to
be significantly larger (relative to yoked baseline) under full control [t(19) = 3.65, p = 0.003, d
= 1.05, corrected], but not under partial control [t(19) = —1.065, p = 0.6, d = —=0.340, corrected].
In other words, the encoding of number information in sample-level neural signals was


https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446960; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

14

enhanced under full control, mirroring the pattern of findings for CPP build-up (Fig. 2b) and
choice accuracy (Fig. 1b).
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Fig. 3 RSA Results. (a) Upper: Model RDM reflecting the pairwise numerical distance between sample
values. Lower: Grand mean EEG RDM averaged across participants and sampling conditions in a
representative time window between 300 and 600 ms after sample onset. (b) Time course of numerical
distance effects in multivariate EEG patterns, plotted separately for each sampling condition. Black bar
indicates time windows of significant numerical distance encoding (collapsed across sampling
conditions). Purple bar indicates the time window of significant differences between sampling conditions
(interaction effect, see Results). (c) Mean numerical distance effects by condition. Left: First half of
samples in each choice trial. Right: Second half. (d) Model RDM reflecting the sample values’ extremity
in terms of their absolute distance from the midpoint of the sample range (i.e., 5). (e) Time course of
extremity encoding in multivariate EEG, plotted separately for each sampling condition. All error bars
and shadings show SE.
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We next asked whether the enhanced number encoding under full control was driven solely
by late samples occurring near the time of the decision to stop sampling. To this end, we
repeated the RSA analysis separately for the first (Fig. 3c, left) and second (Fig. 3c, right) half
of the samples in a trial. Importantly, a significant enhancement under full control was already
evident in the first half of samples [t(19) = 2.279, p = 0.034, d = 0.707], that is, long before
participants stopped sampling. The effect in the second half of samples was similar [t(19) =
2.237, p = 0.037, d = 0.673; partial control: both p > 0.24]. In sum, we found no indication that
enhanced number encoding under full control occurred only near the time of deliberate (vs.
forced) stopping. Rather, the effect appeared to emerge early in the sampling sequence. We
note again that we only interpreted effects in relation to the respective matched (yoked) control
conditions, as other comparisons may suffer from non-trivial confounds (see Materials and
Methods, Experimental design).

Extremity. Inspection of the empirically observed RDM (Fig. 3a, lower) suggests that besides
numerical distance, the multivariate EEG patterns also encoded the extremity of the sample
values (i.e., their absolute distance from the mid-point of the sample range (Spitzer et al. 2017,
Luyckx et al. 2019)). Using a model RDM of numerical extremity (Fig. 3d; note that the model
is orthogonal to the numerical distance RDM in Fig. 3a, upper), we found a significant effect
between approximately 260 ms and 800 ms (t-test against zero, pcuster < 0.001) in the EEG
data collapsed across conditions. However, testing for differences between sampling
conditions yielded no significant results (all pcuser > 0.05). Together, while both numerical
distance and numerical extremity were reflected in our multivariate EEG data, only numerical
distance mirrored the enhancement under full control that was observed in CPP build-up and
in behavior.

Neurometric distortions. Recent studies of sequential number comparisons (without
participant control over sampling) have shown that neural number representations can be
distorted (e.g., anti-compressed) away from the linearly monotonic distance structure of our
idealized model RDMs (Fig. 3a). We used a “neurometric” approach (Spitzer et al. 2017) to
test (i) whether such distortions were replicated in our task and (ii) whether they differed
between levels of control. To this end, we parameterized our model RDMs to reflect the
distance structure of transformed values v = sign(x + b) |x + b|*, where x are the numerical
sample values (1-9 normalized to the range [-1, 1]), exponent k determines the shape of the
transformation (k < 1 compression; k = 1 linear; k > 1 anti-compression), and b reflects a
bias towards smaller (b < 0) or larger numbers (b > 0). Our EEG data, averaged across all
conditions, were best explained by parameterizations k > 1 and b > 0 (Fig. 4a; both p <0.003,
t-tests of individual subject maxima against 1 and O, respectively, averaged over
parameterized distance and extremity). Thus, the neural number representation was anti-
compressed and biased towards larger magnitudes (Fig. 4b), strongly resembling the
distortions observed in previous work (Spitzer et al. 2017; Luyckx et al. 2019). In comparisons
between levels of control, however, we found no evidence for differences in the degree of anti-
compression (Fig. 4c, left; both p > 0.545, t-tests of k against yoked baselines or bias; Fig. 4c,
right; both p > 0.131, t-tests of b against yoked baselines). In other words, under full control,
the encoding of numerical sample information was amplified (Fig. 3) without any notable
changes in its general representational geometry.
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Fig. 4 Neurometric distortions. (a) Grand mean neurometric map, combined across all task
conditions. Color scale indicates change in EEG encoding strength (4 r, averaged over distance- and
extremity models) as a function of non-linear distortions of numerical value (k < 1: compression; k > 1:
anti-compression, b: bias). Dashed lines indicate linear (k = 1) and unbiased (b = 0) models. Parts of
the map that are not overlaid with a slightly opaque mask contain values with a significant increase
relative to unbiased linear encoding (p < 0.001, corrected using false discovery rate). White markers
show maxima (diamond: mean; dots, individual participants). (b) Neurometric function, parameterized
according to the maximum mean correlation identified in a. (c) Neurometric parameter estimates in the
individual sampling conditions, left: exponent (k); right: bias (b). Error bars show SE.
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Discussion

Using variants of a numerical sampling paradigm and controlling for stimulus confounds, we
observed increased choice accuracy when participants had control over the sampling process
before committing to a choice. On the neural level, the behavioral benefit was reflected in a
stronger encoding of the numerical sample information in multivariate EEG patterns and in a
steeper build-up of centroparietal choice signals. The key determinant of these effects was
participants’ control over how much information to sample. Freedom to decide only which
options to sample, but not when to stop sampling, did not bring about the same effects, in
either behavior or neural signals.

Drawing on a well-established sequential sampling framework (Gold and Shadlen 2007;
Ratcliff and McKoon 2008; O’Connell et al. 2012), our behavioral and neural findings provide
a neurocognitive perspective on how control over sampling may boost choice accuracy. We
observed no differences in early visual ERPs known to be modulated by top-down visual
attention (Mangun and Hillyard 1991; Luck et al. 1994, 2000), but a robust enhancement
further downstream in the processing hierarchy, at the level of symbolic number encoding
(Ansari et al. 2005; Nieder and Dehaene 2009). Our results replicate recent findings of a
“neuronal numberline” in multivariate EEG patterns, where the neural representation of for
example, number “6” is more similar to that of “7”, than to that of “9” (Spitzer et al. 2017;
Teichmann et al. 2018; Luyckx et al. 2019; Sheahan et al. 2021). We found this representation
of numerical magnitude to be amplified under full control, mirroring the pattern observed in
behavioral performance. Importantly, number encoding was already enhanced for samples
occurring early in the trial, long before participants stopped sampling to make a final choice.
Consistent with this finding, we also observed a steeper rise in parietal indices of evidence
accumulation (CPP/P3; O’Connell et al. 2012; Twomey et al. 2015) across samples, as if each
individual sample contributed stronger evidence to the ongoing decision formation. In a
sequential sampling framework where evidence is accumulated into a running decision
variable (Gold and Shadlen 2007; Kiani et al. 2008; Ratcliff and McKoon 2008; O’Connell et
al. 2012; Glickman and Usher 2019), our EEG and behavioral findings may thus both be
attributable to an improvement in numerical evidence processing.

One possible explanation for our findings relates to motivational factors. Previous work has
shown that the ability to actively control the environment and/or one’s subjective experiences
can have beneficial effects, for example on memory (Voss et al. 2011; Murty et al. 2015), self-
regulation and error monitoring (Legault and Inzlicht 2013), learning and inductive inference
(Gureckis and Markant 2012; Markant and Gureckis 2014), and various other aspects of
cognition and behavior (Patall et al. 2008; Leotti et al. 2010; Leotti and Delgado 2011; Patall
2012; Murayama et al. 2016). Our findings add to these literatures by showing that control can
also confer benefits in sample-based decision making, specifically when participants can
control when to stop sampling. While the extrinsic rewards for choice accuracy were identical
across our task conditions, control over stopping can add an incentive to optimize the time
spent on a trial (Ostwald et al. 2015; Tickle et al. 2020). There is typically a trade-off between
speed and accuracy of task execution (Heitz 2014), such that faster decisions come at the
cost of lower accuracy (but see Gigerenzer et al. 2011). However, the present findings under
full control cannot be explained by such a trade-off, given that we observed benefits relative
to yoked trials of identical length. As we used exact copies of the participant-generated


https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446960; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

18

sampling sequences in our baseline conditions, we can also rule out the possibility that the
results are attributable to “amplification effects” (Hertwig and Pleskac 2010), where
participants tend to stop sampling when the cumulative difference between options happens
to be large (leading to objectively easier trials; see below). With these simpler explanations
ruled out, our findings suggest that control per se may lead to more efficient sample encoding,
potentially through increased task engagement when decision time can be optimized on a trial
by trial basis.

We found no differences between conditions in the temporal weighting of sample information
over the course of a trial. A clear recency effect (relative overweighting of late samples) was
evident in all task conditions, including yoked baselines. This pattern appears to be at odds
with a previous meta-analysis of numerical sampling studies (Wulff et al. 2018), where recency
effects were observed solely in conditions with full agency over sampling. However, the
present pattern is consistent with established findings of recency effects in other sequential
integration tasks where sample presentation is entirely experimenter-controlled (Tsetsos et al.
2012; Cheadle et al. 2014; Wyart et al. 2015; Spitzer et al. 2017; Glickman and Usher 2019;
Luyckx et al. 2019; Kang and Spitzer 2021). We found no evidence that the extent to which
sample information presented early in the sequence is down-weighted (or “leaks” from
memory; Usher and McClelland 2001) was affected by control over sampling. We also found
no indication of differences in the representational geometry of the sampled information in
neural signals. Neurometric analysis showed an anti-compression of numerical values (Spitzer
et al. 2017; Luyckx et al. 2019) in all conditions, regardless of the level of control. The absence
of differences in these more qualitative aspects of information processing in our tasks
suggests that the cognitive benefits of full control may best be described as an overall increase
in the gain of neural processing (Donner and Nieuwenhuis 2013; Eldar et al. 2013; Murphy et
al. 2016), which amplify the critical decisional information in a sample (here, numerical
magnitude).

None of the benefits observed under full control were evident in our partial control condition,
where participants could only decide which option to sample next, but not when to terminate
sampling. Although the partial control condition gave participants some level of agency
(relative to the yoked conditions without control; Chambon et al. 2020; Weiss et al. 2021), we
suspect that it may not have induced a strong sense of control over the task. It even seems
possible that participants may have perceived the requirement to perform a prescribed number
of sampling actions as externally controlled and a cognitive burden (see also Sullivan-Toole
et al. 2017). Indeed, post hoc examination of left/right sampling patterns showed that our
participants resorted to stereotypical sampling routines (either alternating between options:
“a-b-a-b-...” or sampling first one option and then the other: “a-a-a-...-b-b-b”) in 67.61% of trials
(relative to the yoked conditions without control; for related findings see Hills and Hertwig
2010). In other words, participants made little use of the freedom to vary their left/right
sampling strategy trial by trial (and/or sample by sample), potentially due to a lack of perceived
benefits (Dixon and Christoff 2012). In this light, it is perhaps not surprising that we found no
processing enhancements under partial control, in either behavior or neural signals.

Numerical sampling tasks similar to ours have been used extensively in the past to study
decisions from experience (Hertwig et al. 2004) in complement to the common use of symbolic
descriptions to study risky choice (Kahneman and Tversky 1979; Juechems et al. 2021).
Experience-based choices can differ systematically from description-based choice, especially
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in terms of probability weighting (Hertwig and Erev 2009; Wulff et al. 2018). A much-discussed
aspect of this “description—experience gap” is that participants in experience-based tasks tend
to rely on relatively few samples (Hau et al. 2010; Plonsky et al. 2015; Wulff et al. 2018). Also
in our experiment, participants in the full-control condition chose to sample less than they could
have (Furl and Averbeck 2011). Although one explanation is that small samples can render
choices objectively simpler (Hertwig and Pleskac 2008, 2010), our findings suggest that small
samples may also defy typical accuracy trade-offs if the decision to stop sampling lies in the
autonomy of the sampling agent (see also Petitet et al. 2021). Granting participants full control
over sampling may thus not only enable but directly promote reliance on small samples
through more efficient processing of the sample evidence.

Finally, next to an encoding of the numerical sample information in multivariate EEG patterns,
we also found an apparent encoding of “extremity” (Fig. 3d-e), which did not differ between
levels of control over sampling. Future research may further investigate this effect with regards
to extreme events in decisions from experience (Ludvig and Spetch 2011; Ludvig et al. 2014,
2018).

In summary, we found that control over sampling can enhance the neural encoding of decision
information and improve choice accuracy. The results add to a growing collection of findings
that exercising agency can benefit performance in cognitive tasks and shed light on the neural
processes that support such benefits.
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