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Summary

Bacteria must balance the different needs for substrate assimilation, growth functions, and
resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial
proteome is by far the most important resource and its size is limited. Here, we investigated
how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein
resources when grown on different limiting substrates and with different growth rates. We
determined protein quantity by mass spectrometry and estimated enzyme utilization by
resource balance analysis modeling. We found that C. necator invests a large fraction of its
proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are
present in excess abundance. One prominent example is the strong expression of CBB
cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition
experiments suggest that CO,-reassimilation through Rubisco does not provide a fitness

benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.

Introduction

Cupriavidus necator (formerly Ralstonia eutropha) is a model aerobic lithoautotroph and
formatotroph, and is notable for production of the storage polymer polyhydroxybutyrate
(PHB) [Yishai et al., 2016, Brigham, 2019]. Cupriavidus necator H16 (hereafter abbreviated
C. necator) is a soil-dwelling bacterium with a large genome (~6,600 genes) distributed on
two chromosomes and one megaplasmid [Pohimann et al, 2006]. It features a wide arsenal
of metabolic pathways for xenobiotics degradation, hydrogen and formate oxidation, carbon
fixation via the Calvin-Benson-Bassham (CBB) cycle, and utilization of nitrate/nitrite as
alternative electron acceptors (de-nitrification) [Cramm, 2008]. Several operons for substrate
assimilation are present in multiple copies, often on different chromosomes (e.g. cbb operon,
hydrogenases, formate dehydrogenases). A detailed reconstruction of its metabolic network
suggested that it can metabolize 229 compounds [Park et al., 2011]. Interestingly, C. necator
prefers organic acids as growth substrate over sugars. The only sugars that support growth
are fructose and N-acetylglucosamine [Cramm, 2008], which are metabolized via the
Entner-Doudoroff (ED) pathway [Alagesan et al., 2018]. Although the metabolic versatility of
C. necator is interesting from a biotechnological point of view, this benefit could come at a

considerable cost for the cell. For example, it is not known if the expression of the various
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substrate assimilation pathways is efficiently regulated under different conditions, and if gene
expression is optimal to maximize growth or rather another trait such as environmental
readiness. The 'cellular economy' concept entails that an organism has a limited pool of
(enzyme) resources and must re-allocate resources to different functions in order to meet
the current environmental needs [Molenaar et al., 2009, Scott et al., 2014, Hui et al., 2015].
A prime example is the switch from energy-efficient, high-enzyme-cost respiration to
energy-inefficient, but low-enzyme-cost fermentation during overflow metabolism [Basan et
al., 2016, Sanchez et al., 2017]. The protein economy has been studied experimentally and
with dedicated metabolic models in heterotrophic microorganisms like E. coli [Scott et al.,
2014, O'Brien et al., 2016] and S. cerevisiae [Metzl-Raz et al, 2017, Sanchez et al., 2017].
More recently, resource allocation was studied in photoautotrophic bacteria (Synechocystis
sp.) [Jahn et al., 2018, Zavrel et al., 2019]. There, a large investment in the CO,-fixation
(2-7% protein mass is Rubisco) and photosynthesis machinery (20-40% protein mass are
antennae and photosystems) may reduce proteome space for ribosomes, resulting in lower

growth rates than heterotrophs.

Previous studies of C. necator grown in different trophic conditions have shown that
gene expression is regulated in a condition-dependent manner [Schwartz et al., 2009,
Kohlmann et al., 2011, Kohlmann et al., 2014]. For example, CBB cycle genes are strongly
expressed during autotrophic growth but were also upregulated on fructose [Shimizu et al.,
2015], prompting the question of whether such expression confers any evolutionary
advantage. To date, protein allocation and utilization has not been investigated. It is unclear
if and how C. necator would reallocate protein resources when confronted with different
types or degrees of substrate limitation, or to what extent a versatile soil bacterium would
express unutilized or underutilized proteins. To address these questions, we designed a
multivariate set of growth experiments. C. necator was cultivated in bioreactors at steady
state conditions using four limiting substrates and five different growth rates. We quantified
the cellular proteome using LC-MS/MS and trained a genome-scale resource allocation
model with our data [Bulovic et al., 2019, Goelzer et al., 2015]. We found that C. necator
allocates its resources in response to the imposed environmental challenges, but invests
more than 40% of its protein mass in genes that are either unlikely to be utilized or have no
known function. Enzyme utilization in the central carbon metabolism was markedly different

between pathways, with enzymes in the proximity of substrate assimilation (upper glycolysis,
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CBB cycle) showing higher variability, higher absolute abundance, and higher utilization than
enzymes involved in supply of biomass precursors (tricarboxylic acid cycle (TCA), pyruvate
metabolism). CO,-assimilation enzymes expressed in heterotrophic growth regimes were

unlikely to provide a fitness benefit.

Results

C. necator expresses most of its annotated genes

In order to access cellular states that were optimally acclimated to a nutrient limitation, we
cultivated C. necator in chemostat bioreactors. We selected four limiting growth substrates
as interesting entry points to metabolism (Figure 1 A). Fructose was chosen as a glycolytic
substrate because C. necator does not naturally utilize glucose [Orita et al, 2012]. It is taken
up via a specific ABC transporter and metabolized in the ED pathway. Succinate was chosen
as an entry point to the TCA cycle. Formate was chosen because formatotrophic growth
closely resembles lithoautotrophic growth regarding the utilized enzymes [Cramm, 2008].
Formate (COOH") is first oxidized by formate dehydrogenases (FDH) to CO, with
simultaneous reduction of NAD" to NADH. The CO, is then fixed via the CBB cycle. Finally,
growth on fructose with limiting ammonium was chosen as we expected a dedicated
response to N-limitation by adjustment of gene expression and flux ratios between different
pathways. For each limitation, four independent bioreactor cultivations were performed with
dilution rate (equalling growth rate p) increasing step-wise from 0.05 to 0.1, 0.15, 0.2, and
0.25 h™" (Figure S1 A) and subsequent sampling for proteomics. The substrate limitation in
chemostats was verified by determining the residual carbon concentration in culture
supernatants using HPLC (Figure S1 B). For ammonium limitation, a high concentration of
residual fructose was determined, as expected when nitrogen is limiting. All other conditions
showed no or very low concentration of residual substrate. Quantification of dry cell weight
(DCW) and PHB content revealed that only ammonium-limited cells produced a significant
amount of PHB, approximately 80% of total biomass for the strongest limitation (u=0.05 h™,
Figure S2).

We analyzed the proteome of C. necator for all conditions of the chemostat
cultivations (four substrate limitations, five growth rates, four biological replicates). We
employed a label-free quantification strategy with a feature propagation approach, allowing

us to significantly increase the coverage of protein quantification [Weisser et al., 2017]. More
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than 4,000 proteins were quantified in each individual sample (Figure S3 A). Altogether,
5,357 proteins out of 6,614 annotated genes were quantified in at least one condition
(81.0%), and 4,260 proteins were quantified with at least two peptides (Figure S3 B). The
proteomics data can be accessed through an interactive web application at
https://m-jahn.shinyapps.io/ShinyProt. Based on the distribution of protein abundance 99%
of the proteome by mass was quantified. An analysis of sample similarity based on
expression revealed that low growth rates are more similar to each other, and that growth on
formate is most unlike the other conditions (Figure S3 C). Gene expression in terms of
proteome mass fraction was unequally distributed over the genome (Figure 1 B): 78.7% of
protein mass was encoded by chromosome 1, 16.4% encoded by chromosome 2, and 5.4%
by pHG1. Chromosome 2 and pHG1 thus encode predominantly specialized functions, as
predicted by in silico analyses [Pohimann et al., 2006, Fricke et al., 2009]. On chromosome
2, highly expressed genes were the cbb operon (CBB Cycle, pentose phosphate pathway
(PPP), Figure S3 D), glycolysis related genes (pgi, zwf), and the methionine synthase metE.
On pHG1, highly expressed were the second copy of the cbb operon as well as hox/hyp
operons (soluble and membrane bound hydrogenases, up to 3% of proteome by mass). The
majority of pHG1 encoded protein mass is therefore related to autotrophic growth. Note that
the two copies of the cbb operon are 99% identical on amino acid sequence level and can
not be distinguished well by LC-MS/MS (abundance of ambiguous peptides was allocated to
both copies). Promoter activity studies have shown that expression levels from both operons
were similar [Gruber et al., 2017]. As we also cultivated C. necator on formate, we were
interested in the expression of formate dehydrogenase (FDH) genes (Figure S3 E). C.
necator is equipped with two types of FDH, soluble S-FDH (operons fds and fdw on
chromosome 1 and 2, respectively) and membrane-bound M-FDH (fdo and fdh operons, the
latter present in two copies on chromosome 1 and 2, respectively). In contrast to cbb genes,
which were expressed under both fructose and formate growth, expression of FDHs was
induced only during growth on formate, and the soluble dehydrogenase (fds) was the

predominant form.
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Figure 1. C. necator expresses most of its annotated genes. A) Four different limitations
were chosen covering different entry points to central metabolism. Cells were cultivated in
chemostat bioreactors and dilution rate (equals growth rate) was stepwise increased from
0.05 to 0.25 h'. The proteome was analyzed by LC-MS/MS. Enzyme abundance was used
to constrain a resource balance analysis (RBA) model, and enzyme utilization was
investigated for the different limitations. B) Protein mass fraction (%) of all proteins (5,357)
mapped to their respective genes on chromosome 1, 2, and megaplasmid pHG1 (mean of
four substrate limitations, u=0.25 h”). Density is mean protein mass fraction for a sliding
window of five genes. The genes of the cbb operon (arrows) are the most expressed regions
on chromosome 2 and pHG1.

A large fraction of the C. necator proteome is not utilized and not essential

We next explored how the proteins of C. necator are utilized during the different growth
modes. We created a resource balance analysis (RBA) model [Bulovic et al, 2019] based on

a previous genome-scale metabolic reconstruction of C. necator (1,360 reactions) [Park et
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al., 2011]. The RBA model predicts optimal flux distributions as in flux balance analysis
(FBA), but also takes kinetic parameters and enzyme abundance into account (Methods).
DNA replication, transcription, translation, and protein folding were included as lumped
reactions (macromolecular machines) with protein subunit composition and rate estimates
taken from the literature (Methods, Table S1). Each enzyme or macromolecular machine
imparts a protein cost, with the total protein pool being limited. RBA models can predict
trade-offs between high- and low-enzyme-cost pathways, increase of ribosome abundance
with growth rate, and upper boundaries on growth in substrate-replete conditions [Goelzer et
al. 2015, Sanchez et al.,, 2017, Salvy et al., 2020]. The C. necator RBA model was
constrained using a set of parameters obtained from proteomics data, the UniProt database,
and literature (Methods, Figure S4, Table S1). A critical parameter for RBA is the enzyme
efficiency k., of each reaction, which links the reaction rate to the abundance of its
catalyzing enzyme. These were obtained by estimating the metabolic flux boundaries per
reaction (using flux sampling), and then dividing maximal flux by unit enzyme allocated to the
reaction [Goelzer et al., 2015, Davidi & Milo, 2017, Bulovic et al., 2019].

We used the constrained resource allocation model to analyze the non-utilized and
the under-utilized fraction of the C. necator proteome. The non-utilized proteome fraction
consists of enzymes that do not carry flux in any of the tested conditions. To quantify this
fraction, we performed a series of RBA model simulations corresponding to the experimental
conditions of the chemostats. The model predicted optimal flux distribution and enzyme
abundance to maximize growth rate for each of the four different substrate limitations. The
model was generally able to reproduce experimentally determined protein allocation using
fitted (optimal) k,,, values (Figure S5 A). However, these simulations may predict one out of
many possible solutions to the protein allocation problem. In order to estimate the total

number of usable reactions independent from the optimal set of k,,,, we performed 200

pp>
simulations per substrate limitation where k., was randomly sampled from the k.,
distribution. This converged to maximally 550 utilized reactions per condition. (Figure S5 B).
In total, 587 of 1,360 reactions were utilized at least once in all simulations, 280 reactions
were used in all simulations on all substrates (core reactions), and 28 reactions were used in
only one particular limitation. We mapped the C. necator proteome quantification data onto
RBA model reactions to categorize proteins as: 1) not included in the model, 2) included but

non-utilized enzymes, 3) utilized enzymes, and 4) utilized machinery (Figure 2 A). The
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non-modeled proteome fraction comprised on average 38% of the proteome mass (0.26
g/gDCW, 4,041 proteins), and was slightly dependent on condition. Non-utilized enzymes
were low-abundant in mass (0.03 g/gDCW, 400 proteins) compared to the utilized enzyme
fraction (0.27 g/gDCW, 823 proteins). Macromolecular machinery averaged 0.12 g/gDCW for
93 annotated proteins. Non-utilized enzymes were not enriched in a particular functional
category, while the non-modeled protein fraction was enriched in functions for transport,
transcription (factors), and post-translational modification (Figure 2 B). A large group of
proteins has no annotated function. Taking non-modeled and non-utilized proteins together,
43% of the C. necator proteome (by mass) is unlikely to be utilized in the tested conditions,
or involved in processes not covered by the RBA model. We also estimated the protein mass
encoded by essential genes per utilization category (Figure 2 A, shaded area). Gene
essentiality was determined by sequencing a randomly barcoded transposon library with
60,000 mutants after growth on rich medium (RB-TnSeq workflow) [Rubin et al, 2015,
Wetmore et al., 2015]. Transposon insertion density of a gene was used to sort it into one of
three different categories, 'essential' (496 genes), 'probably essential' (149), or
'non-essential' (4,712). On average, 47% of utilized enzymes (by mass) were encoded by
essential genes, while only 19% and 3% of the non-modeled and non-utilized protein mass,
respectively, was essential. Based on the calculated large fraction of non-modeled and
non-utilized proteome, and the observation that approximately half of the enzyme mass is
non-essential, we conclude that a large portion of the C. necator proteome is associated with

nutrient scavenging and regulatory adaptation to new environments.
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Figure 2. The non-modeled and non-utilized proteome of C. necator is related to
environmental readiness. A) A series of model simulations was conducted with randomly
sampled enzyme efficiency K., (1=200) to obtain the maximum number of potentially utilized
reactions in each growth condition. The C. necator proteome (5,357 proteins) was allocated
to each of four utilization categories and protein mass summed up per category. Protein
mass encoded by essential genes is indicated as shaded area in bars. Bars represent mean
of four biological replicates, whiskers represent standard deviation. B) Average protein mass
by utilization category and functional group. Alternating color (grey and yellow) for bubbles
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are used in alternating rows.

Highly utilized enzymes are more abundant, less variable, and often essential

The under-utilized proteome fraction is a subset of the utilized fraction. Generally, metabolic
flux through a reaction can be correlated to the associated enzyme abundance. The rate of a
reaction v is then the product of the enzyme efficiency k,,, and the concentration of the

enzyme that catalyzes the reaction (UR:kapp' [E]) [Davidi & Milo, 2017]. Under

steady-state conditions, optimal gene expression would adjust enzyme abundance
proportional to the flux that it is supposed to carry (metabolic demand), keeping utilization of
the enzyme constant. If enzyme abundance and flux do not change proportionally between
different conditions or growth rates, utilization changes. To estimate the degree of utilization,
we compared experimental protein allocation to model predictions at different growth rates.
The RBA model predicts the minimal required enzyme abundance to drive a metabolic
reaction, assuming full substrate saturation of the enzyme. Although full saturation of all
enzymes is not realistic [Reznik et al., 2017, Janasch et al., 2018], it is a useful assumption
to determine enzyme utilization. Utilization U is calculated by dividing the predicted minimal
enzyme abundance by the experimentally determined enzyme abundance [Davidi & Milo,
2017]:

U, (%] = [E]

/ [E] 100

minimal measured

We first looked at utilization of the macromolecular machines (Figure S6). Only two of these,
ribosomes and chaperones, had a considerable protein mass allocated to them. The
abundance of ribosomal proteins increased linearly with growth rate, as observed in other
bacteria [Scott et al, 2014, Peebo et al., 2015, Jahn et al., 2018]. The RBA model
simulations accurately predicted expansion of ribosomes with increasing growth rate, but
failed to predict incomplete reduction of ribosomes at low growth rate (Figure S6 B). This can
be explained by the evolutionary benefit that cells gain from keeping a ribosome reserve for
nutrient upshifts [Mori et al., 2017]. The ribosome reserve led to a decrease in utilization at

low growth rate regardless of the limiting substrate (Figure S6 C).

Next, we examined metabolic enzyme utilization by comparing experimental and
simulated protein abundance. All metabolic reactions/enzymes of the RBA model that had

associated proteins quantified by MS were included in the analysis (n=1,012). For each
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enzyme, the average utilization in the four limiting conditions (u=0.25 h™") was determined,
and then used to group enzymes into three categories: low (<33%, n=710), moderate
(33-66%, n=153) and high utilization (>66%, n=149). Highly utilized enzymes are therefore
predominantly enzymes utilized in several of the four limiting conditions. There were
significant differences between these three groups: Highly utilized enzymes were on average
more abundant in terms of protein mass (g/gDCW) (Figure 3 A). We also calculated
variability in enzyme abundance by determining the coefficient of variation (CV) of allocated
protein mass across the four different conditions (Figure 3 B). For example, formate
dehydrogenase (FDH) was strongly expressed in only one out of four conditions (growth on
formate) and therefore showed high variability (CV=1.25), and low average utilization (23%).
Altogether, variability was significantly lower for moderately and highly utilized enzymes.
These observations support the notion that C. necator optimizes the cost-benefit ratio of
gene expression by keeping utilization high for highly abundant enzymes. Similarly, low
variation in gene expression of highly-utilized enzymes could provide a fithess benefit in
conditions changing on a short time scale. Constitutive expression of such genes can buffer
substrate and metabolite surges. Finally, we wondered if utilization of enzymes is also
correlated to essentiality of the associated gene(s) as determined by RB-TnSeq from our
transposon mutant library. Enzymes were sorted into, 'essential’, 'probably essential', or
'non-essential' based on the essentiality of their associated genes (Methods, Figure 3 C). We
found that enzymes with intermediate and high utilization were more likely to be encoded by

an essential gene compared to lowly utilized enzymes.

A closer inspection of the central carbon metabolism of C. necator revealed that
enzyme abundance and utilization was markedly different between major pathways (Figure 3
D). The enzymes in upper glycolysis (PGK, GAPDH, FBA, FBP) and the CBB cycle showed
a clear condition-dependent trend, with high expression and utilization on formate, and low
expression and utilization on succinate. The enzymes of lower glycolysis (PGM, ENO, PYK,
PDH) showed low expression, low variability and moderate to high utilization in all
conditions, clearly distinct from the enzymes in upper glycolysis. This trend continued with
reactions down-stream of glycolysis/gluconeogenesis, such as the reactions of pyruvate
metabolism and the TCA cycle (low, invariable expression). The ED pathway was only
expressed and utilized when fructose was used as carbon source. Gene expression

regulation in C. necator is thus hierarchically organized: Enzymes close to the entry point of
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substrates into central metabolism are expressed 'on demand', and show high variability,
high absolute abundance, and high utilization in some growth regimes. Enzymes
downstream of substrate assimilation show lower expression and variability, perhaps owing
to their universal role in providing biomass precursors (TCA, pyruvate metabolism). A lower
protein investment per catalytic activity allows for larger reserves of these enzymes. The low
utilization of many TCA and pyruvate metabolism enzymes may provide a benefit for
robustness by avoiding full saturation. We also inspected the enzymes of the PHB
biosynthesis pathway (Figure S7), Acetyl-CoA acetyltransferase (phaA), Acetoacetyl-CoA
reductase (phaB), and PHB synthase (phaC). PhaA and phaB were highly abundant while
phaC abundance was comparatively low. All enzymes showed a similar pattern of increased
expression with decreasing growth rate regardless of the limiting substrate. However, only
nitrogen limitation triggered significant PHB production which is reflected in the strong

utilization of the PHB biosynthesis pathway in this condition.
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Figure 3. Highly utilized enzymes are more abundant, less variable, and often essential. A)
Protein mass in g/gDCW allocated to enzymes with low, moderate, and high utilization.
Enzymes with moderate and high utilization were significantly more abundant than enzymes
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with low utilization (p=2.2x107° and 3.2x10%', respectively; Mann-Whitney U-test, two-sided).
B) Coefficient of variation (CV) as a measure of variability in enzyme abundance. Enzymes
with moderate and high utilization had significantly lower variability than enzymes with low
utilization (p=2.1x10° and 1.8x107%, respectively. Mann-Whitney U-test, two-sided). C)
Number of reactions associated with at least 1 essential gene, or at least 1 probably
essential gene, or no essential gene at all, broken down by utilization. D) Map of C. necator's
central carbon metabolism. Inset figures show enzyme abundance and utilization for the four
limiting conditions (u=0.25 h™, four biological replicates). Values were rescaled from the
respective minimum and maximum to a range of 0 to 1. Enzyme abbreviations are colored
according to essentiality as described in C).

Autotrophy-related enzymes are largely underutilized

The high average abundance and variability of the CBB cycle enzymes is particularly
interesting. While phosphoribulokinase (PRUK) and Rubisco (RBPC) are specific for the
purpose of CO,fixation, the other enzymes overlap with sugar phosphate metabolism
(glycolysis/gluconeogenesis, pentose phosphate pathway) providing precursors that are
essential for growth. We wondered if the expression of these enzymes is optimally regulated
based on the metabolic demands of the four different substrate limitations. We compared the
predicted (optimal) abundance with the experimentally measured abundance for important
enzymes of the CBB cycle (Figure 4 A). On formate, the protein concentration of these
enzymes increased with growth rate and therefore estimated flux, correlating with RBA
model predictions. A positive correlation was also found for fructose-limited growth, but a
negative correlation for succinate and ammonium limitation. Rubisco was highly abundant
even during growth on fructose where the model did not predict flux through the CBB cycle
(up to 0.02 g/gDCW or 3% of the proteome by mass). With the exception of Rubisco and
PRUK, the CBB cycle enzymes are encoded by three different copies on the C. necator
genome. Two of these are arranged in the cbb operons on chromosome 2 and pHG1, while
the respective third copy on chromosome 1 is the evolutionarily most ancestral [Pohlmann et
al., 2006, Fricke et al., 2009]. Expression of the ancestral enzymes is regulated differently
than the cbb operons, with lower average protein abundance that is independent of

substrate and growth rate (Figure S8).

When estimating the utilization of cbb enzymes, we found that utilization was high for

formate due to the obligatory flux through the CBB cycle, but low for other conditions (Figure
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4 B). It was not zero for some reactions that are required to drive lower glycolysis for
catabolism of fructose (PGK, GAPDH), or the non-oxidative PPP for the purpose of
nucleotide synthesis (transketolase reactions TKT1/2). We conclude that C. necator keeps
large amounts of underutilized CBB enzymes (0.024 to 0.04 g/gDCW, or 3.5 to 5.9% of the
proteome depending on substrate) whose abundance is not warranted by the expected
fluxes from glycolysis/gluconeogenesis or nucleotide biosynthesis. The underutilized enzyme
mass may be in preparation for autotrophic or formatotrophic growth, even when such
substrates are not in reach. The cbb operon also encodes several accessory enzymes that
were quantified but where utilization could not be estimated (cbbX, cbbY, cbbZ, Figure S3).
The most notable example is cbbZ, encoding the key enzyme of the 2-phosphoglycolate
(2-PGly) salvage pathway [Claassens et al., 2020]. Phosphoglycolate salvage becomes
necessary when the intracellular CO, concentration is low and the Rubisco oxygenation
reaction is more prominent, producing 2-PGly. It is not known if growth on formate leads to
considerable flux towards 2-PGly, but the ratio of substrate specificities for CO, and O, for C.
necators Rubisco (IC type) of 75 suggests low 2-PGly synthesis compared to 3-PGA
[Horken & Tabita, 1999]. We found that none of the primary 2-PGly salvage enzymes
(glycerate pathway) were upregulated on formate, and the knock-out of these enzymes had
no effect on growth. This suggests that phosphoglycolate salvage does not play a vital role

during growth on formate.
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Figure 4. Autotrophy-related enzymes are largely underutilized. A) Experimentally
determined and model-predicted protein concentration for the seven most abundant
enzymes of the CBB cycle (points and error bars represent mean and standard deviation of
four biological replicates, respectively). PGK, phosphoglycerate kinase; GAPD,
glyceraldehyde-3-phosphate dehydrogenase; FBA, fructose bisphosphate aldolase; FBP,
fructose bisphosphatase; TKT1, transketolase; PRUK, phosphoribulokinase; RBPC, ribulose
bisphosphate carboxylase. B) Total utilization of the enzymes in A). Ultilization was
calculated as the sum of predicted (optimal) enzyme abundance divided by the sum of
experimentally measured abundance.

Reassimilation of CO, is unlikely to provide a fithess benefit for C. necator

C. necator appears to keep large amounts of Rubisco (and other CBB cycle enzymes)
under-utilized during heterotrophic growth. However, the RBA model finds only optimal flux
solutions that maximize growth while other objectives are also possible. It was shown that C.
necator fixes emitted CO, via Rubisco during growth on fructose [Shimizu et al., 2015].
Knock out of Rubisco reduced PHB yield on fructose by 20% during nitrogen starvation. We
wondered if activity of the CBB cycle could improve total carbon yield (biomass including
PHB) at the cost of lower growth rate, representing a yield-growth rate trade-off. To test if

reassimilation of emitted CO, improves carbon yield, we performed RBA model simulations
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on fructose and forced flux through Rubisco (Figure 5 A). We simulated five different CO,
fixation rates (0 to 5 mmol gDCW"' h™) at a fructose uptake rate of 4.0 mmol gDCW" h™".
However, neither biomass yield nor growth rate was improved in any of the simulations
(Figure 5 B, C). Metabolic flux was diverted from the ED pathway towards the non-oxidative
PPP in order to provide ribulose-5-phosphate precursors for CO, fixation (Figure 5 D).
Simultaneously, the high energy requirement for CO, fixation led to higher flux through the
TCA cycle in order to generate additional NADH and ATP. Respiration and O, consumption
was also predicted to increase, while no net reduction of CO, emission was found.
Simulations suggested instead that the cells emit more CO, when CO, fixation is enforced,
an apparent paradox caused by the lack of additional energy. This can also be inferred from
the similar degree of reduction for fructose and biomass (4.0 and 4.12 per C-mol,
respectively, Shuler & Kargi, 2002), leaving no extra redox power for gratuitous CO,

reassimilation.

We then tested experimentally if expression of CBB genes conveys a fithess benefit
during growth on different carbon sources. To this end, the barcoded transposon library (pool
of 60,000 mutants) was cultivated in fructose-, succinate-, and formate-limited chemostat
bioreactors (dilution rate of 0.1 h™). The continuous feed fixes the growth rate and selects
cells with higher substrate affinity or biomass yield [Wides & Milo, 2018]. The composition of
the mutant pool was probed after 8 and 16 generations of growth using next generation
sequencing. The fitness contribution of each gene was estimated by the degree of
enrichment or depletion of mutants over time [Wetmore et al., 2015]. Surprisingly, we found
that fitness of cbb mutants was largely unchanged, even during growth on formate where the
activity of the CBB cycle is strictly essential for growth (Figure 5 E). CbbP, encoding
phosphoribulokinase, and cbbS/L encoding the two subunits of Rubisco showed no
significant change in fitness on any substrate. These results show that knockout of cbb
genes are fully compensated by the second copy of the cbb operon. A notable exception
was cbbR, the transcriptional regulator of the cbb operon. Knockout of cbbR leads to a 100
fold down-regulation of cbb gene expression [Shimizu et al., 2015]. Though two copies of the
cbbR regulator are present, only the chromosome 2 copy is functional, the pHG1-encoded
copy is inactive due to a 26 bp deletion [Bowien & Kusian, 2002]. CbbR mutants had a
strong fitness penalty on formate (Figure 5 F, fitness < -6) but no significant fithess penalty

on fructose or succinate; the observed fitness effects of -1 to -2 were within the typical
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variation for neutral genes. This suggests that the activity of the CBB cycle is either neutral
to growth or the effect is too small to detect with our method. We reproduced these
experiments with a cultivation regime that primarily selects for faster growth rate (medium
pulses every 2 h) and obtained similar results (Figure S9 A, B). We conclude that (re-)
fixation of CO, during heterotrophic growth is unlikely to convey a growth benefit without
additional energy (e.g. from H, oxidation). We hypothesize that the up-regulation of Rubisco

on fructose is a 'byproduct' of up-regulation of other glycolysis related genes of the cbb

operon.
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Figure 5. Reassimilation of CQO, is unlikely to provide a fitness benefit for C. necator. RBA
model simulations were performed for a fixed fructose uptake rate combined with five
different CO, fixation rates. A) Example metabolic flux map for a fructose uptake rate of 4.0
mmol gDCW' h" and CO, fixation rate of 3 mmol gDCW' h’'. Blue - uptake of fructose and
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CO,, red - emission of CO,. B) Predicted growth rate u. C) Biomass yield Y in gDCW g
fructose”. D) Net flux through selected reactions for the same simulations as in B) and C).
For the TCA cycle, flux through citrate synthase was used as a proxy. For the
Entner-Doudoroff (ED) pathway, flux through 6-phosphogluconolactonase (EDD) was used
as a proxy. E) Fitness for all cbb genes determined by growth competition of a barcoded
transposon knockout library on three different substrates. F) Fitness over time for selected
cbb genes of the pHG1 encoded operon, except cbbR which is located on chromosome 2.
Chromosome 2 encoded cbb genes are not shown due to low ftransposon insertion
frequency. Points and error bars represent mean and standard deviation of four biological
replicates, respectively. Grayscale labels indicate role in CBB pathway: dark gray -
transcriptional regulator, moderate gray - specific for CO, fixation, light gray - overlapping
role in glycolysis/CBB cycle.

The central metabolism of C. necator is highly redundant

We have previously established that several enzymes in the central carbon metabolism of C.
necator are encoded by strictly essential genes (Figure 3 D). However, most reactions are
annotated with more than one (iso-) enzyme. We therefore expanded our gene fitness
analysis to all enzymes of central carbon metabolism in order to find conditionally essential
genes. The reactions of central carbon metabolism were grouped into four different
pathways, CBB cycle including FDH, ED pathway, pyruvate metabolism and TCA cycle, and
the fitness of all genes associated with these reactions was quantified (Figure 6 A,
replication experiment in Figure S9 C). The majority of genes showed no significant fithess
penalty (or benefit) when knocked out. Only a few genes showed a significant decrease in
fitness, and the effect on fithess was substrate-specific. Four genes encoding subunits of a
soluble FDH (fdsABDG) showed significantly reduced fitness on formate. This demonstrates
that fds encodes the dominant FDH activity (Figure S2, Figure 6 B). No other annotated FDH
genes had a similar fitness penalty (Table S2). Another conditionally essential gene on
formate was ppc, encoding the PEP-carboxylase (PPC). The reaction has no other
annotated (iso-) enzymes and was predicted by RBA to carry substantial flux towards the
TCA cycle on formate and fructose, but not on succinate (Figure 6 B-D). The fitness penalty
of ppc knock-out mutants reflected the relative importance of the reaction for growth on the
different substrates (formate: -4.2, fructose: -2.7, succinate: -0.1, Table S2). On fructose,
genes for four consecutive enzyme reactions had significantly reduced fitness, pgl, edd1 and

eda from the ED pathway, as well as pdhA encoding the E1 component of pyruvate
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dehydrogenase (Figure 6 C, Table S2). For EDD another isoenzyme is annotated (edd?2) that
could not compensate for the edd7 knockout. For PDH, five alternative loci are annotated, all
of which did not rescue pdhA knockout (Table S2). On succinate, only two gene knockouts
have significantly reduced fitness, malic enzyme maeA and pdhA. Both associated reactions
(ME and PDH) carry significant flux on succinate according to RBA simulations (Figure 6 D).
Malic enzyme has one more annotated gene, maeB, with different cofactor specificity
(NADPH instead of NADH), which could not compensate for the loss of maeA (Table S2).
We conclude that the central carbon metabolism of C. necator has a very high degree of
redundancy. Apart from a core set of essential genes encoded on chromosome 1, many
enzyme functions can be compensated by alternative copies. The genes that were found to
be conditionally essential were either present with only one copy (pgl, eda, ppc), or the
alternative enzymes could not compensate for their loss (edd2, maeB, pdhA2, alternative
FDHs). The degree of essentiality for these genes was correlated to the flux carried by the

enzyme (Figure 6 B-D).
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Figure 6. Central metabolism enzymes are highly redundant in C. necator. A) Fitness for all
central carbon metabolism genes associated with the reactions in Figure 3 D. Fitness was
determined by growth competition of a barcoded transposon knockout library on three
different substrates. Genes are broken down by pathway. Dotted line - fitness < -3 was
regarded as significant. A summary of all reactions with significantly changed fitness is
available in Table S2. B) Metabolic flux map for growth on formate. RBA simulation with
formate uptake rate of 62 mmol gDCW' h'. Red - reaction where annotated genes show
significantly reduced fitness in growth competition from A). C) Same as B) for fructose with
uptake rate of 4.0 mmol gDCW' h''. D) Same as B) for succinate with uptake rate of 8.3
mmol gDCW' h'.
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Discussion

A characteristic feature of all Burkholderiales is a fragmented genome organisation (2-4
replicons) [Fricke et al., 2009]. Comparative genome analysis suggested different
evolutionary origins of the C. necator chromosomes, with chromosome 1 more conserved
among related species than chromosome 2 and pHG1 [Fricke et al., 2009]. We found that
the largest fraction of protein mass (78.7%) can be attributed to chromosome 1, while
chromosome 2 and the pHG1 megaplasmid only show strong expression at a few selected
loci responsible for alternative lifestyles (lithoautotrophy, denitrification). Chromosome 1 also
showed predominantly constitutive expression across different trophic conditions, while the
few highly expressed loci on chromosome 2 and pHG1 were transcriptionally regulated. This
supports the hypothesis that C. necator may have acquired chromosome 2 and pHG1 at a
later stage of its evolutionary history and highlights the 'accessory' character of both

replicons [Fricke et al., 2009].

Of the 5,357 quantified proteins only 1,223 are associated with enzymes and another
93 with central dogma machinery in the C. necator RBA model. Yet, utilized enzymes and
machinery summed up to 57% of the protein mass, while 43% of the proteome was
non-utilized, including all proteins not covered by the RBA model. Our estimate for the
non-utilized protein mass in C. necator is higher than a previously reported estimate for E.
coli of 26-39%, particularly regarding the non-modeled protein fraction (39% in C. necator
compared to maximally 26% in E. coli) [O'Brien et al., 2016]. Another estimate for the
proportion of non-utilized enzymes for E. coli obtained about 30% of the proteome [Davidi &
Milo, 2017]. We conclude that C. necator not only has a larger genome compared to e.g. E.
coli, but also expresses many genes without utilizing them in the controlled, homogeneous
environments that are typical in biotechnology applications. The large non-utilized protein
fraction may be related to environmental readiness and may increase fitness of C. necator in
the variable and mixed substrate conditions typical of soil [Hewavitharana et al., 2019].
Further work is necessary to test this hypothesis, for example by subjecting C. necator to
laboratory evolution experiments in a constant environment with a defined carbon source.
Such a selection could lead to inactivation of superfluous substrate assimilation pathways,

freeing protein resources and eventually increasing growth rate.
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It is important to note that estimation of protein utilization is not straight-forward and
prone to several sources of error. For example, many proteins in C. necator are not
functionally annotated but could be catalytically active, eventually leading to underestimation
of the utilized protein fraction. On the other hand, enzymes can have 'moonlighting' activities
so that the calculated utilization is underestimated for some enzymes and overestimated for
others [Cotton et al., 2020]. Proteins involved in cell motility, cell cycling, sensing of and
responding to environmental changes are generally not a part of the metabolic model, yet
have vital functions for cellular fitness and are thus utilized in some way. Another challenge
is to assigh enzyme abundance accurately to reactions that have several annotated proteins,
or a protein that is assigned to several enzymatic reactions. In these cases we divided

protein abundance between different enzymes and vice versa.

Bearing these limitations in mind, we used the RBA model to investigate the
underutilization of enzymes. Underutilization as used in this study serves as a proxy for the
relation between maximum attainable reaction rate (V,.,) and actual reaction rate, with the
latter being shaped by substrate saturation, reverse flux as well as potential allosteric
effectors. The estimated enzyme efficiency k,,, is influenced by these factors and can
deviate from in vifro measured maximum turnover k., [Davidi et al., 2016]. A general
observation regarding utilization is the dependency on growth rate. Flux of metabolic
enzymes is directly proportional to growth rate, given that all other cultivation parameters are
kept constant. At low growth and low flux through metabolism, bacteria optimize fitness by
reallocating protein resources from growth functions (ribosomes) to substrate assimilation
(transporters) [Scott et al., 2014, Hui et al., 2015, Jahn et al., 2018]. However, this
reallocation is only a gradual response and neither results in full reduction of superfluous
proteome sectors, nor the shrinking of the protein pool (g protein/gDCW). The consequence
is that enzyme utilization becomes low at low growth rates (O'Brien et al., 2016). C. necator
also shows this pattern: ribosomal proteins are incompletely reduced at low growth rates,
and enzymes of central metabolism generally remain highly abundant (Figure 4, Figure S6),

effectively creating an underutilized enzyme reserve.

Underutilization of enzymes represents an 'efficiency sacrifice' for host fitness.
Expression of excess non-metabolic proteins such as LacZ or YFP reduces bacterial growth
rate [Hui et al., 2015, Jahn et al., 2018]. However, several recent experimental studies have

shown that enzyme underutilization in E. coli central metabolism, such as in the OPP
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pathway and amino acid biosynthesis, provides a buffer against perturbations in
environmental conditions or gene expression [Davidi & Milo, 2017, Christodoulou 2018,
Sander et al., 2019]. The importance of underutilized enzymes for metabolic stability has
also been shown for metabolic networks such as the CBB cycle [Barenholz et al., 2017,
Janasch et al., 2018]. We observed that highly abundant enzymes are better utilized and
less variable across conditions. This is most likely a result of the evolutionary pressure on

enzyme reserve costs, which increase proportionally with the abundance of enzymes.

It is of interest to compare enzyme utilization in C. necator to E. coli, a model
bacterium with a different environmental niche. The central carbon metabolism pathways of
C. necator showed differences in enzyme abundance, variability, and utilization. Abundance
of enzymes for the upper EMP pathway, PPP, and CBB cycle was on average higher than for
the enzymes of the ED pathway, pyruvate metabolism or TCA. This is similar to E. coli,
where higher abundance of glycolysis enzymes was explained by high flux demand and low
thermodynamic driving force [Noor et al., 2016]. But enzymes of the upper EMP pathway
and PPP also showed strong transcriptional regulation (variability in gene expression, Figure
3 D), which is a marked difference to E. coli, where enzyme levels show low variation across
multiple growth conditions [Schmidt et al., 2016], and flux is mainly regulated through
allosteric interactions [Reznik et al., 2017]. Of all central carbon metabolism, the TCA cycle
enzymes showed on average lowest abundance, variability and -for most enzymes-
utilization. This is similar to E. coli, where a simple enzyme cost minimization model
suggested lower enzyme abundance than what was measured experimentally [Noor et al.,
2016]. Only when reverse fluxes (for reactions with low thermodynamic driving force) and
low enzyme saturation ([S] < Ky, estimated from metabolite levels), were taken into account,
was the calculated enzyme demand similar to the measured levels [Noor et al., 2016]. The
RBA framework does not take thermodynamic driving forces into account and may therefore

underestimate enzyme demand for such reactions.

How was the regulatory network in C. necator's central carbon metabolism shaped by
its native environment? E. coli is adapted to regular nutrient upshifts every 2-3 hours [Mori et
al, 2017]. It therefore evolved allosteric regulation to deal with quickly changing fluxes
through the EMP pathway, its prime catabolic route [Reznik et al., 2017]. For C. necator,
sugars are likely not the preferred substrate as the only sugars it utilizes are fructose and

N-acetylglucosamine [Cramm, 2008]. Flux through the upper EMP pathway is low as it uses
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the low-yield ED pathway to catabolize sugars. A slow but more resource efficient
transcriptional regulation of glycolysis could therefore provide a fitness benefit for an
environment with limited and irregular substrate supply. Interestingly, only the glycolysis/PPP
enzymes located on the phylogenetically young cbb operons are transcriptionally regulated,
while the ancestral enzymes on chromosome 1 are constitutively expressed (Figure S8).
These enzymes are also scattered over the chromosome and therefore not collectively
regulated. The diverging regulation for glycolysis-related genes could mark a branching point
in the evolutionary history of C. necator. The pHG1 plasmid was likely acquired recently,
based on its transmissibility and proven ability to confer hydrogenotrophic metabolism
[Friedrich et al., 1981]. Cbb genes could either get lost or take over the function as main

glycolysis enzymes from their chromosome 1 orthologs.

The two copies of the cbb operon in C. necator are of hybrid nature as CBB cycle
enzymes functionally overlap with EMP glycolysis and PPP. Expression of the cbb operon
depended on the supplied substrate and was highest for growth on formate, where CBB
cycle genes are essential. However, a more complex picture emerged for cbb expression
during other substrate limitations (increasing with py on fructose, decreasing with p on
succinate). The cbb operon is transcriptionally regulated by two systems, CbbR [Bowien &
Kusian, 2002] and RegA/B [Gruber et al., 2017]. RegA/B guarantees a basic level of
constitutive expression, while CbbR senses the intracellular PEP concentration [Gruber et
al., 2017]. PEP is an important allosteric regulator responsible for the switch between
glycolytic and gluconeogenic flux in E. coli [Reznik et al., 2017]. In C. necator, growth on
fructose leads to low PEP concentration, triggering cbb expression, while it is the other way
around for succinate. This prompts the question which evolutionary benefit cells gain from
cbb expression during heterotrophic growth? On substrates with a higher degree of
reduction than biomass, such as glycerol, there will be sufficient redox power to fix emitted
CO, [Guadalupe-Medina et al., 2013]. On substrates with a lower degree of reduction, such
an excess is not expected. It has also been shown that reassimilation of emitted CO, by
Rubisco improves PHB yield [Shimizu et al., 2015]. We generalized this hypothesis and
tested if CBB activity could also provide a biomass yield or growth benefit. Our model
simulations suggested that CO,-reassimilation is unlikely to provide such a benefit as long as
there is no additional energy source (Rubisco activity even causes a higher net CO,

emission). Down-regulation of the cbb operon (cbbR mutant) caused no significant fitness
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change on fructose or succinate, suggesting that CO, fixation in these conditions provides
no benefit. The resolution of the transposon library experiments was however too low to
exclude that CBB activity does not confer a small growth advantage. We propose that the
conserved PEP-dependent transcriptional regulation of cbb leads to a collateral expression
of Rubisco in conditions where it is not required, such as fructose. This is a remarkable
example of suboptimality, where one benefit could be readiness for lithoautotrophic growth
when hydrogen or formate become available. Probing the effect of cbb gene knockouts with
the transposon library also revealed that C. necafor can compensate the loss of any cbb
gene by expressing the respective second copy. This finding applies to central carbon
metabolism in general. Almost all enzyme functions are covered by several gene loci, so that
knockout did not result in fitness loss. Notable exceptions are the reactions of the ED
pathway, PEP carboxylase (ppc), and malic enzyme (maeA), that showed significantly

reduced fitness in conditions where these reactions carry high flux.

Our results highlight the metabolic flexibility of C. necator and its robustness to
changing environmental conditions. Its high degree of genomic redundancy makes it tolerant
to gene loss, but may also lead to regulatory conflicts exemplified by cbb expression. A
comparison of microbial genomes showed that the CBB cycle is accompanied by a
metabolism-wide range of adaptations [Asplund-Samuelsson and Hudson, 2021].
Considering a possibly recent acquisition of the CBB cycle via pHG1, it is likely that C.
necator is currently evolving to make best use of the cbb genes. Our results also imply that
C. neactor is in its current state far from being an ideal host for biotech applications. This is
because 1) gene duplications and iso-enzymes complicate genetic engineering, 2)
expression of unutilized pathways is protein-inefficient, 3) a large pool of uncharacterized
enzymes makes it difficult to control metabolic flux (Figure 2). Strategies to tackle these
problems could include both targeted and untargeted approaches. The systematic deletion
of undesired functions could result in higher enzyme efficiency and therefore higher product
yield. One example is the removal of costly hydrogenase expression for growth on formate.
Alternatively, laboratory evolution could be employed to select mutants with beneficial traits

such as tolerance to formic acid.

26


https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Supplemental Information

Supplemental Information includes nine figures and three tables and can be found with this

article online.

Acknowledgments

We acknowledge Julia Foyer and Arvid Gynna for assistance in bioreactor cultivations. We
like to thank Anne Goelzer for guidance with resource balance analysis modeling. This study
was financially supported by the Swedish Research Council Vetenskapsradet (Grant number
2016-06160), the Swedish Research Council Formas (Grant number 2015-939 and
2019-01491), and Novo Nordisk Fonden (Grant number NNF200C0061469).

Author Contributions

M. Jahn conceived the study, performed cultivation experiments, analyzed mass
spectrometry and sequencing data, constructed the transposon library, performed metabolic
modeling and wrote the manuscript. N.C. constructed the transposon library and performed
next generation sequencing. M. Janasch performed metabolic modeling and wrote the
manuscript. A.H. and B.F. performed mass spectrometry measurements. K.K. constructed
the transposon library. A.M. performed cultivations and physiological measurements. Q.C.
and J.A.S. implemented fitness analysis for the transposon library. E.P.H. conceived the

study and wrote the manuscript. All authors read and approved the manuscript.

Declaration of Interests

The authors declare no competing interests.

References

[1] Alagesan S, Minton NP, and Malys N. "*C-assisted metabolic flux analysis to investigate
heterotrophic and mixotrophic metabolism in Cupriavidus necator H16. Metabolomics, 14,
1-10, 2018.

[2] Asplund-Samuelsson J and Hudson EP. Wide range of metabolic adaptations to the
acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLOS
Computational Biology, 17, e1008742, 2021.

27


https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

[3] Barenholz U, Davidi D, Reznik E, Bar-On Y, Antonovsky N, et al. Design principles of
autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux
branch points. eLife, 6, 1-32, 2017.

[4] Basan M, Hui S, Okano H, Zhang Z, Shen Y, et al. Overflow metabolism in Escherichia
coli results from efficient proteome allocation. Nature, 528, 99-104, 2015.

[5] Bowien B and Kusian B. Genetics and control of CO, assimilation in the chemoautotroph
Ralstonia eutropha. Archives of Microbiology, 178, 85-93, 2002.

[6] Brigham C. Perspectives for the biotechnological production of biofuels from CO, and H,
using Ralstonia eutropha and other ‘knallgas’ bacteria. Applied Microbiology and
Biotechnology, 103, 2113-2120, 2019.

7] Bulovi¢ A, Fischer S, Dinh M, Golib F, Liebermeister W, et al. Automated generation of
bacterial resource allocation models. Metabolic Engineering, 55, 12-22, 2019.

[8] Claassens NJ, Scarinci G, Fischer A, Flamholz Al, Newell W, et al. Phosphoglycolate
salvage in a chemolithoautotroph using the calvin cycle. Proceedings of the National
Academy of Sciences, 17, 2245222461, 2020.

[9] Cotton CA, Bernhardsgritter |, He H, Burgener S, Schulz L, et al. Underground isoleucine
biosynthesis pathways in E. coli. eLife, 9, 1-25, 2020.

[10] Christodoulou D, Link H, Fuhrer T, Kochanowski K, Gerosa L, et al. Reserve flux
capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to
oxidative stress. Cell Systems, 6, 569-578.e7, 2018.

[11] Cramm R. Genomic view of energy metabolism in Ralstonia eutropha H16. Journal of
Molecular Microbiology and Biotechnology, 16, 38-52, 2008.

[12] Davidi D, Noor E, Liebermeister W, Bar-Even A, Flamholz A, et al. Global
characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kg
measurements. Proceedings of the National Academy of Sciences of the United States of
America, 113, 3401-3406, 2016.

[13] Davidi D and Milo R. Lessons on enzyme kinetics from quantitative proteomics. Current
Opinion in Biotechnology, 46, 81-89, 2017.

[14] Ebrahim A, Lerman JA, Palsson BO, and Hyduke DR. COBRApy: Constraints-based
reconstruction and analysis for Python. BMC Systems Biology, 7, 74, 2013.

[15] Epshtein V and Nudler E. Cooperation between RNA polymerase molecules in
transcription elongation. Science, 300, 801-805, 2003.

[16] Fricke WF, Kusian B, and Bowien B. The genome organization of Ralstonia eutropha

28


https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

strain H16 and related species of the Burkholderiaceae. J Mol Microbiol Biotechnol, 16,
124-135, 2009.

[17] Friedrich B, Hogrefe C, and Schlegel HG. Naturally occurring genetic transfer of
hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. Journal of Bacteriology,
147, 198-205, 1981.

[18] Goelzer A, Muntel J, Chubukov V, Jules M, Prestel E, et al. Quantitative prediction of
genome-wide resource allocation in bacteria. Metabolic Engineering, 32, 232-243, 2015.

[19] Granholm V, Kim S, Navarro JC, Sjélund E, Smith RD, et al. Fast and accurate
database searches with MS-GF+percolator. Journal of Proteome Research, 13, 890-897,
2014.

[20] Gruber S, Schwab H, and Heidinger P. CbbR and RegA regulate cbb operon
transcription in Ralstonia eutropha H16. Journal of Biotechnology, 257, 78-86, 2017.

[21] Grunwald S, Mottet A, Grousseau E, Plassmeier JK, Popovi¢ MK, et al. Kinetic and
stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic
acid in fed-batch and continuous cultures. Microbial Biotechnology, 8, 155-163, 2015.

[22] Guadalupe-Medina V, Wisselink HW, Luttik MA, de Hulster E, Daran JM, et al. Carbon
dioxide fixation by calvin-cycle enzymes improves ethanol yield in yeast. Biotechnology for
Biofuels, 6:1, 6, 1-12, 2013.

[23] Hewavitharana SS, Klarer E, Reed AJ, Leisso R, Poirier B, et al. Temporal dynamics of
the soil metabolome and microbiome during simulated anaerobic soil disinfestation. Frontiers
in Microbiology, 10, 2365, 2019.

[24] Horken KM and Tabita FR. Closely related form | Ribulose bisphosphate
carboxylase/oxygenase molecules that possess different CO2/02 substrate specificities.
Archives of Biochemistry and Biophysics, 361, 183—-194, 1999.

[25] Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, et al. Quantitative proteomic
analysis reveals a simple strategy of global resource allocation in bacteria. Molecular
Systems Biology, 11, 784, 2015.

[26] Jahn M, Vialas V, Karlsen J, Maddalo G, Edfors F, et al. Growth of cyanobacteria is
constrained by the abundance of light and carbon assimilation proteins. Cell Reports, 25,
478-486.e8, 2018.

[27] Janasch M, Asplund-Samuelsson J, Steuer R, and Hudson EP. Kinetic modeling of the
Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation.
Journal of Experimental Botany, 70, 1017-1031, 2018.

[28] Kohlmann Y, Pohimann A, Otto A, Becher D, Cramm R, et al. Analyses of soluble and

29


https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

membrane proteomes of Ralstonia eutropha H16 reveal major changes in the protein
complement in adaptation to lithoautotrophy. Journal of Proteome Research, 10, 2767-2776,
2011.

[29] Kohlmann Y, Pohimann A, Schwartz E, Zihlke D, Otto A, et al. Coping with anoxia: A
comprehensive proteomic and transcriptomic survey of denitrification. Journal of Proteome
Research, 13, 4325-4338, 2014.

[30] Metzl-Raz E, Kafri M, Yaakov G, Soifer |, Gurvich Y, et al. Principles of cellular resource
allocation revealed by condition-dependent proteome profiling. eLife, 6, 1-21, 2017.

[31] Molenaar D, Berlo RV, Ridder DD, and Teusink B. Shifts in growth strategies reflect
tradeoffs in cellular economics. Molecular Systems Biology, 5, 1-10, 2009.

[32] Mori M, Schink S, Erickson DW, Gerland U, and Hwa T. Quantifying the benefit of a
proteome reserve in fluctuating environments. Nature Communications, 8, 1-8, 2017.

[33] Noor E, Flamholz A, Bar-Even A, Davidi D, Milo R, et al. The protein cost of metabolic
fluxes: Prediction from enzymatic rate laws and cost minimization. PLoS Computational
Biology, 12, 2016.

[34] O’Brien EJ, Utrilla J, and Palsson BO. Quantification and classification of E. coli
proteome utilization and unused protein costs across environments. PLoS Computational
Biology, 12, 1-22, 2016.

[35] Orita I, lwazawa R, Nakamura S, and Fukui T. ldentification of mutation points in
Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose utilization ability in
wild strain H16 for polyhydroxyalkanoate production. Journal of Bioscience and
Bioengineering, 113, 63—-69, 2012.

[36] Park J, Kim T, and Lee S. Genome-scale reconstruction and in silico analysis of the
Ralstonia eutropha H16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and
2-methyl citric acid production. BMC Systems Biology, 5, 101, 2011.

[37] Peebo K, Valgepea K, Maser A, Nahku R, Adamberg K, et al. Proteome reallocation in
Escherichia coli with increasing specific growth rate. Molecular BioSystems, 11, 1184-1193,
2015.

[38] Pohimann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, et al. Genome sequence
of the bioplastic-producing “knallgas” bacterium Ralstonia eutropha H16. Nature
Biotechnology, 24, 1257-1262, 2006.

[39] Reznik E, Christodoulou D, Goldford JE, Briars E, Sauer U, et al. Genome-scale
architecture of small molecule regulatory networks and the fundamental trade-off between
regulation and enzymatic activity. Cell Reports, 20, 2666—-2677, 2017.

30


https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

[40] Rubin BE, Wetmore KM, Price MN, Diamond S, Shultzaberger RK, et al. The essential
gene set of a photosynthetic organism. Proceedings of the National Academy of Sciences of
the United States of America, 112, €6634—e6643, 2015.

[41] Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, et al. OpenMS: A flexible
open-source software platform for mass spectrometry data analysis. Nature Methods, 13,
741-748, 2016.

[42] Salvy P and Hatzimanikatis V. The ETFL formulation allows multi-omics integration in
thermodynamics-compliant metabolism and expression models. Nature Communications,
11, 2020.

[43] Sanchez BJ, Zhang C, Nilsson A, Lahtvee P, Kerkhoven EJ, et al. Improving the
phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic
constraints. Molecular Systems Biology, 13, 935, 2017.

[44] Sander T, Farke N, Diehl C, Kuntz M, Glatter T, et al. Allosteric feedback inhibition
enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. Cell
Systems, 8, 6675, 2019.

[45] Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, et al. The quantitative and
condition-dependent Escherichia coli proteome. Nature Biotechnology, 34, 104—110, 2016.

[46] Schwartz E, Voigt B, Zihlke D, Pohimann A, Lenz O, et al. A proteomic view of the
facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics, 9,
5132-5142, 2009.

[47] Scott M, Klumpp S, Mateescu EM, and Hwa T. Emergence of robust growth laws from
optimal regulation of ribosome synthesis. Molecular Systems Biology, 10, 747, 2014.

[48] Shimizu R, Dempo Y, Nakayama Y, Nakamura S, Bamba T, et al. New insight into the
role of the Calvin cycle: Reutilization of CO, emitted through sugar degradation. Scientific
Reports, 5, 11617, 2015.

[49] Shuler ML and Kargi F. Bioprocess Engineering: Basic Concepts. Prentice Hall,
Pearson, 2nd edition edition, 2002.

[50] Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, et al. 2016 update of the
PRIDE database and its related tools. Nucleic Acids Research, 44, D447-D456, 2016.

[51] Weisser H and Choudhary JS. Targeted feature detection for data-dependent shotgun
proteomics. Journal of Proteome Research, 16, 2964-2974, 2017.

[52] Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, et al. Rapid quantification of
mutant fitness in diverse bacteria by sequencing randomly barcoded transposons. mBio, 6,

31


https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted September 13, 2021. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

1-15, 2015.

perpetuity. It is made available under aCC-BY-NC 4.0 International license.

[53] Wides A and Milo R. Understanding the dynamics and optimizing the performance of
chemostat selection experiments. ArXiv.org, 2018.

[54] Yao L, Shabestary K, Bjork S, Asplund-Samuelsson J, Joensson H, et al. Pooled
CRISPRI screening of the cyanobacterium Synechocystis sp. PCC 6803 for enhanced
industrial phenotypes. Nature Communications, 11, 1-13, 2020.

[55] Yishai O, Lindner SN, de la Cruz JG, Tenenboim H, and Bar-Even A. The formate
bio-economy. Current Opinion in Chemical Biology, 35, 1-9, 2016.

[56] Zavfel T, Faizi M, Loureiro C, Poschmann G, Stihler K, et al. Quantitative insights into

the cyanobacterial cell economy. elLife, 8, 446179, 2019.

Methods

Contact for reagent and resource sharing

Further information and requests for reagents may be directed to and will be fulfilled by Lead

Contact Elton P. Hudson (paul.hudson@scilifelab.se).

Method details

Key Resources Table

DSM-541

Reagent type Designation Source or Identifiers Additional
(species) or reference information
resource
strain, strain H16 (wild type) German NCBI:txid381666 | https://www.dsmz
background Collection of .de/collection/cat
(Cupriavidus Microorganisms alogue/details/cul
necator) and Cell Cultures, ture/DSM-428
DSM-428
strain, strain H16 PHB4 German H16 PHB4 https://www.dsmz
background (mutant deficient | Collection of .de/collection/cat
(Cupriavidus in PHB synthesis) | Microorganisms alogue/details/cul
necator) and Cell Cultures, ture/DSM-541
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strain, strain H16, transposon | This study NCBI:txid381666 | obtained by
background mutant library conjugation with
(Cupriavidus (60,000) E. coli APA766
necator)

strain, strain APAT766, Wetmore et al., WM3064 obtained from the
background transposon 2015 original authors
(Escherichia donor strain (Adam Deutsch-
coli) (PKMW?7 Tn5) bauer lab)

Strains and cultivation

Cupriavidus necator H16 was obtained from the German Collection of Microorganisms and
Cell Cultures, strain number DSM-428. Cells were cultivated on complete (LB) medium, or
minimal medium depending on experimental setup. Minimal medium was composed of 0.78
g/L NaH,PO,, 4.18 g/L Na,HPO,x2H,0, 1 g/L NH,CI, 0.1 g/L K,SO,, 0.1 g/L MgCl,x6H,0,
1.6 mg/L FeCl;x6H,0, 0.4 mg/L CaCl,, 0.05 mg/L CoCl,x6H,0, 1.8 mg/L Na,MoO,x2H,0,
0.13 g/L Ni,SO,x6H,0, 0.07 mg/L CuCl,x2H,0O. Depending on the experiment, 0.5 g/L
D-fructose, 0.5 g/L succinate, or 1.5 g/L pH-neutralized formic acid was added as carbon
source. For nitrogen limitation, the concentration of D-fructose was increased to 2 g/L and
concentration of NH,Cl was reduced to 0.025 g/L. All components were added to autoclaved
sodium phosphate buffer from filter-sterilized stock solutions. Batch cultures were grown in
100 mL shake flasks at 30°C and 180 RPM. Precultures of the barcoded C. necator
transposon library were supplemented with 200 pg/mL kanamycin and 50 pg/mL gentamicin

to suppress growth of untransformed C. necator recipient or E. coli donor cells.

Chemostat bioreactors

C. necator H16 (wild type) or the C. necator H16 transposon mutant library was cultivated in
an 8-tube MC-1000-OD bioreactor (Photon System Instruments, Drasov, CZ). The system
was customized to perform chemostat cultivation as described previously [Jahn et al., 2018,
Yao et al., 2020]. Bioreactors (65 mL) were filled with minimal medium supplemented with
the respective carbon and nitrogen source, and inoculated with an overnight preculture to a
target ODy,q,m Of 0.05. Bioreactors were bubbled with air at a rate of 12.5 mL/min and a
temperature of 30°C. The OD;,q,m and ODgggnm Were measured every 15 min. Fresh medium
was continuously added using Reglo ICC precision peristaltic pumps (Ismatec, GER). For

pulsed chemostat experiments, a volume corresponding to the continuous addition of
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medium over a given time period was added in a single pulse every 2 h. For proteomics, 40
mL samples were taken after five retention times of continuous growth at a fixed dilution rate
(tx = 1/D; for example tg(D = 0.1 h™") =1/ 0.1 = 10 h). For transposon library competition
experiments, 15 mL samples were taken after 0, 8 and 16 generations of growth (population
average). Cells were harvested by centrifugation for 10 min at 5,000 xg, 4°C, washed with 1
mL ice-cold PBS, transferred to a 1.5 mL tube, and centrifuged again for 2 min at 8,000 xg,

4°C. The supernatant was discarded and the pellet frozen at -20°C.

Determination of biomass yield
Substrate uptake rate qs was determined using the dilution rate D, the culture volume V, the

biomass concentration c,,,, in gDCW L, and the initial and residual substrate concentrations

V-D-(S,-S)

S; and S,, respectively, in the following equation: q, = . The biomass vyield Yy, for

c
bm

all substrates was determined by fitting a linear model to the growth rate-substrate uptake

rate relationship..

Dry cell weight determination

Dry cell weight (DCW) measurements for carbon limitation were carried out in shake flasks.
50 mL of minimal medium were supplemented with 0.5 g/L fructose, 0.5 g/L succinate, or 2
g/L formate (pH neutralized). Flasks were inoculated with C. necator to an ODgy, of 0.01 and
cultivated for 48 h at 30°C before harvesting. DCW measurement for nitrogen limitation was
carried out using an ammonium limited chemostat as described above (2 g/L fructose, 0.05
g/L NH,CI). 50 mL cell suspension was harvested by centrifugation for 10 min, 5,000 xg,
4°C. The pellet was washed twice with 1 mL mqgH20, transferred to preweighed 1.5 mL
tubes and dried for 4 h at 70°C. Dried cell mass was measured on a precision scale.
Biomass yield for formate batch cultures was corrected using the linear relationship of yield

reduction and residual formate concentration from [Grunwald et al., 2015].

Determination of PHB content

Pellets from DCW determination were dissolved in 1 ml of sodium hypochlorite solution
(10-15% chlorine) and incubated at 37°C for 1 hour for cell lysis. The lysate was harvested
by centrifugation at 16,000 xg for 2 min, RT. The pellet was sequentially washed with 1 mL

mqH20, 1 ml acetone, and 1 ml of 96% ethanol. The lysate was harvested by centrifugation
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at 16,000 xg for 2 min, ethanol was completely removed, and the pellet resuspended in 1 mL
chloroform. The solution was transferred to a 5 mL glass tube and heated for 2 min at 70°C
to extract PHB. The solution was then cooled to RT and centrifuged for 2 min at 4,000 xg.
The supernatant was transferred to a fresh glass tube. The PHB extraction of the pellet was
repeated with 1 additional mL chloroform and the samples were pooled. The chloroform was
evaporated completely at 40 to 50°C overnight in a vented hood. For hydrolysis of PHB into
crotonic acid, 1 ml of concentrated sulphuric acid was added to the precipitate and samples
were incubated at 100°C for 10-20 min. The hydrolysate was diluted 1:100 by mixing 10 pL
sample with 990 yL 14 mM H2SO4. For each sample, 3x 100 puL were transferred to a
low-UV-absorption 96-well plate and UV absorbance of crotonic acid was measured at 235
nm in a spectrophotometer. For PHB quantification, absorption was compared to a standard
curve of PHB hydrolysate with known concentration. For the standard, 10 mg of pure PHB
were hydrolysed in concentrated H2SO4 as described above. The standard was diluted 1:10
by mixing 500 yL with 4.5 mL 14 mM H2S0O4 resulting in a 1 mg/mL stock solution. Dilutions

ranging from 0.0 to 1.0 mg/mL were measured in a 96-well plate as described above.

Residual substrate measurement with HPLC

Culture supernatant was obtained after centrifugation of cell samples. A volume of 1 mL
supernatant was transferred to an LC glass vial using Millex-HV PVDF syringe filter tips
(Merck Millipore). The HPLC column (Aminex 300-mm HPX-87H) was equilibrated with 5
mM H,SO, as mobile phase for 1 h, at a flow rate of 0.5 mL/min. The column was heated to
60°C. A volume of 20 pL per sample was injected to the HPLC followed by a run time of 30
min. UV-absorption was constantly detected at 210 nm wavelength. Standards with four
different concentrations, 10, 50, 100 and 200 mg/L, were used for quantification of each
residual substrate (succinate, formate, fructose, ammonium chloride). Calibration curves
were obtained by fitting a linear equation to the concentration-absorbance relationship.
Residual substrate concentration was then determined by solving the equation with the

obtained absorbance measurements.
Statistical analysis

Bioreactor cultivations, LC-MS/MS measurement for proteomics, and library competition

experiments (‘BarSeq') were performed with four independent biological replicates. HPLC
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measurement of supernatants was performed with three biological replicates. Here,
biological replicate means that samples were obtained from independently replicated
bioreactor cultivations inoculated with the same preculture. The sample size of four was
chosen based on the known variance from previous proteomics experiments. If not
otherwise indicated in figure legends, points and error bars represent the mean and standard
deviation. No removal of outliers was performed. All analyses of proteomics, modeling, and
fitness data are documented in R notebooks available at

https://github.com/m-jahn/R-notebook-ralstonia-proteome.

Sample preparation for LC-MS/MS

Frozen cell pellets were resuspended in 125 yL solubilization buffer (200 mM TEAB, 8 M
Urea, protease inhibitor). 100 yL glass beads (100 ym diameter) were added to the cell
suspension and cells were lysed by bead beating in a Qiagen TissueLyzer Il (5 min, f = 30/s,
precooled cassettes). Cell debris was removed by centrifugation at 14,000 xg, 30 min, 4°C,
and supernatant was transferred to a new tube. Protein concentration was determined using
the Bradford assay (Bio-Rad). For reduction and alkylation of proteins, 2.5 yL 200 mM DTT
(5 mM final) and 5 yL 200 mM CAA (10 mM final) were added, respectively, and samples
incubated for 60 min at RT in the dark. Samples were diluted 8x with 700 uL 200 uM TEAB.
For digestion, Lys-C was added in a ratio of 1:75 w/w to protein concentration, and samples
were incubated at 37°C and 600 RPM for 12 h. Trypsin was added (1:75 w/w) and samples
incubated for 24 h at the same conditions. Samples were acidified with 100 yL 10% formic
acid (FA) and insoluble compounds were removed by centrifugation (14,000 xg, 15 min, RT).
Peptide samples were then cleaned up using a solid phase extraction (SPE) protocol in
96-well plate format (Tecan Resolvex A200) according to the manufacturer's
recommendations. Briefly, the 96-well plate with SPE inserts was equilibrated with 200 pyL
acetonitrile (ACN) and 2x200 yL 0.6% acetic acid. A lysate volume corresponding to 40 ug
protein was loaded on the plate and washed twice with 200 yL 0.6% acetic acid. Peptides
were eluted from the column in 100 pL elution buffer (0.6% acetic acid, 80% ACN) and dried
in a speedvac for 2 h, 37°C. Dried peptides were frozen at -80°C and dissolved in 10% FA to

a final concentration of 1 ug/pL before MS measurement.

LC-MS/MS analysis of lysates
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Lysates were analyzed using a Thermo Fisher Q Exactive HF mass spectrometer (MS)
coupled to a Dionex UltiMate 3000 UHPLC system (Thermo Fisher). The UHPLC was
equipped with a trap column (Acclaim PepMap 100, 75 ym x 2 cm, C18, P/N 164535,
Thermo Fisher Scientific) and a 50 cm analytical column (Acclaim PepMap 100, 75 ym x 50
cm, C18, P/N ES803, Thermo Fisher Scientific). The injection volume was 2 pL out of 18 pL
in which the samples were dissolved in the autosampler. Chromatography was performed
using solvent A (3% ACN, 0.1% FA) and solvent B (95% ACN, 0.1% FA) as the mobile
phases. The peptides were eluted from the UHPLC system over 90 min at a flow rate of 250
nL/min with the following mobile phase gradient: 2% solvent B for 4 min, 2 to 4% solvent B
for 1min, 4 to 45% solvent B for 90 min, 45 to 99% solvent B for 3 min, 99% solvent B for 10
min and 99% to 2% solvent B for 1 minute following re-equilibration of the column at 2%
solvent B for 6 min. The MS was operated in a data-dependent acquisition mode with a Top
8 method. The MS was configured to perform a survey scan from 300 to 2,000 m/z with
resolution of 120,000, AGC target of 1x10°, maximum IT of 250 ms and 8 subsequent
MS/MS scans at 30,000 resolution with an isolation window of 2.0 m/z, AGC target of 2x10°,

maximum IT of 150 ms and dynamic exclusion set to 20 s.

Protein identification and quantification

Thermo raw spectra files were converted to the mzML standard using Proteowizard’s
MSConvert tool. Peptide identification and label-free quantification were performed using
OpenMS 2.4.0 in KNIME [Roést et al., 2016]. The KNIME pipeline for MS data processing
was deposited on https://github.com/m-jahn/openMS-workflows
(labelfree_ MSGFplus_Percolator_FFl.knwf). MS/MS spectra were subjected to sequence
database searching using the OpenMS implementation of MS-GF+ and Percolator
[Granholm et al., 2014] with the Cupriavidus necator H16 reference proteome as database
(NCBI assembly GCA_000009285.2, downloaded 07 January 2019). Carbamidomethylation
was considered as a fixed modification on cysteine and oxidation as a variable modification
on methionine. The precursor ion mass window tolerance was set to 10 ppm. The
PeptideIndexer module was used to annotate peptide hits with their corresponding target or
decoy status, PSMFeatureExtractor was used to annotate additional characteristics to
features, PercolatorAdapter was used to estimate the false discovery rate (FDR), and

IDFilter was used to keep only peptides with g-values lower than 0.01 (1% FDR). The

37


https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436304; this version posted September 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

quantification pipeline is based on the FeatureFinderldentification workflow allowing feature
propagation between different runs [Weisser et al., 2017]. MzML files were retention time
corrected using MapRTTransformer, and identifications (idXML files) were combined using
the IDMerger module. FeatureFinderldentification was then used to generate featureXML
files based on all identifications combined from different runs. Individual feature maps were
combined to a consensus feature map using FeatureLinkerUnlabelledKD, and global
intensity was normalized using ConsensusMapNormalizer (by median). Protein quantity was
determined by summing up the intensities of all unique peptides per protein. Abundance of
ambiguous peptides (peptides mapping to two different proteins) were shared between

proteins.

Creation of barcoded C. necator transposon library

The transposon library was prepared according to the RB-TnSeq workflow described in
Wetmore et al., 2015. Briefly, C. necator H16 wild type was conjugated with an E. coli
APAT766 donor strain containing a barcoded transposon library. The strain is auxotrophic for
DAP, the L-Lysin precursor 2,6-diamino-pimelate, to allow for counter selection. Overnight
cultures of E. coli APA766 and C. necator H16 in 10 mL LB medium in shake flasks were
prepared. The APA766 culture was supplemented with 0.4 mM DAP and 50 ug/mL
kanamycin. 2 L of LB medium (APA766 with 0.4 mM DAP and 50 ug/mL kanamycin) in
shake flasks was each inoculated with the respective pre-cultures and incubated overnight at
30°C and 180 RPM. Cells were harvested during exponential growth phase by centrifugation
for 10 min, 5000 xg, RT. Supernatant was discarded, cell pellets were resuspended in
residual liquid, transferred to 2 mL tubes, washed twice with 2 mL PBS, and finally
resuspended in a total amount of 500 yL PBS. Cell suspensions from both strains were
combined and plated on 25 cm x 25 cm large trays (Q-tray, Molecular Devices) with LB agar
supplemented with 0.4 mM DAP. For conjugation, plates were incubated overnight at 30°C.
Cells were then harvested from mating plates by rinsing with 200 yL PBS. The cell
suspension was plated on selection plates with LB agar supplemented with 100 ug/mL
kanamycin, without DAP. After colonies of sufficient size appeared, transformants were
harvested by scraping all cell mass from the plate and collecting the pooled scrapings in 1.5
mL tubes. The mutant library diluted tenfold and was then immediately frozen at -80°C. For

competition experiments, a 1 mL 10-fold diluted aliquot (pool of all conjugations, ~1 M CFU)
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was used to inoculate pre-cultures.

Mapping of transposon mutants (TnSeq)

A 1 mL aliquot of the diluted pooled library scrapings was used to inoculate a 50 mL LB
culture (with 200 pg/mL kanamycin) and grown overnight at 30°C, 200 RPM. DNA was
extracted from 1 mL of this outgrown culture using a GeneJet Genomic DNA Purification Kit
(ThermoScientific) and the concentration of genomic DNA was quantified using a Qubit
dsDNA HS Assay Kit (Invitrogen). A 1 ug aliquot of genomic DNA was suspended in 15 pL
of 10 mM Tris buffer, placed in a microTUBE-15 AFA Beads tube (Covaris) and fragmented
into 300 bp fragments using an ME220 focused ultrasonicator (Covaris) with waveguide
500526 installed. Cycle time was increased to 60 seconds, all other settings were taken from
manufacturer's recommendation for generating 350 bp fragments. Fragment end repair and
adaptor ligation was performed using an NEBNext Ultra Il DNA Library Prep Kit (New
England Biolabs) following the manufacturer's protocol. Size selection of NEB adaptor
ligated fragments was carried out using SPRISelect magnetic beads (Beckman Coulter)
following the method in the NEBNext Ultra Il DNA Library Prep Kit User manual. To enrich
transposon-containing sequences, a 30 cycle PCR amplification was performed using the
Biotin_Short_ pHIMAR and NC102 primers (Table S3) using Q5 mastermix (New England
Biolabs). Cycle conditions were 30 seconds 98°C followed by 30 cycles (15 seconds 98°C,
75 seconds 72°C) and a 5 minutes 72°C final extension. The biotinylated
transposon-containing sequences were purified using MyOne Streptavidin T1 Dynabeads
(Invitrogen) according to the manufacturer’s instructions. The transposon containing DNA
was then stripped from the beads by resuspending the beads in 25 pL of MilliQ water
followed by incubation at 70°C for 10 minutes. The beads were separated by incubation on a
magnetic stand at room temperature for 1 minute and the supernatant was recovered.
Adaptors for lllumina sequencing were added via PCR amplification using
Nspacer_barseq_pHIMAR (Wetmore et al., 2015) and NEBNext Index 3 Primer for lllumina
(New England Biolabs). Cycle conditions were 30 seconds 98°C followed by 4 cycles (15
seconds 98°C, 75 seconds 72°C) and a 5 minutes 72°C final extension. PCR products were
separated on a 1% agarose gel and gel extraction was performed on the band between
300-600 bp using a Gel Extraction Kit (ThermoScientific). The DNA concentration of the
samples were quantified using a Qubit dsDNA HS Assay Kit (Invitrogen) and diluted to 2 nM.
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The 2 nM library was diluted, denatured and sequenced using a NextSeq 500/550 Mid
Output Kit v2.5 150 Cycles, (lllumina) run on a NextSeq 550 instrument (lllumina) according
to the manufacturer's instructions. Library loading concentration was 1.8 pM with a 10% phiX
spike. Reads containing barcodes and genomic DNA fragments were mapped to the C.
necator genome following the protocol from Wetmore et al., 2015. Briefly, the scripts
MapTnSeq.p! and DesignRandomPool.pl from
https://bitbucket.org/berkeleylab/feba/src/master/ were adapted to map reads to the
reference genome, and to summarize read counts per barcode, respectively. Only barcodes
mapping to the same region with at least two reads were included. The automatic pipeline

for TnSeq data analysis is available at https://github.com/m-jahn/TnSeq-pipe.

Gene essentiality analysis

TnSeq data from two different iterations of the transposon library were combined to obtain
high insertion frequency per gene (72,443 and 57,040 mutants, respectively). Of the 129,483
transposon insertions, 23,339 mapped to intergenic regions and were excluded from
essentiality analysis. Of all insertions mapping to a gene, 78.7% were localized within the
central 80% of the ORF and were considered as true knockouts. Following the method from
Rubin et al., 2015, a metric for essentiality was calculated, the insertion index /II; Il is the
number of transposon insertions n of a gene j with length k divided by insertions per region r

(average of 100 genes around the target position):

I = m/k)/ (m /k)

The Il is bimodally distributed, one set of genes is hit by transposons at an average rate
while other genes are hit with lower frequency. To determine an I/ threshold for essentiality,
two gamma distributions were fitted to the assumed populations of 1) essential and 2)
non-essential genes. For all possible /I, the probability of falling into the essential and
non-essential distribution was determined and a five-fold difference defined as lower and
upper thresholds to count a gene as essential or non-essential, respectively. Genes with //
between the two thresholds were flagged as ambiguous (p denotes the probability density

function of /I for essential and non-essential genes):
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= I, < 5p ) U (p < 5p, )]

ambiguous ess non—ess non—ess

To estimate essentiality of enzymes/reactions instead of genes, each enzyme with at least
one associated gene being essential was counted as essential, and each enzyme
associated with at least one probably essential gene was counted as probably essential; all

other enzymes were marked as non-essential.

Gene fitness analysis (BarSeq)

Frozen cell pellets from the pulsed and continuous competition experiments were
resuspended in 100 yL of 10 mM Tris and genomic DNA was extracted from 10 uL of the
resuspension using a Genedet Genomic DNA Purification Kit (ThermoScientific).
Amplification of the barcodes from genomic DNA was conducted using one of the custom
forward indexing primers (BarSeq_F_i7_001 - BarSeq_F_i7_036, Table S3) and the reverse
phasing primer pool (BarSeq_R_P2_UMI_Univ - BarSeq_R_P2_UMI_Univ_N5). For each
sample 9 uL of genomic DNA extract (=10 ng/uL) was combined with 3 pL of a forward
indexing primer (100 nM), 3 yL of the reverse phasing primer pool (100 nM) and 15 pL of Q5
Mastermix (New England Biolabs). Cycle conditions were 4 minutes at 98°C followed by 20x
(30 seconds at 98°C, 30 seconds at 68°C and 30 seconds at 72°C) with a final extension of
5 minutes at 72°C. Concentrations of each sample was quantified using a Qubit dsDNA HS
Assay Kit (Invitrogen). Samples were then pooled with 40 ng from up to 36 different samples
being combined and run on a 1% agarose gel. Gel extraction was performed on the thick
band centered around 200 bp and the concentration of the purified pooled library was
quantified again via Qubit assay and diluted down to 2 nM. The 2 nM library was then
diluted, denatured and sequenced using a NextSeq 500/550 High Output Kit v2.5 (75
Cycles) (lllumina) run on a NextSeq 550 instrument (lllumina) according to the
manufacturer's instructions. Library loading concentration was 1.8 pM with a 1% phiX spike.
Gene fitness was calculated from read counts per barcoded mutant based on the method
from Wetmore et al., 2015. Briefly, scripts from
https://bitbucket.org/berkeleylab/feba/src/master/ were adapted to trim and filter reads,
extract barcodes, and summarize read counts per barcode. Fitness score calculation based
on the log, fold change of read count per barcode over time was implemented as an R script.

The automatic pipeline for BarSeq analysis is available at
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https://github.com/Asplund-Samuelsson/rebar. Altogether, fitness for 5,441 genes was
quantified with an average of 6.4 insertion mutants per gene. The remaining 1,173 genes
were either essential (no viable insertion mutant), probably essential (number of transposon
mutants in the surrounding region too low to determine essentiality), or fithess could not be
quantified with sufficient confidence (low read count). A significance threshold of |F| = 3 after
at least 8 generations was chosen based on the bulk fitness distribution of mutants (-2 < F <
2).

Resource Balance Analysis model

The resource balance analysis (RBA) model for C. necator H16 was generated using the
RBApy package [Bulovic et al., 2019]. The model and a detailed description of its generation
is available at https://github.com/m-jahn/Bacterial-RBA-models/. The main input was the
curated genome scale model for C. necator in SBML format (1,360 reactions, excluding
exchange reactions), available at https://github.com/m-jahn/genome-scale-models. Amino
acid sequence, subunit stoichiometry and cofactor requirements for all proteins associated
with model reactions were automatically retrieved from uniprot (organism ID: 381666). Fasta
files detailing the composition of the ribosome (3 rRNA and 68 proteins), chaperones (8
proteins), DNA polymerase Il (8 proteins), and RNA polymerase Il (9 proteins) were added
manually. Rates for these macromolecular 'machines' were adopted from published values
for E. coli (Table S1). Rates for ribosome and chaperone were taken from [Bulovic et al.,
2019], rate of RNA polymerase was taken from [Epshtein et al., 2003], and rate of DNA
polymerase was the average of several published values obtained from
https://bionumbers.hms.harvard.edu (IDs 102052, 104938, 109251, 111770). Biomass
composition of C. necator H16, growth- and non-growth associated maintenance were all
taken from [Park et al., 2011]. A growth rate dependent flux towards PHB was added (3
mmol gDCW") to obtain biomass yields corresponding to experimentally determined values.
The model was calibrated by adding estimates for k,,,, the apparent catalytic rate for each
metabolic enzyme, following the procedure in [Bulovic et al., 2019]. For each model reaction
and substrate limitation, flux boundaries were obtained from flux sampling analysis (FSA)
using COBRApy [Ebrahim et al., 2013], and enzyme abundance in mmol gDCW"' was
obtained from proteomics measurements. k,,, was determined by calculating the maximum

flux per unit enzyme over all conditions. For enzymes without estimated k,,, (no flux, or no
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protein abundance available), the median of the k,,, distribution was used (5,770 h™", Figure
S4 A). The average protein fraction of cell dry weight was taken from Park et al., 2011. The
reported concentration of 0.68 g protein gDCW"' was converted to mmol amino acids
gDCW-" by assuming an average molecular weight per amino acid of 110 g mol™:

_ 0.68g-mol-1000 _ -1
¢ = ~ bw-i0g = 6.18 mmol gDCW

Proteome fraction per cellular compartment (cytoplasm, cytoplasmic membrane) was
estimated based on proteomics measurements and predicted protein localization (psortb
algorithm) as input. Growth rate dependent fractions for cytoplasmic and membrane proteins
were obtained by correlating growth rate and the respective mass fractions and fitting a
linear model (Table S1, Figure S4 B). The same procedure was applied to estimate the
non-enzymatic protein fraction per compartment. Proteins not contained in the model were
categorized as non-enzymatic as they have no catalytic function in the model (Table S1,
Figure S4 C).

Data and software availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset
identifier PXD024819. Protein quantification results can be browsed and interactively
analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyProt. All
sequencing data for ThnSeq and BarSeq experiments are available at the European
Nucleotide Archive with accession number PRJEB43757. The data for competition
experiments performed with the transposon mutant library can be browsed and interactively
analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyLib/.

The openMS/KNIME workflow for MS data processing is available at
https://github.com/m-jahn/openMS-workflows. The revised genome scale model of C.
necator H16 is available at https://github.com/m-jahn/genome-scale-models. The resource
balance  analysis (RBA) model of C. necator H16 is available at
https://github.com/m-jahn/Bacterial-RBA-models. The code used to process TnSeq data
from raw fastq files (read trimming, filtering, mapping to genome) is available at

https://github.com/m-jahn/TnSeq-pipe. The code used to process BarSeq data from raw
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fastq files is available at https://github.com/Asplund-Samuelsson/rebar. All analyses of
proteomics, modeling, and fithess data were performed using the R programming language
and are documented in R notebooks available at

https://github.com/m-jahn/R-notebook-ralstonia-proteome.
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