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Summary

Bacteria must balance the different needs for substrate assimilation, growth functions, and

resilience in order to thrive in their environment. Of all cellular macromolecules, the bacterial

proteome is by far the most important resource and its size is limited. Here, we investigated

how the highly versatile 'knallgas' bacterium Cupriavidus necator reallocates protein

resources when grown on different limiting substrates and with different growth rates. We

determined protein quantity by mass spectrometry and estimated enzyme utilization by

resource balance analysis modeling. We found that C. necator invests a large fraction of its

proteome in functions that are hardly utilized. Of the enzymes that are utilized, many are

present in excess abundance. One prominent example is the strong expression of CBB

cycle genes such as Rubisco during growth on fructose. Modeling and mutant competition

experiments suggest that CO2-reassimilation through Rubisco does not provide a fitness

benefit for heterotrophic growth, but is rather an investment in readiness for autotrophy.

​Introduction

Cupriavidus necator (formerly Ralstonia eutropha) is a model aerobic lithoautotroph and

formatotroph, and is notable for production of the storage polymer polyhydroxybutyrate

(PHB) [Yishai et al., 2016, Brigham, 2019]. Cupriavidus necator H16 (hereafter abbreviated

C. necator) is a soil-dwelling bacterium with a large genome (~6,600 genes) distributed on

two chromosomes and one megaplasmid [Pohlmann et al, 2006]. It features a wide arsenal

of metabolic pathways for xenobiotics degradation, hydrogen and formate oxidation, carbon

fixation via the Calvin-Benson-Bassham (CBB) cycle, and utilization of nitrate/nitrite as

alternative electron acceptors (de-nitrification) [Cramm, 2008]. Several operons for substrate

assimilation are present in multiple copies, often on different chromosomes (e.g. cbb operon,

hydrogenases, formate dehydrogenases). A detailed reconstruction of its metabolic network

suggested that it can metabolize 229 compounds [Park et al., 2011]. Interestingly, C. necator

prefers organic acids as growth substrate over sugars. The only sugars that support growth

are fructose and N-acetylglucosamine [Cramm, 2008], which are metabolized via the

Entner-Doudoroff (ED) pathway [Alagesan et al., 2018]. Although the metabolic versatility of

C. necator is interesting from a biotechnological point of view, this benefit could come at a

considerable cost for the cell. For example, it is not known if the expression of the various
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substrate assimilation pathways is efficiently regulated under different conditions, and if gene

expression is optimal to maximize growth or rather another trait such as environmental

readiness. The 'cellular economy' concept entails that an organism has a limited pool of

(enzyme) resources and must re-allocate resources to different functions in order to meet

the current environmental needs [Molenaar et al., 2009, Scott et al., 2014, Hui et al., 2015].

A prime example is the switch from energy-efficient, high-enzyme-cost respiration to

energy-inefficient, but low-enzyme-cost fermentation during overflow metabolism [Basan et

al., 2016, Sanchez et al., 2017]. The protein economy has been studied experimentally and

with dedicated metabolic models in heterotrophic microorganisms like E. coli [Scott et al.,

2014, O'Brien et al., 2016] and S. cerevisiae [Metzl-Raz et al, 2017, Sanchez et al., 2017].

More recently, resource allocation was studied in photoautotrophic bacteria (Synechocystis

sp.) [Jahn et al., 2018, Zavrel et al., 2019]. There, a large investment in the CO2-fixation

(2-7% protein mass is Rubisco) and photosynthesis machinery (20-40% protein mass are

antennae and photosystems) may reduce proteome space for ribosomes, resulting in lower

growth rates than heterotrophs.

Previous studies of C. necator grown in different trophic conditions have shown that

gene expression is regulated in a condition-dependent manner [Schwartz et al., 2009,

Kohlmann et al., 2011, Kohlmann et al., 2014]. For example, CBB cycle genes are strongly

expressed during autotrophic growth but were also upregulated on fructose [Shimizu et al.,

2015], prompting the question of whether such expression confers any evolutionary

advantage. To date, protein allocation and utilization has not been investigated. It is unclear

if and how C. necator would reallocate protein resources when confronted with different

types or degrees of substrate limitation, or to what extent a versatile soil bacterium would

express unutilized or underutilized proteins. To address these questions, we designed a

multivariate set of growth experiments. C. necator was cultivated in bioreactors at steady

state conditions using four limiting substrates and five different growth rates. We quantified

the cellular proteome using LC-MS/MS and trained a genome-scale resource allocation

model with our data [Bulovic et al., 2019, Goelzer et al., 2015]. We found that C. necator

allocates its resources in response to the imposed environmental challenges, but invests

more than 40% of its protein mass in genes that are either unlikely to be utilized or have no

known function. Enzyme utilization in the central carbon metabolism was markedly different

between pathways, with enzymes in the proximity of substrate assimilation (upper glycolysis,
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CBB cycle) showing higher variability, higher absolute abundance, and higher utilization than

enzymes involved in supply of biomass precursors (tricarboxylic acid cycle (TCA), pyruvate

metabolism). CO2-assimilation enzymes expressed in heterotrophic growth regimes were

unlikely to provide a fitness benefit.

Results

C. necator expresses most of its annotated genes

In order to access cellular states that were optimally acclimated to a nutrient limitation, we

cultivated C. necator in chemostat bioreactors. We selected four limiting growth substrates

as interesting entry points to metabolism (Figure 1 A). Fructose was chosen as a glycolytic

substrate because C. necator does not naturally utilize glucose [Orita et al, 2012]. It is taken

up via a specific ABC transporter and metabolized in the ED pathway. Succinate was chosen

as an entry point to the TCA cycle. Formate was chosen because formatotrophic growth

closely resembles lithoautotrophic growth regarding the utilized enzymes [Cramm, 2008].

Formate (COOH-) is first oxidized by formate dehydrogenases (FDH) to CO2 with

simultaneous reduction of NAD+ to NADH. The CO2 is then fixed via the CBB cycle. Finally,

growth on fructose with limiting ammonium was chosen as we expected a dedicated

response to N-limitation by adjustment of gene expression and flux ratios between different

pathways. For each limitation, four independent bioreactor cultivations were performed with

dilution rate (equalling growth rate µ) increasing step-wise from 0.05 to 0.1, 0.15, 0.2, and

0.25 h-1 (Figure S1 A) and subsequent sampling for proteomics. The substrate limitation in

chemostats was verified by determining the residual carbon concentration in culture

supernatants using HPLC (Figure S1 B). For ammonium limitation, a high concentration of

residual fructose was determined, as expected when nitrogen is limiting. All other conditions

showed no or very low concentration of residual substrate. Quantification of dry cell weight

(DCW) and PHB content revealed that only ammonium-limited cells produced a significant

amount of PHB, approximately 80% of total biomass for the strongest limitation (µ=0.05 h-1,

Figure S2).

We analyzed the proteome of C. necator for all conditions of the chemostat

cultivations (four substrate limitations, five growth rates, four biological replicates). We

employed a label-free quantification strategy with a feature propagation approach, allowing

us to significantly increase the coverage of protein quantification [Weisser et al., 2017]. More
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than 4,000 proteins were quantified in each individual sample (Figure S3 A). Altogether,

5,357 proteins out of 6,614 annotated genes were quantified in at least one condition

(81.0%), and 4,260 proteins were quantified with at least two peptides (Figure S3 B). The

proteomics data can be accessed through an interactive web application at

https://m-jahn.shinyapps.io/ShinyProt. Based on the distribution of protein abundance 99%

of the proteome by mass was quantified. An analysis of sample similarity based on

expression revealed that low growth rates are more similar to each other, and that growth on

formate is most unlike the other conditions (Figure S3 C). Gene expression in terms of

proteome mass fraction was unequally distributed over the genome (Figure 1 B): 78.7% of

protein mass was encoded by chromosome 1, 16.4% encoded by chromosome 2, and 5.4%

by pHG1. Chromosome 2 and pHG1 thus encode predominantly specialized functions, as

predicted by in silico analyses [Pohlmann et al., 2006, Fricke et al., 2009]. On chromosome

2, highly expressed genes were the cbb operon (CBB Cycle, pentose phosphate pathway

(PPP), Figure S3 D), glycolysis related genes (pgi, zwf), and the methionine synthase metE.

On pHG1, highly expressed were the second copy of the cbb operon as well as hox/hyp

operons (soluble and membrane bound hydrogenases, up to 3% of proteome by mass). The

majority of pHG1 encoded protein mass is therefore related to autotrophic growth. Note that

the two copies of the cbb operon are 99% identical on amino acid sequence level and can

not be distinguished well by LC-MS/MS (abundance of ambiguous peptides was allocated to

both copies). Promoter activity studies have shown that expression levels from both operons

were similar [Gruber et al., 2017]. As we also cultivated C. necator on formate, we were

interested in the expression of formate dehydrogenase (FDH) genes (Figure S3 E). C.

necator is equipped with two types of FDH, soluble S-FDH (operons fds and fdw on

chromosome 1 and 2, respectively) and membrane-bound M-FDH (fdo and fdh operons, the

latter present in two copies on chromosome 1 and 2, respectively). In contrast to cbb genes,

which were expressed under both fructose and formate growth, expression of FDHs was

induced only during growth on formate, and the soluble dehydrogenase (fds) was the

predominant form.

5

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.03.21.436304doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.21.436304
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. C. necator expresses most of its annotated genes. A) Four different limitations
were chosen covering different entry points to central metabolism. Cells were cultivated in
chemostat bioreactors and dilution rate (equals growth rate) was stepwise increased from
0.05 to 0.25 h-1. The proteome was analyzed by LC-MS/MS. Enzyme abundance was used
to constrain a resource balance analysis (RBA) model, and enzyme utilization was
investigated for the different limitations. B) Protein mass fraction (%) of all proteins (5,357)
mapped to their respective genes on chromosome 1, 2, and megaplasmid pHG1 (mean of
four substrate limitations, µ=0.25 h-1). Density is mean protein mass fraction for a sliding
window of five genes. The genes of the cbb operon (arrows) are the most expressed regions
on chromosome 2 and pHG1.

A large fraction of the C. necator proteome is not utilized and not essential

We next explored how the proteins of C. necator are utilized during the different growth

modes. We created a resource balance analysis (RBA) model [Bulovic et al, 2019] based on

a previous genome-scale metabolic reconstruction of C. necator (1,360 reactions) [Park et
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al., 2011]. The RBA model predicts optimal flux distributions as in flux balance analysis

(FBA), but also takes kinetic parameters and enzyme abundance into account (Methods).

DNA replication, transcription, translation, and protein folding were included as lumped

reactions (macromolecular machines) with protein subunit composition and rate estimates

taken from the literature (Methods, Table S1). Each enzyme or macromolecular machine

imparts a protein cost, with the total protein pool being limited. RBA models can predict

trade-offs between high- and low-enzyme-cost pathways, increase of ribosome abundance

with growth rate, and upper boundaries on growth in substrate-replete conditions [Goelzer et

al. 2015, Sanchez et al., 2017, Salvy et al., 2020]. The C. necator RBA model was

constrained using a set of parameters obtained from proteomics data, the UniProt database,

and literature (Methods, Figure S4, Table S1). A critical parameter for RBA is the enzyme

efficiency kapp of each reaction, which links the reaction rate to the abundance of its

catalyzing enzyme. These were obtained by estimating the metabolic flux boundaries per

reaction (using flux sampling), and then dividing maximal flux by unit enzyme allocated to the

reaction [Goelzer et al., 2015, Davidi & Milo, 2017, Bulovic et al., 2019].

We used the constrained resource allocation model to analyze the non-utilized and

the under-utilized fraction of the C. necator proteome. The non-utilized proteome fraction

consists of enzymes that do not carry flux in any of the tested conditions. To quantify this

fraction, we performed a series of RBA model simulations corresponding to the experimental

conditions of the chemostats. The model predicted optimal flux distribution and enzyme

abundance to maximize growth rate for each of the four different substrate limitations. The

model was generally able to reproduce experimentally determined protein allocation using

fitted (optimal) kapp values (Figure S5 A). However, these simulations may predict one out of

many possible solutions to the protein allocation problem. In order to estimate the total

number of usable reactions independent from the optimal set of kapp, we performed 200

simulations per substrate limitation where kapp was randomly sampled from the kapp

distribution. This converged to maximally 550 utilized reactions per condition. (Figure S5 B).

In total, 587 of 1,360 reactions were utilized at least once in all simulations, 280 reactions

were used in all simulations on all substrates (core reactions), and 28 reactions were used in

only one particular limitation. We mapped the C. necator proteome quantification data onto

RBA model reactions to categorize proteins as: 1) not included in the model, 2) included but

non-utilized enzymes, 3) utilized enzymes, and 4) utilized machinery (Figure 2 A). The
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non-modeled proteome fraction comprised on average 38% of the proteome mass (0.26

g/gDCW, 4,041 proteins), and was slightly dependent on condition. Non-utilized enzymes

were low-abundant in mass (0.03 g/gDCW, 400 proteins) compared to the utilized enzyme

fraction (0.27 g/gDCW, 823 proteins). Macromolecular machinery averaged 0.12 g/gDCW for

93 annotated proteins. Non-utilized enzymes were not enriched in a particular functional

category, while the non-modeled protein fraction was enriched in functions for transport,

transcription (factors), and post-translational modification (Figure 2 B). A large group of

proteins has no annotated function. Taking non-modeled and non-utilized proteins together,

43% of the C. necator proteome (by mass) is unlikely to be utilized in the tested conditions,

or involved in processes not covered by the RBA model. We also estimated the protein mass

encoded by essential genes per utilization category (Figure 2 A, shaded area). Gene

essentiality was determined by sequencing a randomly barcoded transposon library with

60,000 mutants after growth on rich medium (RB-TnSeq workflow) [Rubin et al, 2015,

Wetmore et al., 2015]. Transposon insertion density of a gene was used to sort it into one of

three different categories, 'essential' (496 genes), 'probably essential' (149), or

'non-essential' (4,712). On average, 47% of utilized enzymes (by mass) were encoded by

essential genes, while only 19% and 3% of the non-modeled and non-utilized protein mass,

respectively, was essential. Based on the calculated large fraction of non-modeled and

non-utilized proteome, and the observation that approximately half of the enzyme mass is

non-essential, we conclude that a large portion of the C. necator proteome is associated with

nutrient scavenging and regulatory adaptation to new environments.
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Figure 2. The non-modeled and non-utilized proteome of C. necator is related to
environmental readiness. A) A series of model simulations was conducted with randomly
sampled enzyme efficiency kapp (n=200) to obtain the maximum number of potentially utilized
reactions in each growth condition. The C. necator proteome (5,357 proteins) was allocated
to each of four utilization categories and protein mass summed up per category. Protein
mass encoded by essential genes is indicated as shaded area in bars. Bars represent mean
of four biological replicates, whiskers represent standard deviation. B) Average protein mass
by utilization category and functional group. Alternating color (grey and yellow) for bubbles
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are used in alternating rows.

Highly utilized enzymes are more abundant, less variable, and often essential

The under-utilized proteome fraction is a subset of the utilized fraction. Generally, metabolic

flux through a reaction can be correlated to the associated enzyme abundance. The rate of a

reaction vR is then the product of the enzyme efficiency kapp and the concentration of the

enzyme that catalyzes the reaction ( ) [Davidi & Milo, 2017]. Under𝑣
𝑅

= 𝑘
𝑎𝑝𝑝

· [𝐸]

steady-state conditions, optimal gene expression would adjust enzyme abundance

proportional to the flux that it is supposed to carry (metabolic demand), keeping utilization of

the enzyme constant. If enzyme abundance and flux do not change proportionally between

different conditions or growth rates, utilization changes. To estimate the degree of utilization,

we compared experimental protein allocation to model predictions at different growth rates.

The RBA model predicts the minimal required enzyme abundance to drive a metabolic

reaction, assuming full substrate saturation of the enzyme. Although full saturation of all

enzymes is not realistic [Reznik et al., 2017, Janasch et al., 2018], it is a useful assumption

to determine enzyme utilization. Utilization UE is calculated by dividing the predicted minimal

enzyme abundance by the experimentally determined enzyme abundance [Davidi & Milo,

2017]:

𝑈
𝐸

 [%] =  [𝐸]
𝑚𝑖𝑛𝑖𝑚𝑎𝑙

 / [𝐸]
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

· 100

We first looked at utilization of the macromolecular machines (Figure S6). Only two of these,

ribosomes and chaperones, had a considerable protein mass allocated to them. The

abundance of ribosomal proteins increased linearly with growth rate, as observed in other

bacteria [Scott et al, 2014, Peebo et al., 2015, Jahn et al., 2018]. The RBA model

simulations accurately predicted expansion of ribosomes with increasing growth rate, but

failed to predict incomplete reduction of ribosomes at low growth rate (Figure S6 B). This can

be explained by the evolutionary benefit that cells gain from keeping a ribosome reserve for

nutrient upshifts [Mori et al., 2017]. The ribosome reserve led to a decrease in utilization at

low growth rate regardless of the limiting substrate (Figure S6 C).

Next, we examined metabolic enzyme utilization by comparing experimental and

simulated protein abundance. All metabolic reactions/enzymes of the RBA model that had

associated proteins quantified by MS were included in the analysis (n=1,012). For each
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enzyme, the average utilization in the four limiting conditions (µ=0.25 h-1) was determined,

and then used to group enzymes into three categories: low (≤33%, n=710), moderate

(33-66%, n=153) and high utilization (>66%, n=149). Highly utilized enzymes are therefore

predominantly enzymes utilized in several of the four limiting conditions. There were

significant differences between these three groups: Highly utilized enzymes were on average

more abundant in terms of protein mass (g/gDCW) (Figure 3 A). We also calculated

variability in enzyme abundance by determining the coefficient of variation (CV) of allocated

protein mass across the four different conditions (Figure 3 B). For example, formate

dehydrogenase (FDH) was strongly expressed in only one out of four conditions (growth on

formate) and therefore showed high variability (CV=1.25), and low average utilization (23%).

Altogether, variability was significantly lower for moderately and highly utilized enzymes.

These observations support the notion that C. necator optimizes the cost-benefit ratio of

gene expression by keeping utilization high for highly abundant enzymes. Similarly, low

variation in gene expression of highly-utilized enzymes could provide a fitness benefit in

conditions changing on a short time scale. Constitutive expression of such genes can buffer

substrate and metabolite surges. Finally, we wondered if utilization of enzymes is also

correlated to essentiality of the associated gene(s) as determined by RB-TnSeq from our

transposon mutant library. Enzymes were sorted into, 'essential', 'probably essential', or

'non-essential' based on the essentiality of their associated genes (Methods, Figure 3 C). We

found that enzymes with intermediate and high utilization were more likely to be encoded by

an essential gene compared to lowly utilized enzymes.

A closer inspection of the central carbon metabolism of C. necator revealed that

enzyme abundance and utilization was markedly different between major pathways (Figure 3

D). The enzymes in upper glycolysis (PGK, GAPDH, FBA, FBP) and the CBB cycle showed

a clear condition-dependent trend, with high expression and utilization on formate, and low

expression and utilization on succinate. The enzymes of lower glycolysis (PGM, ENO, PYK,

PDH) showed low expression, low variability and moderate to high utilization in all

conditions, clearly distinct from the enzymes in upper glycolysis. This trend continued with

reactions down-stream of glycolysis/gluconeogenesis, such as the reactions of pyruvate

metabolism and the TCA cycle (low, invariable expression). The ED pathway was only

expressed and utilized when fructose was used as carbon source. Gene expression

regulation in C. necator is thus hierarchically organized: Enzymes close to the entry point of
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substrates into central metabolism are expressed 'on demand', and show high variability,

high absolute abundance, and high utilization in some growth regimes. Enzymes

downstream of substrate assimilation show lower expression and variability, perhaps owing

to their universal role in providing biomass precursors (TCA, pyruvate metabolism). A lower

protein investment per catalytic activity allows for larger reserves of these enzymes. The low

utilization of many TCA and pyruvate metabolism enzymes may provide a benefit for

robustness by avoiding full saturation. We also inspected the enzymes of the PHB

biosynthesis pathway (Figure S7), Acetyl-CoA acetyltransferase (phaA), Acetoacetyl-CoA

reductase (phaB), and PHB synthase (phaC). PhaA and phaB were highly abundant while

phaC abundance was comparatively low. All enzymes showed a similar pattern of increased

expression with decreasing growth rate regardless of the limiting substrate. However, only

nitrogen limitation triggered significant PHB production which is reflected in the strong

utilization of the PHB biosynthesis pathway in this condition.
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Figure 3. Highly utilized enzymes are more abundant, less variable, and often essential. A)
Protein mass in g/gDCW allocated to enzymes with low, moderate, and high utilization.
Enzymes with moderate and high utilization were significantly more abundant than enzymes
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with low utilization (p=2.2x10-16 and 3.2x10-21, respectively; Mann-Whitney U-test, two-sided).
B) Coefficient of variation (CV) as a measure of variability in enzyme abundance. Enzymes
with moderate and high utilization had significantly lower variability than enzymes with low
utilization (p=2.1x10-3 and 1.8x10-12, respectively. Mann-Whitney U-test, two-sided). C)
Number of reactions associated with at least 1 essential gene, or at least 1 probably
essential gene, or no essential gene at all, broken down by utilization. D) Map of C. necator's
central carbon metabolism. Inset figures show enzyme abundance and utilization for the four
limiting conditions (µ=0.25 h-1, four biological replicates). Values were rescaled from the
respective minimum and maximum to a range of 0 to 1. Enzyme abbreviations are colored
according to essentiality as described in C).

Autotrophy-related enzymes are largely underutilized

The high average abundance and variability of the CBB cycle enzymes is particularly

interesting. While phosphoribulokinase (PRUK) and Rubisco (RBPC) are specific for the

purpose of CO2-fixation, the other enzymes overlap with sugar phosphate metabolism

(glycolysis/gluconeogenesis, pentose phosphate pathway) providing precursors that are

essential for growth. We wondered if the expression of these enzymes is optimally regulated

based on the metabolic demands of the four different substrate limitations. We compared the

predicted (optimal) abundance with the experimentally measured abundance for important

enzymes of the CBB cycle (Figure 4 A). On formate, the protein concentration of these

enzymes increased with growth rate and therefore estimated flux, correlating with RBA

model predictions. A positive correlation was also found for fructose-limited growth, but a

negative correlation for succinate and ammonium limitation. Rubisco was highly abundant

even during growth on fructose where the model did not predict flux through the CBB cycle

(up to 0.02 g/gDCW or 3% of the proteome by mass). With the exception of Rubisco and

PRUK, the CBB cycle enzymes are encoded by three different copies on the C. necator

genome. Two of these are arranged in the cbb operons on chromosome 2 and pHG1, while

the respective third copy on chromosome 1 is the evolutionarily most ancestral [Pohlmann et

al., 2006, Fricke et al., 2009]. Expression of the ancestral enzymes is regulated differently

than the cbb operons, with lower average protein abundance that is independent of

substrate and growth rate (Figure S8).

When estimating the utilization of cbb enzymes, we found that utilization was high for

formate due to the obligatory flux through the CBB cycle, but low for other conditions (Figure
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4 B). It was not zero for some reactions that are required to drive lower glycolysis for

catabolism of fructose (PGK, GAPDH), or the non-oxidative PPP for the purpose of

nucleotide synthesis (transketolase reactions TKT1/2). We conclude that C. necator keeps

large amounts of underutilized CBB enzymes (0.024 to 0.04 g/gDCW, or 3.5 to 5.9% of the

proteome depending on substrate) whose abundance is not warranted by the expected

fluxes from glycolysis/gluconeogenesis or nucleotide biosynthesis. The underutilized enzyme

mass may be in preparation for autotrophic or formatotrophic growth, even when such

substrates are not in reach. The cbb operon also encodes several accessory enzymes that

were quantified but where utilization could not be estimated (cbbX, cbbY, cbbZ, Figure S3).

The most notable example is cbbZ, encoding the key enzyme of the 2-phosphoglycolate

(2-PGly) salvage pathway [Claassens et al., 2020]. Phosphoglycolate salvage becomes

necessary when the intracellular CO2 concentration is low and the Rubisco oxygenation

reaction is more prominent, producing 2-PGly. It is not known if growth on formate leads to

considerable flux towards 2-PGly, but the ratio of substrate specificities for CO2 and O2 for C.

necator’s Rubisco (IC type) of 75 suggests low 2-PGly synthesis compared to 3-PGA

[Horken & Tabita, 1999]. We found that none of the primary 2-PGly salvage enzymes

(glycerate pathway) were upregulated on formate, and the knock-out of these enzymes had

no effect on growth. This suggests that phosphoglycolate salvage does not play a vital role

during growth on formate.
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Figure 4. Autotrophy-related enzymes are largely underutilized. A) Experimentally
determined and model-predicted protein concentration for the seven most abundant
enzymes of the CBB cycle (points and error bars represent mean and standard deviation of
four biological replicates, respectively). PGK, phosphoglycerate kinase; GAPD,
glyceraldehyde-3-phosphate dehydrogenase; FBA, fructose bisphosphate aldolase; FBP,
fructose bisphosphatase; TKT1, transketolase; PRUK, phosphoribulokinase; RBPC, ribulose
bisphosphate carboxylase. B) Total utilization of the enzymes in A). Utilization was
calculated as the sum of predicted (optimal) enzyme abundance divided by the sum of
experimentally measured abundance.

Reassimilation of CO2 is unlikely to provide a fitness benefit for C. necator

C. necator appears to keep large amounts of Rubisco (and other CBB cycle enzymes)

under-utilized during heterotrophic growth. However, the RBA model finds only optimal flux

solutions that maximize growth while other objectives are also possible. It was shown that C.

necator fixes emitted CO2 via Rubisco during growth on fructose [Shimizu et al., 2015].

Knock out of Rubisco reduced PHB yield on fructose by 20% during nitrogen starvation. We

wondered if activity of the CBB cycle could improve total carbon yield (biomass including

PHB) at the cost of lower growth rate, representing a yield-growth rate trade-off. To test if

reassimilation of emitted CO2 improves carbon yield, we performed RBA model simulations
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on fructose and forced flux through Rubisco (Figure 5 A). We simulated five different CO2

fixation rates (0 to 5 mmol gDCW-1 h-1) at a fructose uptake rate of 4.0 mmol gDCW-1 h-1.

However, neither biomass yield nor growth rate was improved in any of the simulations

(Figure 5 B, C). Metabolic flux was diverted from the ED pathway towards the non-oxidative

PPP in order to provide ribulose-5-phosphate precursors for CO2 fixation (Figure 5 D).

Simultaneously, the high energy requirement for CO2 fixation led to higher flux through the

TCA cycle in order to generate additional NADH and ATP. Respiration and O2 consumption

was also predicted to increase, while no net reduction of CO2 emission was found.

Simulations suggested instead that the cells emit more CO2 when CO2 fixation is enforced,

an apparent paradox caused by the lack of additional energy. This can also be inferred from

the similar degree of reduction for fructose and biomass (4.0 and 4.12 per C-mol,

respectively, Shuler & Kargi, 2002), leaving no extra redox power for gratuitous CO2

reassimilation.

We then tested experimentally if expression of CBB genes conveys a fitness benefit

during growth on different carbon sources. To this end, the barcoded transposon library (pool

of 60,000 mutants) was cultivated in fructose-, succinate-, and formate-limited chemostat

bioreactors (dilution rate of 0.1 h-1). The continuous feed fixes the growth rate and selects

cells with higher substrate affinity or biomass yield [Wides & Milo, 2018]. The composition of

the mutant pool was probed after 8 and 16 generations of growth using next generation

sequencing. The fitness contribution of each gene was estimated by the degree of

enrichment or depletion of mutants over time [Wetmore et al., 2015]. Surprisingly, we found

that fitness of cbb mutants was largely unchanged, even during growth on formate where the

activity of the CBB cycle is strictly essential for growth (Figure 5 E). CbbP, encoding

phosphoribulokinase, and cbbS/L encoding the two subunits of Rubisco showed no

significant change in fitness on any substrate. These results show that knockout of cbb

genes are fully compensated by the second copy of the cbb operon. A notable exception

was cbbR, the transcriptional regulator of the cbb operon. Knockout of cbbR leads to a 100

fold down-regulation of cbb gene expression [Shimizu et al., 2015]. Though two copies of the

cbbR regulator are present, only the chromosome 2 copy is functional, the pHG1-encoded

copy is inactive due to a 26 bp deletion [Bowien & Kusian, 2002]. CbbR mutants had a

strong fitness penalty on formate (Figure 5 F, fitness ≤ -6) but no significant fitness penalty

on fructose or succinate; the observed fitness effects of -1 to -2 were within the typical
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variation for neutral genes. This suggests that the activity of the CBB cycle is either neutral

to growth or the effect is too small to detect with our method. We reproduced these

experiments with a cultivation regime that primarily selects for faster growth rate (medium

pulses every 2 h) and obtained similar results (Figure S9 A, B). We conclude that (re-)

fixation of CO2 during heterotrophic growth is unlikely to convey a growth benefit without

additional energy (e.g. from H2 oxidation). We hypothesize that the up-regulation of Rubisco

on fructose is a 'byproduct' of up-regulation of other glycolysis related genes of the cbb

operon.

Figure 5. Reassimilation of CO2 is unlikely to provide a fitness benefit for C. necator. RBA
model simulations were performed for a fixed fructose uptake rate combined with five
different CO2 fixation rates. A) Example metabolic flux map for a fructose uptake rate of 4.0
mmol gDCW-1 h-1 and CO2 fixation rate of 3 mmol gDCW-1 h-1. Blue - uptake of fructose and
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CO2, red - emission of CO2. B) Predicted growth rate µ. C) Biomass yield Y in gDCW g
fructose-1. D) Net flux through selected reactions for the same simulations as in B) and C).
For the TCA cycle, flux through citrate synthase was used as a proxy. For the
Entner-Doudoroff (ED) pathway, flux through 6-phosphogluconolactonase (EDD) was used
as a proxy. E) Fitness for all cbb genes determined by growth competition of a barcoded
transposon knockout library on three different substrates. F) Fitness over time for selected
cbb genes of the pHG1 encoded operon, except cbbR which is located on chromosome 2.
Chromosome 2 encoded cbb genes are not shown due to low transposon insertion
frequency. Points and error bars represent mean and standard deviation of four biological
replicates, respectively. Grayscale labels indicate role in CBB pathway: dark gray -
transcriptional regulator, moderate gray - specific for CO2 fixation, light gray - overlapping
role in glycolysis/CBB cycle.

The central metabolism of C. necator is highly redundant

We have previously established that several enzymes in the central carbon metabolism of C.

necator are encoded by strictly essential genes (Figure 3 D). However, most reactions are

annotated with more than one (iso-) enzyme. We therefore expanded our gene fitness

analysis to all enzymes of central carbon metabolism in order to find conditionally essential

genes. The reactions of central carbon metabolism were grouped into four different

pathways, CBB cycle including FDH, ED pathway, pyruvate metabolism and TCA cycle, and

the fitness of all genes associated with these reactions was quantified (Figure 6 A,

replication experiment in Figure S9 C). The majority of genes showed no significant fitness

penalty (or benefit) when knocked out. Only a few genes showed a significant decrease in

fitness, and the effect on fitness was substrate-specific. Four genes encoding subunits of a

soluble FDH (fdsABDG) showed significantly reduced fitness on formate. This demonstrates

that fds encodes the dominant FDH activity (Figure S2, Figure 6 B). No other annotated FDH

genes had a similar fitness penalty (Table S2). Another conditionally essential gene on

formate was ppc, encoding the PEP-carboxylase (PPC). The reaction has no other

annotated (iso-) enzymes and was predicted by RBA to carry substantial flux towards the

TCA cycle on formate and fructose, but not on succinate (Figure 6 B-D). The fitness penalty

of ppc knock-out mutants reflected the relative importance of the reaction for growth on the

different substrates (formate: -4.2, fructose: -2.7, succinate: -0.1, Table S2). On fructose,

genes for four consecutive enzyme reactions had significantly reduced fitness, pgl, edd1 and

eda from the ED pathway, as well as pdhA encoding the E1 component of pyruvate
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dehydrogenase (Figure 6 C, Table S2). For EDD another isoenzyme is annotated (edd2) that

could not compensate for the edd1 knockout. For PDH, five alternative loci are annotated, all

of which did not rescue pdhA knockout (Table S2). On succinate, only two gene knockouts

have significantly reduced fitness, malic enzyme maeA and pdhA. Both associated reactions

(ME and PDH) carry significant flux on succinate according to RBA simulations (Figure 6 D).

Malic enzyme has one more annotated gene, maeB, with different cofactor specificity

(NADPH instead of NADH), which could not compensate for the loss of maeA (Table S2).

We conclude that the central carbon metabolism of C. necator has a very high degree of

redundancy. Apart from a core set of essential genes encoded on chromosome 1, many

enzyme functions can be compensated by alternative copies. The genes that were found to

be conditionally essential were either present with only one copy (pgl, eda, ppc), or the

alternative enzymes could not compensate for their loss (edd2, maeB, pdhA2, alternative

FDHs). The degree of essentiality for these genes was correlated to the flux carried by the

enzyme (Figure 6 B-D).
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Figure 6. Central metabolism enzymes are highly redundant in C. necator. A) Fitness for all
central carbon metabolism genes associated with the reactions in Figure 3 D. Fitness was
determined by growth competition of a barcoded transposon knockout library on three
different substrates. Genes are broken down by pathway. Dotted line - fitness ≤ -3 was
regarded as significant. A summary of all reactions with significantly changed fitness is
available in Table S2. B) Metabolic flux map for growth on formate. RBA simulation with
formate uptake rate of 62 mmol gDCW-1 h-1. Red - reaction where annotated genes show
significantly reduced fitness in growth competition from A). C) Same as B) for fructose with
uptake rate of 4.0 mmol gDCW-1 h-1. D) Same as B) for succinate with uptake rate of 8.3
mmol gDCW-1 h-1.
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Discussion

A characteristic feature of all Burkholderiales is a fragmented genome organisation (2-4

replicons) [Fricke et al., 2009]. Comparative genome analysis suggested different

evolutionary origins of the C. necator chromosomes, with chromosome 1 more conserved

among related species than chromosome 2 and pHG1 [Fricke et al., 2009]. We found that

the largest fraction of protein mass (78.7%) can be attributed to chromosome 1, while

chromosome 2 and the pHG1 megaplasmid only show strong expression at a few selected

loci responsible for alternative lifestyles (lithoautotrophy, denitrification). Chromosome 1 also

showed predominantly constitutive expression across different trophic conditions, while the

few highly expressed loci on chromosome 2 and pHG1 were transcriptionally regulated. This

supports the hypothesis that C. necator may have acquired chromosome 2 and pHG1 at a

later stage of its evolutionary history and highlights the 'accessory' character of both

replicons [Fricke et al., 2009].

Of the 5,357 quantified proteins only 1,223 are associated with enzymes and another

93 with central dogma machinery in the C. necator RBA model. Yet, utilized enzymes and

machinery summed up to 57% of the protein mass, while 43% of the proteome was

non-utilized, including all proteins not covered by the RBA model. Our estimate for the

non-utilized protein mass in C. necator is higher than a previously reported estimate for E.

coli of 26-39%, particularly regarding the non-modeled protein fraction (39% in C. necator

compared to maximally 26% in E. coli) [O'Brien et al., 2016]. Another estimate for the

proportion of non-utilized enzymes for E. coli obtained about 30% of the proteome [Davidi &

Milo, 2017]. We conclude that C. necator not only has a larger genome compared to e.g. E.

coli, but also expresses many genes without utilizing them in the controlled, homogeneous

environments that are typical in biotechnology applications. The large non-utilized protein

fraction may be related to environmental readiness and may increase fitness of C. necator in

the variable and mixed substrate conditions typical of soil [Hewavitharana et al., 2019].

Further work is necessary to test this hypothesis, for example by subjecting C. necator to

laboratory evolution experiments in a constant environment with a defined carbon source.

Such a selection could lead to inactivation of superfluous substrate assimilation pathways,

freeing protein resources and eventually increasing growth rate.
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It is important to note that estimation of protein utilization is not straight-forward and

prone to several sources of error. For example, many proteins in C. necator are not

functionally annotated but could be catalytically active, eventually leading to underestimation

of the utilized protein fraction. On the other hand, enzymes can have 'moonlighting' activities

so that the calculated utilization is underestimated for some enzymes and overestimated for

others [Cotton et al., 2020]. Proteins involved in cell motility, cell cycling, sensing of and

responding to environmental changes are generally not a part of the metabolic model, yet

have vital functions for cellular fitness and are thus utilized in some way. Another challenge

is to assign enzyme abundance accurately to reactions that have several annotated proteins,

or a protein that is assigned to several enzymatic reactions. In these cases we divided

protein abundance between different enzymes and vice versa.

Bearing these limitations in mind, we used the RBA model to investigate the

underutilization of enzymes. Underutilization as used in this study serves as a proxy for the

relation between maximum attainable reaction rate (Vmax) and actual reaction rate, with the

latter being shaped by substrate saturation, reverse flux as well as potential allosteric

effectors. The estimated enzyme efficiency kapp is influenced by these factors and can

deviate from in vitro measured maximum turnover kcat [Davidi et al., 2016]. A general

observation regarding utilization is the dependency on growth rate. Flux of metabolic

enzymes is directly proportional to growth rate, given that all other cultivation parameters are

kept constant. At low growth and low flux through metabolism, bacteria optimize fitness by

reallocating protein resources from growth functions (ribosomes) to substrate assimilation

(transporters) [Scott et al., 2014, Hui et al., 2015, Jahn et al., 2018]. However, this

reallocation is only a gradual response and neither results in full reduction of superfluous

proteome sectors, nor the shrinking of the protein pool (g protein/gDCW). The consequence

is that enzyme utilization becomes low at low growth rates (O'Brien et al., 2016). C. necator

also shows this pattern: ribosomal proteins are incompletely reduced at low growth rates,

and enzymes of central metabolism generally remain highly abundant (Figure 4, Figure S6),

effectively creating an underutilized enzyme reserve.

Underutilization of enzymes represents an 'efficiency sacrifice' for host fitness.

Expression of excess non-metabolic proteins such as LacZ or YFP reduces bacterial growth

rate [Hui et al., 2015, Jahn et al., 2018]. However, several recent experimental studies have

shown that enzyme underutilization in E. coli central metabolism, such as in the OPP
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pathway and amino acid biosynthesis, provides a buffer against perturbations in

environmental conditions or gene expression [Davidi & Milo, 2017, Christodoulou 2018,

Sander et al., 2019]. The importance of underutilized enzymes for metabolic stability has

also been shown for metabolic networks such as the CBB cycle [Barenholz et al., 2017,

Janasch et al., 2018]. We observed that highly abundant enzymes are better utilized and

less variable across conditions. This is most likely a result of the evolutionary pressure on

enzyme reserve costs, which increase proportionally with the abundance of enzymes.

It is of interest to compare enzyme utilization in C. necator to E. coli, a model

bacterium with a different environmental niche. The central carbon metabolism pathways of

C. necator showed differences in enzyme abundance, variability, and utilization. Abundance

of enzymes for the upper EMP pathway, PPP, and CBB cycle was on average higher than for

the enzymes of the ED pathway, pyruvate metabolism or TCA. This is similar to E. coli,

where higher abundance of glycolysis enzymes was explained by high flux demand and low

thermodynamic driving force [Noor et al., 2016]. But enzymes of the upper EMP pathway

and PPP also showed strong transcriptional regulation (variability in gene expression, Figure

3 D), which is a marked difference to E. coli, where enzyme levels show low variation across

multiple growth conditions [Schmidt et al., 2016], and flux is mainly regulated through

allosteric interactions [Reznik et al., 2017]. Of all central carbon metabolism, the TCA cycle

enzymes showed on average lowest abundance, variability and -for most enzymes-

utilization. This is similar to E. coli, where a simple enzyme cost minimization model

suggested lower enzyme abundance than what was measured experimentally [Noor et al.,

2016]. Only when reverse fluxes (for reactions with low thermodynamic driving force) and

low enzyme saturation ([S] < KM, estimated from metabolite levels), were taken into account,

was the calculated enzyme demand similar to the measured levels [Noor et al., 2016]. The

RBA framework does not take thermodynamic driving forces into account and may therefore

underestimate enzyme demand for such reactions.

How was the regulatory network in C. necator's central carbon metabolism shaped by

its native environment? E. coli is adapted to regular nutrient upshifts every 2-3 hours [Mori et

al, 2017]. It therefore evolved allosteric regulation to deal with quickly changing fluxes

through the EMP pathway, its prime catabolic route [Reznik et al., 2017]. For C. necator,

sugars are likely not the preferred substrate as the only sugars it utilizes are fructose and

N-acetylglucosamine [Cramm, 2008]. Flux through the upper EMP pathway is low as it uses
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the low-yield ED pathway to catabolize sugars. A slow but more resource efficient

transcriptional regulation of glycolysis could therefore provide a fitness benefit for an

environment with limited and irregular substrate supply. Interestingly, only the glycolysis/PPP

enzymes located on the phylogenetically young cbb operons are transcriptionally regulated,

while the ancestral enzymes on chromosome 1 are constitutively expressed (Figure S8).

These enzymes are also scattered over the chromosome and therefore not collectively

regulated. The diverging regulation for glycolysis-related genes could mark a branching point

in the evolutionary history of C. necator. The pHG1 plasmid was likely acquired recently,

based on its transmissibility and proven ability to confer hydrogenotrophic metabolism

[Friedrich et al., 1981]. Cbb genes could either get lost or take over the function as main

glycolysis enzymes from their chromosome 1 orthologs.

The two copies of the cbb operon in C. necator are of hybrid nature as CBB cycle

enzymes functionally overlap with EMP glycolysis and PPP. Expression of the cbb operon

depended on the supplied substrate and was highest for growth on formate, where CBB

cycle genes are essential. However, a more complex picture emerged for cbb expression

during other substrate limitations (increasing with µ on fructose, decreasing with µ on

succinate). The cbb operon is transcriptionally regulated by two systems, CbbR [Bowien &

Kusian, 2002] and RegA/B [Gruber et al., 2017]. RegA/B guarantees a basic level of

constitutive expression, while CbbR senses the intracellular PEP concentration [Gruber et

al., 2017]. PEP is an important allosteric regulator responsible for the switch between

glycolytic and gluconeogenic flux in E. coli [Reznik et al., 2017]. In C. necator, growth on

fructose leads to low PEP concentration, triggering cbb expression, while it is the other way

around for succinate. This prompts the question which evolutionary benefit cells gain from

cbb expression during heterotrophic growth? On substrates with a higher degree of

reduction than biomass, such as glycerol, there will be sufficient redox power to fix emitted

CO2 [Guadalupe-Medina et al., 2013]. On substrates with a lower degree of reduction, such

an excess is not expected. It has also been shown that reassimilation of emitted CO2 by

Rubisco improves PHB yield [Shimizu et al., 2015]. We generalized this hypothesis and

tested if CBB activity could also provide a biomass yield or growth benefit. Our model

simulations suggested that CO2-reassimilation is unlikely to provide such a benefit as long as

there is no additional energy source (Rubisco activity even causes a higher net CO2

emission). Down-regulation of the cbb operon (cbbR mutant) caused no significant fitness
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change on fructose or succinate, suggesting that CO2 fixation in these conditions provides

no benefit. The resolution of the transposon library experiments was however too low to

exclude that CBB activity does not confer a small growth advantage. We propose that the

conserved PEP-dependent transcriptional regulation of cbb leads to a collateral expression

of Rubisco in conditions where it is not required, such as fructose. This is a remarkable

example of suboptimality, where one benefit could be readiness for lithoautotrophic growth

when hydrogen or formate become available. Probing the effect of cbb gene knockouts with

the transposon library also revealed that C. necator can compensate the loss of any cbb

gene by expressing the respective second copy. This finding applies to central carbon

metabolism in general. Almost all enzyme functions are covered by several gene loci, so that

knockout did not result in fitness loss. Notable exceptions are the reactions of the ED

pathway, PEP carboxylase (ppc), and malic enzyme (maeA), that showed significantly

reduced fitness in conditions where these reactions carry high flux.

Our results highlight the metabolic flexibility of C. necator and its robustness to

changing environmental conditions. Its high degree of genomic redundancy makes it tolerant

to gene loss, but may also lead to regulatory conflicts exemplified by cbb expression. A

comparison of microbial genomes showed that the CBB cycle is accompanied by a

metabolism-wide range of adaptations [Asplund-Samuelsson and Hudson, 2021].

Considering a possibly recent acquisition of the CBB cycle via pHG1, it is likely that C.

necator is currently evolving to make best use of the cbb genes. Our results also imply that

C. neactor is in its current state far from being an ideal host for biotech applications. This is

because 1) gene duplications and iso-enzymes complicate genetic engineering, 2)

expression of unutilized pathways is protein-inefficient, 3) a large pool of uncharacterized

enzymes makes it difficult to control metabolic flux (Figure 2). Strategies to tackle these

problems could include both targeted and untargeted approaches. The systematic deletion

of undesired functions could result in higher enzyme efficiency and therefore higher product

yield. One example is the removal of costly hydrogenase expression for growth on formate.

Alternatively, laboratory evolution could be employed to select mutants with beneficial traits

such as tolerance to formic acid.
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Methods

Contact for reagent and resource sharing

Further information and requests for reagents may be directed to and will be fulfilled by Lead

Contact Elton P. Hudson (paul.hudson@scilifelab.se).

Method details

Key Resources Table

Reagent type
(species) or
resource

Designation Source or
reference

Identifiers Additional
information

strain, strain
background
(Cupriavidus
necator)

H16 (wild type) German
Collection of
Microorganisms
and Cell Cultures,
DSM-428

NCBI:txid381666 https://www.dsmz
.de/collection/cat
alogue/details/cul
ture/DSM-428

strain, strain
background
(Cupriavidus
necator)

H16 PHB-4
(mutant deficient
in PHB synthesis)

German
Collection of
Microorganisms
and Cell Cultures,
DSM-541

H16 PHB-4 https://www.dsmz
.de/collection/cat
alogue/details/cul
ture/DSM-541
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strain, strain
background
(Cupriavidus
necator)

H16, transposon
mutant library
(60,000)

This study NCBI:txid381666 obtained by
conjugation with
E. coli APA766

strain, strain
background
(Escherichia
coli)

APA766,
transposon
donor strain
(pKMW7 Tn5)

Wetmore et al.,
2015

WM3064 obtained from the
original authors
(Adam Deutsch-
bauer lab)

Strains and cultivation

Cupriavidus necator H16 was obtained from the German Collection of Microorganisms and

Cell Cultures, strain number DSM-428. Cells were cultivated on complete (LB) medium, or

minimal medium depending on experimental setup. Minimal medium was composed of 0.78

g/L NaH2PO4, 4.18 g/L Na2HPO4x2H2O, 1 g/L NH4Cl, 0.1 g/L K2SO4, 0.1 g/L MgCl2x6H2O,

1.6 mg/L FeCl3x6H2O, 0.4 mg/L CaCl2, 0.05 mg/L CoCl2x6H2O, 1.8 mg/L Na2MoO4x2H2O,

0.13 g/L Ni2SO4x6H2O, 0.07 mg/L CuCl2x2H2O. Depending on the experiment, 0.5 g/L

D-fructose, 0.5 g/L succinate, or 1.5 g/L pH-neutralized formic acid was added as carbon

source. For nitrogen limitation, the concentration of D-fructose was increased to 2 g/L and

concentration of NH4Cl was reduced to 0.025 g/L. All components were added to autoclaved

sodium phosphate buffer from filter-sterilized stock solutions. Batch cultures were grown in

100 mL shake flasks at 30°C and 180 RPM. Precultures of the barcoded C. necator

transposon library were supplemented with 200 µg/mL kanamycin and 50 µg/mL gentamicin

to suppress growth of untransformed C. necator recipient or E. coli donor cells.

Chemostat bioreactors

C. necator H16 (wild type) or the C. necator H16 transposon mutant library was cultivated in

an 8-tube MC-1000-OD bioreactor (Photon System Instruments, Drasov, CZ). The system

was customized to perform chemostat cultivation as described previously [Jahn et al., 2018,

Yao et al., 2020]. Bioreactors (65 mL) were filled with minimal medium supplemented with

the respective carbon and nitrogen source, and inoculated with an overnight preculture to a

target OD720nm of 0.05. Bioreactors were bubbled with air at a rate of 12.5 mL/min and a

temperature of 30°C. The OD720nm and OD680nm were measured every 15 min. Fresh medium

was continuously added using Reglo ICC precision peristaltic pumps (Ismatec, GER). For

pulsed chemostat experiments, a volume corresponding to the continuous addition of
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medium over a given time period was added in a single pulse every 2 h. For proteomics, 40

mL samples were taken after five retention times of continuous growth at a fixed dilution rate

(tR = 1/D; for example tR(D = 0.1 h-1) = 1 / 0.1 = 10 h). For transposon library competition

experiments, 15 mL samples were taken after 0, 8 and 16 generations of growth (population

average). Cells were harvested by centrifugation for 10 min at 5,000 xg, 4°C, washed with 1

mL ice-cold PBS, transferred to a 1.5 mL tube, and centrifuged again for 2 min at 8,000 xg,

4°C. The supernatant was discarded and the pellet frozen at -20°C.

Determination of biomass yield

Substrate uptake rate qS was determined using the dilution rate D, the culture volume V, the

biomass concentration cbm in gDCW L-1, and the initial and residual substrate concentrations

Si and Sr, respectively, in the following equation: . The biomass yield YX/S for𝑞
𝑆

=
𝑉 · 𝐷 · (𝑆

𝑖
 −𝑆

𝑟
)

𝑐
𝑏𝑚

all substrates was determined by fitting a linear model to the growth rate-substrate uptake

rate relationship..

Dry cell weight determination

Dry cell weight (DCW) measurements for carbon limitation were carried out in shake flasks.

50 mL of minimal medium were supplemented with 0.5 g/L fructose, 0.5 g/L succinate, or 2

g/L formate (pH neutralized). Flasks were inoculated with C. necator to an OD600 of 0.01 and

cultivated for 48 h at 30°C before harvesting. DCW measurement for nitrogen limitation was

carried out using an ammonium limited chemostat as described above (2 g/L fructose, 0.05

g/L NH4Cl). 50 mL cell suspension was harvested by centrifugation for 10 min, 5,000 xg,

4°C. The pellet was washed twice with 1 mL mqH2O, transferred to preweighed 1.5 mL

tubes and dried for 4 h at 70°C. Dried cell mass was measured on a precision scale.

Biomass yield for formate batch cultures was corrected using the linear relationship of yield

reduction and residual formate concentration from [Grunwald et al., 2015].

Determination of PHB content

Pellets from DCW determination were dissolved in 1 ml of sodium hypochlorite solution

(10-15% chlorine) and incubated at 37°C for 1 hour for cell lysis. The lysate was harvested

by centrifugation at 16,000 xg for 2 min, RT. The pellet was sequentially washed with 1 mL

mqH2O, 1 ml acetone, and 1 ml of 96% ethanol. The lysate was harvested by centrifugation
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at 16,000 xg for 2 min, ethanol was completely removed, and the pellet resuspended in 1 mL

chloroform. The solution was transferred to a 5 mL glass tube and heated for 2 min at 70°C

to extract PHB. The solution was then cooled to RT and centrifuged for 2 min at 4,000 xg.

The supernatant was transferred to a fresh glass tube. The PHB extraction of the pellet was

repeated with 1 additional mL chloroform and the samples were pooled. The chloroform was

evaporated completely at 40 to 50°C overnight in a vented hood. For hydrolysis of PHB into

crotonic acid, 1 ml of concentrated sulphuric acid was added to the precipitate and samples

were incubated at 100°C for 10-20 min. The hydrolysate was diluted 1:100 by mixing 10 µL

sample with 990 µL 14 mM H2SO4. For each sample, 3x 100 µL were transferred to a

low-UV-absorption 96-well plate and UV absorbance of crotonic acid was measured at 235

nm in a spectrophotometer. For PHB quantification, absorption was compared to a standard

curve of PHB hydrolysate with known concentration. For the standard, 10 mg of pure PHB

were hydrolysed in concentrated H2SO4 as described above. The standard was diluted 1:10

by mixing 500 µL with 4.5 mL 14 mM H2SO4 resulting in a 1 mg/mL stock solution. Dilutions

ranging from 0.0 to 1.0 mg/mL were measured in a 96-well plate as described above.

Residual substrate measurement with HPLC

Culture supernatant was obtained after centrifugation of cell samples. A volume of 1 mL

supernatant was transferred to an LC glass vial using Millex-HV PVDF syringe filter tips

(Merck Millipore). The HPLC column (Aminex 300-mm HPX-87H) was equilibrated with 5

mM H2SO4 as mobile phase for 1 h, at a flow rate of 0.5 mL/min. The column was heated to

60°C. A volume of 20 μL per sample was injected to the HPLC followed by a run time of 30

min. UV-absorption was constantly detected at 210 nm wavelength. Standards with four

different concentrations, 10, 50, 100 and 200 mg/L, were used for quantification of each

residual substrate (succinate, formate, fructose, ammonium chloride). Calibration curves

were obtained by fitting a linear equation to the concentration-absorbance relationship.

Residual substrate concentration was then determined by solving the equation with the

obtained absorbance measurements.

Statistical analysis

Bioreactor cultivations, LC-MS/MS measurement for proteomics, and library competition

experiments ('BarSeq') were performed with four independent biological replicates. HPLC
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measurement of supernatants was performed with three biological replicates. Here,

biological replicate means that samples were obtained from independently replicated

bioreactor cultivations inoculated with the same preculture. The sample size of four was

chosen based on the known variance from previous proteomics experiments. If not

otherwise indicated in figure legends, points and error bars represent the mean and standard

deviation. No removal of outliers was performed. All analyses of proteomics, modeling, and

fitness data are documented in R notebooks available at

https://github.com/m-jahn/R-notebook-ralstonia-proteome.

Sample preparation for LC-MS/MS

Frozen cell pellets were resuspended in 125 µL solubilization buffer (200 mM TEAB, 8 M

Urea, protease inhibitor). 100 µL glass beads (100 µm diameter) were added to the cell

suspension and cells were lysed by bead beating in a Qiagen TissueLyzer II (5 min, f = 30/s,

precooled cassettes). Cell debris was removed by centrifugation at 14,000 xg, 30 min, 4°C,

and supernatant was transferred to a new tube. Protein concentration was determined using

the Bradford assay (Bio-Rad). For reduction and alkylation of proteins, 2.5 µL 200 mM DTT

(5 mM final) and 5 µL 200 mM CAA (10 mM final) were added, respectively, and samples

incubated for 60 min at RT in the dark. Samples were diluted 8x with 700 µL 200 µM TEAB.

For digestion, Lys-C was added in a ratio of 1:75 w/w to protein concentration, and samples

were incubated at 37°C and 600 RPM for 12 h. Trypsin was added (1:75 w/w) and samples

incubated for 24 h at the same conditions. Samples were acidified with 100 µL 10% formic

acid (FA) and insoluble compounds were removed by centrifugation (14,000 xg, 15 min, RT).

Peptide samples were then cleaned up using a solid phase extraction (SPE) protocol in

96-well plate format (Tecan Resolvex A200) according to the manufacturer's

recommendations. Briefly, the 96-well plate with SPE inserts was equilibrated with 200 µL

acetonitrile (ACN) and 2x200 µL 0.6% acetic acid. A lysate volume corresponding to 40 µg

protein was loaded on the plate and washed twice with 200 µL 0.6% acetic acid. Peptides

were eluted from the column in 100 µL elution buffer (0.6% acetic acid, 80% ACN) and dried

in a speedvac for 2 h, 37°C. Dried peptides were frozen at -80°C and dissolved in 10% FA to

a final concentration of 1 µg/µL before MS measurement.

LC-MS/MS analysis of lysates
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Lysates were analyzed using a Thermo Fisher Q Exactive HF mass spectrometer (MS)

coupled to a Dionex UltiMate 3000 UHPLC system (Thermo Fisher). The UHPLC was

equipped with a trap column (Acclaim PepMap 100, 75 μm x 2 cm, C18, P/N 164535,

Thermo Fisher Scientific) and a 50 cm analytical column (Acclaim PepMap 100, 75 μm x 50

cm, C18, P/N ES803, Thermo Fisher Scientific). The injection volume was 2 µL out of 18 µL

in which the samples were dissolved in the autosampler. Chromatography was performed

using solvent A (3% ACN, 0.1% FA) and solvent B (95% ACN, 0.1% FA) as the mobile

phases. The peptides were eluted from the UHPLC system over 90 min at a flow rate of 250

nL/min with the following mobile phase gradient: 2% solvent B for 4 min, 2 to 4% solvent B

for 1min, 4 to 45% solvent B for 90 min, 45 to 99% solvent B for 3 min, 99% solvent B for 10

min and 99% to 2% solvent B for 1 minute following re-equilibration of the column at 2%

solvent B for 6 min. The MS was operated in a data-dependent acquisition mode with a Top

8 method. The MS was configured to perform a survey scan from 300 to 2,000 m/z with

resolution of 120,000, AGC target of 1x106, maximum IT of 250 ms and 8 subsequent

MS/MS scans at 30,000 resolution with an isolation window of 2.0 m/z, AGC target of 2x105,

maximum IT of 150 ms and dynamic exclusion set to 20 s.

Protein identification and quantification

Thermo raw spectra files were converted to the mzML standard using Proteowizard’s

MSConvert tool. Peptide identification and label-free quantification were performed using

OpenMS 2.4.0 in KNIME [Röst et al., 2016]. The KNIME pipeline for MS data processing

was deposited on https://github.com/m-jahn/openMS-workflows

(labelfree_MSGFplus_Percolator_FFI.knwf). MS/MS spectra were subjected to sequence

database searching using the OpenMS implementation of MS-GF+ and Percolator

[Granholm et al., 2014] with the Cupriavidus necator H16 reference proteome as database

(NCBI assembly GCA_000009285.2, downloaded 07 January 2019). Carbamidomethylation

was considered as a fixed modification on cysteine and oxidation as a variable modification

on methionine. The precursor ion mass window tolerance was set to 10 ppm. The

PeptideIndexer module was used to annotate peptide hits with their corresponding target or

decoy status, PSMFeatureExtractor was used to annotate additional characteristics to

features, PercolatorAdapter was used to estimate the false discovery rate (FDR), and

IDFilter was used to keep only peptides with q-values lower than 0.01 (1% FDR). The
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quantification pipeline is based on the FeatureFinderIdentification workflow allowing feature

propagation between different runs [Weisser et al., 2017]. MzML files were retention time

corrected using MapRTTransformer, and identifications (idXML files) were combined using

the IDMerger module. FeatureFinderIdentification was then used to generate featureXML

files based on all identifications combined from different runs. Individual feature maps were

combined to a consensus feature map using FeatureLinkerUnlabelledKD, and global

intensity was normalized using ConsensusMapNormalizer (by median). Protein quantity was

determined by summing up the intensities of all unique peptides per protein. Abundance of

ambiguous peptides (peptides mapping to two different proteins) were shared between

proteins.

Creation of barcoded C. necator transposon library

The transposon library was prepared according to the RB-TnSeq workflow described in

Wetmore et al., 2015. Briefly, C. necator H16 wild type was conjugated with an E. coli

APA766 donor strain containing a barcoded transposon library. The strain is auxotrophic for

DAP, the L-Lysin precursor 2,6-diamino-pimelate, to allow for counter selection. Overnight

cultures of E. coli APA766 and C. necator H16 in 10 mL LB medium in shake flasks were

prepared. The APA766 culture was supplemented with 0.4 mM DAP and 50 µg/mL

kanamycin. 2 L of LB medium (APA766 with 0.4 mM DAP and 50 µg/mL kanamycin) in

shake flasks was each inoculated with the respective pre-cultures and incubated overnight at

30°C and 180 RPM. Cells were harvested during exponential growth phase by centrifugation

for 10 min, 5000 xg, RT. Supernatant was discarded, cell pellets were resuspended in

residual liquid, transferred to 2 mL tubes, washed twice with 2 mL PBS, and finally

resuspended in a total amount of 500 µL PBS. Cell suspensions from both strains were

combined and plated on 25 cm x 25 cm large trays (Q-tray, Molecular Devices) with LB agar

supplemented with 0.4 mM DAP. For conjugation, plates were incubated overnight at 30°C.

Cells were then harvested from mating plates by rinsing with 200 µL PBS. The cell

suspension was plated on selection plates with LB agar supplemented with 100 µg/mL

kanamycin, without DAP. After colonies of sufficient size appeared, transformants were

harvested by scraping all cell mass from the plate and collecting the pooled scrapings in 1.5

mL tubes. The mutant library diluted tenfold and was then immediately frozen at -80°C. For

competition experiments, a 1 mL 10-fold diluted aliquot (pool of all conjugations, ~1 M CFU)
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was used to inoculate pre-cultures.

Mapping of transposon mutants (TnSeq)

A 1 mL aliquot of the diluted pooled library scrapings was used to inoculate a 50 mL LB

culture (with 200 µg/mL kanamycin) and grown overnight at 30°C, 200 RPM. DNA was

extracted from 1 mL of this outgrown culture using a GeneJet Genomic DNA Purification Kit

(ThermoScientific) and the concentration of genomic DNA was quantified using a Qubit

dsDNA HS Assay Kit (Invitrogen). A 1 µg aliquot of genomic DNA was suspended in 15 µL

of 10 mM Tris buffer, placed in a microTUBE-15 AFA Beads tube (Covaris) and fragmented

into 300 bp fragments using an ME220 focused ultrasonicator (Covaris) with waveguide

500526 installed. Cycle time was increased to 60 seconds, all other settings were taken from

manufacturer's recommendation for generating 350 bp fragments. Fragment end repair and

adaptor ligation was performed using an NEBNext Ultra II DNA Library Prep Kit (New

England Biolabs) following the manufacturer's protocol. Size selection of NEB adaptor

ligated fragments was carried out using SPRISelect magnetic beads (Beckman Coulter)

following the method in the NEBNext Ultra II DNA Library Prep Kit User manual. To enrich

transposon-containing sequences, a 30 cycle PCR amplification was performed using the

Biotin_Short_pHIMAR and NC102 primers (Table S3) using Q5 mastermix (New England

Biolabs). Cycle conditions were 30 seconds 98°C followed by 30 cycles (15 seconds 98°C,

75 seconds 72°C) and a 5 minutes 72°C final extension. The biotinylated

transposon-containing sequences were purified using MyOne Streptavidin T1 Dynabeads

(Invitrogen) according to the manufacturer’s instructions. The transposon containing DNA

was then stripped from the beads by resuspending the beads in 25 µL of MilliQ water

followed by incubation at 70°C for 10 minutes. The beads were separated by incubation on a

magnetic stand at room temperature for 1 minute and the supernatant was recovered.

Adaptors for Illumina sequencing were added via PCR amplification using

Nspacer_barseq_pHIMAR (Wetmore et al., 2015) and NEBNext Index 3 Primer for Illumina

(New England Biolabs). Cycle conditions were 30 seconds 98°C followed by 4 cycles (15

seconds 98°C, 75 seconds 72°C) and a 5 minutes 72°C final extension. PCR products were

separated on a 1% agarose gel and gel extraction was performed on the band between

300-600 bp using a Gel Extraction Kit (ThermoScientific). The DNA concentration of the

samples were quantified using a Qubit dsDNA HS Assay Kit (Invitrogen) and diluted to 2 nM.
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The 2 nM library was diluted, denatured and sequenced using a NextSeq 500/550 Mid

Output Kit v2.5 150 Cycles, (Illumina) run on a NextSeq 550 instrument (Illumina) according

to the manufacturer's instructions. Library loading concentration was 1.8 pM with a 10% phiX

spike. Reads containing barcodes and genomic DNA fragments were mapped to the C.

necator genome following the protocol from Wetmore et al., 2015. Briefly, the scripts

MapTnSeq.pl and DesignRandomPool.pl from

https://bitbucket.org/berkeleylab/feba/src/master/ were adapted to map reads to the

reference genome, and to summarize read counts per barcode, respectively. Only barcodes

mapping to the same region with at least two reads were included. The automatic pipeline

for TnSeq data analysis is available at https://github.com/m-jahn/TnSeq-pipe.

Gene essentiality analysis

TnSeq data from two different iterations of the transposon library were combined to obtain

high insertion frequency per gene (72,443 and 57,040 mutants, respectively). Of the 129,483

transposon insertions, 23,339 mapped to intergenic regions and were excluded from

essentiality analysis. Of all insertions mapping to a gene, 78.7% were localized within the

central 80% of the ORF and were considered as true knockouts. Following the method from

Rubin et al., 2015, a metric for essentiality was calculated, the insertion index II; II is the

number of transposon insertions n of a gene i with length k divided by insertions per region r

(average of 100 genes around the target position):

𝐼𝐼
𝑖
 =  (𝑛

𝑖
 / 𝑘

𝑖
) / (𝑛

𝑟
 / 𝑘

𝑟
)

The II is bimodally distributed, one set of genes is hit by transposons at an average rate

while other genes are hit with lower frequency. To determine an II threshold for essentiality,

two gamma distributions were fitted to the assumed populations of 1) essential and 2)

non-essential genes. For all possible II, the probability of falling into the essential and

non-essential distribution was determined and a five-fold difference defined as lower and

upper thresholds to count a gene as essential or non-essential, respectively. Genes with II

between the two thresholds were flagged as ambiguous (p denotes the probability density

function of II for essential and non-essential genes):
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𝐼𝐼
𝑎𝑚𝑏𝑖𝑔𝑢𝑜𝑢𝑠

 =  𝐼𝐼 [(𝑝
𝑒𝑠𝑠

 <  5·𝑝
𝑛𝑜𝑛−𝑒𝑠𝑠

) ∪  (𝑝
𝑛𝑜𝑛−𝑒𝑠𝑠

 <  5·𝑝
𝑒𝑠𝑠

)]

To estimate essentiality of enzymes/reactions instead of genes, each enzyme with at least

one associated gene being essential was counted as essential, and each enzyme

associated with at least one probably essential gene was counted as probably essential; all

other enzymes were marked as non-essential.

Gene fitness analysis (BarSeq)

Frozen cell pellets from the pulsed and continuous competition experiments were

resuspended in 100 µL of 10 mM Tris and genomic DNA was extracted from 10 µL of the

resuspension using a GeneJet Genomic DNA Purification Kit (ThermoScientific).

Amplification of the barcodes from genomic DNA was conducted using one of the custom

forward indexing primers (BarSeq_F_i7_001 - BarSeq_F_i7_036, Table S3) and the reverse

phasing primer pool (BarSeq_R_P2_UMI_Univ - BarSeq_R_P2_UMI_Univ_N5). For each

sample 9 µL of genomic DNA extract (≥10 ng/µL) was combined with 3 µL of a forward

indexing primer (100 nM), 3 µL of the reverse phasing primer pool (100 nM) and 15 µL of Q5

Mastermix (New England Biolabs). Cycle conditions were 4 minutes at 98°C followed by 20x

(30 seconds at 98°C, 30 seconds at 68°C and 30 seconds at 72°C) with a final extension of

5 minutes at 72°C. Concentrations of each sample was quantified using a Qubit dsDNA HS

Assay Kit (Invitrogen). Samples were then pooled with 40 ng from up to 36 different samples

being combined and run on a 1% agarose gel. Gel extraction was performed on the thick

band centered around 200 bp and the concentration of the purified pooled library was

quantified again via Qubit assay and diluted down to 2 nM. The 2 nM library was then

diluted, denatured and sequenced using a NextSeq 500/550 High Output Kit v2.5 (75

Cycles) (Illumina) run on a NextSeq 550 instrument (Illumina) according to the

manufacturer's instructions. Library loading concentration was 1.8 pM with a 1% phiX spike.

Gene fitness was calculated from read counts per barcoded mutant based on the method

from Wetmore et al., 2015. Briefly, scripts from

https://bitbucket.org/berkeleylab/feba/src/master/ were adapted to trim and filter reads,

extract barcodes, and summarize read counts per barcode. Fitness score calculation based

on the log2 fold change of read count per barcode over time was implemented as an R script.

The automatic pipeline for BarSeq analysis is available at
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https://github.com/Asplund-Samuelsson/rebar. Altogether, fitness for 5,441 genes was

quantified with an average of 6.4 insertion mutants per gene. The remaining 1,173 genes

were either essential (no viable insertion mutant), probably essential (number of transposon

mutants in the surrounding region too low to determine essentiality), or fitness could not be

quantified with sufficient confidence (low read count). A significance threshold of |F| ≥ 3 after

at least 8 generations was chosen based on the bulk fitness distribution of mutants (-2 ≤ F ≤

2).

Resource Balance Analysis model

The resource balance analysis (RBA) model for C. necator H16 was generated using the

RBApy package [Bulovic et al., 2019]. The model and a detailed description of its generation

is available at https://github.com/m-jahn/Bacterial-RBA-models/. The main input was the

curated genome scale model for C. necator in SBML format (1,360 reactions, excluding

exchange reactions), available at https://github.com/m-jahn/genome-scale-models. Amino

acid sequence, subunit stoichiometry and cofactor requirements for all proteins associated

with model reactions were automatically retrieved from uniprot (organism ID: 381666). Fasta

files detailing the composition of the ribosome (3 rRNA and 68 proteins), chaperones (8

proteins), DNA polymerase III (8 proteins), and RNA polymerase II (9 proteins) were added

manually. Rates for these macromolecular 'machines' were adopted from published values

for E. coli (Table S1). Rates for ribosome and chaperone were taken from [Bulovic et al.,

2019], rate of RNA polymerase was taken from [Epshtein et al., 2003], and rate of DNA

polymerase was the average of several published values obtained from

https://bionumbers.hms.harvard.edu (IDs 102052, 104938, 109251, 111770). Biomass

composition of C. necator H16, growth- and non-growth associated maintenance were all

taken from [Park et al., 2011]. A growth rate dependent flux towards PHB was added (3

mmol gDCW-1) to obtain biomass yields corresponding to experimentally determined values.

The model was calibrated by adding estimates for kapp, the apparent catalytic rate for each

metabolic enzyme, following the procedure in [Bulovic et al., 2019]. For each model reaction

and substrate limitation, flux boundaries were obtained from flux sampling analysis (FSA)

using COBRApy [Ebrahim et al., 2013], and enzyme abundance in mmol gDCW-1 was

obtained from proteomics measurements. kapp was determined by calculating the maximum

flux per unit enzyme over all conditions. For enzymes without estimated kapp (no flux, or no
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protein abundance available), the median of the kapp distribution was used (5,770 h-1, Figure

S4 A). The average protein fraction of cell dry weight was taken from Park et al., 2011. The

reported concentration of 0.68 g protein gDCW-1 was converted to mmol amino acids

gDCW-1 by assuming an average molecular weight per amino acid of 110 g mol-1:

𝑐 =  0.68 𝑔 · 𝑚𝑜𝑙 · 1000
𝑔𝐷𝐶𝑊 · 110 𝑔  =  6. 18 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊 −1

Proteome fraction per cellular compartment (cytoplasm, cytoplasmic membrane) was

estimated based on proteomics measurements and predicted protein localization (psortb

algorithm) as input. Growth rate dependent fractions for cytoplasmic and membrane proteins

were obtained by correlating growth rate and the respective mass fractions and fitting a

linear model (Table S1, Figure S4 B). The same procedure was applied to estimate the

non-enzymatic protein fraction per compartment. Proteins not contained in the model were

categorized as non-enzymatic as they have no catalytic function in the model (Table S1,

Figure S4 C).

Data and software availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset

identifier PXD024819. Protein quantification results can be browsed and interactively

analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyProt. All

sequencing data for TnSeq and BarSeq experiments are available at the European

Nucleotide Archive with accession number PRJEB43757. The data for competition

experiments performed with the transposon mutant library can be browsed and interactively

analyzed using the web application available at https://m-jahn.shinyapps.io/ShinyLib/.

The openMS/KNIME workflow for MS data processing is available at

https://github.com/m-jahn/openMS-workflows. The revised genome scale model of C.

necator H16 is available at https://github.com/m-jahn/genome-scale-models. The resource

balance analysis (RBA) model of C. necator H16 is available at

https://github.com/m-jahn/Bacterial-RBA-models. The code used to process TnSeq data

from raw fastq files (read trimming, filtering, mapping to genome) is available at

https://github.com/m-jahn/TnSeq-pipe. The code used to process BarSeq data from raw
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fastq files is available at https://github.com/Asplund-Samuelsson/rebar. All analyses of

proteomics, modeling, and fitness data were performed using the R programming language

and are documented in R notebooks available at

https://github.com/m-jahn/R-notebook-ralstonia-proteome.
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