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1 Abstract

2 Bisphenols and phthalates, chemicals frequently used in plastic products, promote obesity in cell
3 and animal models. However, these well-known metabolism disrupting chemicals (MDCs)
4 represent only a minute fraction of all compounds found in plastics. To gain a comprehensive
5 understanding of plastics as a source of exposure to MDCs, we characterized all chemicals present
6 in 34 everyday products using nontarget high-resolution mass spectrometry and analyzed their joint
7 adipogenic activities by high-content imaging. We detected 55,300 chemical features and
8 tentatively identified 629 unique compounds, including 11 known MDCs. Importantly, chemicals
9 that induced proliferation, growth, and triglyceride accumulation in 3T3-L1 adipocytes were found
10 in one third of the products. Since the majority did not target peroxisome proliferator-activated
11 receptor vy, the effects are likely to be caused by unknown MDCs. Our study demonstrates that
12 daily-use plastics contain potent mixtures of MDCs and can, therefore, be a relevant yet

13 underestimated environmental factor contributing to obesity.

14 Teaser

15 Plastics contain a potent mixture of chemicals promoting adipogenesis, a key process in developing

16  obesity.
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17  Introduction

18 Obesity is a global pandemic that generates a considerable burden of disease, in particular
19 considering comorbidities such as type 2 diabetes, cardiovascular diseases, hypertension, non-
20  alcoholic fatty liver, stroke, and certain types of cancer (7). Worldwide, the number of obese people
21 has nearly tripled since 1975, and more than 41 million children under the age of five were
22 overweight or obese in 2016 (2). This is problematic since a high body mass index (BMI) is one of
23 the top risk factors for deaths (3), and overweight in childhood or adolescence is a good predictor
24 of adult obesity (4). Accordingly, a high BMI contributed to four million deaths globally in 2015 with
25 cardiovascular diseases as leading cause of death followed by diabetes, chronic kidney diseases
26  and cancer (5).

27  This public health problem has mainly been attributed to genetic background and changes in
28 lifestyle, such as diet, exercise, sleep deficiency, and aging. However, epidemiological evidence
29 suggests that these factors insufficiently explain the magnitude and speed of the obesity pandemic
30 (6). For instance, even when normalizing for caloric intake and exercise, the BMI of US adults
31 increased by 2.3 kg m2in 2006 compared to 1998 (6). Consequently, identifying and understanding
32  other environmental factors than lifestyle is crucial to manage obesity (7). Given that the endocrine
33 system controls appetite, satiety, metabolism, and weight, exposure to endocrine disrupting
34  chemicals is one such factor (8). In addition to prominent endocrine disruptors, such as the biocide
35 tributyltin and the pesticide dichlorodiphenyltrichloroethane (DDT), plastic chemicals such as
36 bisphenols or phthalates disrupt metabolic functions and promote obesity in cell and animal
37 experiments (8). This is further supported by epidemiological studies that have linked weight gain
38 in humans to bisphenol A (BPA) exposure (9), while contradicting outcomes have been reported
39  regarding a link to phthalate exposure (10-12).

40 Considering the chemical complexity of plastic consumer products, bisphenols and phthalates
41 represent only the tip of the iceberg. A final article often consists of one or more polymers, multiple

42 intentionally added substances, such as fillers or additives, as well as non-intentionally added
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43 substances, for instance residues from the manufacturing (73). Based on regulatory inventories,
44  over 4000 substances are associated with plastic food packaging alone (13) and, overall, 10,547
45 chemicals are known to be used in plastics (74). Moreover, empirical data suggests that plastics
46 contain more chemicals than currently known. Using nontarget chemical analysis, we detected
47 hundreds to thousands of chemicals in plastic consumer products, most of these remaining
48 unknown (15). Importantly, the totality of plastic chemicals in a product was toxic in vitro, inducing
49 baseline toxicity, oxidative stress, cytotoxicity, and endocrine effects.

50 Building on these results and the fact that bisphenols and phthalates are known metabolism
51  disrupting chemicals (MDCs; 8, 16, 17), we hypothesized that MDCs are present in plastic
52 consumer products and that metabolic disruption might represent a common but understudied
53 toxicological property of plastic chemicals. To explore this, we used the same plastic consumer
54 products we have extensively characterized previously (75), and investigated the extracts’
55 adipogenic activity in differentiation experiments with murine 3T3-L1 cells. Following exposure to
56  MDCs, 3T3-L1 preadipocyte differentiate into adipocytes, accumulate triglycerides until they finally
57  resemble mature white fat cells (18). The bioassay targets the induction of adipogenesis at the
58 cellular level and represents a well-established in vitro model for metabolic disruption in vivo (19).
59  We performed optimization experiments and applied high-content fluorescence microscopy
60 combined with an automated image processing to increase the sensitivity and throughput. We also
61 investigated the underlying mechanisms of the adipogenic response and tested whether the
62 extracted plastic chemicals activate the human peroxisome proliferator-activated receptor gamma
63 (PPARYy) or glucocorticoid receptor (GR). We selected PPARYy as a key regulator of adipogenesis
64  (20), and included GR because glucocorticoids are important regulators of lipid metabolism (27).
65  Accordingly, an excess of agonists for these receptors is associated with obesogenic effects in
66 animal models and humans (e.g., weight gain; 19). Moreover, we performed nontarget, ultra-high
67 performance liquid chromatography coupled to a quadrupole of flight spectrometer (LC-QTOF-
68 MS/MS) to characterize the chemicals present in plastics and compare these with a list of

69 compounds known to induce adipogenesis.
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70 Results

71  Adipogenic activity of plastic consumer products. To exclude cytotoxic effects masking the
72 adipogenic response, we used nuclei count data to assess cytotoxicity. Most extracts were not
73 cytotoxic up to the maximum concentration tested (3 mg plastic well™"), except for PP 4, PUR 3 and
74 PUR 4. The latter two were the most cytotoxic samples with the highest noncytotoxic concentration
75 (HNC) of 0.75 mg plastic well''. The HNC for PP 4 was 1.5 mg plastic well! (Fig. S1). To assess
76 the induction of adipogenesis by the plastic extracts, we present the numbers of adipocytes and
77 mature adipocytes in the cell populations and the total lipid droplet count per image for the HNC of
78  each sample. Data were compared to both vehicle and rosiglitazone—treated controls (Fig. 1).
79 Further specifications on the endpoints of the automated image processing, dose-response

80 relationships and example images can be found in the supplementary material (Fig. S2—S17).

81 The extracts of eleven plastic consumer products induced adipogenesis with four samples having
82 an equal or stronger effect than the maximal response of cells exposed to rosiglitazone (PVC 2 and
83 4, PP 4, PUR 3). Similarly to rosiglitazone (Fig. 1A), the proliferative effects induced by plastic
84 extracts was driven by an increase in the numbers of adipocytes and mature adipocytes, while the
85 number of preadipocytes remained stable (Fig. 1C). Regarding the polymer type, the most potent
86  extracts were PUR and PVC, with seven out of eight samples inducing adipogenesis, whereas for
87 PP, PS and LDPE only specific samples induced adipogenic responses. In contrast, PET, HDPE,
88 and PLA samples were consistently inactive. The same pattern is reflected by the lipid droplet count
89  data (Fig. 1D). Here, however, some additional samples induced a slight increase in lipid droplets
90 (LDPE1,PS 1, PP2).

91 Given the propensity of environmental pollutants to promote unhealthy adipogenesis, we used the
92 single-cell data to explore a size shift towards hypertrophy and increased accumulation of
93 triglycerides in comparison to rosiglitazone (Fig. 2). We here present the results of one out of four
94  experiments due to the large size of the dataset (results of the other experiments can be found in

95 Fig. S18). Exposure to rosiglitazone dose-dependently increased the lipid content of adipocytes
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96  with a median lipid droplet area of 137 pixels cell" in the lowest concentration to 290 pixels cell! in
97 the highest concentration (Fig. 2A). The average fluorescence intensity of the lipid droplets
98 remained stable (Fig. 2B), thus the adipocytes increased in size in response to rosiglitazone but
99 triglyceride accumulation within the droplets remained constant. Compared with the maximal
100 response to rosiglitazone, adipocytes exposed to many of the active plastic extracts had a higher
101 lipid content, resulting both from an increase in adipocyte size and from the amount of triglycerides
102 contained within the lipid droplets. The lipid droplet area per adipocyte was greater in nine out of
103 the eleven active samples with a median increase of 21.6-114% (PS 2-LDPE 4). In line with that,
104  the average fluorescence intensity was higher in ten out of the eleven active samples with a median
105 increase of 25.1-60.4% (PS 2—PVC 4). These effects are consistent over all experiments, except

106  for PVC 3 (Fig. S18).

107 Reporter gene assays. We observed a higher cytotoxicity of the extracts on the U20S cells
108 compared to the 3T3-L1 cells with five samples being cytotoxic. The most cytotoxic sample was
109 PP 4 with a HNC of 0.19 mg plastic well, followed by PS 2, PP 3 and PLA 1 as well as PVC 2 with

110  a HNC of 0.38 and 0.75 mg plastic well"', respectively (Tab. S1).

111 None of the samples activated GR (Fig. S19) and five extracts activated PPARYy (Fig. 3A). PLA1
112 was the most potent sample with a median receptor activity of 34.7%, followed by PS 2 (24.4%),
113 PVC 2 (10.3%), LDPE 2 (8.4%) and PVC 1 (7.3%). Accordingly, the PPARYy activity of plastic
114  chemicals is a poor predictor of their adipogenic activity (Fig. 3B), except for PVC 2 and PS 2 which
115 induced both PPARYy and adipogenesis at similar effect concentrations. Moreover, three out of the
116 five samples activating PPARy did not induce adipogenesis in 3T3-L1 cells (PLA 1, LDPE 2,

117 PVC1).

118 Chemicals tentatively identified in plastics. Using nontarget GC-QTOF-MS/MS, we previously
119 identified 260 unique chemicals in extracts of the same plastic products (15). This corresponds to
120 231 tentatively identified chemicals with 227 unique PubChem CIDs in the samples used in this
121 study (Tab. S2). In the nontarget LC-QTOF-MS/MS analysis, we detected in total 55,300 features

122 (i.e., unidentified chemicals) across all samples that were only present in samples or had a >10-
6
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123  fold higher abundance compared to the blanks. Here, the number of features in individual samples
124  ranged from 107 (HDPE 2) to 6242 (PUR 3, Tab. 1). In total, 5500 features had spectral MS/MS
125  data we could use for compound identification, out of which we detected between 30 (PS 4) and

126 2117 features (PUR 3) per sample.

127  Fortentatively identifying the plastic chemicals, we used the MS/MS data with the MassBank library
128 (14,788 compounds) and three in silico fragmented databases of chemicals potentially used in
129 plastics or (pre-)registered for authorization on the European market (in total 75,510 compounds;
130 22). These queries resulted in a successful identification of 2364 features across all samples,
131 corresponding to 629 unique chemicals (SM Excel Tab. S1). Accordingly, between 6 (PLA 2) and
132 33 % (PET 1) of the features in each sample were tentatively identified. For the 25 compounds with
133 the highest identification scores (= 50) and abundance in the samples, we confirmed the plausibility
134  of theidentification by checking whether the compounds are known to be used in plastics (SM Excel
135 Tab. S2). We found that 14 out of 25 compounds are used in plastics, including five plasticizers
136 (e.g., acetyl tributyl citrate), four flame retardants (e.g., tris(2-butoxyethyl) phosphate, tris(3-
137 methylphenyl) phosphate) and multiple processing aids, such as the lubricant 2-nonyl-N-(2-
138 nonylphenyl) aniline, the hardener 4-methylphthalic anhydride and the slip additive (Z)-docos-13-
139 enamide. We also identified compounds that likely migrated from the packed content into the
140 packaging (two octadecanamides used in cosmetics) and one compound that was implausible (the
141 veterinary drug febarbamate).

142 When cross-referencing the chemicals tentatively identified in plastics and a list of known MDCs
143 inducing adipogenesis in 3T3-L1 cells (Tab. S3), we found eleven compounds known to induce
144 adipogenesis in vitro. The MDCs present in our samples include four phthalates and six
145  organophosphates (Tab. 1). Benzyl butyl phthalate (BBP), di-butyl phthalate (DBP) and di(2-
146  ethylhexyl) phthalate (DEHP) were present in PVC 4. Di-iso-nonyl phthalate (DINP) was detected
147 in PVC 3 and 4. Diphenyl phosphate (DPP), 2-ethylhexyl diphenyl phosphate (EHDP) and triphenyl
148 phosphate (TPP) were detected in multiple samples. When using raw abundance as a proxy for

149 concentration, high levels of TPP, DPP and EHDP (the MDCs present in at least three samples)
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150  were detected in two to three active PVC samples (Tab. S4). In contrast, the other active samples
151 contain very low levels of these chemicals (PS 2, PP 4, PUR 2, PUR 3). Interestingly, we did not
152  detect organotin compounds or bisphenols (SM Excel Table S1) despite these are known MDCs

153 and thought of as being common in PVC and other plastics (16, 17).

154 Discussion

155 Adipogenic activity of plastic consumer products. We hypothesized that plastic products
156 contain MDCs based on the fact that a small set of compounds used in plastics is known to induce
157  adipogenesis in vitro and in vivo (8, 16, 17). However, the current focus on few, individual plastic
158 chemicals neglects the chemical complexity of plastic materials given that we know that thousands
159  of compounds are either used in plastics or non-intentionally present (13, 74). Thus, we decided to

160 characterize the adipogenic activity of all compounds extractable from plastic consumer products.

161 Eleven out of 34 products contain chemicals that induce adipogenesis and are, thus, MDCs in vitro
162 (Fig. 1). The chemicals extracted from some plastics are not only quite potent but also trigger effects
163 that are similar to or higher than those induced by the reference compound rosiglitazone (PVC 2
164  and 4, PP 4). Supramaximal efficacies have previously been reported for single compounds, such
165 as dibutyl phthalate and tert-butyl phenyl diphenyl phosphate (23) but only at concentrations
166 210 pM, illustrating the potency of the extracted mixtures.

167 Products with multiple applications, including two FCMs (PS 2, PP 3) and nine non-FCMs, contain
168 adipogenic chemicals. While chemicals migrating from packaging into food represent an obvious
169  source of human exposure (24), compounds released from non-FCMs can also contribute via
170 dermal uptake (e.g., PUR 4 shower slippers) or inhalation. For instance, dust contains chemical
171 mixtures that induce adipogenesis (23). Here, we show that plastic flooring (e.g., PVC 4) contains
172 MDCs that may contribute to human exposure if they partition into dust. Given the potency of the

173 extracted mixtures and considering our close and constant contact with plastics, it appears
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174  plausible that plastic chemicals contribute to an obesogenic environment and, thus, the obesity
175 pandemic.

176 The chemicals present in PVC and PUR products most consistently induce potent adipogenic
177 responses, while compounds extracted from PET, HDPE, and PLA products were inactive. Apart
178  from the PLA samples, this is in line with our previous findings for other toxicity endpoints (15). This
179  suggests that PVC and PUR are more likely to contain MDCs compared to other polymers.
180 However, the chemicals extracted from some PP, PS, and LDPE products also induce
181 adipogenesis (Fig. 1). This supports the idea that caution is needed when trying to generalize the
182  occurrence of toxic chemicals based on polymer type (715).

183 Unhealthy or dysfunctional adipocytes are part of the obesity phenotype. They are larger in size,
184 have an impaired glucose uptake and insulin signaling, an elevated inflammatory response and
185 decreased respiration (25). While we did not investigate the latter characteristics, adipocytes
186  exposed to plastic chemicals were larger and contained more triglycerides compared to those
187  treated with rosiglitazone (Fig. 2). Since rosiglitazone promotes the development of healthy white
188 adipocytes (26, 27), these results suggest that exposure to plastic chemicals could shift adipocytes
189  towards an unhealthy phenotype. Similar trends have been reported for a range of MDCs, including
190 BPA (28), organotin compounds (29, 30) and DEHP (37), which we detected in PVC 4 (Tab. 1).
191 Hence, it will be interesting to investigate whether plastic chemicals also trigger the other hallmarks

192 of unhealthy, dysfunctional adipocytes.

193 Plastic chemicals and adipogenesis. Using nontarget high resolution mass spectrometry, we
194 show that plastic products contain hundreds to thousands of extractable chemicals; few of those
195 identifiable using spectral libraries and in silico tools. This is in line with our previous research (75,
196  22) and points towards the presence of unknown chemicals in plastics (e.g., non-intentionally
197  added substances). Accordingly, the relatively low identification performance in our study is a result
198 of the limited coverage of chemical databases. These limitations notwithstanding, we tentatively
199 identified a range of known plastic chemicals providing confidence in the accuracy of the

200 identifications.
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201 Plastic products contain known MDCs, including four phthalates (only in PVC 3 and 4) and six
202 organophosphates (Tab. 1). Biomonitoring data suggests that humans are commonly exposed to
203 some of these compounds (32-34). As an example, the phthalates DBP and DEHP as well as the
204  flame retardants TPP and TBEP we found in plastics were recently detected in matched maternal
205 and cord blood samples (35). Accordingly, plastic products can be one source of exposure to these
206  MDCs.

207  Known MDCs may explain the adipogenic response to chemicals extracted from some but not all
208 plastic samples. Most active samples contain at least one MDC with TPP, DPP and EHDP being
209  present in multiple samples. Interestingly, the floor covering (PVC 4) contained ten known MDCs.
210  While the active PVC samples contain high levels of TPP, DPP and EHDP, the abundance of these
211 chemicals was very low in the other active samples (Tab. S4). This suggests that other than the

212 known MDCs contribute to the adipogenesis induced by plastic chemicals.

213 Underlying mechanisms. PPARYy is a key regulator of adipogenesis (20), and many MDCs that
214 induce adipogenesis also activate PPARYy (717). Despite the common idea that PPARYy activation is
215 a main mechanism via which anthropogenic chemicals trigger adipogenesis, most of the adipogenic
216 plastic samples in fact do not activate this receptor (Fig. 3). Only in two cases (PVC 2, PS 2) does
217 a high PPARYy activity correspond to a strong induction of lipid droplet formation. Moreover, three
218 samples (PLA 1, LDPE 2, PVC 1) activated PPARYy but were inactive in the adipogenesis assay.
219 Thus, the adipogenic effects of the plastic extracts is not necessarily dependent on direct activation

220  of PPARy and other mechanisms must be involved.

221 GR is another important nuclear receptor that participates in adipogenesis, and various MDCs
222 activate GR (36). In particular, glucocorticoids are essential in inducing adipocyte differentiation
223 (Fig. S20). However, none of the plastic extracts activated GR rendering this an unlikely mechanism
224  of action in this case.

225 Elucidating the mechanism by which plastic chemicals induce adipogenesis is complex since we
226 are dealing with two black boxes, namely the complex chemical mixtures present in plastics and

227  the multitude of potential mechanism of actions involved in adipogenic responses in 3T3-L1 cells
10
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228 (79). In addition to PPARY and GR, (ant)agonists of multiple other nuclear receptors, such as the
229 retinoid x receptor a, estrogen receptor, androgen receptor, liver x receptor, thyroid receptor £,
230 have been demonstrated or are discussed to contribute to an adipogenic response (37). In the light
231 of the diversity of compounds we detected in plastics, it appears probable that these act via multiple
232 mechanisms that are in most cases PPARy and GR independent. Although more work needs to be
233 done to elucidate the underlying mechanisms, our results underline the importance of using
234 integrative methods, such as the adipogenesis assay to identify MDCs triggering cellular responses

235 rather than assessing (anta)agonism at selected nuclear receptors.

236  Limitations and future directions. To the best of our knowledge, this is the first study investigating
237  the adipogenic activity of chemicals extractable from plastic consumer products. Considering the
238 diversity of plastic products and their chemical composition, the sample set is certainly not
239 representative of all plastic chemicals, humans will be exposed to. While it is challenging to
240 comprehensively characterize the human exposure to plastic chemicals from all types of products,
241 given their ubiquity and diversity, a way forward is to prioritize polymer types that are likely to

242 contain MDCs, such as PVC and PUR.

243 Given that our aim was to investigate whether MDCs are present in plastic products, we used
244 methanol to extract the samples. This simulates a worst-case scenario. Thus, even though we
245 demonstrated that potent (mixtures of) MDCs are present in consumer products, it remains to be
246 investigated whether these will migrate under more realistic conditions into air, water or food, or
247 can be taken up dermally. Using the same samples as in the present study, we recently
248  demonstrated that a significant number of chemicals and in vitro toxicity, such as antiandrogenic
249 compounds, migrate into water (22). However, it remains unknown if this is also the case for the
250  present MDCs.

251 Moreover, we analyzed plastic packaging that contained foodstuff or personal care products
252 because we aimed at investigating final products. Since chemical migration is not a one-way street,
253  we cannot exclude that compounds from the contents migrated into the packaging. The detection

254 of compounds used in cosmetics in its packaging underlines this limitation. Such compounds may
11
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255 contribute to the observed adipogenic activity or PPARYy activation and future research should cover
256 unused final packaging.

257  The nontarget chemical analysis resulted in the tentative identification of several MDCs. However,
258 many compounds remain unidentified and there is some likelihood of false-positive identifications.
259  The challenge of a rather low identification success is well-known for environmental pollutants (38)
260 and can be addressed by building more comprehensive spectral databases. Recent efforts to build
261 specific databases for plastic chemicals are promising (713, 74) but must be complemented with
262 spectral information and non-intentionally added substances. Moreover, we show that known
263 MDCs only partially — if at all — contribute to the adipogenesis induced by plastic extracts. This
264 points towards the presence of unidentified MDCs in plastics. To identify the compounds that are
265 indeed causative for the observed responses, future research should apply effect-directed analysis.
266 Moreover, our results indicate that plastic chemicals may promote a development towards
267 unhealthy adipocytes. However, more evidence is needed to further support this hypothesis. For
268 instance, one needs to extend the adipogenesis assay to cover later stages of adipocyte
269  development and investigate biomarkers of inflammation and metabolic function (e.g., glucose
270 uptake, insulin sensitivity).

271 Taken together, we demonstrated that plastic consumer products contain potent (mixtures of)
272 MDCs inducing adipogenesis in vitro via mechanisms that are mostly not mediated via PPARy and
273 GR. Accordingly, plastic chemicals may contribute to an obesogenic environment considering our
274 constant contact with a broad range of plastic products. Given that the plastic products containing
275 MDCs also contained compounds triggering other toxicological endpoints (75), a shift towards

276 chemically less complex plastics represents a way forward to a non-toxic environment.

12
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277 Materials and Methods

278  Alist of used chemicals is provided in the supplementary material (Tab. S5).

279 Sample selection and plastic extraction. We used the same 34 plastic samples (Tab. 1) as in
280 Zimmermann et al. (15). The samples cover petroleum-based polymers with the highest market
281 share (polypropylene (PP) > low density polyethylene (LDPE) > high density polyethylene (HDPE)
282 > polyvinyl chloride (PVC) > polyurethane (PUR) > polyethylene terephthalate (PET) > polystyrene
283 (PS); 39), and polylactic acid (PLA) as a bio-based alternative. The samples include 21 products
284  with and 13 products without food contact. Further specifications on the sample selection, collection
285 and polymer identification are described in Zimmermann et al. (15). We extracted 3 g sample with
286 including three procedure blanks (PB 1-3) with methanol and concentrated the extracts to a final
287  volume of 200 uL using dimethyl sulfoxide as a keeper. To contextualize the bioassay results, we
288 use “plastic equivalents” in such that “1 mg plastic” corresponds to the chemicals extracted from 1
289 mg of plastic. Accordingly, 1 ul extract corresponds to 15 mg plastic. See supplementary text for

290 details.

291 Bioassays. We performed differentiation assays with murine 3T3-L1 adipocytes (Zenbio Inc., SP-
292 L1-F, lot 3T3L1062104) to examine the induction of adipogenesis as well as CALUX reporter gene
293 assays (BioDetection Systems B.V., Amsterdam, The Netherlands) to investigate the agonistic
294 activity at the human peroxisome proliferator-activated receptor y (40) and glucocorticoid receptor
295 (GR, 41). All experiments were conducted with negative controls, vehicle controls, positive controls,
296 and PB 1-3. Samples, controls, and blanks were diluted 1000-fold (adipogenesis assay) or 500-
297  fold (reporter gene assays) with medium, resulting in a maximum final solvent concentration of
298  0.1% or 0.2% (v/v), respectively. Each sample was analyzed in serial dilutions of 1:2 with four
299 replicates per concentration in at least three independent experiments per assay. Moreover, the
300 respective reference compound was included on every microtiter plate to control for potential

301 variations between plates, and the sample arrangement was randomized to exclude position
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302 effects. As negative and vehicle controls did not differ significantly, the results from both were
303 pooled. Further, there was no contamination during sample extraction and analysis since none of
304  the controls and blanks induced activity (Fig. S21 and S22). See supplementary text for details on

305 the cell culture conditions.

306 Adipogenesis assay. We performed the differentiation assay with 3T3-L1 cells in accordance with
307 a previously described method (42). In brief, an experiment consists of three days pre-
308 differentiation (one day seeding, two days allowing cells to enter the resting state) followed by an
309  8-d differentiation window (two days differentiation, six days maintenance). Subconfluent cells of
310 passage 10 were trypsinized and counted with a flow cytometer (NovoCyte, Acea Biosciences).
311 15,000 cells well'! were seeded in 200 L preadipocyte medium (PAM: DMEM-high supplemented
312  with 10% bovine calf serum and 1% penicillin/streptomycin) into 96-well black, clear bottom tissue
313 culture plates (655090, Greiner Bio-One) and incubated at 37 °C and 5% CO.. After 24 h, we
314 checked that the cells reached confluency, replaced the medium with 200 uL fresh PAM well!, and
315 cultured the cells for another 48 h to initiate growth arrest. We included on every plate a pre-
316 adipocyte control (undifferentiated cells) which was kept in PAM, while the rest of the cells were

317 differentiate as described below.

318 Optimization experiments. Given that a systematic analysis of dexamethasone (DEX) effects on
319 triglyceride accumulation and differentiation efficiency in 3T3-L1 cells was lacking, we conducted
320 optimization experiments to identify a suitable DEX concentration to initiate adipocyte differentiation
321 that results in the lowest baseline as well as the highest sensitivity and dynamic range when co-
322 exposed to the reference compound rosiglitazone. Moreover, we compared two methods to
323  quantify triglycerides based on Nile Red Staining. We determined the total NileRed fluorescence
324  well" and compared it to an automated imaging and analysis platform to determine whether the

325 latter improves the sensitivity and dynamic range for the screening of adipogenic activity.

326 Based on the results (Fig. S20) and in comparison with previous studies, we found that a rather

327  low optimal DEX concentration (6.25 nM) was sufficient to initiate adipocyte differentiation without
14
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328 increasing the assay’s baseline. Compared to the fluorescence readout well', an automated
329 imaging approach is more sensitive to assess proliferation, enhances the dynamic range of the
330 assay (Fig. S20) and provides more information because it enables single-cell analysis for a more
331 in-depth characterization of the adipocyte population (pre-adipocytes, adipocytes and mature
332 adipocytes). Accordingly, we analyzed the effects of the plastic extracts using 6.25 nM DEX during
333 the differentiation window and the automated imaging approach. See supplementary text for

334 details.

335 Dosing of samples. To initiate differentiation, we replaced the PAM medium with 200 pL
336 differentiation medium well" (DM: DMEM-high supplemented with 10% FBS, 1%
337 penicillin/streptomycin, 20 mM HEPES, 1 uyg mL" insulin, 0.5 mM 3-isobutyl-1-methylxanthine
338 (IBMX), and 6.25 nM DEX) containing 5 concentrations of samples serially diluted 1:2 (0.19-3 mg
339 plastic well'! equivalent to 0.94—-15 mg plastic mL") or rosiglitazone (1.17-300 nM). Following the
340  48-h differentiation, the medium was replaced with 200 uL adipocyte maintenance medium well”
341 (DM without IBMX and DEX) containing the respective controls, samples, or rosiglitazone and

342 changed the medium every other day during the 6d maintenance period.

343 Fixation and staining. After 11 d, cells were fixed with 2% paraformaldehyde and co-stained with
344 NileRed and NucBlue. Imaging was carried out on the Cytation 5 Cell Imaging Multimode reader
345 (BioTek). Three images per field (Brightfield, NucBlue and NileRed) and nine fields per well were

346 captured. See supplementary text for details.

347  Image analysis. Images were analyzed in the open-source software CellProfiler (43). A description
348 of the image analysis protocol and the CellProfiler pipelines are available in the supplementary
349 material. We quantified proliferation (nuclei count), number of lipid droplets (lipid droplet count),
350 total area occupied by lipid droplets (total area), and the total intensity of the NileRed staining within
351 the lipid droplets (total intensity) per image. We further quantified the total area occupied by lipid
352 (lipid droplet area), and the total intensity of NileRed staining in the lipid droplet area per cell.
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353  Analysis of the single-cell data was applied to quantify the numbers of adipocytes and mature
354  adipocytes per image. An adipocyte was defined as a cell containing at least one lipid droplet and
355 a mature adipocyte was defined as a cell containing a total lipid content equivalent to = 8 average

356  sized lipid droplets (1000 pixels).

357 Single-cell measurements of lipid droplet area, and NileRed staining were analyzed further to
358 explore how triglyceride accumulation was distributed within an adipocyte population. To control
359 for potential cross-plate differences in staining intensity within an experiment, the average
360 fluorescence intensity per adipocyte was normalized to the mean average fluorescence intensity
361 for an internal plate control (cells treated with 300 nM rosiglitazone). For an independent
362 experiment, single-cell data were grouped based on the treatment. The median lipid droplet area
363 and normalized average fluorescence intensities per cell were calculated for each experiment. An

364  example of the images and visualized output of the image analysis is shown in Fig. S2.

365 Reporter gene assays. We performed the CALUX reporter gene assays in 384-well plates and
366 used imaging to count nuclei per well to normalize the reporter gene response and assess
367 cytotoxicity. Rosiglitazone was the reference compound for PPARy and DEX for GR (Fig. S23).

368 See supplementary text for the detailed protocol.

369 Analysis of bioassay data. We used GraphPad Prism 9 (GraphPad Software, San Diego, CA) for
370 non-linear regressions and statistical analysis, and interpolated plastic equivalents inducing 10 or
371  20% effect (effect concentration, EC10 or EC20) from the respective dose-response curves. The limit
372 of detection (LOD) of each endpoint and experiment was calculated as three times the standard

373 deviation (SD) of pooled controls. See supplementary text for details.

374  Nontarget chemical analysis. We analyzed all samples, except PLA 3, using ultra-high
375 performance liquid chromatography coupled to a quadrupole time of flight spectrometer (LC-QTOF-
376  MS/MS) with an Acquity UPLC Waters liquid chromatography system coupled to a SYNAPT G2-S

377 mass spectrometer (both Waters Norge, Oslo, Norway). The analytical method has been described
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378 inZimmermann et al. (22, 44) and a brief description as well as information about the data analysis

379 and compound identification can be found in the supplementary text.

380 Comparison with chemicals known to induce adipogenesis. We built a list of 120 know
381 adipogenic chemicals (Tab. S3) by searching Web of Science (Core Collection) for studies
382 investigating chemicals in the adipogenesis assay and complemented the search with chemicals
383 reviewed by Amato et al. (16). We cross-referenced the list with the tentatively identified
384  compounds in the plastic samples to determine whether some of these compounds are MDCs

385 (Tab. 1). See supplementary text for details.
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Fig. 1. Effect of rosiglitazone on (A) the adipocyte population and (B) the lipid droplet count
(pooled data from four experiments). Effect of plastic extracts on (C) the adipocyte
population and (D) the lipid droplet count in the highest noncytotoxic concentration. The
highest noncytotoxic concentration (HNC) was 3 mg plastics well"' except for PP 4 (1.5 mg plastic
well) as well as PUR 2 and PUR 3 (0.75 mg plastic well""). VC = vehicle control, LOD = limit of the
detection, Rosi Max = maximal response of rosiglitazone.
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694 Fig. 2. (A) Size distribution of adipocyte population and (B) accumulation of triglyceride per
695 adipocyte in cells exposed to rosiglitazone (left) or the highest noncytotoxic concentration
696 of the eleven active plastic extracts (right). Single-cell data from one experiment. Intensity data
697 is normalized on the mean of the highest rosiglitazone concentration (300 nM). VC = vehicle control.
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699 Fig. 3. (A) PPARy activity induced by plastic extracts at the highest noncytotoxic
700 concentration and (B) correlation of the EC10 of the PPARYy activity and lipid droplet count.
701  The highest noncytotoxic concentration (HCN) was 1.5 mg plastic well"" except for PP 4 (0.19 mg
702 plastic well'), PS 2 and PP 3 (0.38 mg plastic well'") as well as PLA 1 and PVC 2 (0.75 mg plastic
703 well").
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704  Table 1. Plastic products analyzed in this study, results of the nontarget chemical analysis
705 and the tentatively identified metabolic disrupting chemicals (MDCs).

Sample Plastic product LC-QTOF-MS/MS Tentatively
(number of features) identified MDCs
in with ID score % of
sample MS2 240 MS2

HDPE 1  refillable drinking bottle? 779 203 38 18.7 TPP

HDPE 2  yogurt drinking bottle? 107 34 7 20.6

HDPE 3  bin liner 614 153 30 196 TPP

HDPE 4  shower gel bottle 164 50 16 32.0 EHDP

LDPE 1 lemon juice bottle? 241 66 20 30.3 EHDP

LDPE 2  plastic wrap® 1833 543 98 18.0 TPP

LDPE 3  freezer bag?® 1603 416 62 149 TPP

LDPE 4  hair conditioner bottle 1702 544 89 16.4 allethrin, TPP

PS 1 yogurt cup? 447 96 12 125 TPP

PS 2 fruit tray? 1122 293 44 15.0 DPP, TPP

PS 3 vegetable tray® 308 63 11 17.5

PS 4 plastic cup? 119 30 7 23.3

PP 1 refillable drinking bottle? 1365 396 87 22.0 TPP

PP 2 yogurt cup? 1870 549 93 16.9 TPP

PP 3 gummy candy packaging® 3159 910 117 129 TPP

PP 4 handkerchief packaging 1798 519 85 164 TPP

PP 5 shampoo bottle 268 101 29 28.7

PET 1 soft drink bottle? 148 55 18 32.7

PET 2 yogurt cup? 179 51 12 23.5

PET 3 oven bag?® 647 159 30 18.9

PET 4 vegetable tray?® 695 182 20 11.0

PET 5 shampoo bottle 375 89 11 12.4

PVC 1 plastic wrap? 3655 1374 118 8.6

PVC 2 place mat 2426 819 145 17.7 DPP, TPP

PVC 3 pond liner 1270 450 91 20.2 DINP, TPP

PVC 4 floor covering 2361 868 145 16.7 BBP, BPDP, DBP,

DEHP, DINP,
DPP, EHDP,
TBEP, TOCP, TPP

PUR 1 scouring pad 5619 1773 216 12.2 EHDP, TPP

PUR 2 kids bath sponge 4521 1182 151 12.8

PUR 3 acoustic foam 6242 2117 224 10.6 EHDP, TPP

PUR 4 shower slippers 1035 300 78 26.0 EHDP, TPP

PLA 1 yogurt cup?® 2421 772 52 6.7 TPP

PLA 2 vegetable tray? 1983 672 40 6.0

PLA 3 coffee cup lid® N/A N/A N/A N/A

PLA 4 coffee cup lid? 2575 857 73 8.5

706 @ = food contact material, BBP = benzyl butyl phthalate, BPDP = tert-butylphenyl diphenyl
707 phosphate, DBP = dibutyl phthalate, DEHP = bis(2-ethylhexyl) phthalate, DINP = di-iso-nonyl
708 phthalate, DPP = diphenyl phosphate, EHDP = 2-ethylhexyl diphenyl phosphate, N/A = not
709  analyzed, TBEP = tris(2 butoxyethyl) phosphate, TOCP = tri-o-cresyl phosphate, TPP = triphenyl
710 phosphate
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