

# Adipogenic activity of chemicals used in plastic consumer products

Johannes Völker<sup>1\*</sup>, Felicity Ashcroft<sup>1</sup>, Åsa Vedøy<sup>1</sup>, Lisa Zimmermann<sup>2</sup> and Martin Wagner<sup>1</sup>

<sup>1</sup> Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

<sup>2</sup> Department of Aquatic Ecotoxicology, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany

\*Johannes Völker

**Email:** [johannes.voelker@ntnu.no](mailto:johannes.voelker@ntnu.no)

**This PDF file includes:**

Main Text

Figures 1 to 3

Table 1

## 1 **Abstract**

2 Bisphenols and phthalates, chemicals frequently used in plastic products, promote obesity in cell  
3 and animal models. However, these well-known metabolism disrupting chemicals (MDCs)  
4 represent only a minute fraction of all compounds found in plastics. To gain a comprehensive  
5 understanding of plastics as a source of exposure to MDCs, we characterized all chemicals present  
6 in 34 everyday products using nontarget high-resolution mass spectrometry and analyzed their joint  
7 adipogenic activities by high-content imaging. We detected 55,300 chemical features and  
8 tentatively identified 629 unique compounds, including 11 known MDCs. Importantly, chemicals  
9 that induced proliferation, growth, and triglyceride accumulation in 3T3-L1 adipocytes were found  
10 in one third of the products. Since the majority did not target peroxisome proliferator-activated  
11 receptor  $\gamma$ , the effects are likely to be caused by unknown MDCs. Our study demonstrates that  
12 daily-use plastics contain potent mixtures of MDCs and can, therefore, be a relevant yet  
13 underestimated environmental factor contributing to obesity.

## 14 **Teaser**

15 Plastics contain a potent mixture of chemicals promoting adipogenesis, a key process in developing  
16 obesity.

## 17 Introduction

18 Obesity is a global pandemic that generates a considerable burden of disease, in particular  
19 considering comorbidities such as type 2 diabetes, cardiovascular diseases, hypertension, non-  
20 alcoholic fatty liver, stroke, and certain types of cancer (1). Worldwide, the number of obese people  
21 has nearly tripled since 1975, and more than 41 million children under the age of five were  
22 overweight or obese in 2016 (2). This is problematic since a high body mass index (BMI) is one of  
23 the top risk factors for deaths (3), and overweight in childhood or adolescence is a good predictor  
24 of adult obesity (4). Accordingly, a high BMI contributed to four million deaths globally in 2015 with  
25 cardiovascular diseases as leading cause of death followed by diabetes, chronic kidney diseases  
26 and cancer (5).

27 This public health problem has mainly been attributed to genetic background and changes in  
28 lifestyle, such as diet, exercise, sleep deficiency, and aging. However, epidemiological evidence  
29 suggests that these factors insufficiently explain the magnitude and speed of the obesity pandemic  
30 (6). For instance, even when normalizing for caloric intake and exercise, the BMI of US adults  
31 increased by  $2.3 \text{ kg m}^{-2}$  in 2006 compared to 1998 (6). Consequently, identifying and understanding  
32 other environmental factors than lifestyle is crucial to manage obesity (7). Given that the endocrine  
33 system controls appetite, satiety, metabolism, and weight, exposure to endocrine disrupting  
34 chemicals is one such factor (8). In addition to prominent endocrine disruptors, such as the biocide  
35 tributyltin and the pesticide dichlorodiphenyltrichloroethane (DDT), plastic chemicals such as  
36 bisphenols or phthalates disrupt metabolic functions and promote obesity in cell and animal  
37 experiments (8). This is further supported by epidemiological studies that have linked weight gain  
38 in humans to bisphenol A (BPA) exposure (9), while contradicting outcomes have been reported  
39 regarding a link to phthalate exposure (10-12).

40 Considering the chemical complexity of plastic consumer products, bisphenols and phthalates  
41 represent only the tip of the iceberg. A final article often consists of one or more polymers, multiple  
42 intentionally added substances, such as fillers or additives, as well as non-intentionally added

43 substances, for instance residues from the manufacturing (13). Based on regulatory inventories,  
44 over 4000 substances are associated with plastic food packaging alone (13) and, overall, 10,547  
45 chemicals are known to be used in plastics (14). Moreover, empirical data suggests that plastics  
46 contain more chemicals than currently known. Using nontarget chemical analysis, we detected  
47 hundreds to thousands of chemicals in plastic consumer products, most of these remaining  
48 unknown (15). Importantly, the totality of plastic chemicals in a product was toxic *in vitro*, inducing  
49 baseline toxicity, oxidative stress, cytotoxicity, and endocrine effects.

50 Building on these results and the fact that bisphenols and phthalates are known metabolism  
51 disrupting chemicals (MDCs; 8, 16, 17), we hypothesized that MDCs are present in plastic  
52 consumer products and that metabolic disruption might represent a common but understudied  
53 toxicological property of plastic chemicals. To explore this, we used the same plastic consumer  
54 products we have extensively characterized previously (15), and investigated the extracts'  
55 adipogenic activity in differentiation experiments with murine 3T3-L1 cells. Following exposure to  
56 MDCs, 3T3-L1 preadipocyte differentiate into adipocytes, accumulate triglycerides until they finally  
57 resemble mature white fat cells (18). The bioassay targets the induction of adipogenesis at the  
58 cellular level and represents a well-established *in vitro* model for metabolic disruption *in vivo* (19).  
59 We performed optimization experiments and applied high-content fluorescence microscopy  
60 combined with an automated image processing to increase the sensitivity and throughput. We also  
61 investigated the underlying mechanisms of the adipogenic response and tested whether the  
62 extracted plastic chemicals activate the human peroxisome proliferator-activated receptor gamma  
63 (PPAR $\gamma$ ) or glucocorticoid receptor (GR). We selected PPAR $\gamma$  as a key regulator of adipogenesis  
64 (20), and included GR because glucocorticoids are important regulators of lipid metabolism (21).  
65 Accordingly, an excess of agonists for these receptors is associated with obesogenic effects in  
66 animal models and humans (e.g., weight gain; 19). Moreover, we performed nontarget, ultra-high  
67 performance liquid chromatography coupled to a quadrupole of flight spectrometer (LC-QTOF-  
68 MS/MS) to characterize the chemicals present in plastics and compare these with a list of  
69 compounds known to induce adipogenesis.

## 70 Results

71 **Adipogenic activity of plastic consumer products.** To exclude cytotoxic effects masking the  
72 adipogenic response, we used nuclei count data to assess cytotoxicity. Most extracts were not  
73 cytotoxic up to the maximum concentration tested (3 mg plastic well<sup>-1</sup>), except for PP 4, PUR 3 and  
74 PUR 4. The latter two were the most cytotoxic samples with the highest noncytotoxic concentration  
75 (HNC) of 0.75 mg plastic well<sup>-1</sup>. The HNC for PP 4 was 1.5 mg plastic well<sup>-1</sup> (Fig. S1). To assess  
76 the induction of adipogenesis by the plastic extracts, we present the numbers of adipocytes and  
77 mature adipocytes in the cell populations and the total lipid droplet count per image for the HNC of  
78 each sample. Data were compared to both vehicle and rosiglitazone–treated controls (Fig. 1).  
79 Further specifications on the endpoints of the automated image processing, dose-response  
80 relationships and example images can be found in the supplementary material (Fig. S2–S17).  
81 The extracts of eleven plastic consumer products induced adipogenesis with four samples having  
82 an equal or stronger effect than the maximal response of cells exposed to rosiglitazone (PVC 2 and  
83 4, PP 4, PUR 3). Similarly to rosiglitazone (Fig. 1A), the proliferative effects induced by plastic  
84 extracts was driven by an increase in the numbers of adipocytes and mature adipocytes, while the  
85 number of preadipocytes remained stable (Fig. 1C). Regarding the polymer type, the most potent  
86 extracts were PUR and PVC, with seven out of eight samples inducing adipogenesis, whereas for  
87 PP, PS and LDPE only specific samples induced adipogenic responses. In contrast, PET, HDPE,  
88 and PLA samples were consistently inactive. The same pattern is reflected by the lipid droplet count  
89 data (Fig. 1D). Here, however, some additional samples induced a slight increase in lipid droplets  
90 (LDPE 1, PS 1, PP 2).  
91 Given the propensity of environmental pollutants to promote unhealthy adipogenesis, we used the  
92 single-cell data to explore a size shift towards hypertrophy and increased accumulation of  
93 triglycerides in comparison to rosiglitazone (Fig. 2). We here present the results of one out of four  
94 experiments due to the large size of the dataset (results of the other experiments can be found in  
95 Fig. S18). Exposure to rosiglitazone dose-dependently increased the lipid content of adipocytes

96 with a median lipid droplet area of 137 pixels cell<sup>-1</sup> in the lowest concentration to 290 pixels cell<sup>-1</sup> in  
97 the highest concentration (Fig. 2A). The average fluorescence intensity of the lipid droplets  
98 remained stable (Fig. 2B), thus the adipocytes increased in size in response to rosiglitazone but  
99 triglyceride accumulation within the droplets remained constant. Compared with the maximal  
100 response to rosiglitazone, adipocytes exposed to many of the active plastic extracts had a higher  
101 lipid content, resulting both from an increase in adipocyte size and from the amount of triglycerides  
102 contained within the lipid droplets. The lipid droplet area per adipocyte was greater in nine out of  
103 the eleven active samples with a median increase of 21.6–114% (PS 2–LDPE 4). In line with that,  
104 the average fluorescence intensity was higher in ten out of the eleven active samples with a median  
105 increase of 25.1–60.4% (PS 2–PVC 4). These effects are consistent over all experiments, except  
106 for PVC 3 (Fig. S18).

107 **Reporter gene assays.** We observed a higher cytotoxicity of the extracts on the U2OS cells  
108 compared to the 3T3-L1 cells with five samples being cytotoxic. The most cytotoxic sample was  
109 PP 4 with a HNC of 0.19 mg plastic well<sup>-1</sup>, followed by PS 2, PP 3 and PLA 1 as well as PVC 2 with  
110 a HNC of 0.38 and 0.75 mg plastic well<sup>-1</sup>, respectively (Tab. S1).

111 None of the samples activated GR (Fig. S19) and five extracts activated PPAR $\gamma$  (Fig. 3A). PLA1  
112 was the most potent sample with a median receptor activity of 34.7%, followed by PS 2 (24.4%),  
113 PVC 2 (10.3%), LDPE 2 (8.4%) and PVC 1 (7.3%). Accordingly, the PPAR $\gamma$  activity of plastic  
114 chemicals is a poor predictor of their adipogenic activity (Fig. 3B), except for PVC 2 and PS 2 which  
115 induced both PPAR $\gamma$  and adipogenesis at similar effect concentrations. Moreover, three out of the  
116 five samples activating PPAR $\gamma$  did not induce adipogenesis in 3T3-L1 cells (PLA 1, LDPE 2,  
117 PVC 1).

118 **Chemicals tentatively identified in plastics.** Using nontarget GC-QTOF-MS/MS, we previously  
119 identified 260 unique chemicals in extracts of the same plastic products (15). This corresponds to  
120 231 tentatively identified chemicals with 227 unique PubChem CIDs in the samples used in this  
121 study (Tab. S2). In the nontarget LC-QTOF-MS/MS analysis, we detected in total 55,300 features  
122 (i.e., unidentified chemicals) across all samples that were only present in samples or had a >10-

123 fold higher abundance compared to the blanks. Here, the number of features in individual samples  
124 ranged from 107 (HDPE 2) to 6242 (PUR 3, Tab. 1). In total, 5500 features had spectral MS/MS  
125 data we could use for compound identification, out of which we detected between 30 (PS 4) and  
126 2117 features (PUR 3) per sample.

127 For tentatively identifying the plastic chemicals, we used the MS/MS data with the MassBank library  
128 (14,788 compounds) and three *in silico* fragmented databases of chemicals potentially used in  
129 plastics or (pre-)registered for authorization on the European market (in total 75,510 compounds;  
130 22). These queries resulted in a successful identification of 2364 features across all samples,  
131 corresponding to 629 unique chemicals (SM Excel Tab. S1). Accordingly, between 6 (PLA 2) and  
132 33 % (PET 1) of the features in each sample were tentatively identified. For the 25 compounds with  
133 the highest identification scores ( $\geq 50$ ) and abundance in the samples, we confirmed the plausibility  
134 of the identification by checking whether the compounds are known to be used in plastics (SM Excel  
135 Tab. S2). We found that 14 out of 25 compounds are used in plastics, including five plasticizers  
136 (e.g., acetyl tributyl citrate), four flame retardants (e.g., tris(2-butoxyethyl) phosphate, tris(3-  
137 methylphenyl) phosphate) and multiple processing aids, such as the lubricant 2-nonyl-N-(2-  
138 nonylphenyl) aniline, the hardener 4-methylphthalic anhydride and the slip additive (Z)-docos-13-  
139 enamide. We also identified compounds that likely migrated from the packed content into the  
140 packaging (two octadecanamides used in cosmetics) and one compound that was implausible (the  
141 veterinary drug febarbamate).

142 When cross-referencing the chemicals tentatively identified in plastics and a list of known MDCs  
143 inducing adipogenesis in 3T3-L1 cells (Tab. S3), we found eleven compounds known to induce  
144 adipogenesis *in vitro*. The MDCs present in our samples include four phthalates and six  
145 organophosphates (Tab. 1). Benzyl butyl phthalate (BBP), di-butyl phthalate (DBP) and di(2-  
146 ethylhexyl) phthalate (DEHP) were present in PVC 4. Di-iso-nonyl phthalate (DINP) was detected  
147 in PVC 3 and 4. Diphenyl phosphate (DPP), 2-ethylhexyl diphenyl phosphate (EHDP) and triphenyl  
148 phosphate (TPP) were detected in multiple samples. When using raw abundance as a proxy for  
149 concentration, high levels of TPP, DPP and EHDP (the MDCs present in at least three samples)

150 were detected in two to three active PVC samples (Tab. S4). In contrast, the other active samples  
151 contain very low levels of these chemicals (PS 2, PP 4, PUR 2, PUR 3). Interestingly, we did not  
152 detect organotin compounds or bisphenols (SM Excel Table S1) despite these are known MDCs  
153 and thought of as being common in PVC and other plastics (16, 17).

154 **Discussion**

155 **Adipogenic activity of plastic consumer products.** We hypothesized that plastic products  
156 contain MDCs based on the fact that a small set of compounds used in plastics is known to induce  
157 adipogenesis *in vitro* and *in vivo* (8, 16, 17). However, the current focus on few, individual plastic  
158 chemicals neglects the chemical complexity of plastic materials given that we know that thousands  
159 of compounds are either used in plastics or non-intentionally present (13, 14). Thus, we decided to  
160 characterize the adipogenic activity of all compounds extractable from plastic consumer products.  
161 Eleven out of 34 products contain chemicals that induce adipogenesis and are, thus, MDCs *in vitro*  
162 (Fig. 1). The chemicals extracted from some plastics are not only quite potent but also trigger effects  
163 that are similar to or higher than those induced by the reference compound rosiglitazone (PVC 2  
164 and 4, PP 4). Supramaximal efficacies have previously been reported for single compounds, such  
165 as dibutyl phthalate and tert-butyl phenyl diphenyl phosphate (23) but only at concentrations  
166  $\geq 10 \mu\text{M}$ , illustrating the potency of the extracted mixtures.  
167 Products with multiple applications, including two FCMs (PS 2, PP 3) and nine non-FCMs, contain  
168 adipogenic chemicals. While chemicals migrating from packaging into food represent an obvious  
169 source of human exposure (24), compounds released from non-FCMs can also contribute via  
170 dermal uptake (e.g., PUR 4 shower slippers) or inhalation. For instance, dust contains chemical  
171 mixtures that induce adipogenesis (23). Here, we show that plastic flooring (e.g., PVC 4) contains  
172 MDCs that may contribute to human exposure if they partition into dust. Given the potency of the  
173 extracted mixtures and considering our close and constant contact with plastics, it appears

174 plausible that plastic chemicals contribute to an obesogenic environment and, thus, the obesity  
175 pandemic.

176 The chemicals present in PVC and PUR products most consistently induce potent adipogenic  
177 responses, while compounds extracted from PET, HDPE, and PLA products were inactive. Apart  
178 from the PLA samples, this is in line with our previous findings for other toxicity endpoints (15). This  
179 suggests that PVC and PUR are more likely to contain MDCs compared to other polymers.  
180 However, the chemicals extracted from some PP, PS, and LDPE products also induce  
181 adipogenesis (Fig. 1). This supports the idea that caution is needed when trying to generalize the  
182 occurrence of toxic chemicals based on polymer type (15).

183 Unhealthy or dysfunctional adipocytes are part of the obesity phenotype. They are larger in size,  
184 have an impaired glucose uptake and insulin signaling, an elevated inflammatory response and  
185 decreased respiration (25). While we did not investigate the latter characteristics, adipocytes  
186 exposed to plastic chemicals were larger and contained more triglycerides compared to those  
187 treated with rosiglitazone (Fig. 2). Since rosiglitazone promotes the development of healthy white  
188 adipocytes (26, 27), these results suggest that exposure to plastic chemicals could shift adipocytes  
189 towards an unhealthy phenotype. Similar trends have been reported for a range of MDCs, including  
190 BPA (28), organotin compounds (29, 30) and DEHP (31), which we detected in PVC 4 (Tab. 1).  
191 Hence, it will be interesting to investigate whether plastic chemicals also trigger the other hallmarks  
192 of unhealthy, dysfunctional adipocytes.

193 **Plastic chemicals and adipogenesis.** Using nontarget high resolution mass spectrometry, we  
194 show that plastic products contain hundreds to thousands of extractable chemicals; few of those  
195 identifiable using spectral libraries and *in silico* tools. This is in line with our previous research (15,  
196 22) and points towards the presence of unknown chemicals in plastics (e.g., non-intentionally  
197 added substances). Accordingly, the relatively low identification performance in our study is a result  
198 of the limited coverage of chemical databases. These notwithstanding, we tentatively  
199 identified a range of known plastic chemicals providing confidence in the accuracy of the  
200 identifications.

201 Plastic products contain known MDCs, including four phthalates (only in PVC 3 and 4) and six  
202 organophosphates (Tab. 1). Biomonitoring data suggests that humans are commonly exposed to  
203 some of these compounds (32-34). As an example, the phthalates DBP and DEHP as well as the  
204 flame retardants TPP and TBEP we found in plastics were recently detected in matched maternal  
205 and cord blood samples (35). Accordingly, plastic products can be one source of exposure to these  
206 MDCs.

207 Known MDCs may explain the adipogenic response to chemicals extracted from some but not all  
208 plastic samples. Most active samples contain at least one MDC with TPP, DPP and EHDP being  
209 present in multiple samples. Interestingly, the floor covering (PVC 4) contained ten known MDCs.  
210 While the active PVC samples contain high levels of TPP, DPP and EHDP, the abundance of these  
211 chemicals was very low in the other active samples (Tab. S4). This suggests that other than the  
212 known MDCs contribute to the adipogenesis induced by plastic chemicals.

213 **Underlying mechanisms.** PPAR $\gamma$  is a key regulator of adipogenesis (20), and many MDCs that  
214 induce adipogenesis also activate PPAR $\gamma$  (17). Despite the common idea that PPAR $\gamma$  activation is  
215 a main mechanism via which anthropogenic chemicals trigger adipogenesis, most of the adipogenic  
216 plastic samples in fact do not activate this receptor (Fig. 3). Only in two cases (PVC 2, PS 2) does  
217 a high PPAR $\gamma$  activity correspond to a strong induction of lipid droplet formation. Moreover, three  
218 samples (PLA 1, LDPE 2, PVC 1) activated PPAR $\gamma$  but were inactive in the adipogenesis assay.  
219 Thus, the adipogenic effects of the plastic extracts is not necessarily dependent on direct activation  
220 of PPAR $\gamma$  and other mechanisms must be involved.

221 GR is another important nuclear receptor that participates in adipogenesis, and various MDCs  
222 activate GR (36). In particular, glucocorticoids are essential in inducing adipocyte differentiation  
223 (Fig. S20). However, none of the plastic extracts activated GR rendering this an unlikely mechanism  
224 of action in this case.

225 Elucidating the mechanism by which plastic chemicals induce adipogenesis is complex since we  
226 are dealing with two black boxes, namely the complex chemical mixtures present in plastics and  
227 the multitude of potential mechanism of actions involved in adipogenic responses in 3T3-L1 cells

228 (19). In addition to PPAR $\gamma$  and GR, (ant)agonists of multiple other nuclear receptors, such as the  
229 retinoid X receptor  $\alpha$ , estrogen receptor, androgen receptor, liver X receptor, thyroid receptor  $\beta$ ,  
230 have been demonstrated or are discussed to contribute to an adipogenic response (37). In the light  
231 of the diversity of compounds we detected in plastics, it appears probable that these act via multiple  
232 mechanisms that are in most cases PPAR $\gamma$  and GR independent. Although more work needs to be  
233 done to elucidate the underlying mechanisms, our results underline the importance of using  
234 integrative methods, such as the adipogenesis assay to identify MDCs triggering cellular responses  
235 rather than assessing (anta)agonism at selected nuclear receptors.

236 **Limitations and future directions.** To the best of our knowledge, this is the first study investigating  
237 the adipogenic activity of chemicals extractable from plastic consumer products. Considering the  
238 diversity of plastic products and their chemical composition, the sample set is certainly not  
239 representative of all plastic chemicals, humans will be exposed to. While it is challenging to  
240 comprehensively characterize the human exposure to plastic chemicals from all types of products,  
241 given their ubiquity and diversity, a way forward is to prioritize polymer types that are likely to  
242 contain MDCs, such as PVC and PUR.

243 Given that our aim was to investigate whether MDCs are present in plastic products, we used  
244 methanol to extract the samples. This simulates a worst-case scenario. Thus, even though we  
245 demonstrated that potent (mixtures of) MDCs are present in consumer products, it remains to be  
246 investigated whether these will migrate under more realistic conditions into air, water or food, or  
247 can be taken up dermally. Using the same samples as in the present study, we recently  
248 demonstrated that a significant number of chemicals and *in vitro* toxicity, such as antiandrogenic  
249 compounds, migrate into water (22). However, it remains unknown if this is also the case for the  
250 present MDCs.

251 Moreover, we analyzed plastic packaging that contained foodstuff or personal care products  
252 because we aimed at investigating final products. Since chemical migration is not a one-way street,  
253 we cannot exclude that compounds from the contents migrated into the packaging. The detection  
254 of compounds used in cosmetics in its packaging underlines this limitation. Such compounds may

255 contribute to the observed adipogenic activity or PPAR $\gamma$  activation and future research should cover  
256 unused final packaging.

257 The nontarget chemical analysis resulted in the tentative identification of several MDCs. However,  
258 many compounds remain unidentified and there is some likelihood of false-positive identifications.

259 The challenge of a rather low identification success is well-known for environmental pollutants (38)  
260 and can be addressed by building more comprehensive spectral databases. Recent efforts to build  
261 specific databases for plastic chemicals are promising (13, 14) but must be complemented with  
262 spectral information and non-intentionally added substances. Moreover, we show that known  
263 MDCs only partially – if at all – contribute to the adipogenesis induced by plastic extracts. This  
264 points towards the presence of unidentified MDCs in plastics. To identify the compounds that are  
265 indeed causative for the observed responses, future research should apply effect-directed analysis.  
266 Moreover, our results indicate that plastic chemicals may promote a development towards  
267 unhealthy adipocytes. However, more evidence is needed to further support this hypothesis. For  
268 instance, one needs to extend the adipogenesis assay to cover later stages of adipocyte  
269 development and investigate biomarkers of inflammation and metabolic function (e.g., glucose  
270 uptake, insulin sensitivity).

271 Taken together, we demonstrated that plastic consumer products contain potent (mixtures of)  
272 MDCs inducing adipogenesis *in vitro* via mechanisms that are mostly not mediated via PPAR $\gamma$  and  
273 GR. Accordingly, plastic chemicals may contribute to an obesogenic environment considering our  
274 constant contact with a broad range of plastic products. Given that the plastic products containing  
275 MDCs also contained compounds triggering other toxicological endpoints (15), a shift towards  
276 chemically less complex plastics represents a way forward to a non-toxic environment.

## 277 Materials and Methods

278 A list of used chemicals is provided in the supplementary material (Tab. S5).

279 **Sample selection and plastic extraction.** We used the same 34 plastic samples (Tab. 1) as in  
280 Zimmermann *et al.* (15). The samples cover petroleum-based polymers with the highest market  
281 share (polypropylene (PP) > low density polyethylene (LDPE) > high density polyethylene (HDPE)  
282 > polyvinyl chloride (PVC) > polyurethane (PUR) > polyethylene terephthalate (PET) > polystyrene  
283 (PS); 39), and polylactic acid (PLA) as a bio-based alternative. The samples include 21 products  
284 with and 13 products without food contact. Further specifications on the sample selection, collection  
285 and polymer identification are described in Zimmermann *et al.* (15). We extracted 3 g sample with  
286 including three procedure blanks (PB 1-3) with methanol and concentrated the extracts to a final  
287 volume of 200  $\mu$ L using dimethyl sulfoxide as a keeper. To contextualize the bioassay results, we  
288 use “plastic equivalents” in such that “1 mg plastic” corresponds to the chemicals extracted from 1  
289 mg of plastic. Accordingly, 1  $\mu$ l extract corresponds to 15 mg plastic. See supplementary text for  
290 details.

291 **Bioassays.** We performed differentiation assays with murine 3T3-L1 adipocytes (Zenbio Inc., SP-  
292 L1-F, lot 3T3L1062104) to examine the induction of adipogenesis as well as CALUX reporter gene  
293 assays (BioDetection Systems B.V., Amsterdam, The Netherlands) to investigate the agonistic  
294 activity at the human peroxisome proliferator-activated receptor  $\gamma$  (40) and glucocorticoid receptor  
295 (GR, 41). All experiments were conducted with negative controls, vehicle controls, positive controls,  
296 and PB 1–3. Samples, controls, and blanks were diluted 1000-fold (adipogenesis assay) or 500-  
297 fold (reporter gene assays) with medium, resulting in a maximum final solvent concentration of  
298 0.1% or 0.2% (v/v), respectively. Each sample was analyzed in serial dilutions of 1:2 with four  
299 replicates per concentration in at least three independent experiments per assay. Moreover, the  
300 respective reference compound was included on every microtiter plate to control for potential  
301 variations between plates, and the sample arrangement was randomized to exclude position

302 effects. As negative and vehicle controls did not differ significantly, the results from both were  
303 pooled. Further, there was no contamination during sample extraction and analysis since none of  
304 the controls and blanks induced activity (Fig. S21 and S22). See supplementary text for details on  
305 the cell culture conditions.

306 **Adipogenesis assay.** We performed the differentiation assay with 3T3-L1 cells in accordance with  
307 a previously described method (42). In brief, an experiment consists of three days pre-  
308 differentiation (one day seeding, two days allowing cells to enter the resting state) followed by an  
309 8-d differentiation window (two days differentiation, six days maintenance). Subconfluent cells of  
310 passage 10 were trypsinized and counted with a flow cytometer (NovoCyte, Acea Biosciences).  
311 15,000 cells well<sup>-1</sup> were seeded in 200 µL preadipocyte medium (PAM: DMEM-high supplemented  
312 with 10% bovine calf serum and 1% penicillin/streptomycin) into 96-well black, clear bottom tissue  
313 culture plates (655090, Greiner Bio-One) and incubated at 37 °C and 5% CO<sub>2</sub>. After 24 h, we  
314 checked that the cells reached confluence, replaced the medium with 200 µL fresh PAM well<sup>-1</sup>, and  
315 cultured the cells for another 48 h to initiate growth arrest. We included on every plate a pre-  
316 adipocyte control (undifferentiated cells) which was kept in PAM, while the rest of the cells were  
317 differentiate as described below.

318 **Optimization experiments.** Given that a systematic analysis of dexamethasone (DEX) effects on  
319 triglyceride accumulation and differentiation efficiency in 3T3-L1 cells was lacking, we conducted  
320 optimization experiments to identify a suitable DEX concentration to initiate adipocyte differentiation  
321 that results in the lowest baseline as well as the highest sensitivity and dynamic range when co-  
322 exposed to the reference compound rosiglitazone. Moreover, we compared two methods to  
323 quantify triglycerides based on Nile Red Staining. We determined the total NileRed fluorescence  
324 well<sup>-1</sup> and compared it to an automated imaging and analysis platform to determine whether the  
325 latter improves the sensitivity and dynamic range for the screening of adipogenic activity.

326 Based on the results (Fig. S20) and in comparison with previous studies, we found that a rather  
327 low optimal DEX concentration (6.25 nM) was sufficient to initiate adipocyte differentiation without

328 increasing the assay's baseline. Compared to the fluorescence readout well<sup>-1</sup>, an automated  
329 imaging approach is more sensitive to assess proliferation, enhances the dynamic range of the  
330 assay (Fig. S20) and provides more information because it enables single-cell analysis for a more  
331 in-depth characterization of the adipocyte population (pre-adipocytes, adipocytes and mature  
332 adipocytes). Accordingly, we analyzed the effects of the plastic extracts using 6.25 nM DEX during  
333 the differentiation window and the automated imaging approach. See supplementary text for  
334 details.

335 **Dosing of samples.** To initiate differentiation, we replaced the PAM medium with 200  $\mu$ L  
336 differentiation medium well<sup>-1</sup> (DM: DMEM-high supplemented with 10% FBS, 1%  
337 penicillin/streptomycin, 20 mM HEPES, 1  $\mu$ g mL<sup>-1</sup> insulin, 0.5 mM 3-isobutyl-1-methylxanthine  
338 (IBMX), and 6.25 nM DEX) containing 5 concentrations of samples serially diluted 1:2 (0.19–3 mg  
339 plastic well<sup>-1</sup> equivalent to 0.94–15 mg plastic mL<sup>-1</sup>) or rosiglitazone (1.17–300 nM). Following the  
340 48-h differentiation, the medium was replaced with 200  $\mu$ L adipocyte maintenance medium well<sup>-1</sup>  
341 (DM without IBMX and DEX) containing the respective controls, samples, or rosiglitazone and  
342 changed the medium every other day during the 6d maintenance period.

343 **Fixation and staining.** After 11 d, cells were fixed with 2% paraformaldehyde and co-stained with  
344 NileRed and NucBlue. Imaging was carried out on the Cytation 5 Cell Imaging Multimode reader  
345 (BioTek). Three images per field (Brightfield, NucBlue and NileRed) and nine fields per well were  
346 captured. See supplementary text for details.

347 **Image analysis.** Images were analyzed in the open-source software CellProfiler (43). A description  
348 of the image analysis protocol and the CellProfiler pipelines are available in the supplementary  
349 material. We quantified proliferation (nuclei count), number of lipid droplets (lipid droplet count),  
350 total area occupied by lipid droplets (total area), and the total intensity of the NileRed staining within  
351 the lipid droplets (total intensity) per image. We further quantified the total area occupied by lipid  
352 (lipid droplet area), and the total intensity of NileRed staining in the lipid droplet area per cell.

353 Analysis of the single-cell data was applied to quantify the numbers of adipocytes and mature  
354 adipocytes per image. An adipocyte was defined as a cell containing at least one lipid droplet and  
355 a mature adipocyte was defined as a cell containing a total lipid content equivalent to  $\geq 8$  average  
356 sized lipid droplets (1000 pixels).

357 Single-cell measurements of lipid droplet area, and NileRed staining were analyzed further to  
358 explore how triglyceride accumulation was distributed within an adipocyte population. To control  
359 for potential cross-plate differences in staining intensity within an experiment, the average  
360 fluorescence intensity per adipocyte was normalized to the mean average fluorescence intensity  
361 for an internal plate control (cells treated with 300 nM rosiglitazone). For an independent  
362 experiment, single-cell data were grouped based on the treatment. The median lipid droplet area  
363 and normalized average fluorescence intensities per cell were calculated for each experiment. An  
364 example of the images and visualized output of the image analysis is shown in Fig. S2.

365 **Reporter gene assays.** We performed the CALUX reporter gene assays in 384-well plates and  
366 used imaging to count nuclei per well to normalize the reporter gene response and assess  
367 cytotoxicity. Rosiglitazone was the reference compound for PPAR $\gamma$  and DEX for GR (Fig. S23).  
368 See supplementary text for the detailed protocol.

369 **Analysis of bioassay data.** We used GraphPad Prism 9 (GraphPad Software, San Diego, CA) for  
370 non-linear regressions and statistical analysis, and interpolated plastic equivalents inducing 10 or  
371 20% effect (effect concentration, EC<sub>10</sub> or EC<sub>20</sub>) from the respective dose-response curves. The limit  
372 of detection (LOD) of each endpoint and experiment was calculated as three times the standard  
373 deviation (SD) of pooled controls. See supplementary text for details.

374 **Nontarget chemical analysis.** We analyzed all samples, except PLA 3, using ultra-high  
375 performance liquid chromatography coupled to a quadrupole time of flight spectrometer (LC-QTOF-  
376 MS/MS) with an Acquity UPLC Waters liquid chromatography system coupled to a SYNAPT G2-S  
377 mass spectrometer (both Waters Norge, Oslo, Norway). The analytical method has been described

378 in Zimmermann *et al.* (22, 44) and a brief description as well as information about the data analysis  
379 and compound identification can be found in the supplementary text.

380 **Comparison with chemicals known to induce adipogenesis.** We built a list of 120 known  
381 adipogenic chemicals (Tab. S3) by searching Web of Science (Core Collection) for studies  
382 investigating chemicals in the adipogenesis assay and complemented the search with chemicals  
383 reviewed by Amato *et al.* (16). We cross-referenced the list with the tentatively identified  
384 compounds in the plastic samples to determine whether some of these compounds are MDCs  
385 (Tab. 1). See supplementary text for details.

## 386 References

- 387 1. B. A. Swinburn, V. I. Kraak, S. Allender, V. J. Atkins, P. I. Baker, J. R. Bogard, *et al.*, The  
388 global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report.  
389 *Lancet* 393, 791-846 (2019).
- 390 2. WHO, Obesity and overweight. Fact sheet, World Health Organization, Geneva,  
391 Switzerland. [cited 2021 August 24] Available at: <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight>
- 393 3. E. Gakidou, A. Afshin, A.A. Abajobir, K.H. Abate, C. Abbafati, K.M. Abbas, *et al.*, Global,  
394 regional, and national comparative risk assessment of 84 behavioural, environmental and  
395 occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the  
396 Global Burden of Disease Study 2016. *Lancet* 390, 1345-1422 (2017).
- 397 4. M. Simmonds, A. Llewellyn, C. G. Owen, N. Woolacott, Predicting adult obesity from  
398 childhood obesity: a systematic review and meta-analysis. *Obes Rev* 17, 95-107 (2016).
- 399 5. A. Afshin, M. H. Forouzanfar, M. B. Reitsma, P. Sur, K. Estep, A. Lee, *et al.*, Health  
400 Effects of Overweight and Obesity in 195 Countries over 25 Years. *N Engl J Med* 377, 13-27  
401 (2017).
- 402 6. R. E. Brown, A. M. Sharma, C. I. Ardern, P. Mirdamadi, P. Mirdamadi, J. L. Kuk, Secular  
403 differences in the association between caloric intake, macronutrient intake, and physical activity  
404 with obesity. *Obes Res Clin Pract* 10, 243-255 (2016).
- 405 7. P. W. Franks, M. I. McCarthy, Exposing the exposures responsible for type 2 diabetes  
406 and obesity. *Science* 354, 69-73 (2016).
- 407 8. J. J. Heindel, B. Blumberg, M. Cave, R. Machtlinger, A. Mantovani, M. A. Mendez, A.  
408 Nadal, P. Palanza, G. Panzica, R. Sargis, L. N. Vandenberg, F. Vom Saal, Metabolism disrupting  
409 chemicals and metabolic disorders. *Reprod Toxicol* 68, 3-33 (2017).
- 410 9. L. A. Hoepner, R. M. Whyatt, E. M. Widen, A. Hassoun, S. E. Oberfield, N. T. Mueller, D.  
411 Diaz, A. M. Calafat, F. P. Perera, A. G. Rundle, Bisphenol A and adiposity in an inner-city birth  
412 cohort. *Environ Health Perspect* 124, 1644-1650 (2016).
- 413 10. L. Trasande, T. M. Attina, S. Sathyarayana, A. J. Spanier, J. Blustein, Race/ethnicity-  
414 specific associations of urinary phthalates with childhood body mass in a nationally representative  
415 sample. *Environ Health Perspect* 121, 501-506 (2013).
- 416 11. D. Valvi, M. Casas, D. Romaguera, N. Monfort, R. Ventura, D. Martinez, J. Sunyer, M.  
417 Vrijheid, Prenatal phthalate exposure and childhood growth and blood pressure: Evidence from  
418 the Spanish INMA-Sabadell birth cohort atudy. *Environ Health Perspect* 123, 1022-1029 (2015).
- 419 12. J. P. Buckley, S. M. Engel, M. A. Mendez, D. B. Richardson, J. L. Daniels, A. M. Calafat,  
420 M. S. Wolff, A. H. Herring, Prenatal phthalate exposures and childhood fat mass in a New York  
421 city cohort. *Environ Health Perspect* 124, 507-513 (2016).
- 422 13. K. J. Groh, T. Backhaus, B. Carney-Almroth, B. Geueke, P. A. Inostroza, A. Lennquist, H.  
423 A. Leslie, M. Maffini, D. Slunge, L. Trasande, A. M. Warhurst, J. Muncke, Overview of known  
424 plastic packaging-associated chemicals and their hazards. *Sci Total Environ* 651, 3253-3268  
425 (2019).
- 426 14. H. Wiesinger, Z. Wang, S. Hellweg, Deep dive into plastic monomers, additives, and  
427 processing aids. *Environ Sci Technol* 55, 9339-9351 (2021).
- 428 15. L. Zimmermann, G. Dierkes, T. A. Ternes, C. Völker, M. Wagner, Benchmarking the in  
429 vitro toxicity and chemical composition of plastic consumer products. *Environ Sci Technol* 53,  
430 11467-11477 (2019).

431 16. A. A. Amato, H. B. Wheeler, B. Blumberg, Obesity and endocrine-disrupting chemicals.  
432 Endocr Connect 10, R87-R105 (2021).

433 17. R. J. Egusquiza, B. Blumberg, Environmental obesogens and their impact on  
434 susceptibility to obesity: New mechanisms and chemicals. Endocrinology 161, 1-14 (2020).

435 18. H. Green, M. Meuth, An established pre-adipose cell line and its differentiation in culture.  
436 Cell 3, 127-133 (1974).

437 19. C. D. Kassotis, H. M. Stapleton, Endocrine-mediated mechanisms of metabolic disruption  
438 and new approaches to examine the public health threat. Front Endocrinol 10, 39 (2019).

439 20. E. D. Rosen, O. A. MacDougald, Adipocyte differentiation from the inside out. Nat Rev  
440 Mol Cell Biol 7, 885-896 (2006).

441 21. K. John, J. S. Marino, E. R. Sanchez, T. D. Hinds, Jr., The glucocorticoid receptor: cause  
442 of or cure for obesity? Am J Physiol Endocrinol Metab 310, E249-257 (2016).

443 22. L. Zimmermann, Z. Bartosova, K. Braun, J. Oehlmann, C. Völker, M. Wagner, Plastic  
444 Products Leach Chemicals That Induce In Vitro Toxicity under Realistic Use Conditions. Environ  
445 Sci Technol, (2021). Available at: <https://doi.org/10.1021/acs.est.1c01103>

446 23. C. D. Kassotis, K. Hoffman, H. M. Stapleton, Characterization of adipogenic activity of  
447 house dust extracts and semi-volatile indoor contaminants in 3T3-L1 Cells. Environ Sci Technol  
448 51, 8735-8745 (2017).

449 24. J. Muncke, T. Backhaus, B. Geueke, M. V. Maffini, O. V. Martin, J. P. Myers, A. M. Soto,  
450 L. Trasande, X. Trier, M. Scheringer, Scientific challenges in the risk assessment of food contact  
451 materials. Environ Health Perspect 125, 095001 (2017).

452 25. A. L. Ghaben, P. E. Scherer, Adipogenesis and metabolic health. Nat Rev Mol Cell Biol  
453 20, 242-258 (2019).

454 26. A. M. Sharma, B. Staels, Review: Peroxisome proliferator-activated receptor gamma and  
455 adipose tissue--understanding obesity-related changes in regulation of lipid and glucose  
456 metabolism. J Clin Endocrinol Metab 92, 386-395 (2007).

457 27. C. M. Kusminski, P. E. Bickel, P. E. Scherer, Targeting adipose tissue in the treatment of  
458 obesity-associated diabetes. Nat Rev Drug Discov 15, 639-660 (2016).

459 28. F. Ariemma, V. D'Esposito, D. Liguoro, F. Oriente, S. Cabaro, A. Liotti, I. Cimmino, M.  
460 Longo, F. Beguinot, P. Formisano, R. Valentino, Low-Dose bisphenol-A impairs adipogenesis and  
461 generates dysfunctional 3T3-L1 adipocytes. Plos One 11, e0150762 (2016).

462 29. S. M. Regnier, E. El-Hashani, W. Kamau, X. Zhang, N. L. Massad, R. M. Sargis,  
463 Tributyltin differentially promotes development of a phenotypically distinct adipocyte. Obesity 23,  
464 1864-1871 (2015).

465 30. B. M. Shoucri, V. T. Hung, R. Chamorro-Garcia, T. Shioda, B. Blumberg, Retinoid x  
466 receptor activation during adipogenesis of female mesenchymal stem cells programs a  
467 dysfunctional adipocyte. Endocrinology 159, 2863-2883 (2018).

468 31. N. Kloting, N. Hesselbarth, M. Gericke, A. Kunath, R. Biemann, R. Chakaroun, J.  
469 Kosacka, P. Kovacs, M. Kern, M. Stumvoll, B. Fischer, U. Rolle-Kampczyk, R. Feltens, W. Otto,  
470 D. K. Wissenbach, M. von Bergen, M. Bluher, Di-(2-ethylhexyl)-phthalate (DEHP) causes  
471 impaired adipocyte function and alters serum metabolites. Plos One 10, e0143190 (2015).

472 32. M. Ospina, N. K. Jayatilaka, L. Y. Wong, P. Restrepo, A. M. Calafat, Exposure to  
473 organophosphate flame retardant chemicals in the U.S. general population: Data from the 2013-  
474 2014 National Health and Nutrition Examination Survey. Environ Int 110, 32-41 (2018).

475 33. A. R. Zota, C. A. Phillips, S. D. Mitro, Recent fast food consumption and bisphenol A and  
476 phthalates exposures among the U.S. population in NHANES, 2003-2010. *Environ Health  
477 Perspect* 124, 1521-1528 (2016).

478 34. A. R. Zota, A. M. Calafat, T. J. Woodruff, Temporal trends in phthalate exposures:  
479 Findings from the National Health and Nutrition Examination Survey, 2001-2010. *Environ Health  
480 Perspect* 122, 235-241 (2014).

481 35. A. Wang, D. P. Abrahamsson, T. Jiang, M. Wang, R. Morello-Frosch, J. S. Park, M.  
482 Sirota, T. J. Woodruff, Suspect screening, prioritization, and confirmation of environmental  
483 chemicals in maternal-newborn pairs from San Francisco. *Environ Sci Technol* 55, 5037-5049  
484 (2021).

485 36. R. M. Sargis, D. N. Johnson, R. A. Choudhury, M. J. Brady, Environmental endocrine  
486 disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation.  
487 *Obesity* 18, 1283-1288 (2010).

488 37. M. Fu, T. Sun, A. L. Bookout, M. Downes, R. T. Yu, R. M. Evans, D. J. Mangelsdorf, A  
489 nuclear receptor atlas: 3T3-L1 adipogenesis. *Mol Endocrinol* 19, 2437-2450 (2005).

490 38. J. Hollender, E. L. Schymanski, H. P. Singer, P. L. Ferguson, Nontarget screening with  
491 high resolution mass spectrometry in the environment: Ready to go? *Environ Sci Technol* 51,  
492 11505-11512 (2017).

493 39. PlasticEurope, Plastics-The Facts 2020: An analysis of european plastics production,  
494 demand and waste data (2020). [cited 2021 August 24] Available at:  
495 <https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020>

496 40. L. Gijsbers, H. Y. Man, S. K. Kloet, L. H. de Haan, J. Keijer, I. M. Rietjens, B. van der  
497 Burg, J. M. Aarts, Stable reporter cell lines for peroxisome proliferator-activated receptor gamma  
498 (PPARgamma)-mediated modulation of gene expression. *Anal Biochem* 414, 77-83 (2011).

499 41. E. Sonneveld, H. J. Jansen, J. A. Riteco, A. Brouwer, B. van der Burg, Development of  
500 androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based  
501 highly selective steroid-responsive bioassays. *Toxicol Sci* 83, 136-148 (2005).

502 42. C. D. Kassotis, L. Masse, S. Kim, J. J. Schlezinger, T. F. Webster, H. M. Stapleton,  
503 Characterization of adipogenic chemicals in three different cell culture systems: Implications for  
504 reproducibility based on cell source and handling. *Sci Rep* 7, 42104 (2017).

505 43. A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A.  
506 Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, D. M. Sabatini, CellProfiler: Image  
507 analysis software for identifying and quantifying cell phenotypes. *Genome Biol* 7, R100 (2006).

508 44. L. Zimmermann, A. Dombrowski, C. Völker, M. Wagner, Are bioplastics and plant-based  
509 materials safer than conventional plastics? In vitro toxicity and chemical composition. *Environ Int  
510* 145, 106066 (2020).

511 45. K. Zebisch, V. Voigt, M. Wabitsch, M. Brandsch, Protocol for effective differentiation of  
512 3T3-L1 cells to adipocytes. *Anal Biochem* 425, 88-90 (2012).

513 46. V. A. Chappell, A. Janesick, B. Blumberg, S. E. Fenton, Tetrabromobisphenol-A  
514 promotes early adipogenesis and lipogenesis in 3T3-L1 Cells. *Toxicol Sci* 166, 332-344 (2018).

515 47. J. G. Boucher, A. Boudreau, S. Ahmed, E. Atlas, In vitro effects of bisphenol A beta-D-  
516 glucuronide (BPA-G) on adipogenesis in human and murine preadipocytes. *Environ Health  
517 Perspect* 123, 1287-1293 (2015).

518 48. V. Pomatto, E. Cottone, P. Coccia, M. Mozzicafreddo, G. Mosconi, E. R. Nelson, F. A.  
519 Palermo, P. Bovolin, Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1  
520 cells. *J Steroid Biochem Mol Biol* 178, 322-332 (2018).

521 49. A. Riu, M. Grimaldi, A. le Maire, G. Bey, K. Phillips, A. Boudaoust, E. Perdu, D. Zalko, W.  
522 Bourguet, P. Balaguer, Peroxisome proliferator-activated receptor gamma is a target for  
523 halogenated analogs of bisphenol A. *Environ Health Persp* 119, 1227-1232 (2011).

524 50. V. Adomshick, Y. Pu, A. Veiga-Lopez, Automated lipid droplet quantification system for  
525 phenotypic analysis of adipocytes using CellProfiler. *Toxicol Mech Methods* 30, 378-387 (2020).

526 51. E. L. Schymanski, H. P. Singer, J. Slobodnik, I. M. Ipolyi, P. Oswald, M. Krauss, T.  
527 Schulze, P. Haglund, T. Letzel, S. Grosse, N. S. Thomaidis, A. Bletsou, C. Zwiener, M. Ibanez, T.  
528 Portoles, R. de Boer, M. J. Reid, M. Onghena, U. Kunkel, W. Schulz, A. Guillou, N. Noyon, G.  
529 Leroy, P. Bados, S. Bogialli, D. Stipanicev, P. Rostkowski, J. Hollender, Non-target screening  
530 with high-resolution mass spectrometry: critical review using a collaborative trial on water  
531 analysis. *Anal Bioanal Chem* 407, 6237-6255 (2015).

532 52. W. J. Sun, X. Y. Duan, H. Chen, L. Y. Zhang, H. W. Sun, Adipogenic activity of 2-  
533 ethylhexyl diphenyl phosphate via peroxisome proliferator-activated receptor gamma pathway.  
534 *Sci Total Environ* 711, 134810 (2020).

535 53. J. Blanco, L. Guardia-Escote, M. Mulero, P. Basaure, J. Biosca-Bru, M. Cabre, M. T.  
536 Colomina, J. L. Domingo, D. J. Sanchez, Obesogenic effects of chlorpyrifos and its metabolites  
537 during the differentiation of 3T3-L1 preadipocytes. *Food Chem Toxicol* 137, 111171 (2020).

538 54. Z. D. Sun, H. M. Cao, Q. S. Liu, Y. Liang, H. Fiedler, J. Q. Zhang, Q. F. Zhou, G. B.  
539 Jiang, 4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro.  
540 *Environ Pollut* 268, 115365 (2021).

541 55. C. D. Kassotis, E. M. Kollitz, P. L. Ferguson, H. M. Stapleton, Nonionic ethoxylated  
542 surfactants induce adipogenesis in 3T3-L1 Cells. *Toxicol Sci* 162, 124-136 (2018).

543 56. C. J. Hao, X. J. Cheng, H. F. Xia, X. Ma, The endocrine disruptor 4-nonylphenol  
544 promotes adipocyte differentiation and induces obesity in mice. *Cell Physiol Biochem* 30, 382-394  
545 (2012).

546 57. A. S. Janesick, G. Dimastrogiovanni, L. Vanek, C. Boulos, R. Chamorro-Garcia, W. Tang,  
547 B. Blumberg, On the utility of ToxCast and ToxPi as methods for identifying new obesogens.  
548 *Environ Health Perspect* 124, 1214-1226 (2016).

549 58. F. V. Andrews, S. M. Kim, L. Edwards, J. J. Schlezinger, Identifying adipogenic  
550 chemicals: Disparate effects in 3T3-L1, OP9 and primary mesenchymal multipotent cell models.  
551 *Toxicol in Vitro* 67, 1634-1643 (2020).

552 59. L. B. Sales, J. H. Kamstra, P. H. Cenijn, L. S. Rijt, T. Hamers, J. Legler, Effects of  
553 endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation.  
554 *Toxicol in Vitro* 27, 1634-1643 (2013).

555 60. L. Yin, K. S. Yu, K. Lu, X. Z. Yu, Benzyl butyl phthalate promotes adipogenesis in 3T3-L1  
556 preadipocytes: A high content cellomics and metabolomic analysis. *Toxicol in Vitro* 32, 297-309  
557 (2016).

558 61. Y. F. Wang, H. R. Chao, C. H. Wu, C. H. Tseng, Y. T. Kuo, T. C. Tsou, A recombinant  
559 peroxisome proliferator response element-driven luciferase assay for evaluation of potential  
560 environmental obesogens. *Biotechnol Lett* 32, 1789-1796 (2010).

561 62. A. Pereira-Fernandes, H. Demaegdt, K. Vandermeiren, T. L. M. Hectors, P. G. Jorens, R.  
562 Blust, C. Vanparijs, Evaluation of a screening system for obesogenic compounds: Screening of  
563 endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. *Plos One*  
564 8, e77481 (2013).

565 63. C. S. We, X. T. Wang, X. P. Yao, F. X. Xi, Y. L. He, Y. T. Xu, L. Ma, X. C. Chen, C. Zhao,  
566 R. R. Du, W. J. Pang, G. S. Yang, T. Y. Yu, Bifenthrin induces fat deposition by improving fatty  
567 acid uptake and inhibiting lipolysis in mice. *J Agric and Food Chem* 67, 14048-14055 (2019).

568 64. M. A. Martinez, J. Blanco, J. Rovira, V. Kumara, J. L. Domingo, M. Schuhmacher,  
569 Bisphenol A analogues (BPS and BPF) present a greater obesogenic capacity in 3T3-L1 cell line.  
570 Food Chem Toxicol 140, 111298 (2020).

571 65. S. I. Choi, J. S. Lee, S. R. Lee, W. S. Sim, Y. C. Kim, O. H. Lee, *Potentilla rugulosa* nakai  
572 extract attenuates bisphenol A-, S- and F-induced ROS production and differentiation of 3T3-L1  
573 preadipocytes in the absence of dexamethasone. *Antioxidants* 9, 113 (2020).

574 66. Z. Drobna, A. Talarovicova, H. E. Schrader, T. R. Fennell, R. W. Snyder, E. F. Rissman,  
575 Bisphenol F has different effects on preadipocytes differentiation and weight gain in adult mice as  
576 compared with bisphenol A and S. *Toxicology* 420, 66-72 (2019).

577 67. R. Chamorro-Garcia, S. Kirchner, X. Li, A. Janesick, S. C. Casey, C. Chow, B. Blumberg,  
578 Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells  
579 through a peroxisome proliferator-activated receptor gamma-independent mechanism. *Environ*  
580 *Health Persp* 120, 984-989 (2012).

581 68. C. Helies-Toussaint, L. Peyre, C. Costanzo, M. C. Chagnon, R. Rahmani, Is bisphenol S  
582 a safe substitute for bisphenol A in terms of metabolic function? An in vitro study. *Toxicol Appl*  
583 *Pharm* 280, 224-235 (2014).

584 69. J. M. Hall, H. A. Powell, L. Rajic, K. S. Korach, The role of dietary phytoestrogens and the  
585 nuclear receptor PPAR gamma in adipogenesis: An in vitro study. *Environ Health Persp* 127,  
586 37007 (2019).

587 70. V. Peshdary, G. Calzadilla, A. Landry, A. Sorisky, E. Atlas, Dechlorane Plus increases  
588 adipogenesis in 3T3-L1 and human primary preadipocytes independent of peroxisome  
589 proliferator-activated receptor gamma transcriptional activity. *Int J Obes* 43, 545-555 (2019).

590 71. J. N. Feige, L. Gelman, D. Rossi, V. Zoete, R. Metivier, C. Tudor, S. I. Anghel, A.  
591 Grosdidier, C. Lathion, Y. Engelborghs, O. Michielin, W. Wahli, B. Desvergne, The endocrine  
592 disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor  
593 gamma modulator that promotes adipogenesis. *J Biol Chem* 282, 19152-19166 (2007).

594 72. M. Biserni, R. Mesnage, R. Ferro, E. Wozniak, T. Xenakis, C. A. Mein, M. N. Antoniou,  
595 Quizalofop-p-ethyl induces adipogenesis in 3T3-L1 Adipocytes. *Toxicol Sci* 170, 452-461 (2019).

596 73. R. Mesnage, M. Biserni, D. Genkova, L. Wesolowski, M. N. Antoniou, Evaluation of  
597 neonicotinoid insecticides for oestrogenic, thyroidogenic and adipogenic activity reveals  
598 imidacloprid causes lipid accumulation. *J Appl Toxicol* 38, 1483-1491 (2018).

599 74. A. Smith, X. Z. Yu, L. Yin, Diazinon exposure activated transcriptional factors CCAAT-  
600 enhancer-binding proteins alpha (C/EBP alpha) and peroxisome proliferator-activated receptor  
601 gamma (PPAR gamma) and induced adipogenesis in 3T3-L1 preadipocytes. *Pestic Biochem*  
602 *Physiol* 150, 48-58 (2018).

603 75. A. M. Temkin, R. R. Bowers, M. E. Magaletta, S. Holshouser, A. Maggi, P. Ciana, L. J.  
604 Guillette, J. A. Bowden, J. R. Kucklick, J. E. Baatz, D. D. Spyropoulos, Effects of crude  
605 oil/dispersant mixture and dispersant components on PPAR gamma activity in vitro and in vivo:  
606 Identification of dioctyl sodium sulfosuccinate (DOSS; CAS #577-11-7) as a probable obesogen.  
607 *Environ Health Perspect* 124, 112-119 (2016).

608 76. R. R. Bowers, A. M. Temkin, L. J. Guillette, J. E. Baatz, D. D. Spyropoulos, The  
609 commonly used nonionic surfactant Span 80 has RXR alpha transactivation activity, which likely  
610 increases the obesogenic potential of oil dispersants and food emulsifiers. *Gen Comp Endocrinol*  
611 238, 61-68 (2016).

612 77. G. Cano-Sancho, A. Smith, M. A. La Merrill, Triphenyl phosphate enhances adipogenic  
613 differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms.  
614 *Toxicol in Vitro* 40, 280-288 (2017).

615 78. X. N. Xie, C. X. Yu, Q. D. Ren, Q. Wen, C. X. Zhao, Y. Tang, Y. G. Du, Exposure to  
616 HBCD promotes adipogenesis both in vitro and in vivo by interfering with Wnt6 expression. *Sci*  
617 *Total Environ* 705, 67-77 (2020).

618 79. E. W. Y. Tung, S. Ahmed, V. Peshdary, E. Atlas, Firemaster (R) 550 and its components  
619 isopropylated triphenyl phosphate and triphenyl phosphate enhance adipogenesis and  
620 transcriptional activity of peroxisome proliferator activated receptor (Ppar gamma) on the  
621 adipocyte protein 2 (aP2) promoter. *Plos One* 12, e0175855 (2017).

622 80. S. E. Elmore, G. Cano-Sancho, M. A. La Merrill, Disruption of normal adipocyte  
623 development and function by methyl- and propyl- paraben exposure. *Toxicol Lett* 334, 27-35  
624 (2020).

625 81. C. J. Hao, X. J. Cheng, H. F. Xia, X. Ma, The endocrine disruptor mono-(2-ethylhexyl)  
626 phthalate promotes adipocyte differentiation and induces obesity in mice. *Biosci Repo* 32, 619-  
627 629 (2012).

628 82. Q. Wen, X. N. Xie, C. F. Zhao, Q. D. Ren, X. Y. Zhang, D. B. Wei, B. Emanuelli, Y. G.  
629 Du, The brominated flame retardant PBDE 99 promotes adipogenesis via regulating mitotic clonal  
630 expansion and PPAR gamma expression. *Sci Total Environ* 670, 67-77 (2019).

631 83. A. M. Watkins, C. R. Wood, M. T. Lin, B. D. Abbott, The effects of perfluorinated  
632 chemicals on adipocyte differentiation in vitro. *Mol Cell Endocrinol* 400, 90-101 (2015).

633 84. Y. Ma, J. Yang, Y. J. Wan, Y. Peng, S. Ding, Y. Y. Li, B. Xu, X. Chen, W. Xia, Y. B. Ke, S.  
634 Q. Xu, Low-level perfluorooctanoic acid enhances 3T3-L1 preadipocyte differentiation via altering  
635 peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation.  
636 *J Appl Toxicol* 38, 398-407 (2018).

637 85. V. A. Chappell, A. Janesick, B. Blumberg, S. E. Fenton, Tetrabromobisphenol-A  
638 promotes early adipogenesis and lipogenesis in 3T3-L1 Cells. *Toxicol Sci* 166, 332-344 (2018).

639 86. B. A. Neel, M. J. Brady, R. M. Sargis, The endocrine disrupting chemical tolylfluanid  
640 alters adipocyte metabolism via glucocorticoid receptor activation. *Mol Endocrinol* 27, 394-406  
641 (2013).

642 87. A. Pereira-Fernandes, C. Vanparys, T. L. M. Hectors, L. Vergauwen, D. Knapen, P. G.  
643 Jorens, R. Blust, Unraveling the mode of action of an obesogen: Mechanistic analysis of the  
644 model obesogen tributyltin in the 3T3-L1 cell line. *Mol Cell Endocrinol* 370, 52-64 (2013).

645 88. F. Grun, H. Watanabe, Z. Zamanian, L. Maeda, K. Arima, R. Chubacha, D. M. Gardiner,  
646 J. Kanno, T. Iguchi, B. Blumberg, Endocrine-disrupting organotin compounds are potent inducers  
647 of adipogenesis in vertebrates. *Mol Endocrinol* 20, 2141-2155 (2006).

648 89. H. Inadera, A. Shimomura, Environmental chemical tributyltin augments adipocyte  
649 differentiation. *Toxicol Lett* 159, 226-234 (2005).

650 90. S. Kim, A. Li, S. Monti, J. J. Schlezinger, Tributyltin induces a transcriptional response  
651 without a brite adipocyte signature in adipocyte models. *Arch Toxicol* 92, 2859-2874 (2018).

652 91. X. Li, J. Ycaza, B. Blumberg, The environmental obesogen tributyltin chloride acts via  
653 peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1  
654 preadipocytes. *J Steroid Biochem* 127, 9-15 (2011).

655 92. S. M. Regnier, E. El-Hashani, W. Kamau, X. J. Zhang, N. L. Massad, R. M. Sargis,  
656 Tributyltin differentially promotes development of a phenotypically distinct adipocyte. *Obesity* 23,  
657 1864-1871 (2015).

658 93. M. Y. Dong, P. H. Yuan, Y. C. Song, H. H. Lei, G. Chen, X. H. Zhu, F. Wu, C. Chen, C. X.  
659 Liu, Z. J. Shi, L. M. Zhang, In vitro effects of triclocarban on adipogenesis in murine preadipocyte  
660 and human hepatocyte. *J Hazard Mater* 399, 122829 (2020).

661 94. X. Li, H. T. Pham, A. S. Janesick, B. Blumberg, Triflumizole is an obesogen in mice that  
662 acts through peroxisome proliferator activated receptor gamma (PPAR gamma). Environ Health  
663 Perspect 120, 1720-1726 (2012).

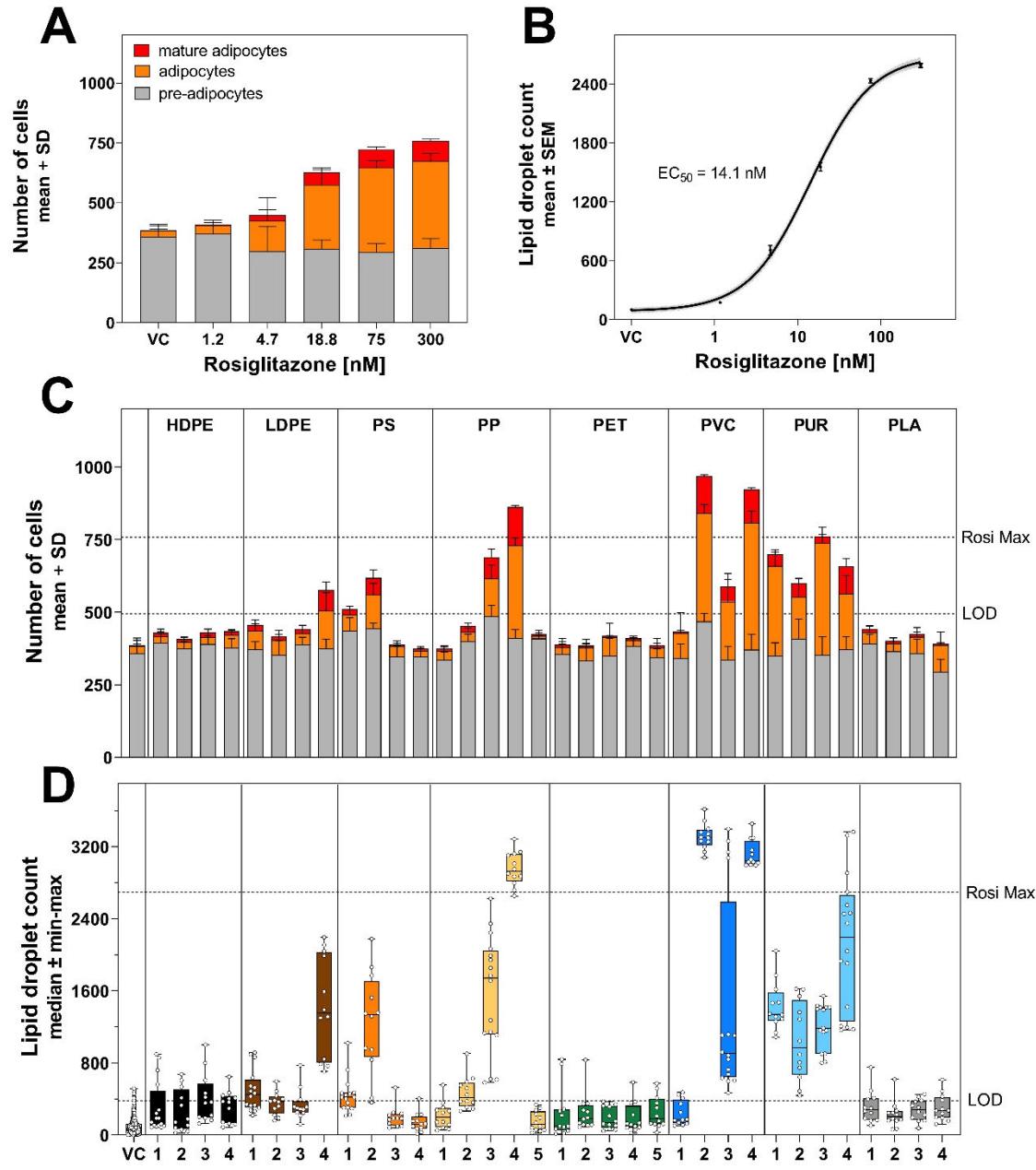
664 95. S. Kim, N. Rabhi, B. C. Blum, R. Hekman, K. Wynne, A. Emili, S. Farmer, J. J.  
665 Schlezinger, Triphenyl phosphate is a selective PPAR gamma modulator that does not induce  
666 brite adipogenesis in vitro and in vivo. Arch Toxicol 94, 3087-3103 (2020).

667

668 **Acknowledgments**

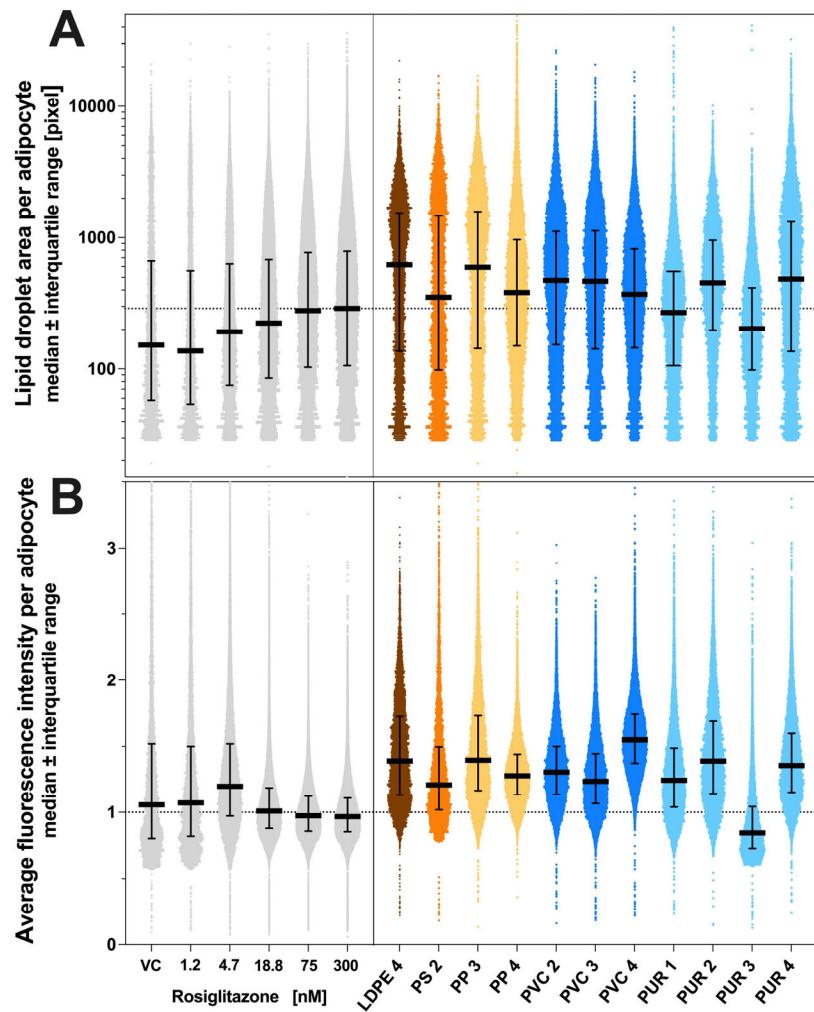
669 This study was support by internal funding of the Norwegian University of Science and Technology  
670 (NTNU, Trondheim). We thank Susana Villa Gonzales (NTNU) for UPLC-QTOF-MS/MS training  
671 and support.

672 **Author contributions**


673 J.V., F.A. and M.W. conceived the study, J.V. and Å.V. performed the experiments, L.Z. performed  
674 the chemical analysis, J.V., F.A., and M.W. analyzed the data and wrote the manuscript, and all  
675 authors provided comments on the manuscript.

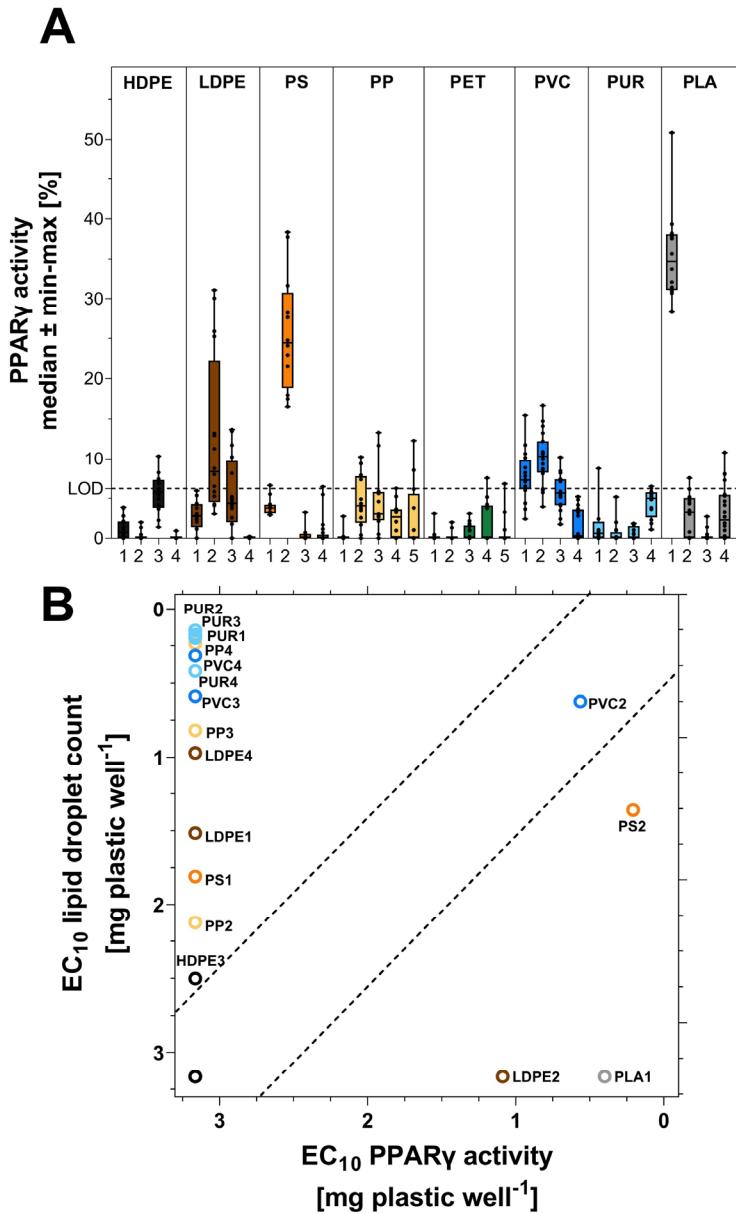
676 **Competing interest**

677 LZ became an employee the Food Packaging Forum (FPF) after this study was concluded. MW is  
678 an unremunerated member of the Scientific Advisory Board of the FPF and received travel support  
679 for attending annual SAB meetings. FPF is a Swiss foundation that enhances the scientific  
680 principles and recent scientific findings that are relevant to the topic of food contact chemicals and  
681 their health impacts on humans and the environment.


682 **Data and materials availability**

683 The raw mass spectral data can be accessed under DOI 10.5281/zenodo.4781257 (published after  
684 publication), bioassay data (SM Excel Tab. S3–10) and the CellProfiler pipelines can be found in  
685 the supplementary material.




686

687 **Fig. 1. Effect of rosiglitazone on (A) the adipocyte population and (B) the lipid droplet count**  
 688 **(pooled data from four experiments). Effect of plastic extracts on (C) the adipocyte**  
 689 **population and (D) the lipid droplet count in the highest noncytotoxic concentration.** The  
 690 **highest noncytotoxic concentration (HNC) was 3 mg plastics well<sup>-1</sup> except for PP 4 (1.5 mg plastic**  
 691 **well<sup>-1</sup>) as well as PUR 2 and PUR 3 (0.75 mg plastic well<sup>-1</sup>). VC = vehicle control, LOD = limit of the**  
 692 **detection, Rosi Max = maximal response of rosiglitazone.**



693

694 **Fig. 2. (A) Size distribution of adipocyte population and (B) accumulation of triglyceride per**  
695 **adipocyte in cells exposed to rosiglitazone (left) or the highest noncytotoxic concentration**  
696 **of the eleven active plastic extracts (right). Single-cell data from one experiment. Intensity data**  
697 **is normalized on the mean of the highest rosiglitazone concentration (300 nM). VC = vehicle control.**



698

699 **Fig. 3. (A) PPAR $\gamma$  activity induced by plastic extracts at the highest noncytotoxic  
700 concentration and (B) correlation of the EC<sub>10</sub> of the PPAR $\gamma$  activity and lipid droplet count.**  
701 The highest noncytotoxic concentration (HCN) was 1.5 mg plastic well $^{-1}$  except for PP 4 (0.19 mg  
702 plastic well $^{-1}$ ), PS 2 and PP 3 (0.38 mg plastic well $^{-1}$ ) as well as PLA 1 and PVC 2 (0.75 mg plastic  
703 well $^{-1}$ ).

704 **Table 1. Plastic products analyzed in this study, results of the nontarget chemical analysis**  
 705 **and the tentatively identified metabolic disrupting chemicals (MDCs).**

| Sample | Plastic product                         | LC-QTOF-MS/MS<br>(number of features) |             |                 | Tentatively<br>identified MDCs |                                                                |
|--------|-----------------------------------------|---------------------------------------|-------------|-----------------|--------------------------------|----------------------------------------------------------------|
|        |                                         | in<br>sample                          | with<br>MS2 | ID score<br>≥40 | % of<br>MS2                    |                                                                |
| HDPE 1 | refillable drinking bottle <sup>a</sup> | 779                                   | 203         | 38              | 18.7                           | TPP                                                            |
| HDPE 2 | yogurt drinking bottle <sup>a</sup>     | 107                                   | 34          | 7               | 20.6                           |                                                                |
| HDPE 3 | bin liner                               | 614                                   | 153         | 30              | 19.6                           | TPP                                                            |
| HDPE 4 | shower gel bottle                       | 164                                   | 50          | 16              | 32.0                           | EHDP                                                           |
| LDPE 1 | lemon juice bottle <sup>a</sup>         | 241                                   | 66          | 20              | 30.3                           | EHDP                                                           |
| LDPE 2 | plastic wrap <sup>a</sup>               | 1833                                  | 543         | 98              | 18.0                           | TPP                                                            |
| LDPE 3 | freezer bag <sup>a</sup>                | 1603                                  | 416         | 62              | 14.9                           | TPP                                                            |
| LDPE 4 | hair conditioner bottle                 | 1702                                  | 544         | 89              | 16.4                           | allethrin, TPP                                                 |
| PS 1   | yogurt cup <sup>a</sup>                 | 447                                   | 96          | 12              | 12.5                           | TPP                                                            |
| PS 2   | fruit tray <sup>a</sup>                 | 1122                                  | 293         | 44              | 15.0                           | DPP, TPP                                                       |
| PS 3   | vegetable tray <sup>a</sup>             | 308                                   | 63          | 11              | 17.5                           |                                                                |
| PS 4   | plastic cup <sup>a</sup>                | 119                                   | 30          | 7               | 23.3                           |                                                                |
| PP 1   | refillable drinking bottle <sup>a</sup> | 1365                                  | 396         | 87              | 22.0                           | TPP                                                            |
| PP 2   | yogurt cup <sup>a</sup>                 | 1870                                  | 549         | 93              | 16.9                           | TPP                                                            |
| PP 3   | gummy candy packaging <sup>a</sup>      | 3159                                  | 910         | 117             | 12.9                           | TPP                                                            |
| PP 4   | handkerchief packaging                  | 1798                                  | 519         | 85              | 16.4                           | TPP                                                            |
| PP 5   | shampoo bottle                          | 268                                   | 101         | 29              | 28.7                           |                                                                |
| PET 1  | soft drink bottle <sup>a</sup>          | 148                                   | 55          | 18              | 32.7                           |                                                                |
| PET 2  | yogurt cup <sup>a</sup>                 | 179                                   | 51          | 12              | 23.5                           |                                                                |
| PET 3  | oven bag <sup>a</sup>                   | 647                                   | 159         | 30              | 18.9                           |                                                                |
| PET 4  | vegetable tray <sup>a</sup>             | 695                                   | 182         | 20              | 11.0                           |                                                                |
| PET 5  | shampoo bottle                          | 375                                   | 89          | 11              | 12.4                           |                                                                |
| PVC 1  | plastic wrap <sup>a</sup>               | 3655                                  | 1374        | 118             | 8.6                            |                                                                |
| PVC 2  | place mat                               | 2426                                  | 819         | 145             | 17.7                           | DPP, TPP                                                       |
| PVC 3  | pond liner                              | 1270                                  | 450         | 91              | 20.2                           | DINP, TPP                                                      |
| PVC 4  | floor covering                          | 2361                                  | 868         | 145             | 16.7                           | BBP, BPD, DBP,<br>DEHP, DINP,<br>DPP, EHDP,<br>TBEP, TOCP, TPP |
| PUR 1  | scouring pad                            | 5619                                  | 1773        | 216             | 12.2                           | EHDP, TPP                                                      |
| PUR 2  | kids bath sponge                        | 4521                                  | 1182        | 151             | 12.8                           |                                                                |
| PUR 3  | acoustic foam                           | 6242                                  | 2117        | 224             | 10.6                           | EHDP, TPP                                                      |
| PUR 4  | shower slippers                         | 1035                                  | 300         | 78              | 26.0                           | EHDP, TPP                                                      |
| PLA 1  | yogurt cup <sup>a</sup>                 | 2421                                  | 772         | 52              | 6.7                            | TPP                                                            |
| PLA 2  | vegetable tray <sup>a</sup>             | 1983                                  | 672         | 40              | 6.0                            |                                                                |
| PLA 3  | coffee cup lid <sup>a</sup>             | N/A                                   | N/A         | N/A             | N/A                            |                                                                |
| PLA 4  | coffee cup lid <sup>a</sup>             | 2575                                  | 857         | 73              | 8.5                            |                                                                |

706 <sup>a</sup> = food contact material, BBP = benzyl butyl phthalate, BPD = tert-butylphenyl diphenyl  
 707 phosphate, DBP = dibutyl phthalate, DEHP = bis(2-ethylhexyl) phthalate, DINP = di-iso-nonyl  
 708 phthalate, DPP = diphenyl phosphate, EHDP = 2-ethylhexyl diphenyl phosphate, N/A = not  
 709 analyzed, TBEP = tris(2 butoxyethyl) phosphate, TOCP = tri-o-cresyl phosphate, TPP = triphenyl  
 710 phosphate