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Abstract 23 

Integrative analysis was performed in the Chinese Glioma Genome Atlas and The 24 

Cancer Genome Atlas to describe the pyroptosis-associated molecular classification 25 

and prognostic signature in glioma. Pyroptosis-related genes were used for consensus 26 

clustering and to develop a prognostic signature. The immune statuses, molecular 27 

alterations and clinical features of differentially expressed genes were analyzed among 28 

different subclasses and risk groups. A lncRNA-miRNA-mRNA network was built, and 29 

drug sensitivity analysis was used to identify small molecular drugs for the identified 30 

genes. Glioma can be divided into two subclasses using 30 pyroptosis-related genes. 31 

Cluster 1 displayed high immune signatures and poor prognosis as well as high 32 

immune-related function scores. A prognostic signature based on 15 pyroptosis-related 33 

genes of the CGGA cohort can predict the overall survival of glioma and was well 34 

validated in the TCGA cohort. Cluster 1 had higher risk scores. The high-risk group had 35 

high immune cell and function scores and low DNA methylation of pyroptosis-related 36 

genes. The differences in pyroptosis-related gene mutations and somatic copy numbers 37 

were significant between the high-risk and low-risk groups. The ceRNA regulatory 38 

network uncovered the regulatory patterns of different risk groups in glioma. Nine pairs 39 

of target genes and drugs were identified. In vitro, CASP8 promotes the progression of 40 

glioma cells. Pyroptosis-related genes can reflect the molecular biological and clinical 41 

features of glioma subclasses. The established prognostic signature can predict 42 

prognosis and distinguish molecular alterations in glioma patients. Our comprehensive 43 

analyses provide valuable guidelines for improving glioma patient management and 44 
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individualized therapy. 45 

Keywords: Glioma, pyroptosis, prognostic signature, Tumor immunity, clinical 46 

nomogram 47 

INTRODUCTION 48 

Gliomas are the most common types of primary tumors in the central nervous system 49 

and one of the most devastating tumors(1). At present, the main treatment methods of 50 

glioma are surgical resection, radiotherapy, chemotherapy or chemoradiotherapy(2). 51 

Although great efforts have been made to improve glioma treatment, the prognosis of 52 

glioma patients remains poor(3). One of the main reasons is that the molecular 53 

mechanism is still not fully understood. Therefore, the exploration and research of the 54 

underlying mechanism of gliomas and identification of potential treatment targets 55 

followed by application in clinical practice have important theoretical and practical 56 

significance. 57 

Pyroptosis is one of the pathways involved in programmed cell death, such as apoptosis, 58 

ferroptosis, necroptosis, and autophagy.(4) Cookson et al. first used pyroptosis to 59 

describe the caspase-1-dependent pattern of cell death found in macrophages(5). 60 

Pyroptosis, distinct from apoptosis and necrosis, contributes to a range of human 61 

diseases as a new mechanism of cell death. Pyroptosis is a proinflammatory form of 62 

programmed cell death that is dependent on the activity of caspase acid-specific 63 

proteases(6). In the coupling of the amino-terminal and carboxy-terminal linkers of 64 

gasdermin D (GSDMD) by caspases, the latter is displaced onto the membrane and 65 

perforated, inducing moisture penetration, cell swelling and the release of inflammatory 66 
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factors, which is followed by pyroptosis(7). A previous study reported that pyroptosis 67 

plays an important role in immunity and diseases. Pyroptosis can promote the death of 68 

damaged cells during infection and acts as an alarm signal for the recruitment of 69 

immune cells to the site of infection to promote the removal of pathogens, thus 70 

effectively protecting the body(8). In recent years, its role in tumorigenesis and cancer 71 

development has been studied comprehensively. Various regulators have been reported 72 

to be involved in the process of pyroptosis and play pivotal roles in the progression of 73 

tumors, such as hepatocellular carcinoma, lung cancer, and breast cancer(9-11). 74 

However, few studies have investigated the role of pyroptosis in glioma, and 75 

comprehensive analyses of pyroptosis regulators in glioma, their correlation with 76 

clinical characteristics and their prognostic value have not been reported. 77 

In the present study, we first outlined the molecular subtypes of gliomas based on 78 

pyroptosis-related genes in the CGGA dataset and described the clinical and molecular 79 

characteristics and immune status of each subclass. Then, we developed a prognostic 80 

signature of pyroptosis-related genes based on the CGGA cohort, validated this 81 

prognostic signature in the TCGA cohort. Furthermore, we explored the clinical and 82 

molecular patterns, including immune infiltration, somatic copy number alterations, 83 

mutations, and DNA methylation, and established a lncRNA-miRNA-mRNA 84 

regulatory network. Finally, we explored the correlation between small molecular drugs 85 

and the identified prognostic signature genes. Our comprehensive analyses provide new 86 

insight into the functions of pyroptosis in the initiation, development, and progression 87 

of glioma. 88 
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MATERIALS AND METHODS 89 

Data source 90 

We downloaded the genomic data, copy number alteration, methylation and clinical 91 

data of glioma patients from the CGGA (http://www.cgga.org.cn/) and TCGA databases 92 

(https://portal.gdc.cancer.gov/). Additional gene-centric RMA-normalized gene 93 

expression profiles and drug response data of over 1000 cancer cell lines were accessed 94 

from the Genomics of Drug Sensitivity in Cancer (GDSC) database 95 

(https://www.cancerrxgene.org/downloads). Immune-associated data, including 96 

immune cells and immunophenoscores, were downloaded from TCIA 97 

(https://tcia.at/home). Thirty-three pyroptosis-related genes were defined from a 98 

previous publication and are provided in Table S1(12-15). 99 

Identification of glioma subclasses and Gene set variation analysis 100 

We identified the optimal clustering number visualizing consensus matrix, tracking plot, 101 

and cumulative distribution function plot. In addition, a T-distributed stochastic 102 

neighbor embedding-based approach was used to validate the clustering in glioma 103 

patients. We calculated the enrichment scores for every sample using the GSVA R 104 

package.  105 

Development and validation of a prognostic signature 106 

We developed a pyroptosis-related prognostic signature based on the CGGA training 107 

cohort. Twenty differentially expressed genes with P<0.05 were entered into LASSO 108 

Cox regression, which identified potential genes for the prognostic signature in the 109 

CGGA training cohort. Then, we calculated the risk score for each sample of the CGGA 110 
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and TCGA validation cohorts using the obtained regression coefficient in the CGGA 111 

training cohort: risk score =coef1*gene1 expression+coef2* gene2 112 

expression+…coefn*genen expression. The CGGA and TCGA samples were divided 113 

into a high-risk group and a low-risk group based on the median risk score.  Receiver 114 

operating characteristic curves were plotted to evaluate the 1-year, 2-year, and 3-year 115 

sensitivity and specificity of the prognostic signature. We also established a prognostic 116 

nomogram to evaluate the clinical value of the prognostic signature. Calibration 117 

analysis of the prognostic predictive value of the nomogram was carried out. 118 

Functional enrichment analysis, estimation of tumor stem cell-like properties and 119 

immune infiltration 120 

Gene Ontology and KEGG pathway analyses were performed using the “clusterProfiler” 121 

package. We used single-sample gene set enrichment analysis (ssGSEA) to estimate the 122 

enrichment score of stem cell-like properties (RNAss, DNAss) and the TME (stromal 123 

score, immune score, and ESTIMATE score) in the TCGA cohort because the CGGA 124 

dataset did not provide such data. The immune-related cell and function scores were 125 

also calculated for each sample (downloaded from https://www.gsea-msigdb.org/). 126 

Somatic copy number alteration, mutation, and DNA methylation analysis 127 

Based on the risk groups in the TCGA cohort, we compared the somatic copy number 128 

alteration, mutation, and DNA methylation levels between the high-risk and low-risk 129 

groups using the “limma” R package.  130 

Construction of a ceRNA network and drug sensitivity 131 

To further explore the transcriptome regulation network of different risk groups, we 132 
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used Cytoscape version 3.8.2 to establish a lncRNA-miRNA-mRNA regulatory 133 

network. We explore the correlation between small molecular drugs and the identified 134 

prognostic signature genes using Pearson correlation analysis |R|>0.25 and P>0.05 were 135 

considered significant. 136 

Verification of experiments in vitro 137 

We further performed the Western blot, cell migration assays, cell scratchy assays, and 138 

clonogenic assays to verify the present finding. We selected the CASP8 to validate the 139 

molecular function because CASP8 showed significant differences between normal 140 

tissue and GBM or LGG, and the elevated expression is associated with poor prognosis. 141 

The details of experiments process in vitro were supplied in Additional file 1.docx. 142 

Statistical analysis 143 

The log-rank test was used to compare the survival curves of Kaplan-Meier analysis. 144 

The hazard ratio (HR) and 95% confidence interval (CI) of each gene and clinical 145 

parameters were calculated when univariate and multivariate Cox regression were 146 

applied. All analyses were achieved using R software version 4.0. A two-sided P value 147 

<0.05 was considered significant unless otherwise specified. 148 

RESULTS 149 

Identification of glioma subclasses 150 

The flow chart of the data analysis is presented in Figure 1A. From two CGGA RNA-151 

seq datasets, we obtained 1018 samples of gene expression data and further identified 152 

30 pyroptosis-related genes based on MAD>0.5. The gene symbols and descriptions of 153 

the 30 pyroptosis-associated genes used for classification are listed in the Additional 154 
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file 2: Table S1. We first explored the interactions among these genes using PPIs (Figure 155 

1B), and the PPI network indicated that CASP8, CASP4, CASP1, NLRP3, NLRP1 and 156 

NLRC4 are hub genes. The correlation circle plot of the 30 genes is presented in Figure 157 

1C (red: positive correlation; green: negative correlation). We identified the optimal k 158 

value as 2 by estimating the comprehensive correlation coefficient. Therefore, we 159 

divided the glioma samples into two different subclasses: cluster 1 and cluster 2. For 160 

the optimal k value (k=2), the consensus matrix showed a relatively sharp and clear 161 

boundary, indicating stable and robust clustering (Figure 1D). To verify the subclass 162 

stability, we further performed t-sensitivity PCA and found that a two-dimensional t-163 

sensitivity distribution supported subtype clustering (Figure 1E). The consensus 164 

clustering for each sample is listed in Additional file 2: Table S2. The Kaplan-Meier 165 

analysis indicates that the median survival time was significantly shorter in cluster 2 166 

than in cluster 1 (MST: 1.87 vs. 6.92 years, P<0.001, Figure 1F). This result indicated 167 

that the two subclasses had distinct prognostic patterns. 168 

Correlation of glioma subclasses with pyroptosis-related genes 169 

Two subclasses were obtained based on pyroptosis-related genes. To explore the 170 

pathway enrichment for the two subclasses, we performed GSVA by transforming the 171 

expression data from a gene-by-sample matrix to a gene set by two subclasses. Then, 172 

differential pathways were enriched in the two subclasses. Compared with cluster 1, the 173 

GSVA results indicated that cluster 2 had 182 kinds of significantly differential 174 

signaling pathways (Additional file 2: Table S3). The upregulated pathways were 175 

associated with immune-related pathways, such as autoimmune, allograft rejection, 176 
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graft versus host disease, primary immunodeficiency, antigen processing and 177 

presentation. Some signaling pathways, such as the cytosolic DNA sensing pathway, 178 

NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and 179 

metabolism-related pathways, were also significantly enriched. The significantly 180 

downregulated pathway was long-term potentiation (Figure 2A).  181 

Clinical characteristics and transcriptomes of glioma subclasses 182 

We explored the correlation of subclasses with clinical characteristics (Figure 2B). 183 

Compared with patients in cluster 2 with a favorable prognosis, patients in cluster 1 184 

tended to have GBM (P<0.001), WHO grade IV (P<0.001), a higher proportion of 185 

age >41 years, 1p19q non-codeletion status (P<0.001), and IDH wildtype status 186 

(P<0.001). Sex, PRS type and radiotherapy status were not associated with the 187 

molecular subclasses (P>0.05). For the pyroptosis-related genes except CASP9, 188 

significant differential expression was observed in the two clusters. Among these 189 

differentially expressed genes, all genes were upregulated in cluster 1 and 190 

downregulated in cluster 2 (Figure 2B). We also compared the differences in pyroptosis-191 

related genes in patients with different histologies, grades, IDH mutation statuses, and 192 

1p19q statuses. Compared with the LGG group, the GBM group had one upregulated 193 

gene (AIM2) and 21 downregulated genes (Additional file 3: Figure S1A). Twenty-one 194 

DEGs were found for grade, and their expression increased with increasing WHO grade 195 

(P<0.005, Additional file 3: Figure S1B). For IDH status, 25 DEGs were found 196 

(Additional file 3: Figure S1C). Thirty pyroptosis-related DEGs were found for 1p191 197 

status (Additional file 3: Figure S1D). 198 
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We further performed differential expression analysis between cluster 1 and cluster 2. 199 

A total of 392 DEGs were found, 18 genes were upregulated, and 372 genes were 200 

downregulated in cluster 2 (Additional file 2: Table S4). GO and KEGG enrichment 201 

analyses were performed for all DEGs (Additional file 2: Table S5 and Table S6). A 202 

total of 874 differentially expressed functions were enriched, including 709 biological 203 

processes, 95 cellular components and 70 molecular functions. The top 30 enrichment 204 

results are presented in Additional file 3: Figure S2. Most of these functions were 205 

associated with immunity. In addition, 56 pathways were also identified in the KEGG 206 

analysis (Additional file 3: Figure S3), and the top five pathways were phagosome, 207 

Staphylococcus aureus infection, tuberculosis, complement and coagulation cascades, 208 

and human T-cell leukemia virus 1 infection. 209 

Correlation of glioma subclasses with immune status 210 

To explore the tumor heterogeneity between the two subclasses, we investigated the 211 

immune cell and immune function differences. Compared with cluster 2, cluster 1 had 212 

higher aDC, CD8+ T cell, DC, iDC, macrophage, mast cell, neutrophil, NK cell, pDC, 213 

T helper cell, Tfh cell, Th2 cell, TIL, and Treg levels (all P<0.001, Additional file 3: 214 

Figure S4A). Similarly, cluster 1 had higher immune function scores than cluster 2, 215 

including APC coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity, 216 

HLA, inflammation promotion, MHC class I, parainflammation, T cell coinhibition, 217 

type I IFN response and type II IFN response (all P<0.001, Additional file 3:  Figure 218 

S4B). 219 

Development of a pyroptosis-related prognostic signature in glioma 220 
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Initially, we performed univariate Cox regression to identify the correlations of the 30 221 

pyroptosis-related genes with OS (Additional file 3: Figure S5A) in the CGGA cohort. 222 

In total, 20 pyroptosis-related genes were identified as associated with the overall 223 

survival of glioma patients. The Kaplan-Meier plot indicated that high expression of 224 

CASP3, CASP4, CASP5, CASP6, CASP8, ELANE, GSMAD, IL6, NLRP3, NOD1, 225 

NOD2, PLCG1, PRKACA, PYCARD, and SCAF11 was associated with poorer OS in 226 

glioma. Using 20 prognostic pyroptosis-related genes, we developed a prognostic 227 

signature by performing LASSO regression in the CGGA training cohort (Additional 228 

file 3: Figure S5B and S5C). Fifteen of the 20 prognostic genes were used to develop 229 

the risk signature. We calculated the risk score for each sample using the regression 230 

coefficients of the 15 genes (Additional file 2: Table S7). Glioma patients with risk 231 

scores greater than the median value were divided into a high-risk group, and the others 232 

were divided into a low-risk group. Compared with the low-risk group, the high-risk 233 

group was more likely to have GBM (P<0.001), a higher WHO grade (P<0.001), 234 

recurrence (P<0.001), older age (P<0.001), IDH wildtype status (P<0.001), 1p19q non-235 

codeletion status (P<0.001), and a history of chemotherapy (P<0.001). The heatmap 236 

showed the association between the risk group and clinical parameters and differentially 237 

expressed genes of the high- and low-risk groups (Additional file 3: Figure S5D). 238 

Furthermore, we found that glioma patients belonging to cluster 1, patients with a poor 239 

prognosis, patients with GBM, patients with WHO grade IV  patients with 1p19q non-240 

codeletion status and patients with IDH wildtype status had higher risk scores (all 241 

P<0.001, Additional file 3: Figure S6). 242 
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The Kaplan-Meier analysis showed that the high-risk group had a significantly poorer 243 

OS than the low-risk group (Figure 3A-3 B). Univariate Cox regression indicated that 244 

the risk score was positively associated with OS in glioma (HR=3. 105, 95% CI: 2.681–245 

3.596, P<0.001, Figure 3C). Multivariate Cox regression suggested that the risk score 246 

was an independent unfavorable prognostic predictor in glioma (HR=1.685, 95% CI: 247 

1.392–2.039, P<0.001, Figure 3D). In addition, PRS type, tumor grade, and age were 248 

positively associated with OS. However, chemotherapy, wildtype IDH status, and 249 

1p19q status were negatively associated with OS in the CGGA training cohort. The 250 

PCA plot indicated that patients in different risk groups were separated into obviously 251 

different clusters (Figure 3E). Time-dependent receiver operating characteristic 252 

analysis was performed to evaluate the predictability of the prognostic model. Our 253 

results showed that the AUCs at 1 year, 2 years, and 3 years were 0.717, 0.784 and 254 

0.773 (Figure 3F), respectively. We further compared the OS status among different 255 

histology, IDH status, 1p19q codeletion status, and grade subgroups. The results 256 

showed that the OS of the high-risk group was still poorer than that of the low-risk 257 

group (Additional file 3: Figure S7, all P<0.001). 258 

External validation of the pyroptosis-related prognostic signature in glioma 259 

To further validate the prognostic value of the pyroptosis-related gene model, we also 260 

calculated the risk score of glioma patients in the TCGA cohort using the regression 261 

coefficients of the CGGA cohort. The Kaplan-Meier analysis indicated a significant 262 

correlation of the high-risk group with worse OS than the low-risk group (Figure 4A-263 

4C). Univariate Cox regression showed that the risk score was significantly associated 264 
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with OS in the TCGA cohort (HR=2.084, 95% CI: 1.890-2.297, P<0.001, Figure 4D). 265 

In multivariate Cox regression, the risk score was also an independent prognostic 266 

indicator (HR=1.425, 95% CI: 1.247–1.629 P<0.001, Figure 4E). The PCA plot 267 

validated the high- and low-risk distribution of all glioma patients based on the TCGA 268 

cohort. Furthermore, the AUCs of the risk score were 0.844 at 1 year, 0.863 at 2 years, 269 

and 0.874 at 3 years (Figure 4F). 270 

Prognostic prediction models 271 

To further evaluate the clinical prediction value of the prognostic signature, we 272 

constructed a prognostic nomogram model based on multivariate Cox regression 273 

analysis that included all clinical parameters in the CGGA cohort The calibration curves 274 

indicated that the clinical nomogram model could precisely predict the 1-year, 3-year 275 

and 5-year OS of glioma patients (C-index=0.799). The predictive accuracy of this 276 

nomogram was well validated in the TCGA cohort (C-index=0.841, Figure 5). 277 

Functional enrichment and immune infiltration analyses based on the prognostic 278 

signature 279 

We further explored the underlying biological functions that define the survival of 280 

glioma patients. We first performed DEG analysis between the high-risk and low-risk 281 

groups and then annotated the functions of the DEGs in terms of biological processes, 282 

cellular components, and molecular functions using GO enrichment and KEGG 283 

pathways. We identified 338 DEGs in the CGGA cohort (Additional file 2: Table S8) 284 

and 2600 DEGs in the TCGA cohort (Additional file 2: Table S9). The GO enrichment 285 

and KEGG pathway analyses indicated that the CGGA and TCGA cohorts shared some 286 
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enrichment results, such as extracellular matrix organization, extracellular structure 287 

organization, immune response, ECM-receptor interaction, and cell adhesion molecules 288 

(Figure 6A-6D). 289 

We also explored the differences in immune cells and immune functions based on the 290 

risk score in the CGGA (Figure 6E and Figure 6G) and TCGA datasets (Figure 6F and 291 

Figure 6H). As shown in the box plots, the immune cell score showed a similar trend in 292 

the CGGA and TCGA datasets. All immune cell scores were significantly upregulated 293 

in the high-risk group. The immune function differences of the different risk groups 294 

were the same in the CGGA and TCGA datasets (all P<0.001). All immune function 295 

scores were significantly upregulated in the high-risk group. Significant expression 296 

levels were also observed among different immune subtypes, which indicated that the 297 

glioma prognosis risk could be associated with immune status (Additional file 3: Figure 298 

S8). We also explored the correlation of the expression of target genes with cancer stem 299 

cell-like properties (RNAss, DNAss) and the TME (stromal score, immune score, and 300 

ESTIMATE score). We found that PCG1 was negatively associated with RNAss, the 301 

stromal score, the immune score, and the ESTIMATE score. SCAF11 was only 302 

negatively associated with DNAss. The rest of the genes showed positive correlations 303 

with RNAss, DNAss and the stromal, immune and ESTIMATE scores (Additional file 304 

3: Figure S9). 305 

Molecular alterations of pyroptosis-related genes based on the prognostic 306 

signature 307 

Molecular alterations of pyroptosis-related genes were also evaluated based on 308 
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histology in the TCGA dataset. NLRP2, NLRP7, and PLCG1 were the only gene 309 

alterations in LGG, and NLRP3, NLRP7, NLRP2, SCAF11, NOD1, PLCG1, NLRP1, 310 

and CASP1 were gene alterations in GBM. All gene alterations were within 2% (Figure 311 

7). The somatic copy number alteration analysis indicated significant differences 312 

among the pyroptosis-related genes. Among these genes, the copy variation number 313 

was significantly increased in GPX4, NLRP7, NLRP2, CASP3, CASP6, IL1B, CASP8, 314 

IL6, AIM2, NLRP4, NLRP3, PRKACA, ELANE, SCAF11, CASP9, NOD1, and 315 

PLCG1 and was significantly decreased in GSDMB, GSDMD, NLRP1, CASP9, 316 

TIRAP, CASP1, CASP4, NOD2, CASP5, PYCARD, GSMDC, GSMDA, and IL18 in 317 

the high-risk group. The DNA methylation levels of the pyroptosis-related genes were 318 

also compared. The results showed that the overall DNA methylation levels were 319 

significantly decreased in the high-risk group and increased in the low-risk group. 320 

Construction of a ceRNA network based on the prognostic signature 321 

A ceRNA network was constructed based on the differentially expressed mRNAs, 322 

lncRNAs and miRNAs between the high-risk and low-risk groups in the TCGA dataset. 323 

We identified 763 downregulated mRNAs, 1176 upregulated mRNAs, 116 324 

downregulated lncRNAs, 132 upregulated lncRNAs (Additional file 2: Table S10), 47 325 

downregulated miRNAs and 71 upregulated miRNAs (Additional file 2: Table S11). 326 

Finally, 39 mRNAs (28 upregulated and 11 downregulated), 26 lncRNAs (15 327 

upregulated and 15 downregulated) and 14 miRNAs (13 upregulated and 1 328 

downregulated) were included in the ceRNA network (Figure 8). The Kaplan-Meier 329 

curves suggested that 13 lncRNAs (positive correlation: AC025211.1, AC068643.1, 330 
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GDNF-AS1, and LINC00519; negative correlation: ADH1L1-AS2, CRNDE, 331 

FAM181A-AS1, HOTAIRM1, MCF2L-AS1, MIR210HG, NEAT1, SLC6A1, and 332 

SNHG9; Additional file 3: Figure S10), 41 mRNAs (Additional file 2: Table S12 and 333 

Additional file 3: Figure S11) and 8 miRNAs (miR-21, miR-155, miR-200a, miR-216a, 334 

miR-221, miR-222, miR-429, and miR-503; Additional file 3: Figure S12) were 335 

associated with OS in glioma patients. 336 

Drug sensitivity analysis 337 

To identify potential target drugs, we performed correlations of the identified prognostic 338 

signature genes with drugs. We identified 257 pairs of significant gene-drug 339 

correlations (Additional file 2: Table S13). There were 9 pairs with correlation 340 

coefficients >0.5 or <-0.5. 341 

ELANE-hydroxyurea, ELANE-cyclophosphamide, CASP3-nelarabine, NOD2-342 

imiquimod, NLRP3-rebimastat, ELANE-ABT-199, ELANE-imexon, and NOD2-343 

isotretinoin showed drug sensitivity. PRKACA-cobimetinib showed drug resistance 344 

(Figure 9). 345 

CASP8 promotes the progression of glioma cells 346 

We selected the CASP8 to validate the molecular function because CASP8 showed 347 

significant differences between normal tissue and GBM or LGG in GTEx database 348 

(Additional file 3: Figure S13). We firstly detected the expression of CASP8 in glioma 349 

cell lines using the Western blot analysis, and found CASP8 is the most highly 350 

expressed in LN299 cell. We built the CASP8-si LN229, H4 and U87 cells of glioma. 351 

The qPCR indicated mRNA level of CASP8 is significantly down-regulated in U87 and 352 
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LN229 cells. Furthermore, the silence of CASP8 expression inhibited the cell migration 353 

ability (Figure 10). The clonogenic assay also showed that the number of clonogenicity 354 

of U87 and LN229 cells were significantly suppressed after knockout of CASP8. These 355 

results suggested that CASP8 promotes the progression of glioma cells.   356 

DISCUSSION 357 

The traditional histologic-based classification has some limitations, although this 358 

classification system has been updated several times over the years and serves clinicians 359 

well. One of the primary limitations is interobserver variability(16). A previous study 360 

reported that the concordance for reviewing a case is only approximately 50% among 361 

different neuropathologists, especially for astrocytic glioma versus 362 

oligodendroglioma(17). The development of genomics has allowed us to better 363 

understand the differences in prognosis and molecular features and promote effective 364 

treatment in glioma subclasses based on molecular features. Using 30 pyroptosis-365 

related genes, we divided glioma patients into two subtypes. Significant overall survival 366 

differences were observed between cluster 1 and cluster 2. GSVA indicated that cluster 367 

1 was enriched in some immune-related pathways. Cluster 1 and cluster 2 showed 368 

absolute differences in immune cells and immune functions. The infiltration levels of 369 

all kinds of immune cells, except Th1 cells, were higher in cluster 1, which had a poor 370 

prognosis than in cluster 2. Cluster 1 also showed more significant trends in some main 371 

immune function levels, such as immune checkpoints, inflammation promotion, par 372 

inflammation. A recent study reported that pyroptosis presents antitumor immune 373 

function in tumors, namely, pyroptosis-induced inflammation triggers robust antitumor 374 
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immunity and can synergize with checkpoint blockade(18). Moreover, some key 375 

pathways were also highly enriched in cluster 1, such as the NOD-like receptor 376 

signaling pathway, Toll-like receptor signaling pathway, and cytosolic DNA sensing 377 

pathway, which were reported to be involved in glioma progression(19-21). These 378 

results indicated that pyroptosis-related genes divided glioma patients into two-379 

dimensional distributions well. 380 

We established a prognostic signature based on 15 pyroptosis-related genes. This 381 

prognostic signature was well validated in an external independent cohort, and in terms 382 

of its predictability, AUCs of 0.844, 0.863, and 0.874 were achieved for 1, 2, and 3 383 

years, respectively, which showed its high discernibility. Combining clinical features 384 

and the risk score of the 15 genes, we developed a nomogram for clinical application. 385 

The CGGA and TCGA datasets showed high consistency. These results indicated that 386 

the prognostic signature based on pyroptosis-related genes has high clinical value. 387 

The signature genes were involved in two biological mechanisms of pyroptosis. The 388 

assembly of inflammasome bodies is the initial step of the classical pyroptosis pathway. 389 

The inflammasome is a macromolecular protein complex in the cytoplasm necessary 390 

for the occurrence of inflammation and can recognize dangerous signaling molecules 391 

such as bacteria and viruses. The inflammasome is mainly composed of pattern 392 

recognition receptors (PRRs), apoptosis-associated speck-like protein (ASC) and pro-393 

caspase-1 precursors(22). PRRs are receptor proteins responsible for recognizing 394 

different signal stimuli in cells. They are mainly composed of nucleotide-binding 395 

oligomerization domain-like receptor protein (NLRP) 1, NLRP3, nucleotide-binding 396 
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oligomerization domain-like receptor protein C4 (NLRC4), absent in melanoma 2 397 

(AIM2) and other components(15). ASC is an adaptor protein that is mainly composed 398 

of the N-terminal pyrindomain (PYD) and the C-terminal caspase activation and 399 

recruitment domain (CARD)(23). Procaspase-1 is an effector molecule that can 400 

specifically cleave GSDMD after activation. After the danger signal sensor NLR1, 401 

NLRP3 or AIM2 recognizes the danger signal molecule, the N-terminal PYD is 402 

combined with the N-terminal PYD of the adaptor protein. ASC then recruits Caspase-403 

1 through the interaction of the CARDCARD domain to complete the assembly of the 404 

inflamed body(24). This method of cell death mediated by Caspase-1 is called the 405 

classical pathway of pyroptosis(25). The non-classical pathway of pyrolysis is mainly 406 

mediated by Caspase-4, Caspase-5 and Caspase-11. After cells are stimulated by 407 

bacterial LPS, Caspases-4, -5, and -11 directly bind to bacterial LPS and are 408 

activated(26). Activated Caspases-4, -5, and -11 specifically cleave GSDMD and 409 

release the intramolecular inhibition of the GSDMD-N domain(27). The combination 410 

of the GSDMD-N-terminus and cell membrane phospholipids causes cell membrane 411 

pore formation, cell swelling and rupture and induces cell pyrolysis; the GSDMD-N-412 

terminus can also activate Caspase-1 by activating the NLRP3 inflammasome(28). 413 

Activated Caspase-1 stimulates the maturation of IL-18 and IL-1β precursors, and IL-414 

18 and IL-1β are secreted to the outside of the cell and amplify the inflammatory 415 

response. Yang et al found that in the nonclassical pathway that relies on Caspase-11, 416 

gap junction protein-1 (Pannexin-1) can be cleaved, and the cleavage of Pannexin-1 can 417 

activate its own channel and release ATP, which induces pyrolysis(29). Lamkanfi et al 418 
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found that in the nonclassical pathway that relies on Caspase-11, Pannexin-1 cleavage 419 

can also activate the NLRP3 inflammasome, which in turn activates Caspase-1 and 420 

induces the occurrence of pyroptosis(30). According to the results, mutations of 421 

pyroptosis-related genes are mainly attributed to the classical pathway of pyrolysis. 422 

More research is needed to validate the molecular mechanisms. 423 

Based on the risk score, we classified glioma patients into high- and low-risk groups to 424 

discriminate clinical outcomes. We further explored the molecular features between the 425 

high- and low-risk groups. The functional enrichment analysis results were similar in 426 

the TCGA and CGGA datasets, and the same pathways appeared in the two datasets, 427 

such as ECM-receptor interaction, GABAergic synapse, focal adhesion, and 428 

extracellular matrix organization. The immune cells and immune functions showed 429 

similar trends: immune cell and functional scores were higher in the high-risk group. 430 

The clinical features showed that cluster 1 had a higher risk score and poorer prognosis 431 

than cluster 2. The results indicated that the classification was accurate and validated in 432 

the risk model. Furthermore, we compared the gene alterations, CNVs, and DNA 433 

methylation levels. Significantly different levels were observed, which reflected the 434 

different molecular features of the different risk groups. The ceRNA network identified 435 

several key lncRNA-miRNA-mRNA regulatory networks: FAM181A-AS1-miR-21-436 

(CPEB3, SAIB1, BLC7A, MAP2K3, JAG1, TGFBI, FAM46A, SPRY2, and CALD1). 437 

The survival analysis further suggested the regulatory correlation: elevated FAM18A-438 

AS1 and miR-21 were associated with poor prognosis in glioma, and low expression of 439 

BCL7A, SATB1 and CPEB3 was associated with favorable prognosis. Previous 440 
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experiments have reported the promoting role of miR-21 in glioma(31), and 441 

upregulation of SATB1 and CPEB3 is associated with the development and progression 442 

of glioma(32, 33). The drug sensitivity analysis indicated that NOD2, ELANE, CASP3, 443 

and PYCARD showed sensitivity to small molecular drugs, and PRKACA, IL6, and 444 

NLLRP3 showed resistance to some drugs. It was reported that the inhibition of the 445 

NLRP3 inflammasome by beta-hydroxybutyrate can suppress the migration of glioma 446 

cells(34). These results may provide some guidelines for clinical practice. 447 

The present study indicated that pyroptosis-related genes can be used to classify glioma 448 

patients into two subclasses based on different molecular features and clinical 449 

characteristics. The established prognostic model based on 15 pyroptosis-related genes 450 

not only predicted the prognosis of glioma patients but also reflected the molecular 451 

alterations, immune infiltration statuses, and stem cell-like properties of different risk 452 

groups. The classification based on the risk score of prognostic signature genes revealed 453 

a lncRNA-miRNA-mRNA regulatory network. The correlation of signature genes with 454 

drug sensitivity may provide a rationale for clinical applications. Finally, our study 455 

provides a new understanding of pyroptosis in the development and progression of 456 

glioma and contributes new important insights for promoting glioma treatment 457 

strategies.       458 
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Figure legends 584 

Figure 1 Identification of glioma subclasses using consensus clustering method in the 585 

CGGA dataset. (A) Flow chart of the study. (B) PPI network indicating the interactions 586 

among pyroptosis-related genes (interaction score=0.7). (C) The circle plot of 587 

correlation among pyroptosis-related genes (green line: negative correlation, red line: 588 

positive correlation). (D) Consensus matrix method clustering using 30 pyroptosis-589 

related genes. (E) PCA analysis showed the distribution of two glioma subclasses in the 590 

CGGA dataset. (F) Overall survival curve of two clusters in the cohort. 591 

Figure 2 Characteristics of patients in cluster 1 and cluster 2 in CGGA cohort. (A) 592 

Heatmap of gene set variation analysis of the pyroptosis-related genes from cluster 1 593 

and cluster 2. (B) Heatmap showed the correlations between two subclasses and clinical 594 

characteristics and differentially expressed pyroptosis-related genes in the CGGA 595 
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cohort.  596 

Figure 3 Establishment of a pyroptosis-related gene prognostic signature in the CGGA 597 

cohort. (A) Kaplan-Meier curves for OS of patients in high- and low-risk group in 598 

CGGA Cohort. (B) Distribution of risk score of all patients of CGGA cohort, and 599 

Patients’ survival time distribution. (C) Forest plot of univariate cox regression between 600 

risk score and prognosis of glioma. (D) Forest plot of multivariate cox regression of 601 

between risk score and prognosis of glioma. (E) PCA plot for signature genes based on 602 

risk score group. (F) ROC curves showed the predictive efficiency of risk score at 1-603 

year, 2-year, 3-year point. 604 

Figure 4 External validation of a pyroptosis-related gene prognostic signature in the 605 

TCGA cohort. (A) Kaplan-Meier curves for OS of patients in high- and low-risk group 606 

in TCGA Cohort. (B) Distribution of risk score of all patients of TCGA cohort and 607 

Patients’ survival time distribution of TCGA cohort. (C) Forest plot of univariate cox 608 

regression between risk score and prognosis of glioma in TCGA cohort. (D) Forest plot 609 

of multivariate cox regression of between risk score and prognosis of glioma in TCGA 610 

cohort. (E) PCA plot for signature genes based on risk score group in TCGA cohort. (F) 611 

ROC curves showed the predictive efficiency of risk score at 1-year, 2-year, 3-year 612 

point in TCGA cohort. 613 

Figure 5 Establishment and validation of nomogram model based on prognostic 614 

signature genes. (A) Nomogram model established in the CGGA cohort. (B) The 1-year 615 

calibration curves in the CGGA cohort. (C) The 3-year calibration curves in the CGGA 616 

cohort. (D) The 5-year calibration curves in the CGGA cohort. (E) The 1-year 617 
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calibration curves in the TCGA cohort. (F) The 3-year calibration curves in the TCGA 618 

cohort. (G) The 5-year calibration curves in the TCGA cohort. 619 

Figure 6 Functional enrichment and immune status analysis. (A) Barplot of enrichment 620 

analysis based on prognostic-related signature genes in CGGA cohort. (B) Bubble plot 621 

of enrichment analysis based on prognostic-related signature genes in CGGA cohort. 622 

(C) Barplot of enrichment analysis based on prognostic-related signature genes in 623 

TCGA cohort. (D) Bubble plot of enrichment analysis based on prognostic-related 624 

signature genes in TCGA cohort. (E) Boxplot showed the ssGSEA scores for immune 625 

cells based on risk group in CGGA cohort. (F) Boxplot showed the ssGSEA scores for 626 

immune cells based on risk group in TCGA cohort. (G) Boxplot showed the ssGSEA 627 

scores for immune pathways based on risk group in CGGA cohort. (H) Boxplot showed 628 

the ssGSEA scores for immune pathways based on risk group in TCGA cohort 629 

Figure 7 Molecular alterations of pyroptosis-related genes in TCGA dataset. (A) The 630 

mutations frequencies in low-risk group. (B) The mutations frequencies in high-risk 631 

group. (C) Somatic copy number alteration based on risk groups. (D) DNA methylation 632 

expression based on risk groups. 633 

Figure 8 The ceRNA network based on risk groups in TCGA dataset (red: up-regulation. 634 

blue: down-regulation). 635 

Figure 9 Drug sensitivity analysis for identified prognostic-related genes based on 636 

TCGA dataset (Top 16). (A) NOD2 and isotretinoin. (B) ELANE and Imexon. (C) 637 

ELANE and ABT-199. (D) NLRP3 and Rebimastat. (E) NOD2 and Imuiquimod. (F) 638 

CASP3 and Nelarabine. (G) ELANE and Cyclophosphamid. (H) ELANE and 639 
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Hydroxyurea. (I) PRKACA and Cobimetinib. (J) PRKACA and Rapamycin. (K) 640 

ELANE and Nandrolone. (L) PRKACA and Temsirolimus. (M) NOD2 and Eleschomol. 641 

(N) IL6 and geldanamycin. (O) IL6 and Lenvatinib. (P) PYCARD and Cyclophospharr 642 

Figure 10 CASP8 promotes progression of glioma cells. (A) The expression of CASP8 643 

protein in human HA and glioma cell lines. (B) The western blot of CASP8 in U87, 644 

U1251, H4 cell lines after siRNA. (C) The mRNA expression level of CSAP8 in U87 645 

and U251 after siRNA. (D and E) The scratch assay of CASP8-si in U87 and U251 cell 646 

lines. (F and G) Transwell assay of CASP8-si U87 and U251 cell lines. (H and I) The 647 

clonogenic assay of CASP8 in U87 and U251 cell lines. 648 

Supplementary materials legends 649 

Additional file 1:The details of experiments process in vitro 650 

Additional file 2: Table S1-S12.xlsx 651 

Table S1 The 30 pyroptosis associated genes used for classification 652 

Table S2 Glioma classification pattern   653 

Table S3 GSVA enrichment analysis between these distinct pyroptosis-regulated 654 

clusters   655 

Table S4 The result of differential expression analysis (Cluster 2 vs Cluster 1) 656 

Table S5 Functional enrichment analyses of subclass differentially expressed genes 657 

(Cluster 2 vs Cluster 1)  658 

Table S6 Pathway enrichment analysis of differentially expressed genes from two 659 

subclasses   660 

Table S7 15 identified pyroptosis-related signature genes in prognostic model  661 
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Table S8 Differentially expressed genes from CGGA based on risk score    662 

Table S9 Differentially expressed genes from TCGA based on risk score    663 

Table S10 Differentially expressed lncRNA from TCGA based on risk score 664 

Table S11 Differentially expressed mir-RNA from TCGA based on risk score 665 

Table S12 Prognosis-related genes in the ceRNA network       666 

Table S13 Results of drug sensitivity based on 15 pyroptosis-related prognostic 667 

signature genes  668 

Additional file 3:  669 

Figure S1 Comparisons of different clinical parameters for pyroptosis-related genes. 670 

(A) LGG and GBM. (B) WHO II vs WHOIII vs WHO IV. (C) IDH: mutations vs 671 

wildtyp. (D)1p19_status: codel vs non-codel. 672 

Figure S2 Barplot of GO enrichment analysis for differentially expressed genes based 673 

on subclasses. 674 

Figure S3 KEEG pathways analysis for differentially expressed genes based on 675 

subclasses. 676 

Figure S4 Correlation of glioma subclasses with immune infiltration. (A) Immune cells. 677 

(B) immune function 678 

Figure S5 Identification of 215 genes risk signature for OS by LASSO regression in 679 

the CGGA cohort. (A) Forest plot of univariate cox regression of OS for 30 pyroptosis-680 

related genes. (B) Cross-validation for tuning parameters selection int the LASSO 681 

regression. (C) LASSO regression of the 15 OS-related genes. (D) Heatmap showed 682 

the association between risk group and clinical parameters and differentially expressed 683 
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genes of high- and low-risk group. 684 

Figure S6 Boxplot of risk score among different clinical characteristics. (A) Subclasses: 685 

Cluster 1 vs Cluster 2. (B) Outcomes: Dead vs Alive. (C) Histology: GBM vs LGG. (D) 686 

Grade: WHO II vs WHO III vs WHO IV. (E) 1p19q status: Codeletion vs non-687 

codeletion. (F) IDH status: Mutant wildtype. 688 

Figure S7 Subgroup analysis of OS based on risk score. (A) LGG. (B) GBM. (C) IDH 689 

wildtype. (D) IDH mutation. (E) 1p9ql non-codel. (F) 1p9ql codel. (G) WHO II. (H) 690 

WHO III. (I) WHO IV 691 

Figure S8 Comparisons of 15 signature genes among different immune subtype. 692 

Figure S9 Correlation of expression of 15 signature genes with cancer stem cell-like 693 

properties (RNAss, DNAss) and TME (Stromal score, Immune score, and ESTIMATE 694 

Score. (A) RNAss. (B) DNAss. (C) Stromal score. (D) Immune score. (E) ESTIMATE 695 

score. 696 

Figure S10 Kaplan-Meier curves of lncRNAs for OS in the ceRNA network. (A) 697 

AC025211.1. (B) AC068643.1. (C)ADH1L1-AS2. (D) CRNDE. (E) FAM181A-AS1. 698 

(F) GDNF-AS1. (G) HOTAIRM1. (H) LINC00519 (I) MCF2L-AS1. (J) MIR210HG. 699 

(K) NEAT1 (L)SLC6A1. (M) SNHG9.  700 

Figure S11 Forest plot of mRNAs for OS in the ceRNA network  701 

Figure S12 Kaplan-Meier curves of mir-RNAs for OS in the ceRNA network. (A) mir-702 

21. (B) mir-155. (C) mir-200a. (D) mir-216a. (E) mir-221. (F) mir-222. (G) mir-429. 703 

(H) mir-503. 704 

Figure S13 The expression levels of identified prognostic genes between tumor and 705 
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normal 706 

 707 
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