

1 **Title Page**

2 **Title:** Comprehensive analysis of pyroptosis-associated in molecular classification,
3 immunity and prognostic of glioma

4 **Running head:** Pyroptosis and glioma

5 **Authors and affiliations**

6 Peng Chen¹, Yanyan Li³, Na Li², Liangfang Shen², Zhanzhan Li^{2*}

7 Peng Chen, chenpendsurgery@hotmail.com, Department of orthopedics, Xiangya
8 Hospital, Central South University, Changsha, Hunan Province 410008, China

9 Yanyan Li, liyan4005@126.com, Department of Nursing, Xiangya Hospital, Central
10 South University, Changsha, Hunan Province 410008, China

11 Na Li, 21739082@qq.com, Department of Oncology, Xiangya Hospital, Central South
12 University, Changsha, Hunan Province 410008, China.

13 Liangfang Shen, liangfangshen86@126.com, Department of Oncology, Xiangya
14 Hospital, Central South University, Changsha, Hunan Province 410008, China.

15 Zhanzhan Li*, lizhanzhan@csu.edu.cn, Department of Oncology, Xiangya Hospital,
16 Central South University, Changsha, Hunan Province 410008, China.

17 ***Correspondence to:** Zhanzhan Li, No.87, Xiangya Road, Kaifu District, Changsha,
18 Hunan Province 410008, China. **E-mail:** lizhanzhan@csu.edu.cn

19

20

21

22

23 **Abstract**

24 Integrative analysis was performed in the Chinese Glioma Genome Atlas and The
25 Cancer Genome Atlas to describe the pyroptosis-associated molecular classification
26 and prognostic signature in glioma. Pyroptosis-related genes were used for consensus
27 clustering and to develop a prognostic signature. The immune statuses, molecular
28 alterations and clinical features of differentially expressed genes were analyzed among
29 different subclasses and risk groups. A lncRNA-miRNA-mRNA network was built, and
30 drug sensitivity analysis was used to identify small molecular drugs for the identified
31 genes. Glioma can be divided into two subclasses using 30 pyroptosis-related genes.
32 Cluster 1 displayed high immune signatures and poor prognosis as well as high
33 immune-related function scores. A prognostic signature based on 15 pyroptosis-related
34 genes of the CGGA cohort can predict the overall survival of glioma and was well
35 validated in the TCGA cohort. Cluster 1 had higher risk scores. The high-risk group had
36 high immune cell and function scores and low DNA methylation of pyroptosis-related
37 genes. The differences in pyroptosis-related gene mutations and somatic copy numbers
38 were significant between the high-risk and low-risk groups. The ceRNA regulatory
39 network uncovered the regulatory patterns of different risk groups in glioma. Nine pairs
40 of target genes and drugs were identified. In vitro, CASP8 promotes the progression of
41 glioma cells. Pyroptosis-related genes can reflect the molecular biological and clinical
42 features of glioma subclasses. The established prognostic signature can predict
43 prognosis and distinguish molecular alterations in glioma patients. Our comprehensive
44 analyses provide valuable guidelines for improving glioma patient management and

45 individualized therapy.

46 **Keywords:** Glioma, pyroptosis, prognostic signature, Tumor immunity, clinical
47 nomogram

48 **INTRODUCTION**

49 Gliomas are the most common types of primary tumors in the central nervous system
50 and one of the most devastating tumors(1). At present, the main treatment methods of
51 glioma are surgical resection, radiotherapy, chemotherapy or chemoradiotherapy(2).

52 Although great efforts have been made to improve glioma treatment, the prognosis of
53 glioma patients remains poor(3). One of the main reasons is that the molecular
54 mechanism is still not fully understood. Therefore, the exploration and research of the
55 underlying mechanism of gliomas and identification of potential treatment targets
56 followed by application in clinical practice have important theoretical and practical
57 significance.

58 Pyroptosis is one of the pathways involved in programmed cell death, such as apoptosis,
59 ferroptosis, necroptosis, and autophagy.(4) Cookson et al. first used pyroptosis to
60 describe the caspase-1-dependent pattern of cell death found in macrophages(5).

61 Pyroptosis, distinct from apoptosis and necrosis, contributes to a range of human
62 diseases as a new mechanism of cell death. Pyroptosis is a proinflammatory form of
63 programmed cell death that is dependent on the activity of caspase acid-specific
64 proteases(6). In the coupling of the amino-terminal and carboxy-terminal linkers of
65 gasdermin D (GSDMD) by caspases, the latter is displaced onto the membrane and
66 perforated, inducing moisture penetration, cell swelling and the release of inflammatory

67 factors, which is followed by pyroptosis(7). A previous study reported that pyroptosis
68 plays an important role in immunity and diseases. Pyroptosis can promote the death of
69 damaged cells during infection and acts as an alarm signal for the recruitment of
70 immune cells to the site of infection to promote the removal of pathogens, thus
71 effectively protecting the body(8). In recent years, its role in tumorigenesis and cancer
72 development has been studied comprehensively. Various regulators have been reported
73 to be involved in the process of pyroptosis and play pivotal roles in the progression of
74 tumors, such as hepatocellular carcinoma, lung cancer, and breast cancer(9-11).
75 However, few studies have investigated the role of pyroptosis in glioma, and
76 comprehensive analyses of pyroptosis regulators in glioma, their correlation with
77 clinical characteristics and their prognostic value have not been reported.
78 In the present study, we first outlined the molecular subtypes of gliomas based on
79 pyroptosis-related genes in the CGGA dataset and described the clinical and molecular
80 characteristics and immune status of each subclass. Then, we developed a prognostic
81 signature of pyroptosis-related genes based on the CGGA cohort, validated this
82 prognostic signature in the TCGA cohort. Furthermore, we explored the clinical and
83 molecular patterns, including immune infiltration, somatic copy number alterations,
84 mutations, and DNA methylation, and established a lncRNA-miRNA-mRNA
85 regulatory network. Finally, we explored the correlation between small molecular drugs
86 and the identified prognostic signature genes. Our comprehensive analyses provide new
87 insight into the functions of pyroptosis in the initiation, development, and progression
88 of glioma.

89 **MATERIALS AND METHODS**

90 **Data source**

91 We downloaded the genomic data, copy number alteration, methylation and clinical
92 data of glioma patients from the CGGA (<http://www.cgga.org.cn/>) and TCGA databases
93 (<https://portal.gdc.cancer.gov/>). Additional gene-centric RMA-normalized gene
94 expression profiles and drug response data of over 1000 cancer cell lines were accessed
95 from the Genomics of Drug Sensitivity in Cancer (GDSC) database
96 (<https://www.cancerrxgene.org/downloads>). Immune-associated data, including
97 immune cells and immunophenoscores, were downloaded from TCIA
98 (<https://tcia.at/home>). Thirty-three pyroptosis-related genes were defined from a
99 previous publication and are provided in Table S1(12-15).

100 **Identification of glioma subclasses and Gene set variation analysis**

101 We identified the optimal clustering number visualizing consensus matrix, tracking plot,
102 and cumulative distribution function plot. In addition, a T-distributed stochastic
103 neighbor embedding-based approach was used to validate the clustering in glioma
104 patients. We calculated the enrichment scores for every sample using the GSVA R
105 package.

106 **Development and validation of a prognostic signature**

107 We developed a pyroptosis-related prognostic signature based on the CGGA training
108 cohort. Twenty differentially expressed genes with $P < 0.05$ were entered into LASSO
109 Cox regression, which identified potential genes for the prognostic signature in the
110 CGGA training cohort. Then, we calculated the risk score for each sample of the CGGA

111 and TCGA validation cohorts using the obtained regression coefficient in the CGGA
112 training cohort: risk score =coef1*gene1 expression+coef2* gene2
113 expression+...coefn*genen expression. The CGGA and TCGA samples were divided
114 into a high-risk group and a low-risk group based on the median risk score. Receiver
115 operating characteristic curves were plotted to evaluate the 1-year, 2-year, and 3-year
116 sensitivity and specificity of the prognostic signature. We also established a prognostic
117 nomogram to evaluate the clinical value of the prognostic signature. Calibration
118 analysis of the prognostic predictive value of the nomogram was carried out.

119 **Functional enrichment analysis, estimation of tumor stem cell-like properties and**
120 **immune infiltration**

121 Gene Ontology and KEGG pathway analyses were performed using the “clusterProfiler”
122 package. We used single-sample gene set enrichment analysis (ssGSEA) to estimate the
123 enrichment score of stem cell-like properties (RNAss, DNAss) and the TME (stromal
124 score, immune score, and ESTIMATE score) in the TCGA cohort because the CGGA
125 dataset did not provide such data. The immune-related cell and function scores were
126 also calculated for each sample (downloaded from <https://www.gsea-msigdb.org/>).

127 **Somatic copy number alteration, mutation, and DNA methylation analysis**

128 Based on the risk groups in the TCGA cohort, we compared the somatic copy number
129 alteration, mutation, and DNA methylation levels between the high-risk and low-risk
130 groups using the “limma” R package.

131 **Construction of a ceRNA network and drug sensitivity**

132 To further explore the transcriptome regulation network of different risk groups, we

133 used Cytoscape version 3.8.2 to establish a lncRNA-miRNA-mRNA regulatory
134 network. We explore the correlation between small molecular drugs and the identified
135 prognostic signature genes using Pearson correlation analysis $|R|>0.25$ and $P>0.05$ were
136 considered significant.

137 **Verification of experiments in vitro**

138 We further performed the Western blot, cell migration assays, cell scratchy assays, and
139 clonogenic assays to verify the present finding. We selected the CASP8 to validate the
140 molecular function because CASP8 showed significant differences between normal
141 tissue and GBM or LGG, and the elevated expression is associated with poor prognosis.
142 The details of experiments process in vitro were supplied in Additional file 1.docx.

143 **Statistical analysis**

144 The log-rank test was used to compare the survival curves of Kaplan-Meier analysis.
145 The hazard ratio (HR) and 95% confidence interval (CI) of each gene and clinical
146 parameters were calculated when univariate and multivariate Cox regression were
147 applied. All analyses were achieved using R software version 4.0. A two-sided P value
148 <0.05 was considered significant unless otherwise specified.

149 **RESULTS**

150 **Identification of glioma subclasses**

151 The flow chart of the data analysis is presented in Figure 1A. From two CGGA RNA-
152 seq datasets, we obtained 1018 samples of gene expression data and further identified
153 30 pyroptosis-related genes based on $MAD>0.5$. The gene symbols and descriptions of
154 the 30 pyroptosis-associated genes used for classification are listed in the Additional

155 file 2: Table S1. We first explored the interactions among these genes using PPIs (Figure
156 1B), and the PPI network indicated that CASP8, CASP4, CASP1, NLRP3, NLRP1 and
157 NLRC4 are hub genes. The correlation circle plot of the 30 genes is presented in Figure
158 1C (red: positive correlation; green: negative correlation). We identified the optimal k
159 value as 2 by estimating the comprehensive correlation coefficient. Therefore, we
160 divided the glioma samples into two different subclasses: cluster 1 and cluster 2. For
161 the optimal k value (k=2), the consensus matrix showed a relatively sharp and clear
162 boundary, indicating stable and robust clustering (Figure 1D). To verify the subclass
163 stability, we further performed t-sensitivity PCA and found that a two-dimensional t-
164 sensitivity distribution supported subtype clustering (Figure 1E). The consensus
165 clustering for each sample is listed in Additional file 2: Table S2. The Kaplan-Meier
166 analysis indicates that the median survival time was significantly shorter in cluster 2
167 than in cluster 1 (MST: 1.87 vs. 6.92 years, P<0.001, Figure 1F). This result indicated
168 that the two subclasses had distinct prognostic patterns.

169 **Correlation of glioma subclasses with pyroptosis-related genes**

170 Two subclasses were obtained based on pyroptosis-related genes. To explore the
171 pathway enrichment for the two subclasses, we performed GSVA by transforming the
172 expression data from a gene-by-sample matrix to a gene set by two subclasses. Then,
173 differential pathways were enriched in the two subclasses. Compared with cluster 1, the
174 GSVA results indicated that cluster 2 had 182 kinds of significantly differential
175 signaling pathways (Additional file 2: Table S3). The upregulated pathways were
176 associated with immune-related pathways, such as autoimmune, allograft rejection,

177 graft versus host disease, primary immunodeficiency, antigen processing and
178 presentation. Some signaling pathways, such as the cytosolic DNA sensing pathway,
179 NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and
180 metabolism-related pathways, were also significantly enriched. The significantly
181 downregulated pathway was long-term potentiation (Figure 2A).

182 **Clinical characteristics and transcriptomes of glioma subclasses**

183 We explored the correlation of subclasses with clinical characteristics (Figure 2B).
184 Compared with patients in cluster 2 with a favorable prognosis, patients in cluster 1
185 tended to have GBM ($P<0.001$), WHO grade IV ($P<0.001$), a higher proportion of
186 age >41 years, 1p19q non-codeletion status ($P<0.001$), and IDH wildtype status
187 ($P<0.001$). Sex, PRS type and radiotherapy status were not associated with the
188 molecular subclasses ($P>0.05$). For the pyroptosis-related genes except CASP9,
189 significant differential expression was observed in the two clusters. Among these
190 differentially expressed genes, all genes were upregulated in cluster 1 and
191 downregulated in cluster 2 (Figure 2B). We also compared the differences in pyroptosis-
192 related genes in patients with different histologies, grades, IDH mutation statuses, and
193 1p19q statuses. Compared with the LGG group, the GBM group had one upregulated
194 gene (AIM2) and 21 downregulated genes (Additional file 3: Figure S1A). Twenty-one
195 DEGs were found for grade, and their expression increased with increasing WHO grade
196 ($P<0.005$, Additional file 3: Figure S1B). For IDH status, 25 DEGs were found
197 (Additional file 3: Figure S1C). Thirty pyroptosis-related DEGs were found for 1p191
198 status (Additional file 3: Figure S1D).

199 We further performed differential expression analysis between cluster 1 and cluster 2.
200 A total of 392 DEGs were found, 18 genes were upregulated, and 372 genes were
201 downregulated in cluster 2 (Additional file 2: Table S4). GO and KEGG enrichment
202 analyses were performed for all DEGs (Additional file 2: Table S5 and Table S6). A
203 total of 874 differentially expressed functions were enriched, including 709 biological
204 processes, 95 cellular components and 70 molecular functions. The top 30 enrichment
205 results are presented in Additional file 3: Figure S2. Most of these functions were
206 associated with immunity. In addition, 56 pathways were also identified in the KEGG
207 analysis (Additional file 3: Figure S3), and the top five pathways were phagosome,
208 *Staphylococcus aureus* infection, tuberculosis, complement and coagulation cascades,
209 and human T-cell leukemia virus 1 infection.

210 **Correlation of glioma subclasses with immune status**

211 To explore the tumor heterogeneity between the two subclasses, we investigated the
212 immune cell and immune function differences. Compared with cluster 2, cluster 1 had
213 higher aDC, CD8+ T cell, DC, iDC, macrophage, mast cell, neutrophil, NK cell, pDC,
214 T helper cell, Tfh cell, Th2 cell, TIL, and Treg levels (all $P < 0.001$, Additional file 3:
215 Figure S4A). Similarly, cluster 1 had higher immune function scores than cluster 2,
216 including APC coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity,
217 HLA, inflammation promotion, MHC class I, parainflammation, T cell coinhibition,
218 type I IFN response and type II IFN response (all $P < 0.001$, Additional file 3: Figure
219 S4B).

220 **Development of a pyroptosis-related prognostic signature in glioma**

221 Initially, we performed univariate Cox regression to identify the correlations of the 30
222 pyroptosis-related genes with OS (Additional file 3: Figure S5A) in the CGGA cohort.
223 In total, 20 pyroptosis-related genes were identified as associated with the overall
224 survival of glioma patients. The Kaplan-Meier plot indicated that high expression of
225 CASP3, CASP4, CASP5, CASP6, CASP8, ELANE, GSMAD, IL6, NLRP3, NOD1,
226 NOD2, PLCG1, PRKACA, PYCARD, and SCAF11 was associated with poorer OS in
227 glioma. Using 20 prognostic pyroptosis-related genes, we developed a prognostic
228 signature by performing LASSO regression in the CGGA training cohort (Additional
229 file 3: Figure S5B and S5C). Fifteen of the 20 prognostic genes were used to develop
230 the risk signature. We calculated the risk score for each sample using the regression
231 coefficients of the 15 genes (Additional file 2: Table S7). Glioma patients with risk
232 scores greater than the median value were divided into a high-risk group, and the others
233 were divided into a low-risk group. Compared with the low-risk group, the high-risk
234 group was more likely to have GBM ($P<0.001$), a higher WHO grade ($P<0.001$),
235 recurrence ($P<0.001$), older age ($P<0.001$), IDH wildtype status ($P<0.001$), 1p19q non-
236 codeletion status ($P<0.001$), and a history of chemotherapy ($P<0.001$). The heatmap
237 showed the association between the risk group and clinical parameters and differentially
238 expressed genes of the high- and low-risk groups (Additional file 3: Figure S5D).
239 Furthermore, we found that glioma patients belonging to cluster 1, patients with a poor
240 prognosis, patients with GBM, patients with WHO grade IV patients with 1p19q non-
241 codeletion status and patients with IDH wildtype status had higher risk scores (all
242 $P<0.001$, Additional file 3: Figure S6).

243 The Kaplan-Meier analysis showed that the high-risk group had a significantly poorer
244 OS than the low-risk group (Figure 3A-3 B). Univariate Cox regression indicated that
245 the risk score was positively associated with OS in glioma (HR=3. 105, 95% CI: 2.681–
246 3.596, P<0.001, Figure 3C). Multivariate Cox regression suggested that the risk score
247 was an independent unfavorable prognostic predictor in glioma (HR=1.685, 95% CI:
248 1.392–2.039, P<0.001, Figure 3D). In addition, PRS type, tumor grade, and age were
249 positively associated with OS. However, chemotherapy, wildtype IDH status, and
250 1p19q status were negatively associated with OS in the CGGA training cohort. The
251 PCA plot indicated that patients in different risk groups were separated into obviously
252 different clusters (Figure 3E). Time-dependent receiver operating characteristic
253 analysis was performed to evaluate the predictability of the prognostic model. Our
254 results showed that the AUCs at 1 year, 2 years, and 3 years were 0.717, 0.784 and
255 0.773 (Figure 3F), respectively. We further compared the OS status among different
256 histology, IDH status, 1p19q codeletion status, and grade subgroups. The results
257 showed that the OS of the high-risk group was still poorer than that of the low-risk
258 group (Additional file 3: Figure S7, all P<0.001).

259 **External validation of the pyroptosis-related prognostic signature in glioma**

260 To further validate the prognostic value of the pyroptosis-related gene model, we also
261 calculated the risk score of glioma patients in the TCGA cohort using the regression
262 coefficients of the CGGA cohort. The Kaplan-Meier analysis indicated a significant
263 correlation of the high-risk group with worse OS than the low-risk group (Figure 4A-
264 4C). Univariate Cox regression showed that the risk score was significantly associated

265 with OS in the TCGA cohort (HR=2.084, 95% CI: 1.890-2.297, P<0.001, Figure 4D).

266 In multivariate Cox regression, the risk score was also an independent prognostic

267 indicator (HR=1.425, 95% CI: 1.247–1.629 P<0.001, Figure 4E). The PCA plot

268 validated the high- and low-risk distribution of all glioma patients based on the TCGA

269 cohort. Furthermore, the AUCs of the risk score were 0.844 at 1 year, 0.863 at 2 years,

270 and 0.874 at 3 years (Figure 4F).

271 **Prognostic prediction models**

272 To further evaluate the clinical prediction value of the prognostic signature, we

273 constructed a prognostic nomogram model based on multivariate Cox regression

274 analysis that included all clinical parameters in the CGGA cohort. The calibration curves

275 indicated that the clinical nomogram model could precisely predict the 1-year, 3-year

276 and 5-year OS of glioma patients (C-index=0.799). The predictive accuracy of this

277 nomogram was well validated in the TCGA cohort (C-index=0.841, Figure 5).

278 **Functional enrichment and immune infiltration analyses based on the prognostic**

279 **signature**

280 We further explored the underlying biological functions that define the survival of

281 glioma patients. We first performed DEG analysis between the high-risk and low-risk

282 groups and then annotated the functions of the DEGs in terms of biological processes,

283 cellular components, and molecular functions using GO enrichment and KEGG

284 pathways. We identified 338 DEGs in the CGGA cohort (Additional file 2: Table S8)

285 and 2600 DEGs in the TCGA cohort (Additional file 2: Table S9). The GO enrichment

286 and KEGG pathway analyses indicated that the CGGA and TCGA cohorts shared some

287 enrichment results, such as extracellular matrix organization, extracellular structure
288 organization, immune response, ECM-receptor interaction, and cell adhesion molecules
289 (Figure 6A-6D).

290 We also explored the differences in immune cells and immune functions based on the
291 risk score in the CGGA (Figure 6E and Figure 6G) and TCGA datasets (Figure 6F and
292 Figure 6H). As shown in the box plots, the immune cell score showed a similar trend in
293 the CGGA and TCGA datasets. All immune cell scores were significantly upregulated
294 in the high-risk group. The immune function differences of the different risk groups
295 were the same in the CGGA and TCGA datasets (all $P < 0.001$). All immune function
296 scores were significantly upregulated in the high-risk group. Significant expression
297 levels were also observed among different immune subtypes, which indicated that the
298 glioma prognosis risk could be associated with immune status (Additional file 3: Figure
299 S8). We also explored the correlation of the expression of target genes with cancer stem
300 cell-like properties (RNAss, DNAss) and the TME (stromal score, immune score, and
301 ESTIMATE score). We found that PCG1 was negatively associated with RNAss, the
302 stromal score, the immune score, and the ESTIMATE score. SCAF11 was only
303 negatively associated with DNAss. The rest of the genes showed positive correlations
304 with RNAss, DNAss and the stromal, immune and ESTIMATE scores (Additional file
305 3: Figure S9).

306 **Molecular alterations of pyroptosis-related genes based on the prognostic
307 signature**

308 Molecular alterations of pyroptosis-related genes were also evaluated based on

309 histology in the TCGA dataset. NLRP2, NLRP7, and PLCG1 were the only gene
310 alterations in LGG, and NLRP3, NLRP7, NLRP2, SCAF11, NOD1, PLCG1, NLRP1,
311 and CASP1 were gene alterations in GBM. All gene alterations were within 2% (Figure
312 7). The somatic copy number alteration analysis indicated significant differences
313 among the pyroptosis-related genes. Among these genes, the copy variation number
314 was significantly increased in GPX4, NLRP7, NLRP2, CASP3, CASP6, IL1B, CASP8,
315 IL6, AIM2, NLRP4, NLRP3, PRKACA, ELANE, SCAF11, CASP9, NOD1, and
316 PLCG1 and was significantly decreased in GSDMB, GSDMD, NLRP1, CASP9,
317 TIRAP, CASP1, CASP4, NOD2, CASP5, PYCARD, GSMDC, GSMDA, and IL18 in
318 the high-risk group. The DNA methylation levels of the pyroptosis-related genes were
319 also compared. The results showed that the overall DNA methylation levels were
320 significantly decreased in the high-risk group and increased in the low-risk group.

321 **Construction of a ceRNA network based on the prognostic signature**

322 A ceRNA network was constructed based on the differentially expressed mRNAs,
323 lncRNAs and miRNAs between the high-risk and low-risk groups in the TCGA dataset.
324 We identified 763 downregulated mRNAs, 1176 upregulated mRNAs, 116
325 downregulated lncRNAs, 132 upregulated lncRNAs (Additional file 2: Table S10), 47
326 downregulated miRNAs and 71 upregulated miRNAs (Additional file 2: Table S11).
327 Finally, 39 mRNAs (28 upregulated and 11 downregulated), 26 lncRNAs (15
328 upregulated and 15 downregulated) and 14 miRNAs (13 upregulated and 1
329 downregulated) were included in the ceRNA network (Figure 8). The Kaplan-Meier
330 curves suggested that 13 lncRNAs (positive correlation: AC025211.1, AC068643.1,

331 GDNF-AS1, and LINC00519; negative correlation: ADH1L1-AS2, CRNDE,
332 FAM181A-AS1, HOTAIRM1, MCF2L-AS1, MIR210HG, NEAT1, SLC6A1, and
333 SNHG9; Additional file 3: Figure S10), 41 mRNAs (Additional file 2: Table S12 and
334 Additional file 3: Figure S11) and 8 miRNAs (miR-21, miR-155, miR-200a, miR-216a,
335 miR-221, miR-222, miR-429, and miR-503; Additional file 3: Figure S12) were
336 associated with OS in glioma patients.

337 **Drug sensitivity analysis**

338 To identify potential target drugs, we performed correlations of the identified prognostic
339 signature genes with drugs. We identified 257 pairs of significant gene-drug
340 correlations (Additional file 2: Table S13). There were 9 pairs with correlation
341 coefficients >0.5 or <-0.5 .

342 ELANE-hydroxyurea, ELANE-cyclophosphamide, CASP3-nelarabine, NOD2-
343 imiquimod, NLRP3-rebimastat, ELANE-ABT-199, ELANE-imexon, and NOD2-
344 isotretinoin showed drug sensitivity. PRKACA-cobimetinib showed drug resistance
345 (Figure 9).

346 **CASP8 promotes the progression of glioma cells**

347 We selected the CASP8 to validate the molecular function because CASP8 showed
348 significant differences between normal tissue and GBM or LGG in GTEx database
349 (Additional file 3: Figure S13). We firstly detected the expression of CASP8 in glioma
350 cell lines using the Western blot analysis, and found CASP8 is the most highly
351 expressed in LN299 cell. We built the CASP8-si LN229, H4 and U87 cells of glioma.
352 The qPCR indicated mRNA level of CASP8 is significantly down-regulated in U87 and

353 LN229 cells. Furthermore, the silence of CASP8 expression inhibited the cell migration
354 ability (Figure 10). The clonogenic assay also showed that the number of clonogenicity
355 of U87 and LN229 cells were significantly suppressed after knockout of CASP8. These
356 results suggested that CASP8 promotes the progression of glioma cells.

357 **DISCUSSION**

358 The traditional histologic-based classification has some limitations, although this
359 classification system has been updated several times over the years and serves clinicians
360 well. One of the primary limitations is interobserver variability(16). A previous study
361 reported that the concordance for reviewing a case is only approximately 50% among
362 different neuropathologists, especially for astrocytic glioma versus
363 oligodendrogloma(17). The development of genomics has allowed us to better
364 understand the differences in prognosis and molecular features and promote effective
365 treatment in glioma subclasses based on molecular features. Using 30 pyroptosis-
366 related genes, we divided glioma patients into two subtypes. Significant overall survival
367 differences were observed between cluster 1 and cluster 2. GSVA indicated that cluster
368 1 was enriched in some immune-related pathways. Cluster 1 and cluster 2 showed
369 absolute differences in immune cells and immune functions. The infiltration levels of
370 all kinds of immune cells, except Th1 cells, were higher in cluster 1, which had a poor
371 prognosis than in cluster 2. Cluster 1 also showed more significant trends in some main
372 immune function levels, such as immune checkpoints, inflammation promotion, par
373 inflammation. A recent study reported that pyroptosis presents antitumor immune
374 function in tumors, namely, pyroptosis-induced inflammation triggers robust antitumor

375 immunity and can synergize with checkpoint blockade(18). Moreover, some key
376 pathways were also highly enriched in cluster 1, such as the NOD-like receptor
377 signaling pathway, Toll-like receptor signaling pathway, and cytosolic DNA sensing
378 pathway, which were reported to be involved in glioma progression(19-21). These
379 results indicated that pyroptosis-related genes divided glioma patients into two-
380 dimensional distributions well.

381 We established a prognostic signature based on 15 pyroptosis-related genes. This
382 prognostic signature was well validated in an external independent cohort, and in terms
383 of its predictability, AUCs of 0.844, 0.863, and 0.874 were achieved for 1, 2, and 3
384 years, respectively, which showed its high discernibility. Combining clinical features
385 and the risk score of the 15 genes, we developed a nomogram for clinical application.
386 The CGGA and TCGA datasets showed high consistency. These results indicated that
387 the prognostic signature based on pyroptosis-related genes has high clinical value.

388 The signature genes were involved in two biological mechanisms of pyroptosis. The
389 assembly of inflammasome bodies is the initial step of the classical pyroptosis pathway.
390 The inflammasome is a macromolecular protein complex in the cytoplasm necessary
391 for the occurrence of inflammation and can recognize dangerous signaling molecules
392 such as bacteria and viruses. The inflammasome is mainly composed of pattern
393 recognition receptors (PRRs), apoptosis-associated speck-like protein (ASC) and pro-
394 caspase-1 precursors(22). PRRs are receptor proteins responsible for recognizing
395 different signal stimuli in cells. They are mainly composed of nucleotide-binding
396 oligomerization domain-like receptor protein (NLRP) 1, NLRP3, nucleotide-binding

397 oligomerization domain-like receptor protein C4 (NLRC4), absent in melanoma 2
398 (AIM2) and other components(15). ASC is an adaptor protein that is mainly composed
399 of the N-terminal pyrindomain (PYD) and the C-terminal caspase activation and
400 recruitment domain (CARD)(23). Procaspsase-1 is an effector molecule that can
401 specifically cleave GSDMD after activation. After the danger signal sensor NLR1,
402 NLRP3 or AIM2 recognizes the danger signal molecule, the N-terminal PYD is
403 combined with the N-terminal PYD of the adaptor protein. ASC then recruits Caspase-
404 1 through the interaction of the CARD/CARD domain to complete the assembly of the
405 inflamed body(24). This method of cell death mediated by Caspase-1 is called the
406 classical pathway of pyroptosis(25). The non-classical pathway of pyrolysis is mainly
407 mediated by Caspase-4, Caspase-5 and Caspase-11. After cells are stimulated by
408 bacterial LPS, Caspases-4, -5, and -11 directly bind to bacterial LPS and are
409 activated(26). Activated Caspases-4, -5, and -11 specifically cleave GSDMD and
410 release the intramolecular inhibition of the GSDMD-N domain(27). The combination
411 of the GSDMD-N-terminus and cell membrane phospholipids causes cell membrane
412 pore formation, cell swelling and rupture and induces cell pyrolysis; the GSDMD-N-
413 terminus can also activate Caspase-1 by activating the NLRP3 inflammasome(28).
414 Activated Caspase-1 stimulates the maturation of IL-18 and IL-1 β precursors, and IL-
415 18 and IL-1 β are secreted to the outside of the cell and amplify the inflammatory
416 response. Yang et al found that in the nonclassical pathway that relies on Caspase-11,
417 gap junction protein-1 (Pannexin-1) can be cleaved, and the cleavage of Pannexin-1 can
418 activate its own channel and release ATP, which induces pyrolysis(29). Lamkanfi et al

419 found that in the nonclassical pathway that relies on Caspase-11, Pannexin-1 cleavage
420 can also activate the NLRP3 inflammasome, which in turn activates Caspase-1 and
421 induces the occurrence of pyroptosis(30). According to the results, mutations of
422 pyroptosis-related genes are mainly attributed to the classical pathway of pyrolysis.
423 More research is needed to validate the molecular mechanisms.
424 Based on the risk score, we classified glioma patients into high- and low-risk groups to
425 discriminate clinical outcomes. We further explored the molecular features between the
426 high- and low-risk groups. The functional enrichment analysis results were similar in
427 the TCGA and CGGA datasets, and the same pathways appeared in the two datasets,
428 such as ECM-receptor interaction, GABAergic synapse, focal adhesion, and
429 extracellular matrix organization. The immune cells and immune functions showed
430 similar trends: immune cell and functional scores were higher in the high-risk group.
431 The clinical features showed that cluster 1 had a higher risk score and poorer prognosis
432 than cluster 2. The results indicated that the classification was accurate and validated in
433 the risk model. Furthermore, we compared the gene alterations, CNVs, and DNA
434 methylation levels. Significantly different levels were observed, which reflected the
435 different molecular features of the different risk groups. The ceRNA network identified
436 several key lncRNA-miRNA-mRNA regulatory networks: FAM181A-AS1-miR-21-
437 (CPEB3, SAIB1, BLC7A, MAP2K3, JAG1, TGFBI, FAM46A, SPRY2, and CALD1).
438 The survival analysis further suggested the regulatory correlation: elevated FAM18A-
439 AS1 and miR-21 were associated with poor prognosis in glioma, and low expression of
440 BCL7A, SATB1 and CPEB3 was associated with favorable prognosis. Previous

441 experiments have reported the promoting role of miR-21 in glioma(31), and
442 upregulation of SATB1 and CPEB3 is associated with the development and progression
443 of glioma(32, 33). The drug sensitivity analysis indicated that NOD2, ELANE, CASP3,
444 and PYCARD showed sensitivity to small molecular drugs, and PRKACA, IL6, and
445 NLLRP3 showed resistance to some drugs. It was reported that the inhibition of the
446 NLRP3 inflammasome by beta-hydroxybutyrate can suppress the migration of glioma
447 cells(34). These results may provide some guidelines for clinical practice.

448 The present study indicated that pyroptosis-related genes can be used to classify glioma
449 patients into two subclasses based on different molecular features and clinical
450 characteristics. The established prognostic model based on 15 pyroptosis-related genes
451 not only predicted the prognosis of glioma patients but also reflected the molecular
452 alterations, immune infiltration statuses, and stem cell-like properties of different risk
453 groups. The classification based on the risk score of prognostic signature genes revealed
454 a lncRNA-miRNA-mRNA regulatory network. The correlation of signature genes with
455 drug sensitivity may provide a rationale for clinical applications. Finally, our study
456 provides a new understanding of pyroptosis in the development and progression of
457 glioma and contributes new important insights for promoting glioma treatment
458 strategies.

459 **Authors' contributions**

460 ZZL designed this study and directed the research group in all aspects, including
461 planning, execution, and analysis of the study. LS drafted the manuscript. YYL, NL,
462 YJZ, QZ collected the data. LZZ provided the statistical software, performed the data

463 analysis, YYL arranged the Figures and Tables. SLF revised the manuscript. All authors
464 have read and approved the final version of the manuscript.

465 **Funding**

466 This study was supported by the National Natural Science Foundation of China (No.
467 82003239), Hunan Province Natural Science Foundation (Youth Foundation Project)
468 (NO.2019JJ50945), and the Science Foundation of Xiangya Hospital for Young Scholar
469 (NO. 2018Q012).

470 **Conflict of Interest Statement**

471 The authors declare that they have no competing interests

472 **Data Availability Statements**

473 All data can be download from TCGA database (<https://portal.gdc.cancer.gov/>) and
474 CGGA (<http://www.cgga.org.cn/>)

475
476 **References**

- 477 1. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma.
478 *Nat Rev Dis Primers.* (2015) 1: 15017. doi:10.1038/nrdp.2015.17
- 479 2. Bush NA, Chang SM, Berger MS. Current and future strategies for treatment of
480 glioma. *Neurosurg Rev.* (2017) 40: 1-14. doi:10.1007/s10143-016-0709-8
- 481 3. Kan LK, Drummond K, Hunn M, Williams D, O'Brien TJ, Monif M. Potential
482 biomarkers and challenges in glioma diagnosis, therapy and prognosis. *BMJ Neurol
483 Open.* (2020) 2: e69. doi:10.1136/bmjno-2020-000069
- 484 4. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic
485 description of dead and dying eukaryotic cells. *Infect Immun.* (2005) 73: 1907-1916.

486 doi:10.1128/IAI.73.4.1907-1916.2005

487 5. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis

488 leads to osmotic lysis of infected host macrophages. *Cell Microbiol.* (2006) 8: 1812-

489 1825. doi:10.1111/j.1462-5822.2006.00751.x

490 6. Bergsbaken T, Fink SL, den Hartigh AB, Loomis WP, Cookson BT. Coordinated

491 host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and

492 inflammatory cytokine maturation. *J Immunol.* (2011) 187: 2748-2754.

493 doi:10.4049/jimmunol.1100477

494 7. Boise LH, Collins CM. Salmonella-induced cell death: apoptosis, necrosis or

495 programmed cell death? *Trends Microbiol.* (2001) 9: 64-67. doi:10.1016/s0966-

496 842x(00)01937-5

497 8. Fink SL, Cookson BT. Pillars Article: Caspase-1-dependent pore formation

498 during pyroptosis leads to osmotic lysis of infected host macrophages. *Cell Microbiol.*

499 2006. 8: 1812-1825. *J Immunol.* (2019) 202: 1913-1926.

500 9. Hage C, Hoves S, Strauss L, Bissinger S, Prinz Y, Poschinger T, et al. Sorafenib

501 Induces Pyroptosis in Macrophages and Triggers Natural Killer Cell-Mediated

502 Cytotoxicity Against Hepatocellular Carcinoma. *Hepatology.* (2019) 70: 1280-1297.

503 doi:10.1002/hep.30666

504 10. Lu C, Guo C, Chen H, Zhang H, Zhi L, Lv T, et al. A novel chimeric PD1-

505 NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human

506 lung cancer H1299 cells by triggering pyroptosis. *Mol Immunol.* (2020) 122: 200-206.

507 doi:10.1016/j.molimm.2020.04.016

508 11. An H, Heo JS, Kim P, Lian Z, Lee S, Park J, et al. Tetraarsenic hexoxide
509 enhances generation of mitochondrial ROS to promote pyroptosis by inducing the
510 activation of caspase-3/GSDME in triple-negative breast cancer cells. *Cell Death Dis.*
511 (2021) 12: 159. doi:10.1038/s41419-021-03454-9

512 12. Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and
513 potential targeting. *Nat Rev Cancer.* (2019) 19: 197-214. doi:10.1038/s41568-019-
514 0123-y

515 13. Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J, et al. The role of pyroptosis in
516 cancer: pro-cancer or pro-"host"? *Cell Death Dis.* (2019) 10: 650.
517 doi:10.1038/s41419-019-1883-8

518 14. Wang B, Yin Q. AIM2 inflammasome activation and regulation: A structural
519 perspective. *J Struct Biol.* (2017) 200: 279-282. doi:10.1016/j.jsb.2017.08.001

520 15. Man SM, Kanneganti TD. Regulation of inflammasome activation. *Immunol Rev.*
521 (2015) 265: 6-21. doi:10.1111/imr.12296

522 16. Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma Subclassifications and
523 Their Clinical Significance. *Neurotherapeutics.* (2017) 14: 284-297.
524 doi:10.1007/s13311-017-0519-x

525 17. Coons SW, Johnson PC, Scheithauer BW, Yates AJ, Pearl DK. Improving
526 diagnostic accuracy and interobserver concordance in the classification and grading of
527 primary gliomas. *Cancer-Am Cancer Soc.* (1997) 79: 1381-1393.
528 doi:10.1002/(sici)1097-0142(19970401)79:7<1381::aid-cncr16>3.0.co;2-w

529 18. Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, et al. A bioorthogonal

530 system reveals antitumour immune function of pyroptosis. *Nature*. (2020) 579: 421-
531 426. doi:10.1038/s41586-020-2079-1

532 19. Huang Y, Zhang Q, Lubas M, Yuan Y, Yalcin F, Efe IE, et al. Synergistic Toll-
533 like Receptor 3/9 Signaling Affects Properties and Impairs Glioma-Promoting
534 Activity of Microglia. *J Neurosci*. (2020) 40: 6428-6443.
535 doi:10.1523/JNEUROSCI.0666-20.2020

536 20. Saxena S, Jha S. Role of NOD- like Receptors in Glioma Angiogenesis: Insights
537 into future therapeutic interventions. *Cytokine Growth Factor Rev*. (2017) 34: 15-26.
538 doi:10.1016/j.cytogfr.2017.02.001

539 21. Giurdanella G, Motta C, Muriana S, Arena V, Anfuso CD, Lupo G, et al.
540 Cytosolic and calcium-independent phospholipase A(2) mediate glioma-enhanced
541 proangiogenic activity of brain endothelial cells. *Microvasc Res*. (2011) 81: 1-17.
542 doi:10.1016/j.mvr.2010.11.005

543 22. Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: A review of
544 their canonical and non-canonical signaling pathways. *Arch Biochem Biophys*. (2019)
545 670: 4-14. doi:10.1016/j.abb.2019.02.008

546 23. Nambayan R, Sandin SI, Quint DA, Satyadi DM, de Alba E. The inflammasome
547 adapter ASC assembles into filaments with integral participation of its two Death
548 Domains, PYD and CARD. *J Biol Chem*. (2019) 294: 439-452.
549 doi:10.1074/jbc.RA118.004407

550 24. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, et al. Unified
551 polymerization mechanism for the assembly of ASC-dependent inflammasomes. *Cell*.

552 (2014) 156: 1193-1206. doi:10.1016/j.cell.2014.02.008

553 25. Case CL, Roy CR. Analyzing caspase-1 activation during Legionella

554 pneumophila infection in macrophages. *Methods Mol Biol.* (2013) 954: 479-491.

555 doi:10.1007/978-1-62703-161-5_29

556 26. Lagrange B, Benaoudia S, Wallet P, Magnotti F, Provost A, Michal F, et al.

557 Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions

558 differently from murine caspase-11. *Nat Commun.* (2018) 9: 242.

559 doi:10.1038/s41467-017-02682-y

560 27. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by

561 inflammatory caspases determines pyroptotic cell death. *Nature.* (2015) 526: 660-665.

562 doi:10.1038/nature15514

563 28. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al.

564 Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. *Nature.*

565 (2015) 526: 666-671. doi:10.1038/nature15541

566 29. Yang D, He Y, Munoz-Planillo R, Liu Q, Nunez G. Caspase-11 Requires the

567 Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and

568 Endotoxic Shock. *Immunity.* (2015) 43: 923-932. doi:10.1016/j.jimmuni.2015.10.009

569 30. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. *Cell.*

570 (2014) 157: 1013-1022. doi:10.1016/j.cell.2014.04.007

571 31. Hermansen SK, Nielsen BS, Aaberg-Jessen C, Kristensen BW. miR-21 Is Linked

572 to Glioma Angiogenesis: A Co-Localization Study. *J Histochem Cytochem.* (2016)

573 64: 138-148. doi:10.1369/0022155415623515

574 32. Chu SH, Ma YB, Feng DF, Zhang H, Zhu ZA, Li ZQ, et al. Upregulation of
575 SATB1 is associated with the development and progression of glioma. *J Transl Med*.
576 (2012) 10: 149. doi:10.1186/1479-5876-10-149

577 33. He Y, Nan H, Yan L, Ma T, Man M, Tian B, et al. Long non-coding RNA
578 MIR22HG inhibits glioma progression by downregulating microRNA-9/CPEB3.
579 *Oncol Lett*. (2021) 21: 157. doi:10.3892/ol.2020.12418

580 34. Shang S, Wang L, Zhang Y, Lu H, Lu X. The Beta-Hydroxybutyrate Suppresses
581 the Migration of Glioma Cells by Inhibition of NLRP3 Inflammasome. *Cell Mol
582 Neurobiol*. (2018) 38: 1479-1489. doi:10.1007/s10571-018-0617-2

583

584 **Figure legends**

585 **Figure 1** Identification of glioma subclasses using consensus clustering method in the
586 CGGA dataset. **(A)** Flow chart of the study. **(B)** PPI network indicating the interactions
587 among pyroptosis-related genes (interaction score=0.7). **(C)** The circle plot of
588 correlation among pyroptosis-related genes (green line: negative correlation, red line:
589 positive correlation). **(D)** Consensus matrix method clustering using 30 pyroptosis-
590 related genes. **(E)** PCA analysis showed the distribution of two glioma subclasses in the
591 CGGA dataset. **(F)** Overall survival curve of two clusters in the cohort.

592 **Figure 2** Characteristics of patients in cluster 1 and cluster 2 in CGGA cohort. **(A)**
593 Heatmap of gene set variation analysis of the pyroptosis-related genes from cluster 1
594 and cluster 2. **(B)** Heatmap showed the correlations between two subclasses and clinical
595 characteristics and differentially expressed pyroptosis-related genes in the CGGA

596 cohort.

597 **Figure 3** Establishment of a pyroptosis-related gene prognostic signature in the CGGA
598 cohort. **(A)** Kaplan-Meier curves for OS of patients in high- and low-risk group in
599 CGGA Cohort. **(B)** Distribution of risk score of all patients of CGGA cohort, and
600 Patients' survival time distribution. **(C)** Forest plot of univariate cox regression between
601 risk score and prognosis of glioma. **(D)** Forest plot of multivariate cox regression of
602 between risk score and prognosis of glioma. **(E)** PCA plot for signature genes based on
603 risk score group. **(F)** ROC curves showed the predictive efficiency of risk score at 1-
604 year, 2-year, 3-year point.

605 **Figure 4** External validation of a pyroptosis-related gene prognostic signature in the
606 TCGA cohort. **(A)** Kaplan-Meier curves for OS of patients in high- and low-risk group
607 in TCGA Cohort. **(B)** Distribution of risk score of all patients of TCGA cohort and
608 Patients' survival time distribution of TCGA cohort. **(C)** Forest plot of univariate cox
609 regression between risk score and prognosis of glioma in TCGA cohort. **(D)** Forest plot
610 of multivariate cox regression of between risk score and prognosis of glioma in TCGA
611 cohort. **(E)** PCA plot for signature genes based on risk score group in TCGA cohort. **(F)**
612 ROC curves showed the predictive efficiency of risk score at 1-year, 2-year, 3-year
613 point in TCGA cohort.

614 **Figure 5** Establishment and validation of nomogram model based on prognostic
615 signature genes. **(A)** Nomogram model established in the CGGA cohort. **(B)** The 1-year
616 calibration curves in the CGGA cohort. **(C)** The 3-year calibration curves in the CGGA
617 cohort. **(D)** The 5-year calibration curves in the CGGA cohort. **(E)** The 1-year

618 calibration curves in the TCGA cohort. (F) The 3-year calibration curves in the TCGA
619 cohort. (G) The 5-year calibration curves in the TCGA cohort.

620 **Figure 6** Functional enrichment and immune status analysis. **(A)** Barplot of enrichment
621 analysis based on prognostic-related signature genes in CGGA cohort. **(B)** Bubble plot
622 of enrichment analysis based on prognostic-related signature genes in CGGA cohort.
623 **(C)** Barplot of enrichment analysis based on prognostic-related signature genes in
624 TCGA cohort. **(D)** Bubble plot of enrichment analysis based on prognostic-related
625 signature genes in TCGA cohort. **(E)** Boxplot showed the ssGSEA scores for immune
626 cells based on risk group in CGGA cohort. **(F)** Boxplot showed the ssGSEA scores for
627 immune cells based on risk group in TCGA cohort. **(G)** Boxplot showed the ssGSEA
628 scores for immune pathways based on risk group in CGGA cohort. **(H)** Boxplot showed
629 the ssGSEA scores for immune pathways based on risk group in TCGA cohort

630 **Figure 7** Molecular alterations of pyroptosis-related genes in TCGA dataset. **(A)** The
631 mutations frequencies in low-risk group. **(B)** The mutations frequencies in high-risk
632 group. **(C)** Somatic copy number alteration based on risk groups. **(D)** DNA methylation
633 expression based on risk groups.

634 **Figure 8** The ceRNA network based on risk groups in TCGA dataset (red: up-regulation.
635 blue: down-regulation).

636 **Figure 9** Drug sensitivity analysis for identified prognostic-related genes based on
637 TCGA dataset (Top 16). **(A)** NOD2 and isotretinoin. **(B)** ELANE and Imexon. **(C)**
638 ELANE and ABT-199. **(D)** NLRP3 and Rebimastat. **(E)** NOD2 and Imiquimod. **(F)**
639 CASP3 and Nelarabine. **(G)** ELANE and Cyclophosphamid. **(H)** ELANE and

640 Hydroxyurea. **(I)** PRKACA and Cobimetinib. **(J)** PRKACA and Rapamycin. **(K)**
641 ELANE and Nandrolone. **(L)** PRKACA and Temsirolimus. **(M)** NOD2 and Eleschomol.
642 **(N)** IL6 and geldanamycin. **(O)** IL6 and Lenvatinib. **(P)** PYCARD and Cyclophospharr

643 **Figure 10** CASP8 promotes progression of glioma cells. **(A)** The expression of CASP8
644 protein in human HA and glioma cell lines. **(B)** The western blot of CASP8 in U87,
645 U1251, H4 cell lines after siRNA. **(C)** The mRNA expression level of CSAP8 in U87
646 and U251 after siRNA. **(D and E)** The scratch assay of CASP8-si in U87 and U251 cell
647 lines. **(F and G)** Transwell assay of CASP8-si U87 and U251 cell lines. **(H and I)** The
648 clonogenic assay of CASP8 in U87 and U251 cell lines.

649 **Supplementary materials legends**

650 **Additional file 1:**The details of experiments process in vitro

651 **Additional file 2: Table S1-S12.xlsx**

652 **Table S1** The 30 pyroptosis associated genes used for classification

653 **Table S2** Glioma classification pattern

654 **Table S3** GSVA enrichment analysis between these distinct pyroptosis-regulated
655 clusters

656 **Table S4** The result of differential expression analysis (Cluster 2 vs Cluster 1)

657 **Table S5** Functional enrichment analyses of subclass differentially expressed genes
658 (Cluster 2 vs Cluster 1)

659 **Table S6** Pathway enrichment analysis of differentially expressed genes from two
660 subclasses

661 **Table S7** 15 identified pyroptosis-related signature genes in prognostic model

662 **Table S8** Differentially expressed genes from CGGA based on risk score

663 **Table S9** Differentially expressed genes from TCGA based on risk score

664 **Table S10** Differentially expressed lncRNA from TCGA based on risk score

665 **Table S11** Differentially expressed miRNA from TCGA based on risk score

666 **Table S12** Prognosis-related genes in the ceRNA network

667 **Table S13** Results of drug sensitivity based on 15 pyroptosis-related prognostic

668 signature genes

669 **Additional file 3:**

670 **Figure S1** Comparisons of different clinical parameters for pyroptosis-related genes.

671 **(A)** LGG and GBM. **(B)** WHO II vs WHO III vs WHO IV. **(C)** IDH: mutations vs

672 wildtyp. **(D)** 1p19_status: codel vs non-codel.

673 **Figure S2** Barplot of GO enrichment analysis for differentially expressed genes based

674 on subclasses.

675 **Figure S3** KEEG pathways analysis for differentially expressed genes based on

676 subclasses.

677 **Figure S4** Correlation of glioma subclasses with immune infiltration. **(A)** Immune cells.

678 **(B)** immune function

679 **Figure S5** Identification of 215 genes risk signature for OS by LASSO regression in

680 the CGGA cohort. **(A)** Forest plot of univariate cox regression of OS for 30 pyroptosis-

681 related genes. **(B)** Cross-validation for tuning parameters selection in the LASSO

682 regression. **(C)** LASSO regression of the 15 OS-related genes. **(D)** Heatmap showed

683 the association between risk group and clinical parameters and differentially expressed

684 genes of high- and low-risk group.

685 **Figure S6** Boxplot of risk score among different clinical characteristics. (A) Subclasses:
686 Cluster 1 vs Cluster 2. (B) Outcomes: Dead vs Alive. (C) Histology: GBM vs LGG. (D)
687 Grade: WHO II vs WHO III vs WHO IV. (E) 1p19q status: Codeletion vs non-
688 codeletion. (F) IDH status: Mutant wildtype.

689 **Figure S7** Subgroup analysis of OS based on risk score. (A) LGG. (B) GBM. (C) IDH
690 wildtype. (D) IDH mutation. (E) 1p9ql non-codel. (F) 1p9ql codel. (G) WHO II. (H)
691 WHO III. (I) WHO IV

692 **Figure S8** Comparisons of 15 signature genes among different immune subtype.

693 **Figure S9** Correlation of expression of 15 signature genes with cancer stem cell-like
694 properties (RNAss, DNAss) and TME (Stromal score, Immune score, and ESTIMATE
695 Score. (A) RNAss. (B) DNAss. (C) Stromal score. (D) Immune score. (E) ESTIMATE
696 score.

697 **Figure S10** Kaplan-Meier curves of lncRNAs for OS in the ceRNA network. (A)
698 AC025211.1. (B) AC068643.1. (C)ADH1L1-AS2. (D) CRNDE. (E) FAM181A-AS1.
699 (F) GDNF-AS1. (G) HOTAIRM1. (H) LINC00519 (I) MCF2L-AS1. (J) MIR210HG.
700 (K) NEAT1 (L)SLC6A1. (M) SNHG9.

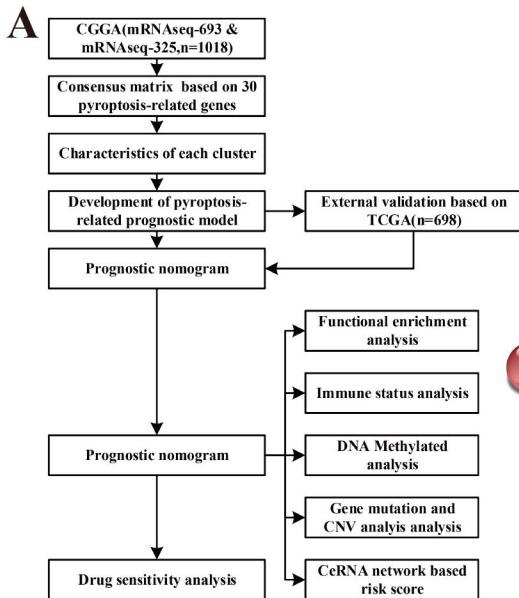
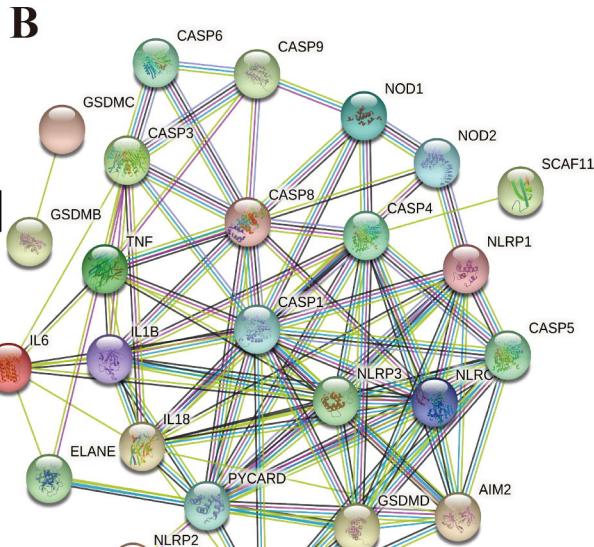
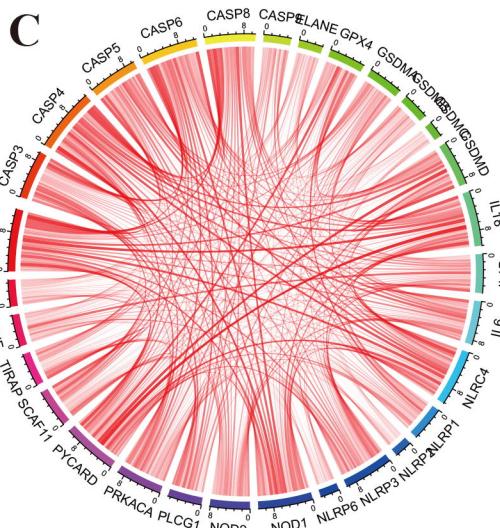
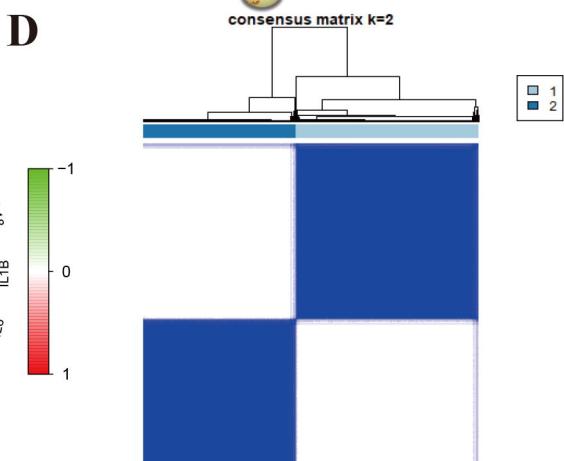
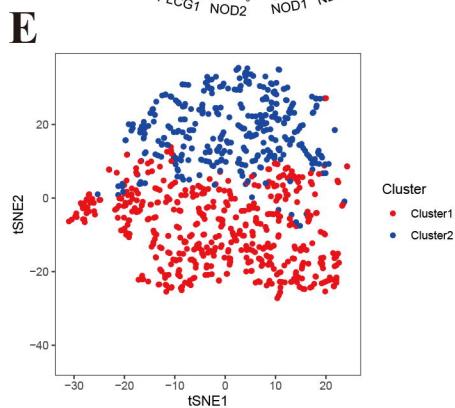
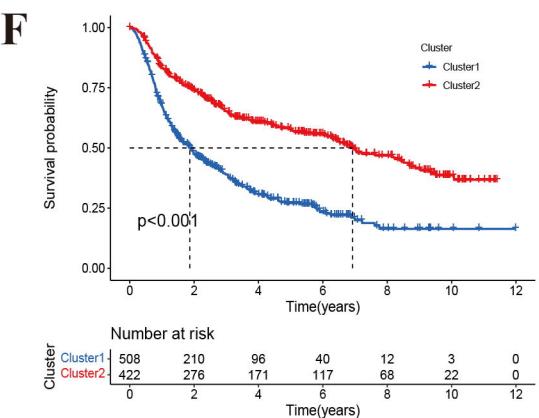
701 **Figure S11** Forest plot of mRNAs for OS in the ceRNA network

702 **Figure S12** Kaplan-Meier curves of mir-RNAs for OS in the ceRNA network. (A) mir-
703 21. (B) mir-155. (C) mir-200a. (D) mir-216a. (E) mir-221. (F) mir-222. (G) mir-429.
704 (H) mir-503.

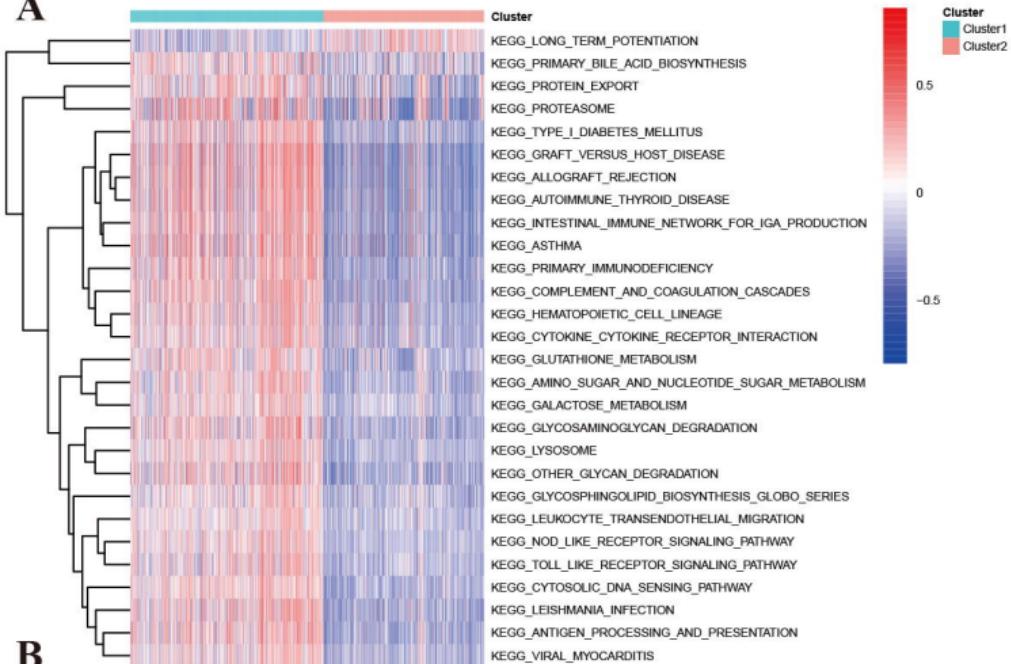
705 **Figure S13** The expression levels of identified prognostic genes between tumor and

706 normal

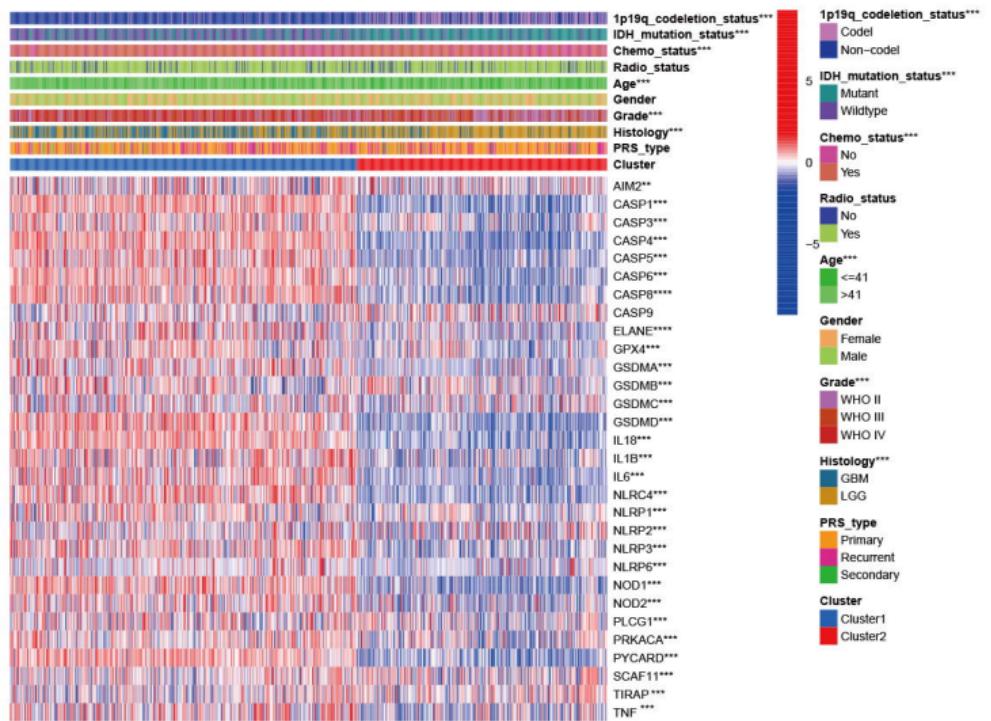
707

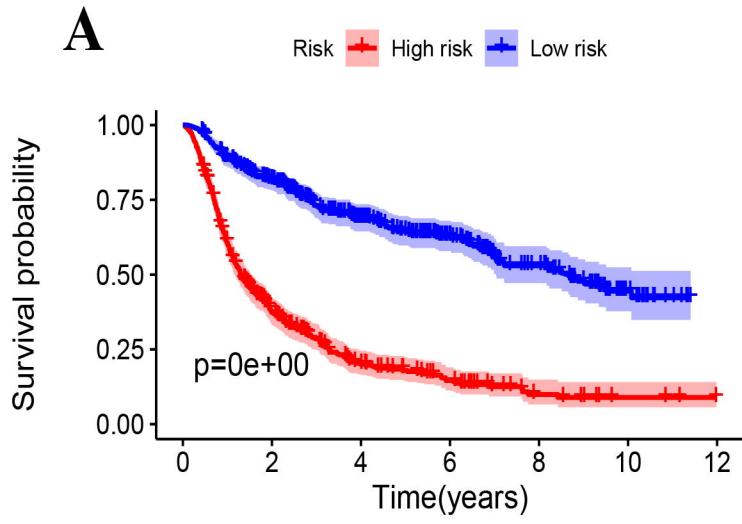
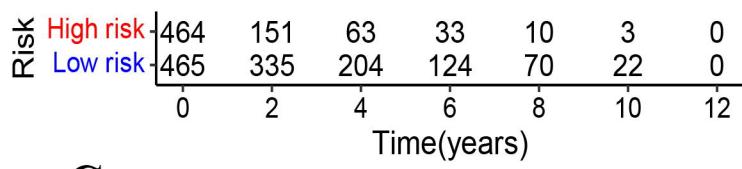
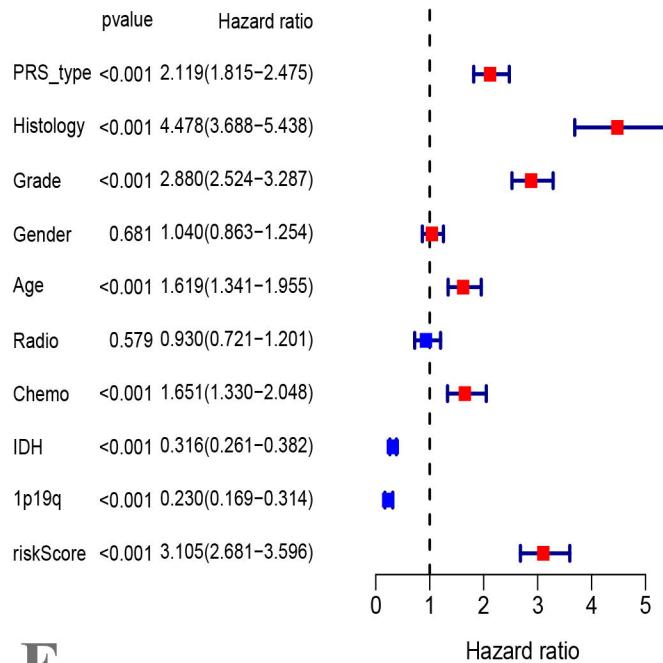
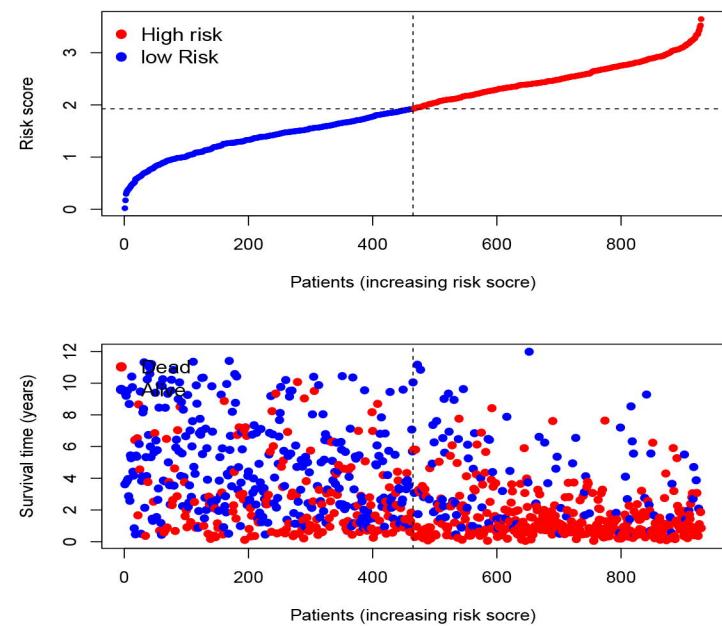
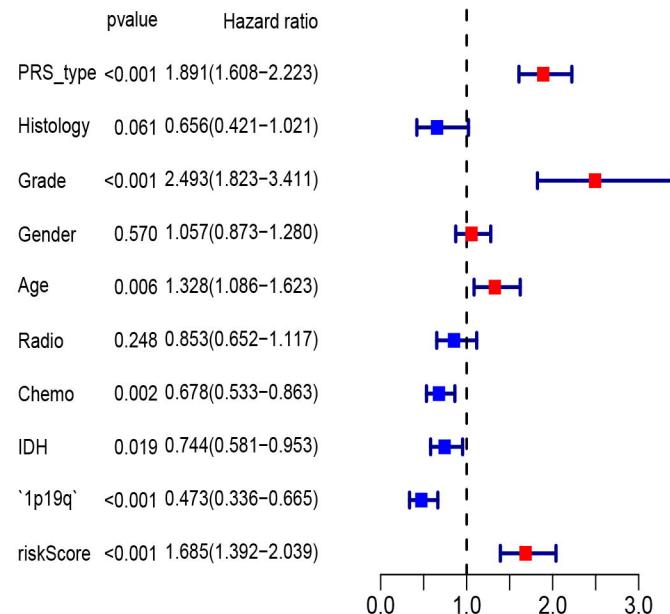
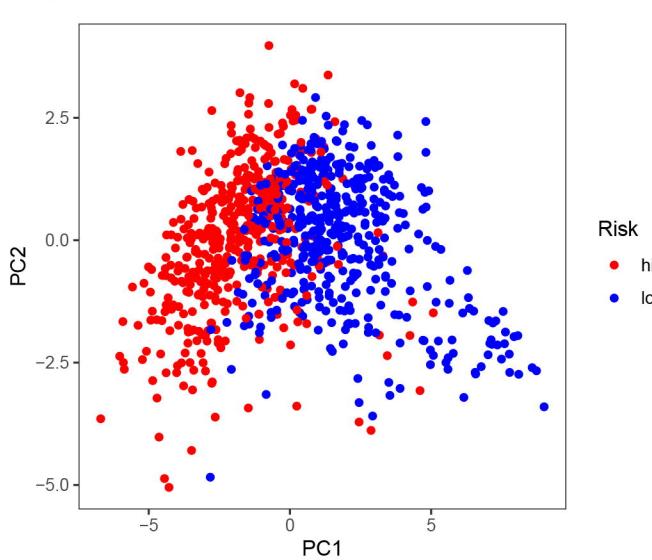
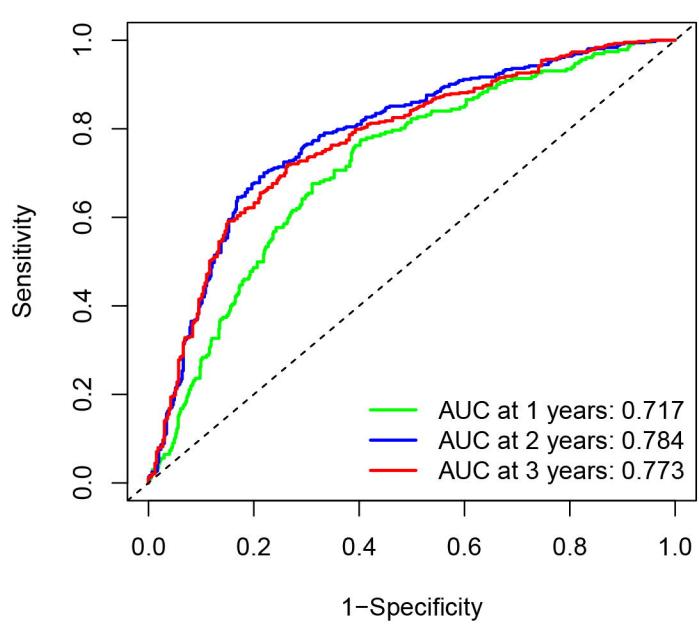


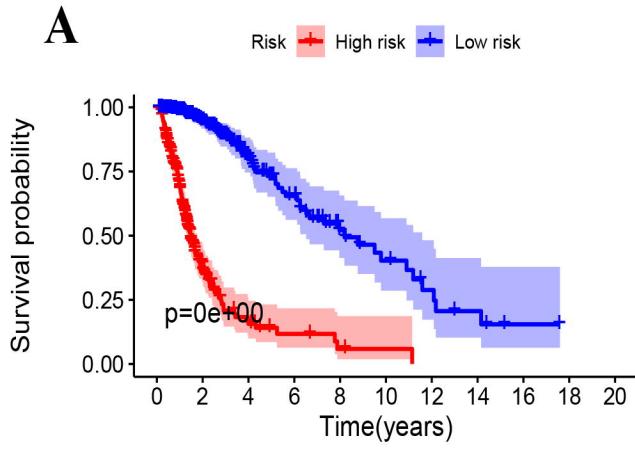
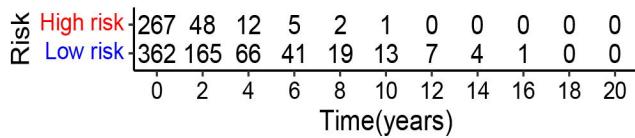
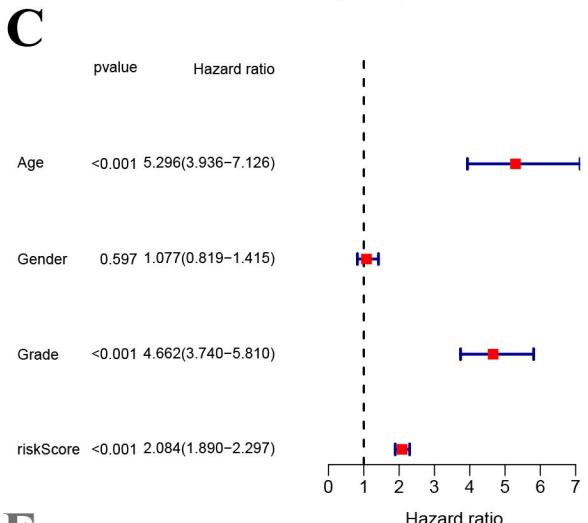
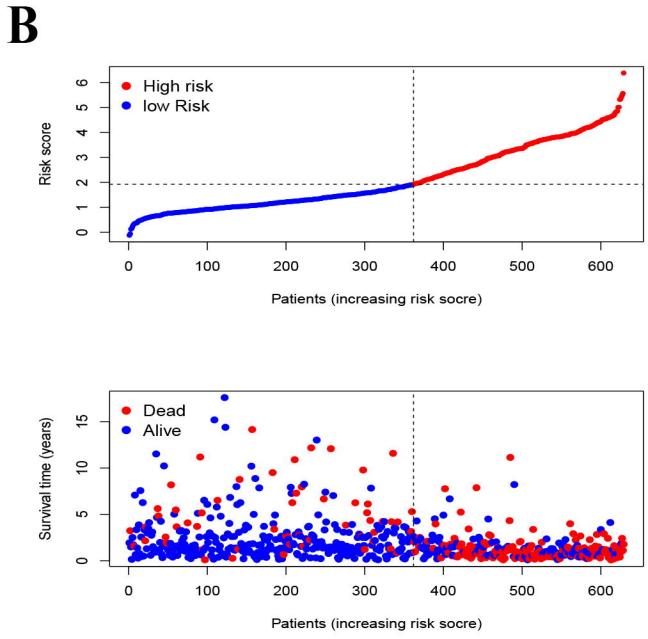
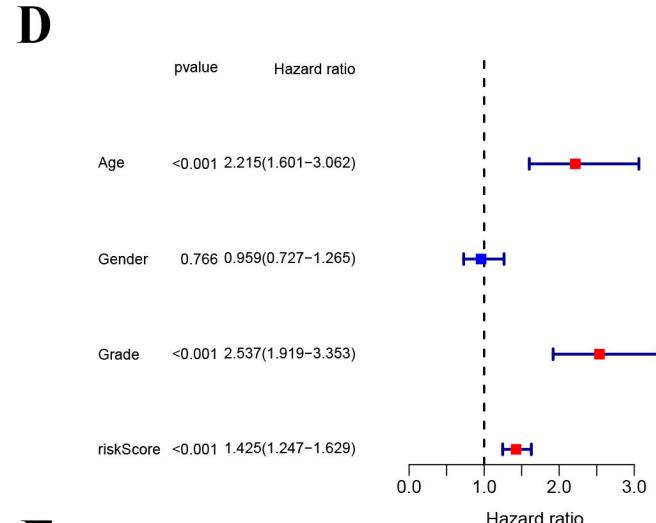
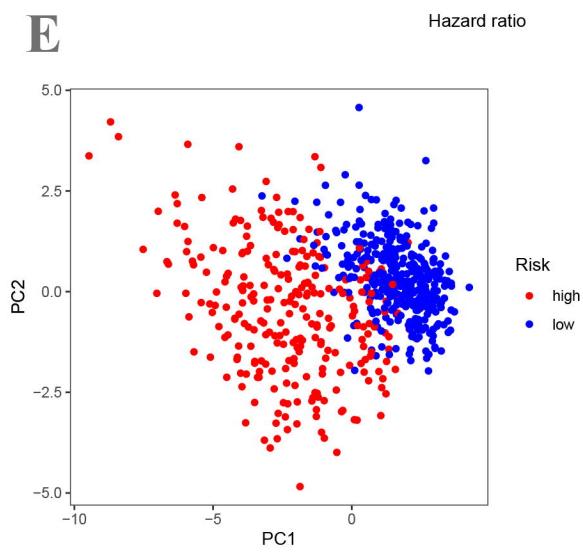
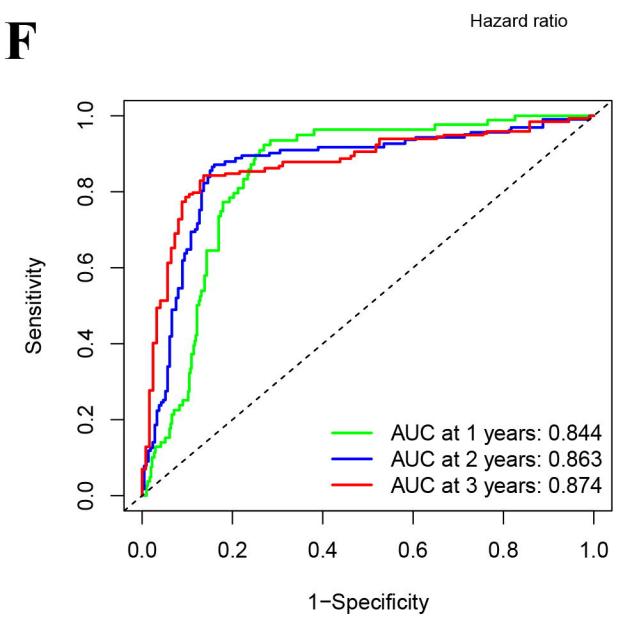
A

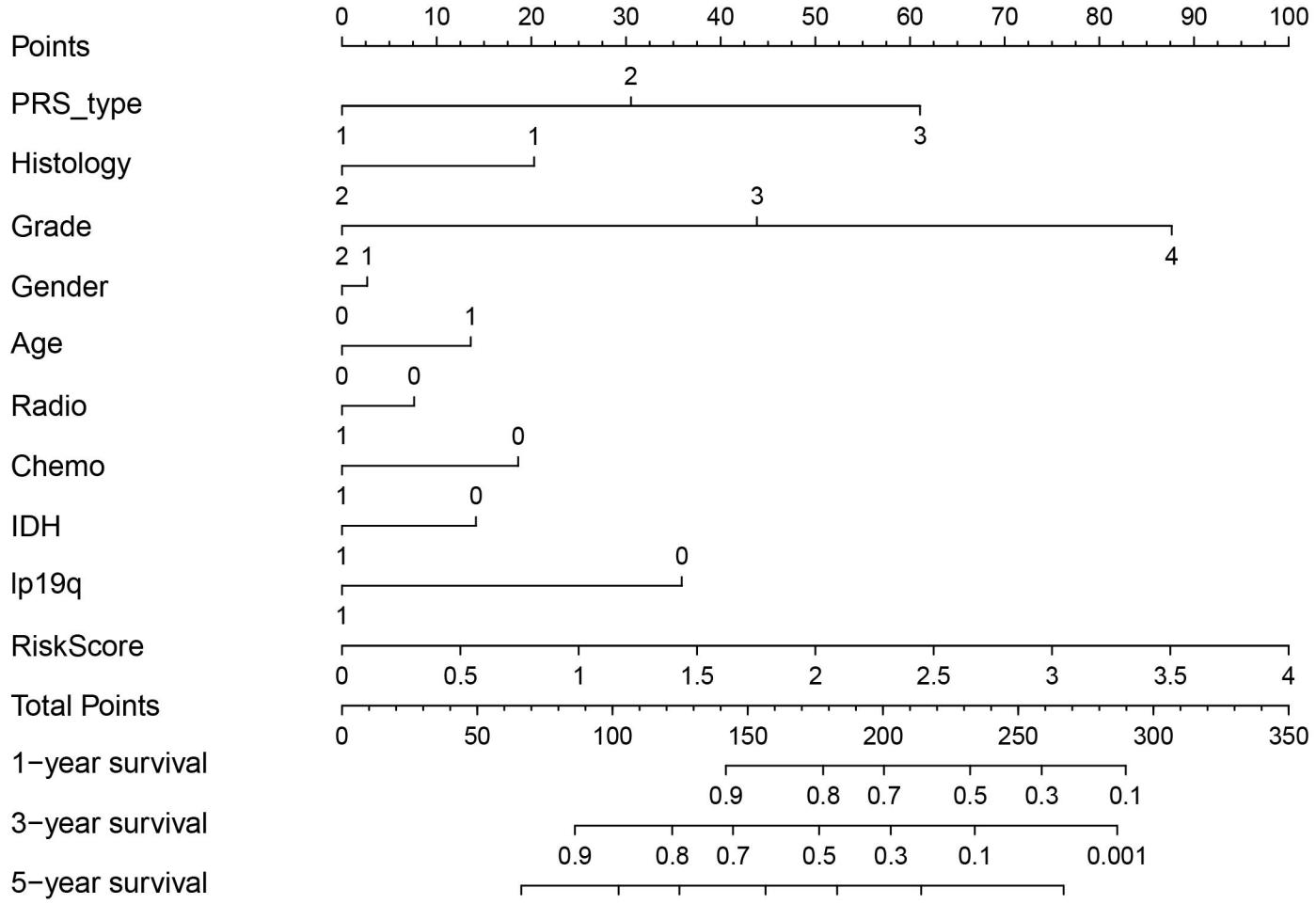
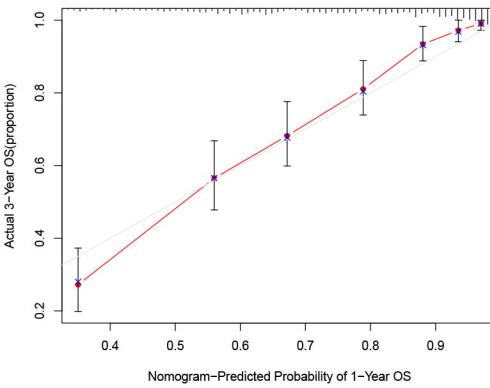
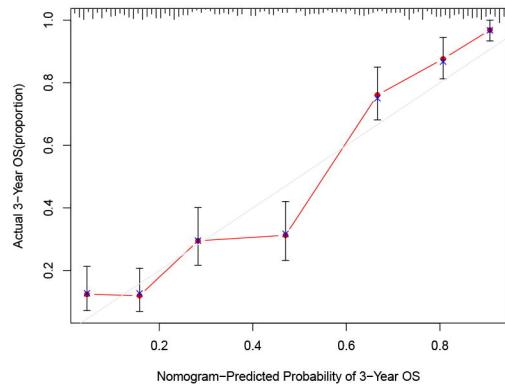
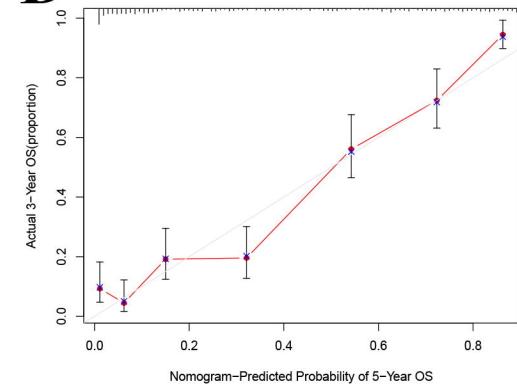
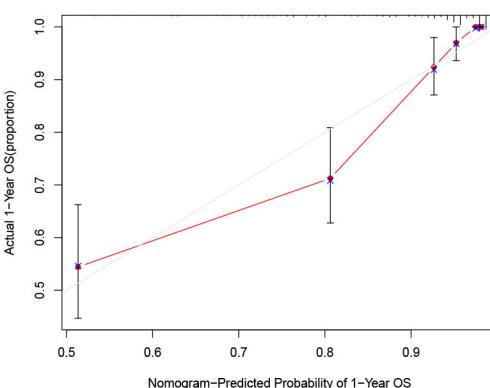
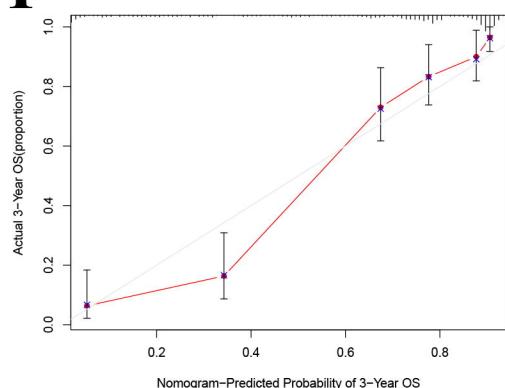
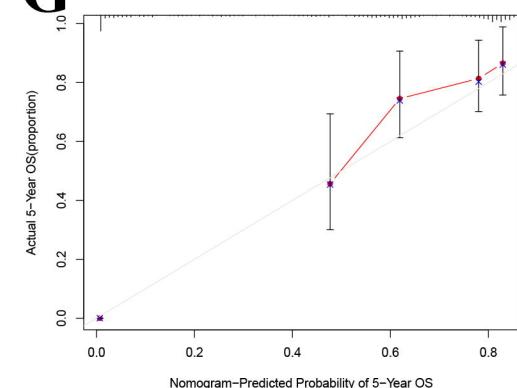


B

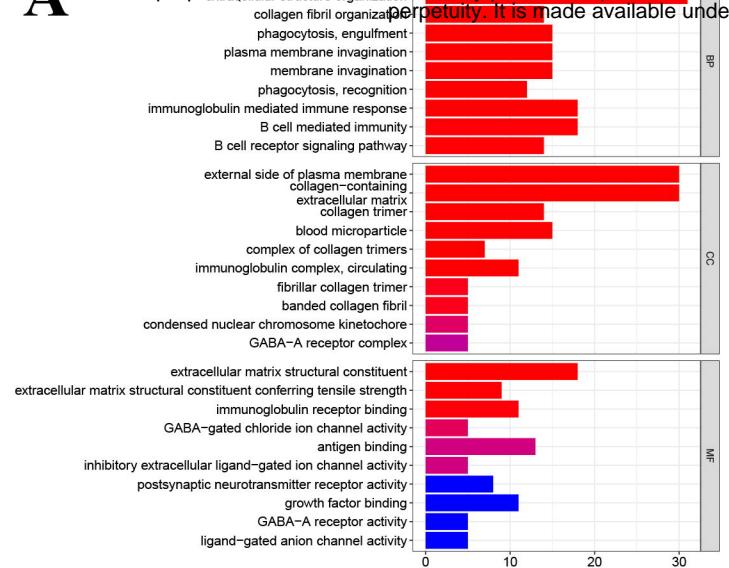


A**C****B****D****E****F**

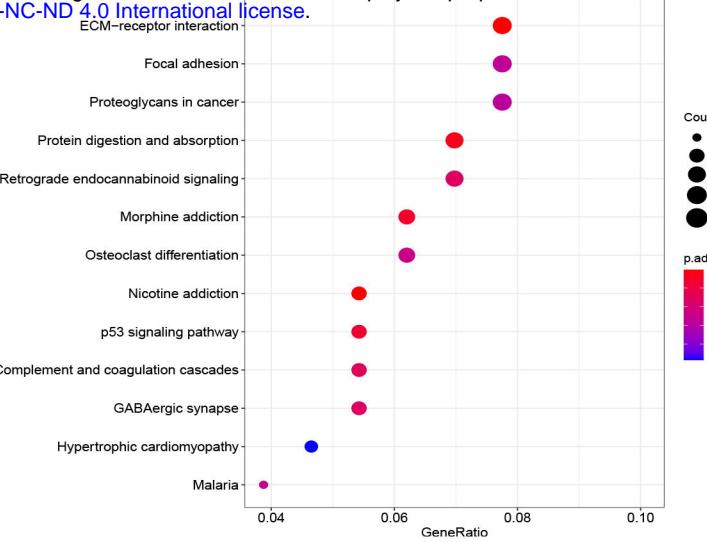


A**B****C****D****E****F****G**

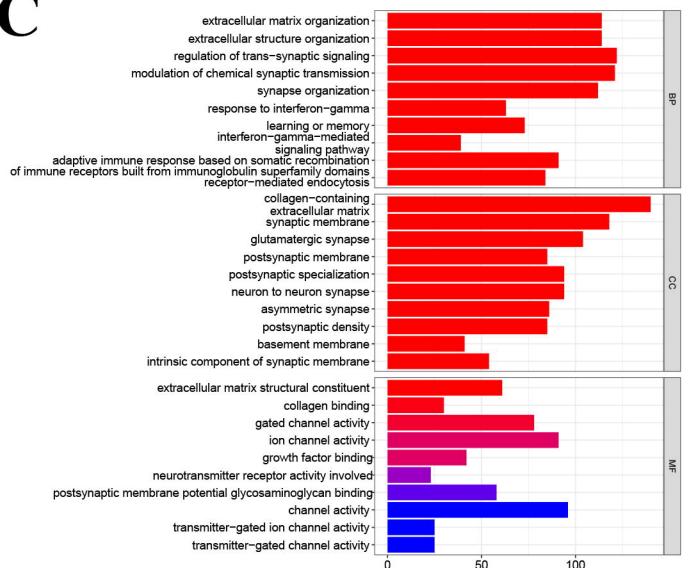
A



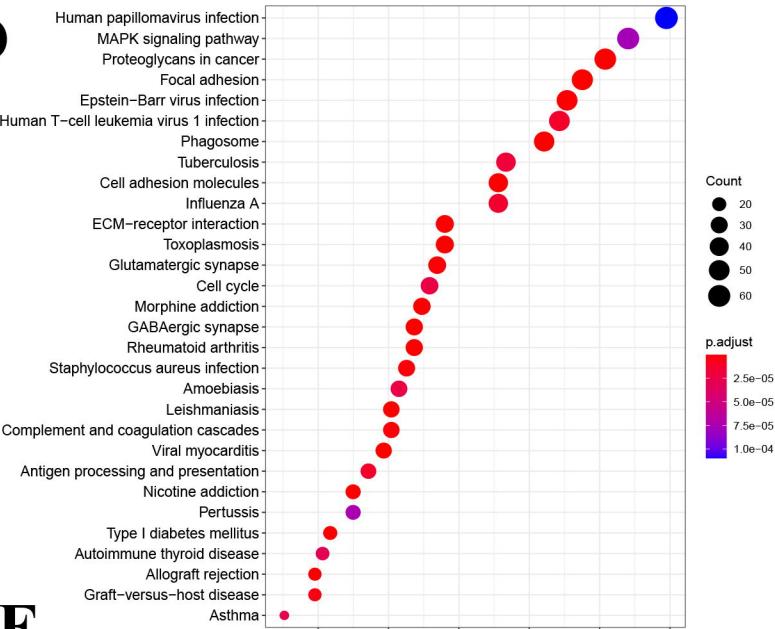
B



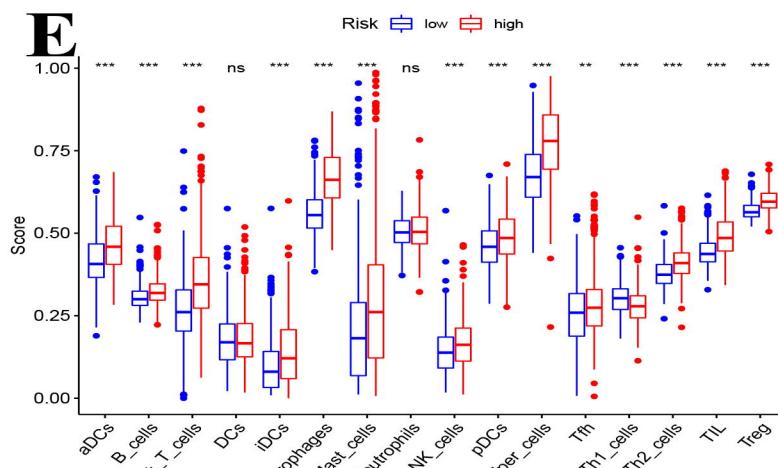
C



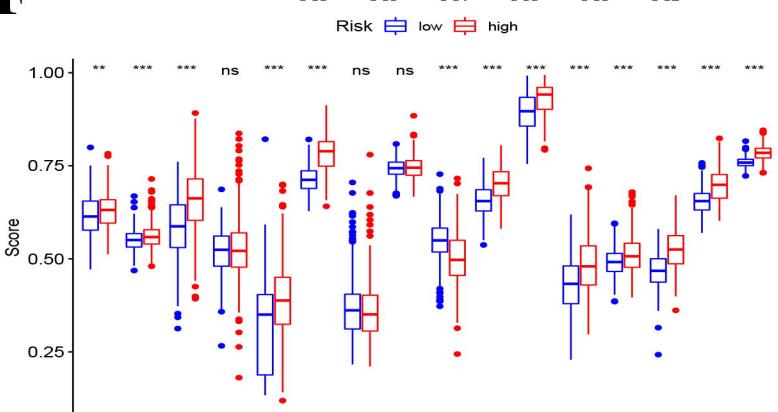
D



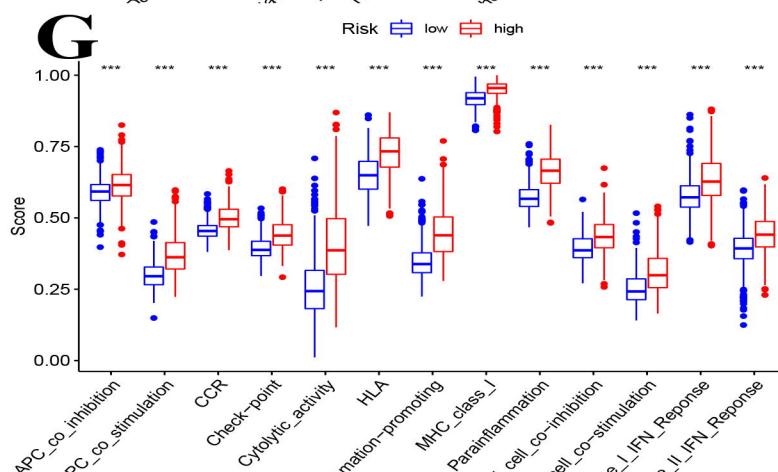
E



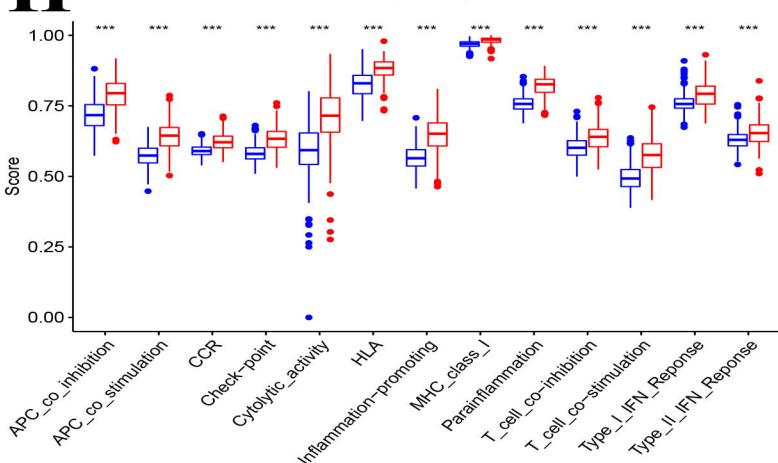
F



G

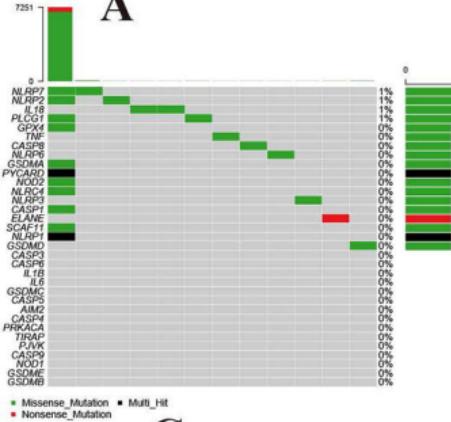


H



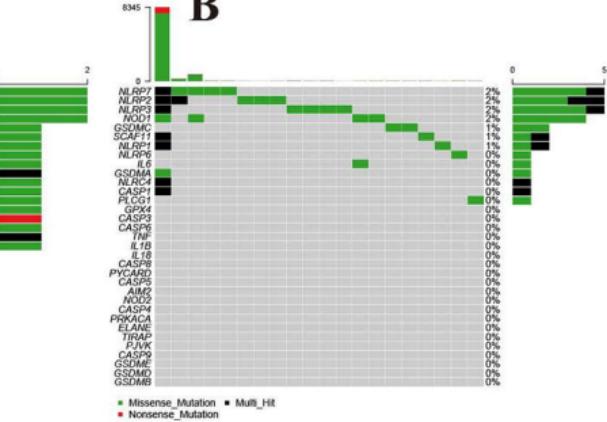
Altered in 12 (3.47%) of 346 samples.

A

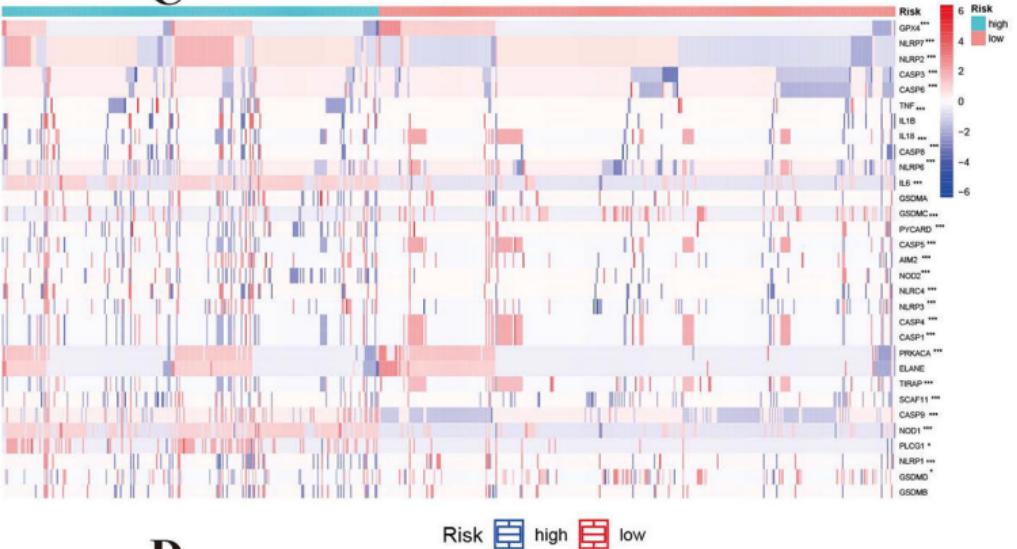


Altered in 20 (7.75%) of 258 samples.

B

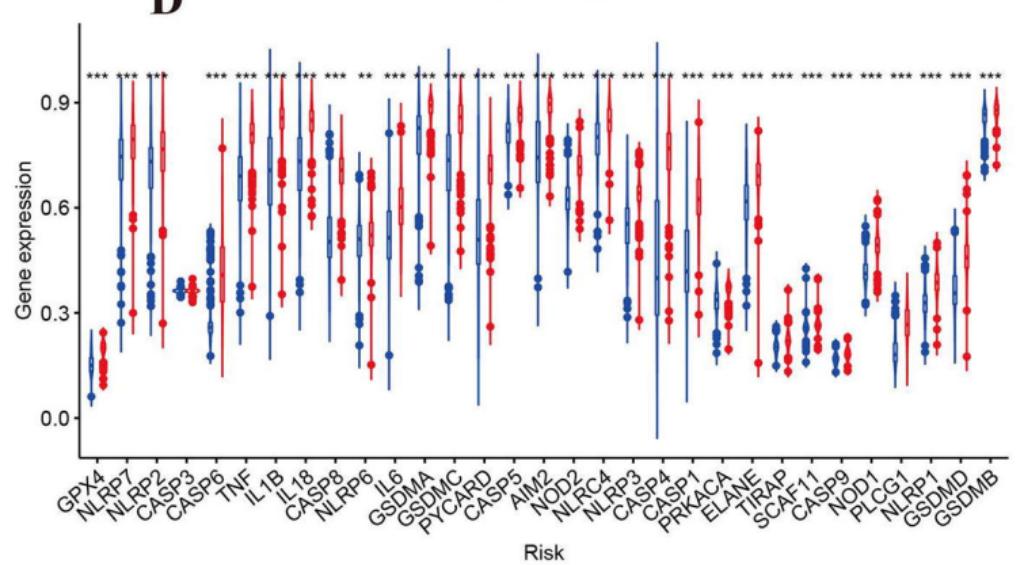


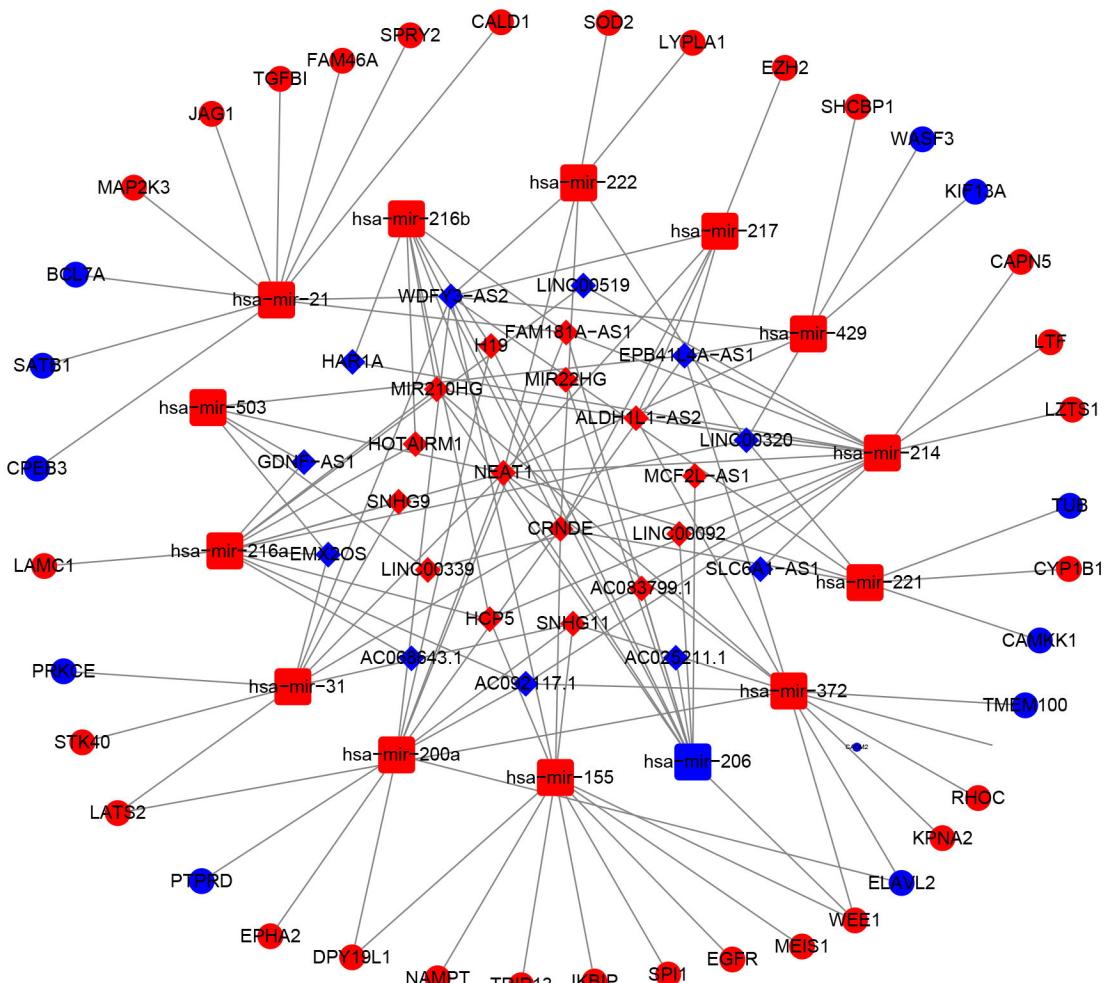
C

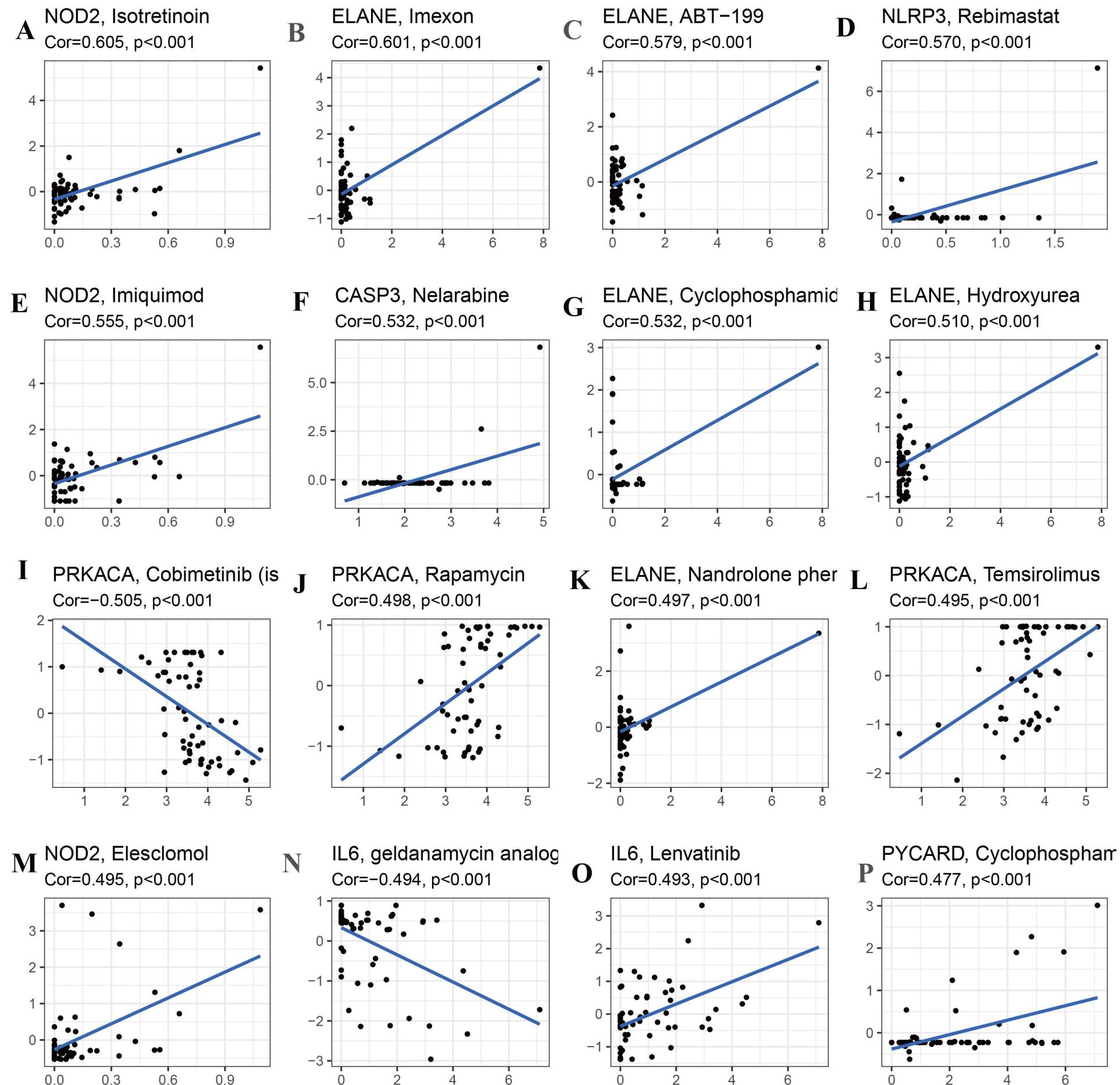


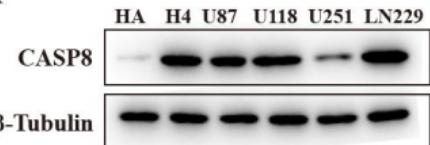
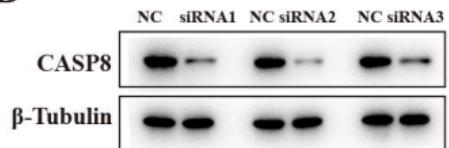
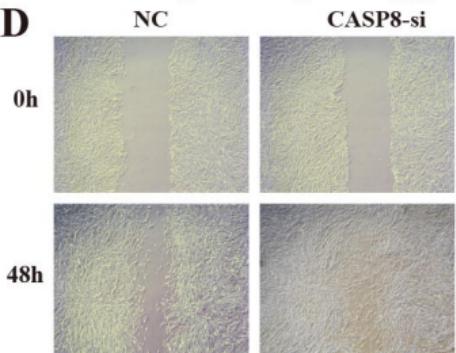
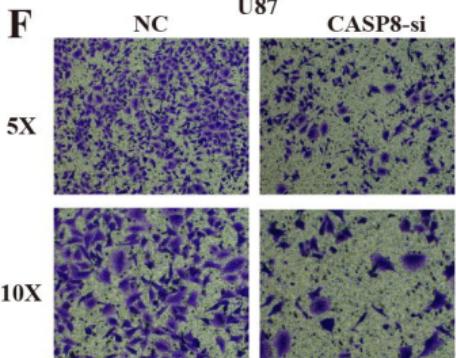
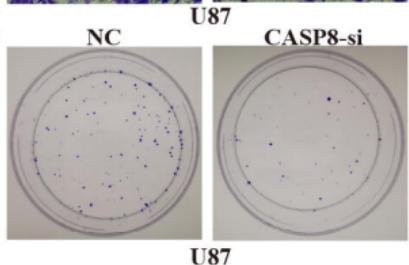
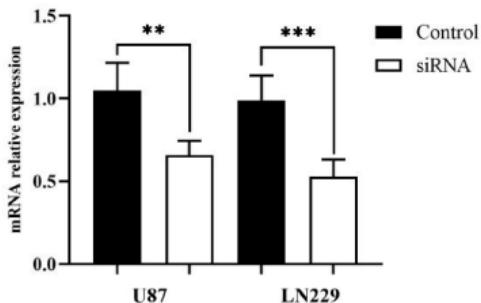
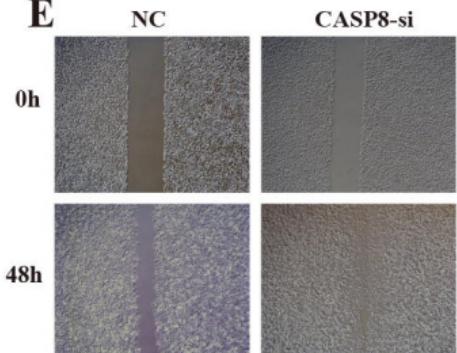
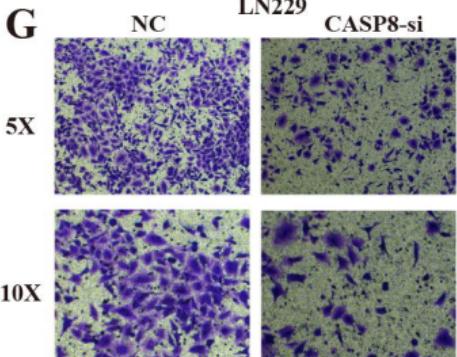
Risk high low

D







A**B****D****F****H****C****E****G****I**