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23 Abstract

24  Integrative analysis was performed in the Chinese Glioma Genome Atlas and The
25  Cancer Genome Atlas to describe the pyroptosis-associated molecular classification
26  and prognostic signature in glioma. Pyroptosis-related genes were used for consensus
27  clustering and to develop a prognostic signature. The immune statuses, molecular
28  alterations and clinical features of differentially expressed genes were analyzed among
29  different subclasses and risk groups. A IncRNA-miRNA-mRNA network was built, and
30 drug sensitivity analysis was used to identify small molecular drugs for the identified
31 genes. Glioma can be divided into two subclasses using 30 pyroptosis-related genes.
32  Cluster 1 displayed high immune signatures and poor prognosis as well as high
33  immune-related function scores. A prognostic signature based on 15 pyroptosis-related
34  genes of the CGGA cohort can predict the overall survival of glioma and was well
35 validated in the TCGA cohort. Cluster 1 had higher risk scores. The high-risk group had
36 high immune cell and function scores and low DNA methylation of pyroptosis-related
37  genes. The differences in pyroptosis-related gene mutations and somatic copy numbers
38  were significant between the high-risk and low-risk groups. The ceRNA regulatory
39  network uncovered the regulatory patterns of different risk groups in glioma. Nine pairs
40  of target genes and drugs were identified. In vitro, CASP8 promotes the progression of
41  glioma cells. Pyroptosis-related genes can reflect the molecular biological and clinical
42  features of glioma subclasses. The established prognostic signature can predict
43 prognosis and distinguish molecular alterations in glioma patients. Our comprehensive

44  analyses provide valuable guidelines for improving glioma patient management and
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45  individualized therapy.

46  Keywords: Glioma, pyroptosis, prognostic signature, Tumor immunity, clinical
47  nomogram

48  INTRODUCTION

49  Gliomas are the most common types of primary tumors in the central nervous system
50 and one of the most devastating tumors(1). At present, the main treatment methods of
51  glioma are surgical resection, radiotherapy, chemotherapy or chemoradiotherapy(2).
52  Although great efforts have been made to improve glioma treatment, the prognosis of
53 glioma patients remains poor(3). One of the main reasons is that the molecular
54  mechanism is still not fully understood. Therefore, the exploration and research of the
55 underlying mechanism of gliomas and identification of potential treatment targets
56  followed by application in clinical practice have important theoretical and practical
57  significance.

58  Pyroptosis is one of the pathways involved in programmed cell death, such as apoptosis,
59  ferroptosis, necroptosis, and autophagy.(4) Cookson et al. first used pyroptosis to
60  describe the caspase-1-dependent pattern of cell death found in macrophages(5).
61  Pyroptosis, distinct from apoptosis and necrosis, contributes to a range of human
62  diseases as a new mechanism of cell death. Pyroptosis is a proinflammatory form of
63  programmed cell death that is dependent on the activity of caspase acid-specific
64  proteases(6). In the coupling of the amino-terminal and carboxy-terminal linkers of
65 gasdermin D (GSDMD) by caspases, the latter is displaced onto the membrane and

66  perforated, inducing moisture penetration, cell swelling and the release of inflammatory
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67  factors, which is followed by pyroptosis(7). A previous study reported that pyroptosis
68  plays an important role in immunity and diseases. Pyroptosis can promote the death of
69  damaged cells during infection and acts as an alarm signal for the recruitment of
70  immune cells to the site of infection to promote the removal of pathogens, thus
71  effectively protecting the body(8). In recent years, its role in tumorigenesis and cancer
72 development has been studied comprehensively. Various regulators have been reported
73 to be involved in the process of pyroptosis and play pivotal roles in the progression of
74 tumors, such as hepatocellular carcinoma, lung cancer, and breast cancer(9-11).
75 However, few studies have investigated the role of pyroptosis in glioma, and
76~ comprehensive analyses of pyroptosis regulators in glioma, their correlation with
77  clinical characteristics and their prognostic value have not been reported.

78  In the present study, we first outlined the molecular subtypes of gliomas based on
79  pyroptosis-related genes in the CGGA dataset and described the clinical and molecular
80  characteristics and immune status of each subclass. Then, we developed a prognostic
81  signature of pyroptosis-related genes based on the CGGA cohort, validated this
82  prognostic signature in the TCGA cohort. Furthermore, we explored the clinical and
83  molecular patterns, including immune infiltration, somatic copy number alterations,
84  mutations, and DNA methylation, and established a IncRNA-miRNA-mRNA
85  regulatory network. Finally, we explored the correlation between small molecular drugs
86  and the identified prognostic signature genes. Our comprehensive analyses provide new
87  insight into the functions of pyroptosis in the initiation, development, and progression

88  of glioma.
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89 MATERIALS AND METHODS
90 Data source
91  We downloaded the genomic data, copy number alteration, methylation and clinical
92  data of glioma patients from the CGGA (http://www.cgga.org.cn/) and TCGA databases
93  (https://portal.gdc.cancer.gov/). Additional gene-centric RMA-normalized gene
94  expression profiles and drug response data of over 1000 cancer cell lines were accessed
95 from the Genomics of Drug Sensitivity in Cancer (GDSC) database
96  (https://www.cancerrxgene.org/downloads). Immune-associated data, including
97 immune cells and immunophenoscores, were downloaded from TCIA
98  (https://tcia.at/home). Thirty-three pyroptosis-related genes were defined from a
99  previous publication and are provided in Table S1(12-15).
100  Identification of glioma subclasses and Gene set variation analysis
101 We identified the optimal clustering number visualizing consensus matrix, tracking plot,
102  and cumulative distribution function plot. In addition, a T-distributed stochastic
103  neighbor embedding-based approach was used to validate the clustering in glioma
104  patients. We calculated the enrichment scores for every sample using the GSVA R
105  package.
106  Development and validation of a prognostic signature
107  We developed a pyroptosis-related prognostic signature based on the CGGA training
108  cohort. Twenty differentially expressed genes with P<(0.05 were entered into LASSO
109  Cox regression, which identified potential genes for the prognostic signature in the

110  CGGA training cohort. Then, we calculated the risk score for each sample of the CGGA
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111 and TCGA validation cohorts using the obtained regression coefficient in the CGGA
112 training  cohort:  risk  score  =coefl*gene;  expressiontcoef2*  gene:
113 expression+...coefn*genen expression. The CGGA and TCGA samples were divided
114  into a high-risk group and a low-risk group based on the median risk score. Receiver
115  operating characteristic curves were plotted to evaluate the 1-year, 2-year, and 3-year
116  sensitivity and specificity of the prognostic signature. We also established a prognostic
117 nomogram to evaluate the clinical value of the prognostic signature. Calibration
118  analysis of the prognostic predictive value of the nomogram was carried out.

119  Functional enrichment analysis, estimation of tumor stem cell-like properties and
120 immune infiltration

121 Gene Ontology and KEGG pathway analyses were performed using the “clusterProfiler”
122 package. We used single-sample gene set enrichment analysis (ssGSEA) to estimate the
123 enrichment score of stem cell-like properties (RNAss, DNAss) and the TME (stromal
124 score, immune score, and ESTIMATE score) in the TCGA cohort because the CGGA
125  dataset did not provide such data. The immune-related cell and function scores were
126  also calculated for each sample (downloaded from https://www.gsea-msigdb.org/).

127  Somatic copy number alteration, mutation, and DNA methylation analysis

128  Based on the risk groups in the TCGA cohort, we compared the somatic copy number
129  alteration, mutation, and DNA methylation levels between the high-risk and low-risk
130  groups using the “limma” R package.

131  Construction of a ceRNA network and drug sensitivity

132 To further explore the transcriptome regulation network of different risk groups, we
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133 used Cytoscape version 3.8.2 to establish a IncRNA-miRNA-mRNA regulatory
134  network. We explore the correlation between small molecular drugs and the identified
135  prognostic signature genes using Pearson correlation analysis |R[>0.25 and P>0.05 were
136  considered significant.

137  Verification of experiments in vitro

138 We further performed the Western blot, cell migration assays, cell scratchy assays, and
139  clonogenic assays to verify the present finding. We selected the CASP8 to validate the
140  molecular function because CASP8 showed significant differences between normal
141  tissue and GBM or LGG, and the elevated expression is associated with poor prognosis.
142 The details of experiments process in vitro were supplied in Additional file 1.docx.
143  Statistical analysis

144  The log-rank test was used to compare the survival curves of Kaplan-Meier analysis.
145  The hazard ratio (HR) and 95% confidence interval (CI) of each gene and clinical
146  parameters were calculated when univariate and multivariate Cox regression were
147  applied. All analyses were achieved using R software version 4.0. A two-sided P value
148  <0.05 was considered significant unless otherwise specified.

149  RESULTS

150  Identification of glioma subclasses

151  The flow chart of the data analysis is presented in Figure 1A. From two CGGA RNA-
152  seq datasets, we obtained 1018 samples of gene expression data and further identified
153 30 pyroptosis-related genes based on MAD>0.5. The gene symbols and descriptions of

154  the 30 pyroptosis-associated genes used for classification are listed in the Additional
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155  file 2: Table S1. We first explored the interactions among these genes using PPIs (Figure
156  1B), and the PPI network indicated that CASP8, CASP4, CASP1, NLRP3, NLRP1 and
157  NLRC#4 are hub genes. The correlation circle plot of the 30 genes is presented in Figure
158  1C (red: positive correlation; green: negative correlation). We identified the optimal k
159  value as 2 by estimating the comprehensive correlation coefficient. Therefore, we
160  divided the glioma samples into two different subclasses: cluster 1 and cluster 2. For
161  the optimal k value (k=2), the consensus matrix showed a relatively sharp and clear
162  boundary, indicating stable and robust clustering (Figure 1D). To verify the subclass
163  stability, we further performed t-sensitivity PCA and found that a two-dimensional t-
164  sensitivity distribution supported subtype clustering (Figure 1E). The consensus
165  clustering for each sample is listed in Additional file 2: Table S2. The Kaplan-Meier
166  analysis indicates that the median survival time was significantly shorter in cluster 2
167  than in cluster 1 (MST: 1.87 vs. 6.92 years, P<0.001, Figure 1F). This result indicated
168  that the two subclasses had distinct prognostic patterns.

169  Correlation of glioma subclasses with pyroptosis-related genes

170  Two subclasses were obtained based on pyroptosis-related genes. To explore the
171  pathway enrichment for the two subclasses, we performed GSVA by transforming the
172 expression data from a gene-by-sample matrix to a gene set by two subclasses. Then,
173 differential pathways were enriched in the two subclasses. Compared with cluster 1, the
174 GSVA results indicated that cluster 2 had 182 kinds of significantly differential
175  signaling pathways (Additional file 2: Table S3). The upregulated pathways were

176  associated with immune-related pathways, such as autoimmune, allograft rejection,
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177  graft versus host disease, primary immunodeficiency, antigen processing and
178  presentation. Some signaling pathways, such as the cytosolic DNA sensing pathway,
179  NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and
180  metabolism-related pathways, were also significantly enriched. The significantly
181  downregulated pathway was long-term potentiation (Figure 2A).

182  Clinical characteristics and transcriptomes of glioma subclasses

183  We explored the correlation of subclasses with clinical characteristics (Figure 2B).
184  Compared with patients in cluster 2 with a favorable prognosis, patients in cluster 1
185  tended to have GBM (P<0.001), WHO grade IV (P<0.001), a higher proportion of
186  age >41 years, 1p19q non-codeletion status (P<0.001), and IDH wildtype status
187  (P<0.001). Sex, PRS type and radiotherapy status were not associated with the
188  molecular subclasses (P>0.05). For the pyroptosis-related genes except CASP9,
189  significant differential expression was observed in the two clusters. Among these
190  differentially expressed genes, all genes were upregulated in cluster 1 and
191  downregulated in cluster 2 (Figure 2B). We also compared the differences in pyroptosis-
192  related genes in patients with different histologies, grades, IDH mutation statuses, and
193  1pl19q statuses. Compared with the LGG group, the GBM group had one upregulated
194  gene (AIM2) and 21 downregulated genes (Additional file 3: Figure S1A). Twenty-one
195  DEGs were found for grade, and their expression increased with increasing WHO grade
196  (P<0.005, Additional file 3: Figure S1B). For IDH status, 25 DEGs were found
197  (Additional file 3: Figure S1C). Thirty pyroptosis-related DEGs were found for 1p191

198  status (Additional file 3: Figure S1D).
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199  We further performed differential expression analysis between cluster 1 and cluster 2.
200 A total of 392 DEGs were found, 18 genes were upregulated, and 372 genes were
201  downregulated in cluster 2 (Additional file 2: Table S4). GO and KEGG enrichment
202  analyses were performed for all DEGs (Additional file 2: Table S5 and Table S6). A
203  total of 874 differentially expressed functions were enriched, including 709 biological
204  processes, 95 cellular components and 70 molecular functions. The top 30 enrichment
205 results are presented in Additional file 3: Figure S2. Most of these functions were
206  associated with immunity. In addition, 56 pathways were also identified in the KEGG
207  analysis (Additional file 3: Figure S3), and the top five pathways were phagosome,
208  Staphylococcus aureus infection, tuberculosis, complement and coagulation cascades,
209  and human T-cell leukemia virus 1 infection.

210  Correlation of glioma subclasses with immune status

211 To explore the tumor heterogeneity between the two subclasses, we investigated the
212 immune cell and immune function differences. Compared with cluster 2, cluster 1 had
213 higher aDC, CD8+ T cell, DC, iDC, macrophage, mast cell, neutrophil, NK cell, pDC,
214 T helper cell, Tth cell, Th2 cell, TIL, and Treg levels (all P<0.001, Additional file 3:
215  Figure S4A). Similarly, cluster 1 had higher immune function scores than cluster 2,
216  including APC coinhibition, APC costimulation, CCR, checkpoint, cytolytic activity,
217  HLA, inflammation promotion, MHC class I, parainflammation, T cell coinhibition,
218  type I IFN response and type II IFN response (all P<0.001, Additional file 3: Figure
219  S4B).

220  Development of a pyroptosis-related prognostic signature in glioma

10


https://doi.org/10.1101/2021.08.03.454997
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454997; this version posted November 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

221  Initially, we performed univariate Cox regression to identify the correlations of the 30
222  pyroptosis-related genes with OS (Additional file 3: Figure S5A) in the CGGA cohort.
223 In total, 20 pyroptosis-related genes were identified as associated with the overall
224  survival of glioma patients. The Kaplan-Meier plot indicated that high expression of
225  CASP3, CASP4, CASPS5, CASP6, CASPS, ELANE, GSMAD, IL6, NLRP3, NODI,
226 NOD2, PLCGI1, PRKACA, PYCARD, and SCAF11 was associated with poorer OS in
227  glioma. Using 20 prognostic pyroptosis-related genes, we developed a prognostic
228  signature by performing LASSO regression in the CGGA training cohort (Additional
229  file 3: Figure S5B and S5C). Fifteen of the 20 prognostic genes were used to develop
230 the risk signature. We calculated the risk score for each sample using the regression
231  coefficients of the 15 genes (Additional file 2: Table S7). Glioma patients with risk
232 scores greater than the median value were divided into a high-risk group, and the others
233 were divided into a low-risk group. Compared with the low-risk group, the high-risk
234  group was more likely to have GBM (P<0.001), a higher WHO grade (P<0.001),
235  recurrence (P<0.001), older age (P<0.001), IDH wildtype status (P<0.001), 1p19q non-
236  codeletion status (P<0.001), and a history of chemotherapy (P<0.001). The heatmap
237  showed the association between the risk group and clinical parameters and differentially
238  expressed genes of the high- and low-risk groups (Additional file 3: Figure S5D).
239  Furthermore, we found that glioma patients belonging to cluster 1, patients with a poor
240  prognosis, patients with GBM, patients with WHO grade IV patients with 1p19q non-
241  codeletion status and patients with IDH wildtype status had higher risk scores (all
242  P<0.001, Additional file 3: Figure S6).

11
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243  The Kaplan-Meier analysis showed that the high-risk group had a significantly poorer
244 OS than the low-risk group (Figure 3A-3 B). Univariate Cox regression indicated that
245  the risk score was positively associated with OS in glioma (HR=3. 105, 95% CI: 2.681—
246 3.596, P<0.001, Figure 3C). Multivariate Cox regression suggested that the risk score
247  was an independent unfavorable prognostic predictor in glioma (HR=1.685, 95% CI:
248  1.392-2.039, P<0.001, Figure 3D). In addition, PRS type, tumor grade, and age were
249  positively associated with OS. However, chemotherapy, wildtype IDH status, and
250  1pl9q status were negatively associated with OS in the CGGA training cohort. The
251  PCA plot indicated that patients in different risk groups were separated into obviously
252  different clusters (Figure 3E). Time-dependent receiver operating characteristic
253  analysis was performed to evaluate the predictability of the prognostic model. Our
254  results showed that the AUCs at 1 year, 2 years, and 3 years were 0.717, 0.784 and
255  0.773 (Figure 3F), respectively. We further compared the OS status among different
256  histology, IDH status, 1p19q codeletion status, and grade subgroups. The results
257  showed that the OS of the high-risk group was still poorer than that of the low-risk
258  group (Additional file 3: Figure S7, all P<0.001).

259  External validation of the pyroptosis-related prognostic signature in glioma

260  To further validate the prognostic value of the pyroptosis-related gene model, we also
261  calculated the risk score of glioma patients in the TCGA cohort using the regression
262  coefficients of the CGGA cohort. The Kaplan-Meier analysis indicated a significant
263  correlation of the high-risk group with worse OS than the low-risk group (Figure 4A-
264  4C). Univariate Cox regression showed that the risk score was significantly associated

12
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265  with OS in the TCGA cohort (HR=2.084, 95% CI: 1.890-2.297, P<0.001, Figure 4D).
266  In multivariate Cox regression, the risk score was also an independent prognostic
267  indicator (HR=1.425, 95% CI: 1.247-1.629 P<0.001, Figure 4E). The PCA plot
268  validated the high- and low-risk distribution of all glioma patients based on the TCGA
269  cohort. Furthermore, the AUCs of the risk score were 0.844 at 1 year, 0.863 at 2 years,
270  and 0.874 at 3 years (Figure 4F).

271  Prognostic prediction models

272 To further evaluate the clinical prediction value of the prognostic signature, we
273  constructed a prognostic nomogram model based on multivariate Cox regression
274  analysis that included all clinical parameters in the CGGA cohort The calibration curves
275  indicated that the clinical nomogram model could precisely predict the 1-year, 3-year
276  and 5-year OS of glioma patients (C-index=0.799). The predictive accuracy of this
277  nomogram was well validated in the TCGA cohort (C-index=0.841, Figure 5).

278  Functional enrichment and immune infiltration analyses based on the prognostic
279  signature

280  We further explored the underlying biological functions that define the survival of
281  glioma patients. We first performed DEG analysis between the high-risk and low-risk
282  groups and then annotated the functions of the DEGs in terms of biological processes,
283  cellular components, and molecular functions using GO enrichment and KEGG
284  pathways. We identified 338 DEGs in the CGGA cohort (Additional file 2: Table S8)
285  and 2600 DEGs in the TCGA cohort (Additional file 2: Table S9). The GO enrichment

286  and KEGG pathway analyses indicated that the CGGA and TCGA cohorts shared some

13
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287  enrichment results, such as extracellular matrix organization, extracellular structure
288  organization, immune response, ECM-receptor interaction, and cell adhesion molecules
289  (Figure 6A-6D).

290  We also explored the differences in immune cells and immune functions based on the
291  risk score in the CGGA (Figure 6E and Figure 6G) and TCGA datasets (Figure 6F and
292  Figure 6H). As shown in the box plots, the immune cell score showed a similar trend in
293 the CGGA and TCGA datasets. All immune cell scores were significantly upregulated
294  in the high-risk group. The immune function differences of the different risk groups
295  were the same in the CGGA and TCGA datasets (all P<0.001). All immune function
296  scores were significantly upregulated in the high-risk group. Significant expression
297  levels were also observed among different immune subtypes, which indicated that the
298  glioma prognosis risk could be associated with immune status (Additional file 3: Figure
299  S8). We also explored the correlation of the expression of target genes with cancer stem
300 cell-like properties (RNAss, DNAss) and the TME (stromal score, immune score, and
301  ESTIMATE score). We found that PCG1 was negatively associated with RNAss, the
302 stromal score, the immune score, and the ESTIMATE score. SCAFI1 was only
303 negatively associated with DNAss. The rest of the genes showed positive correlations
304  with RNAss, DNAss and the stromal, immune and ESTIMATE scores (Additional file
305  3: Figure S9).

306  Molecular alterations of pyroptosis-related genes based on the prognostic
307  signature

308 Molecular alterations of pyroptosis-related genes were also evaluated based on

14
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309  histology in the TCGA dataset. NLRP2, NLRP7, and PLCG1 were the only gene
310 alterations in LGG, and NLRP3, NLRP7, NLRP2, SCAF11, NODI1, PLCGI1, NLRP1,
311  and CASP1 were gene alterations in GBM. All gene alterations were within 2% (Figure
312 7). The somatic copy number alteration analysis indicated significant differences
313 among the pyroptosis-related genes. Among these genes, the copy variation number
314  was significantly increased in GPX4, NLRP7, NLRP2, CASP3, CASP6, IL1B, CASPS,
315 IL6, AIM2, NLRP4, NLRP3, PRKACA, ELANE, SCAF11, CASP9, NODI, and
316 PLCGI and was significantly decreased in GSDMB, GSDMD, NLRP1, CASP9,
317 TIRAP, CASP1, CASP4, NOD2, CASP5, PYCARD, GSMDC, GSMDA, and IL18 in
318  the high-risk group. The DNA methylation levels of the pyroptosis-related genes were
319  also compared. The results showed that the overall DNA methylation levels were
320  significantly decreased in the high-risk group and increased in the low-risk group.

321  Construction of a ceRNA network based on the prognostic signature

322 A ceRNA network was constructed based on the differentially expressed mRNAs,
323  IncRNAs and miRNAs between the high-risk and low-risk groups in the TCGA dataset.
324  We identified 763 downregulated mRNAs, 1176 upregulated mRNAs, 116
325 downregulated IncRNAs, 132 upregulated IncRNAs (Additional file 2: Table S10), 47
326  downregulated miRNAs and 71 upregulated miRNAs (Additional file 2: Table S11).
327 Finally, 39 mRNAs (28 upregulated and 11 downregulated), 26 IncRNAs (15
328 upregulated and 15 downregulated) and 14 miRNAs (13 upregulated and 1
329  downregulated) were included in the ceRNA network (Figure 8). The Kaplan-Meier

330 curves suggested that 13 IncRNAs (positive correlation: AC025211.1, AC068643.1,
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331 GDNF-ASI, and LINCO00519; negative correlation: ADHIL1-AS2, CRNDE,
332 FAMI81A-AS1, HOTAIRMI1, MCF2L-AS1, MIR210HG, NEATI1, SLC6A1, and
333  SNHGY; Additional file 3: Figure S10), 41 mRNAs (Additional file 2: Table S12 and
334  Additional file 3: Figure S11) and 8 miRNAs (miR-21, miR-155, miR-200a, miR-216a,
335 miR-221, miR-222, miR-429, and miR-503; Additional file 3: Figure S12) were
336  associated with OS in glioma patients.

337  Drug sensitivity analysis

338  Toidentify potential target drugs, we performed correlations of the identified prognostic
339 signature genes with drugs. We identified 257 pairs of significant gene-drug
340  correlations (Additional file 2: Table S13). There were 9 pairs with correlation
341  coefficients >0.5 or <-0.5.

342  ELANE-hydroxyurea, ELANE-cyclophosphamide, CASP3-nelarabine, NOD2-
343  imiquimod, NLRP3-rebimastat, ELANE-ABT-199, ELANE-imexon, and NOD2-
344  isotretinoin showed drug sensitivity. PRKACA-cobimetinib showed drug resistance
345  (Figure 9).

346 CASPS8 promotes the progression of glioma cells

347  We selected the CASP8 to validate the molecular function because CASP8 showed
348  significant differences between normal tissue and GBM or LGG in GTEx database
349  (Additional file 3: Figure S13). We firstly detected the expression of CASPS in glioma
350 cell lines using the Western blot analysis, and found CASPS8 is the most highly
351  expressed in LN299 cell. We built the CASP8-si LN229, H4 and U87 cells of glioma.

352  The qPCR indicated mRNA level of CASPS is significantly down-regulated in U87 and
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353  LN229 cells. Furthermore, the silence of CASP8 expression inhibited the cell migration
354  ability (Figure 10). The clonogenic assay also showed that the number of clonogenicity
355 of U87 and LN229 cells were significantly suppressed after knockout of CASPS8. These
356  results suggested that CASP8 promotes the progression of glioma cells.

357  DISCUSSION

358  The traditional histologic-based classification has some limitations, although this
359 classification system has been updated several times over the years and serves clinicians
360  well. One of the primary limitations is interobserver variability(16). A previous study
361  reported that the concordance for reviewing a case is only approximately 50% among
362 different  neuropathologists, especially  for  astrocytic  glioma  versus
363  oligodendroglioma(17). The development of genomics has allowed us to better
364  understand the differences in prognosis and molecular features and promote effective
365 treatment in glioma subclasses based on molecular features. Using 30 pyroptosis-
366  related genes, we divided glioma patients into two subtypes. Significant overall survival
367 differences were observed between cluster 1 and cluster 2. GSVA indicated that cluster
368 1 was enriched in some immune-related pathways. Cluster 1 and cluster 2 showed
369  absolute differences in immune cells and immune functions. The infiltration levels of
370  all kinds of immune cells, except Th1 cells, were higher in cluster 1, which had a poor
371  prognosis than in cluster 2. Cluster 1 also showed more significant trends in some main
372  immune function levels, such as immune checkpoints, inflammation promotion, par
373  inflammation. A recent study reported that pyroptosis presents antitumor immune
374  function in tumors, namely, pyroptosis-induced inflammation triggers robust antitumor
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375 immunity and can synergize with checkpoint blockade(18). Moreover, some key
376  pathways were also highly enriched in cluster 1, such as the NOD-like receptor
377  signaling pathway, Toll-like receptor signaling pathway, and cytosolic DNA sensing
378  pathway, which were reported to be involved in glioma progression(19-21). These
379  results indicated that pyroptosis-related genes divided glioma patients into two-
380  dimensional distributions well.

381  We established a prognostic signature based on 15 pyroptosis-related genes. This
382  prognostic signature was well validated in an external independent cohort, and in terms
383  of its predictability, AUCs of 0.844, 0.863, and 0.874 were achieved for 1, 2, and 3
384  years, respectively, which showed its high discernibility. Combining clinical features
385 and the risk score of the 15 genes, we developed a nomogram for clinical application.
386  The CGGA and TCGA datasets showed high consistency. These results indicated that
387  the prognostic signature based on pyroptosis-related genes has high clinical value.

388  The signature genes were involved in two biological mechanisms of pyroptosis. The
389  assembly of inflammasome bodies is the initial step of the classical pyroptosis pathway.
390 The inflammasome is a macromolecular protein complex in the cytoplasm necessary
391  for the occurrence of inflammation and can recognize dangerous signaling molecules
392  such as bacteria and viruses. The inflammasome is mainly composed of pattern
393  recognition receptors (PRRs), apoptosis-associated speck-like protein (ASC) and pro-
394  caspase-1 precursors(22). PRRs are receptor proteins responsible for recognizing
395  different signal stimuli in cells. They are mainly composed of nucleotide-binding
396  oligomerization domain-like receptor protein (NLRP) 1, NLRP3, nucleotide-binding
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397  oligomerization domain-like receptor protein C4 (NLRC4), absent in melanoma 2
398  (AIM2) and other components(15). ASC is an adaptor protein that is mainly composed
399  of the N-terminal pyrindomain (PYD) and the C-terminal caspase activation and
400  recruitment domain (CARD)(23). Procaspase-1 is an effector molecule that can
401  specifically cleave GSDMD after activation. After the danger signal sensor NLRI,
402  NLRP3 or AIM2 recognizes the danger signal molecule, the N-terminal PYD is
403  combined with the N-terminal PYD of the adaptor protein. ASC then recruits Caspase-
404 1 through the interaction of the CARDCARD domain to complete the assembly of the
405  inflamed body(24). This method of cell death mediated by Caspase-1 is called the
406  classical pathway of pyroptosis(25). The non-classical pathway of pyrolysis is mainly
407  mediated by Caspase-4, Caspase-5 and Caspase-11. After cells are stimulated by
408  bacterial LPS, Caspases-4, -5, and -11 directly bind to bacterial LPS and are
409  activated(26). Activated Caspases-4, -5, and -11 specifically cleave GSDMD and
410  release the intramolecular inhibition of the GSDMD-N domain(27). The combination
411 of the GSDMD-N-terminus and cell membrane phospholipids causes cell membrane
412  pore formation, cell swelling and rupture and induces cell pyrolysis; the GSDMD-N-
413  terminus can also activate Caspase-1 by activating the NLRP3 inflammasome(28).
414  Activated Caspase-1 stimulates the maturation of IL-18 and IL-1p precursors, and IL-
415 18 and IL-1pB are secreted to the outside of the cell and amplify the inflammatory
416  response. Yang et al found that in the nonclassical pathway that relies on Caspase-11,
417  gap junction protein-1 (Pannexin-1) can be cleaved, and the cleavage of Pannexin-1 can
418  activate its own channel and release ATP, which induces pyrolysis(29). Lamkanfi et al
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419  found that in the nonclassical pathway that relies on Caspase-11, Pannexin-1 cleavage
420  can also activate the NLRP3 inflammasome, which in turn activates Caspase-1 and
421  induces the occurrence of pyroptosis(30). According to the results, mutations of
422  pyroptosis-related genes are mainly attributed to the classical pathway of pyrolysis.
423  More research is needed to validate the molecular mechanisms.

424  Based on the risk score, we classified glioma patients into high- and low-risk groups to
425  discriminate clinical outcomes. We further explored the molecular features between the
426  high- and low-risk groups. The functional enrichment analysis results were similar in
427  the TCGA and CGGA datasets, and the same pathways appeared in the two datasets,
428 such as ECM-receptor interaction, GABAergic synapse, focal adhesion, and
429  extracellular matrix organization. The immune cells and immune functions showed
430  similar trends: immune cell and functional scores were higher in the high-risk group.
431  The clinical features showed that cluster 1 had a higher risk score and poorer prognosis
432  than cluster 2. The results indicated that the classification was accurate and validated in
433  the risk model. Furthermore, we compared the gene alterations, CNVs, and DNA
434  methylation levels. Significantly different levels were observed, which reflected the
435  different molecular features of the different risk groups. The ceRNA network identified
436  several key IncRNA-miRNA-mRNA regulatory networks: FAM181A-ASI-miR-21-
437  (CPEB3, SAIB1, BLC7A, MAP2K3, JAG1, TGFBI, FAM46A, SPRY2, and CALD1).
438  The survival analysis further suggested the regulatory correlation: elevated FAM18A-
439  AS1 and miR-21 were associated with poor prognosis in glioma, and low expression of
440 BCL7A, SATB1 and CPEB3 was associated with favorable prognosis. Previous
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441  experiments have reported the promoting role of miR-21 in glioma(31), and
442  upregulation of SATB1 and CPEB3 is associated with the development and progression
443  of glioma(32, 33). The drug sensitivity analysis indicated that NOD2, ELANE, CASP3,
444  and PYCARD showed sensitivity to small molecular drugs, and PRKACA, IL6, and
445  NLLRP3 showed resistance to some drugs. It was reported that the inhibition of the
446 NLRP3 inflammasome by beta-hydroxybutyrate can suppress the migration of glioma
447  cells(34). These results may provide some guidelines for clinical practice.

448  The present study indicated that pyroptosis-related genes can be used to classify glioma
449  patients into two subclasses based on different molecular features and clinical
450  characteristics. The established prognostic model based on 15 pyroptosis-related genes
451  not only predicted the prognosis of glioma patients but also reflected the molecular
452  alterations, immune infiltration statuses, and stem cell-like properties of different risk
453  groups. The classification based on the risk score of prognostic signature genes revealed
454  alncRNA-miRNA-mRNA regulatory network. The correlation of signature genes with
455  drug sensitivity may provide a rationale for clinical applications. Finally, our study
456  provides a new understanding of pyroptosis in the development and progression of
457  glioma and contributes new important insights for promoting glioma treatment
458  strategies.
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585  Figure 1 Identification of glioma subclasses using consensus clustering method in the
586  CGGA dataset. (A) Flow chart of the study. (B) PPI network indicating the interactions
587 among pyroptosis-related genes (interaction score=0.7). (C) The circle plot of
588  correlation among pyroptosis-related genes (green line: negative correlation, red line:
589  positive correlation). (D) Consensus matrix method clustering using 30 pyroptosis-
590 related genes. (E) PCA analysis showed the distribution of two glioma subclasses in the
591  CGGA dataset. (F) Overall survival curve of two clusters in the cohort.

592  Figure 2 Characteristics of patients in cluster 1 and cluster 2 in CGGA cohort. (A)
593  Heatmap of gene set variation analysis of the pyroptosis-related genes from cluster 1
594  and cluster 2. (B) Heatmap showed the correlations between two subclasses and clinical

595  characteristics and differentially expressed pyroptosis-related genes in the CGGA
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596  cohort.

597  Figure 3 Establishment of a pyroptosis-related gene prognostic signature in the CGGA
598  cohort. (A) Kaplan-Meier curves for OS of patients in high- and low-risk group in
599  CGGA Cohort. (B) Distribution of risk score of all patients of CGGA cohort, and
600  Patients’ survival time distribution. (C) Forest plot of univariate cox regression between
601  risk score and prognosis of glioma. (D) Forest plot of multivariate cox regression of
602  between risk score and prognosis of glioma. (E) PCA plot for signature genes based on
603  risk score group. (F) ROC curves showed the predictive efficiency of risk score at 1-
604  year, 2-year, 3-year point.

605  Figure 4 External validation of a pyroptosis-related gene prognostic signature in the
606  TCGA cohort. (A) Kaplan-Meier curves for OS of patients in high- and low-risk group
607 in TCGA Cohort. (B) Distribution of risk score of all patients of TCGA cohort and
608  Patients’ survival time distribution of TCGA cohort. (C) Forest plot of univariate cox
609  regression between risk score and prognosis of glioma in TCGA cohort. (D) Forest plot
610  of multivariate cox regression of between risk score and prognosis of glioma in TCGA
611  cohort. (E) PCA plot for signature genes based on risk score group in TCGA cohort. (F)
612  ROC curves showed the predictive efficiency of risk score at 1-year, 2-year, 3-year
613  point in TCGA cohort.

614  Figure 5 Establishment and validation of nomogram model based on prognostic
615  signature genes. (A) Nomogram model established in the CGGA cohort. (B) The 1-year
616  calibration curves in the CGGA cohort. (C) The 3-year calibration curves in the CGGA

617  cohort. (D) The 5-year calibration curves in the CGGA cohort. (E) The 1-year
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618  calibration curves in the TCGA cohort. (F) The 3-year calibration curves in the TCGA
619  cohort. (G) The 5-year calibration curves in the TCGA cohort.

620  Figure 6 Functional enrichment and immune status analysis. (A) Barplot of enrichment
621  analysis based on prognostic-related signature genes in CGGA cohort. (B) Bubble plot
622  of enrichment analysis based on prognostic-related signature genes in CGGA cohort.
623  (C) Barplot of enrichment analysis based on prognostic-related signature genes in
624  TCGA cohort. (D) Bubble plot of enrichment analysis based on prognostic-related
625  signature genes in TCGA cohort. (E) Boxplot showed the ssGSEA scores for immune
626  cells based on risk group in CGGA cohort. (F) Boxplot showed the ssGSEA scores for
627  immune cells based on risk group in TCGA cohort. (G) Boxplot showed the ssGSEA
628  scores for immune pathways based on risk group in CGGA cohort. (H) Boxplot showed
629  the ssGSEA scores for immune pathways based on risk group in TCGA cohort

630  Figure 7 Molecular alterations of pyroptosis-related genes in TCGA dataset. (A) The
631  mutations frequencies in low-risk group. (B) The mutations frequencies in high-risk
632  group. (C) Somatic copy number alteration based on risk groups. (D) DNA methylation
633  expression based on risk groups.

634  Figure 8 The ceRNA network based on risk groups in TCGA dataset (red: up-regulation.
635  blue: down-regulation).

636  Figure 9 Drug sensitivity analysis for identified prognostic-related genes based on
637 TCGA dataset (Top 16). (A) NOD2 and isotretinoin. (B) ELANE and Imexon. (C)
638  ELANE and ABT-199. (D) NLRP3 and Rebimastat. (E) NOD2 and Imuiquimod. (F)
639 CASP3 and Nelarabine. (G) ELANE and Cyclophosphamid. (H) ELANE and

29


https://doi.org/10.1101/2021.08.03.454997
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454997; this version posted November 29, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

640  Hydroxyurea. (I) PRKACA and Cobimetinib. (J) PRKACA and Rapamycin. (K)
641  ELANE and Nandrolone. (L) PRKACA and Temsirolimus. (M) NOD2 and Eleschomol.
642  (N) IL6 and geldanamycin. (O) IL6 and Lenvatinib. (P) PYCARD and Cyclophospharr
643  Figure 10 CASPS8 promotes progression of glioma cells. (A) The expression of CASP8
644  protein in human HA and glioma cell lines. (B) The western blot of CASP8 in U&7,
645  Ul251, H4 cell lines after siRNA. (C) The mRNA expression level of CSAP8 in U87
646  and U251 after siRNA. (D and E) The scratch assay of CASP8-si in U87 and U251 cell
647  lines. (F and G) Transwell assay of CASP8-si U87 and U251 cell lines. (H and I) The
648  clonogenic assay of CASPS8 in U87 and U251 cell lines.

649  Supplementary materials legends

650  Additional file 1:The details of experiments process in vitro

651  Additional file 2: Table S1-S12.xlsx

652  Table S1 The 30 pyroptosis associated genes used for classification

653  Table S2 Glioma classification pattern

654  Table S3 GSVA enrichment analysis between these distinct pyroptosis-regulated
655  clusters

656  Table S4 The result of differential expression analysis (Cluster 2 vs Cluster 1)

657  Table S5 Functional enrichment analyses of subclass differentially expressed genes
658  (Cluster 2 vs Cluster 1)

659  Table S6 Pathway enrichment analysis of differentially expressed genes from two
660  subclasses

661  Table S7 15 identified pyroptosis-related signature genes in prognostic model
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662  Table S8 Differentially expressed genes from CGGA based on risk score

663  Table S9 Differentially expressed genes from TCGA based on risk score

664  Table S10 Differentially expressed IncRNA from TCGA based on risk score

665  Table S11 Differentially expressed mir-RNA from TCGA based on risk score

666  Table S12 Prognosis-related genes in the ceRNA network

667  Table S13 Results of drug sensitivity based on 15 pyroptosis-related prognostic
668  signature genes

669  Additional file 3:

670  Figure S1 Comparisons of different clinical parameters for pyroptosis-related genes.
671 (A) LGG and GBM. (B) WHO II vs WHOIII vs WHO 1V. (C) IDH: mutations vs
672  wildtyp. (D)1pl9 status: codel vs non-codel.

673  Figure S2 Barplot of GO enrichment analysis for differentially expressed genes based
674  on subclasses.

675 Figure S3 KEEG pathways analysis for differentially expressed genes based on
676  subclasses.

677  Figure S4 Correlation of glioma subclasses with immune infiltration. (A) Immune cells.
678  (B) immune function

679  Figure SS Identification of 215 genes risk signature for OS by LASSO regression in
680  the CGGA cohort. (A) Forest plot of univariate cox regression of OS for 30 pyroptosis-
681  related genes. (B) Cross-validation for tuning parameters selection int the LASSO
682  regression. (C) LASSO regression of the 15 OS-related genes. (D) Heatmap showed
683  the association between risk group and clinical parameters and differentially expressed
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684  genes of high- and low-risk group.

685  Figure S6 Boxplot of risk score among different clinical characteristics. (A) Subclasses:
686  Cluster 1 vs Cluster 2. (B) Outcomes: Dead vs Alive. (C) Histology: GBM vs LGG. (D)
687  Grade: WHO II vs WHO III vs WHO IV. (E) Ip19q status: Codeletion vs non-
688  codeletion. (F) IDH status: Mutant wildtype.

689  Figure S7 Subgroup analysis of OS based on risk score. (A) LGG. (B) GBM. (C) IDH
690  wildtype. (D) IDH mutation. (E) 1p9ql non-codel. (F) 1p9ql codel. (G) WHO II. (H)
691  WHO III. (I) WHO IV

692  Figure S8 Comparisons of 15 signature genes among different immune subtype.

693  Figure S9 Correlation of expression of 15 signature genes with cancer stem cell-like
694  properties (RNAss, DNAss) and TME (Stromal score, Immune score, and ESTIMATE
695  Score. (A) RNAss. (B) DNAss. (C) Stromal score. (D) Immune score. (E) ESTIMATE
696  score.

697  Figure S10 Kaplan-Meier curves of IncRNAs for OS in the ceRNA network. (A)
698  AC025211.1. (B) AC068643.1. (C)ADHI1L1-AS2. (D) CRNDE. (E) FAM181A-ASI.
699  (F) GDNF-ASI. (G) HOTAIRMI. (H) LINC00519 (I) MCF2L-AS1. (J) MIR210HG.
700  (K) NEAT1 (L)SLC6A1. (M) SNHG9.

701 Figure S11 Forest plot of mRNAs for OS in the ceRNA network

702  Figure S12 Kaplan-Meier curves of mir-RNAs for OS in the ceRNA network. (A) mir-
703 21. (B) mir-155. (C) mir-200a. (D) mir-216a. (E) mir-221. (F) mir-222. (G) mir-429.
704  (H) mir-503.

705  Figure S13 The expression levels of identified prognostic genes between tumor and
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706  normal

707
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