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Abstract 
Hospitalized patients receiving hematopoietic cell transplants provide a unique opportunity to 
study how the human gut microbiome changes in response to perturbations, and how the 
resulting changes in the microbiome feedback on its living host. We previously compiled a large-
scale longitudinal dataset of stool microbiome compositions from these patients and associated 
metadata1. In that dataset the microbiome analysis was limited to the taxonomic composition of 
the bacterial population obtained from 16S rRNA gene sequencing. Here, we augment those 
data with shotgun metagenomic sequences from a nested subset of 395 stool samples. We 
provide accession numbers that link each sample to the paired-end sequencing files deposited 
in a public repository, which can be directly accessed by the online services of PATRIC2 to be 
analyzed without the users having to download or transfer the files. We provide examples that 
show how shotgun sequencing enriches microbiome analyses beyond the taxonomic 
composition such as the analysis of gene functions including virulence factors and antibiotic 
resistances, and the assembly of genomes from metagenomic data. 
 
Background & Summary 

The composition of gut microbiome changes in response to mild perturbations such as 
changes in diet3 and strong perturbations such as chemotherapy 4 and antibiotics 5 that can 
deplete the majority of the microbes and impact microbiome function5. Over the past decades, 
the microbiome field has sought to characterize compositional changes to perturbations and 
understand how those changes impact human health6. Cross-sectional or longitudinal multi-
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omics data yielded valuable insights into the population dynamics of gut microbes, their 
ecological interactions and metabolic functions, and the molecular mechanisms of host-microbe 
crosstalk7,8. Data from patients hospitalized to receive allogeneic hematopoietic cell 
transplantation (HCT) provide a unique chance to study the gut microbiome in extremely 
perturbed conditions9–11. These perturbations caused by the treatment occur in a planned, 
scheduled fashion as patients stay in the hospital for several weeks, which enables collecting 
samples and clinical metadata. The patients receive many drugs including antibiotics that 
impact the composition and function of the gut microbiome12,13. The data also allow us to study 
how the microbiome composition feeds back on the state of its living host, and address some 
basic science questions such as how the microbiome influences the dynamics of the human 
immune system14. 

We previously published the first data descriptor of our institutional microbiome dataset 
of HCT patients (> 10,000 samples from >1,000 patients), where we compiled patients’ gut 
microbiota compositions based on 16S rRNA gene sequencing of fecal samples and its 
associated metadata1. Subsets of this comprehensive dataset were analyzed in a number of 
publications9,14–23. Metagenomic shotgun sequencing is more expensive but has advantages 
compared to 16S rRNA gene sequencing24: it not only reveals the composition of the gut 
microbiome but also the functions encoded by the genes in the microbiome25,26. Bioinformatic 
tools that analyze shotgun sequencing data for different purposes—taxonomic classification of 
microbial composition27, gene abundance prediction of specialty genes such as antibiotic 
resistance28,29 and virulence factors29, genome identification of strain-level or species-level 
metagenome-assembled genomes (MAGs)30,31 and metabolic model reconstruction that 
translate the DNA sequences to biochemical reactions32–34—are now readily available. Some of 
these tools even work directly with the accession numbers of the sequencing data deposited in 
public repositories, which greatly facilitates analysis. 

Here we compile 395 human fecal samples that were analyzed by metagenomic shotgun 
sequencing, which is a nested subset of samples we compiled previously and analyzed by 16S 
rRNA amplicon sequencing1. We present examples of functional analyses, including taxonomic 
composition, gene functions such as virulence factors and antibiotic resistance and the 
assembly of genomes from metagenomic data. We first conduct a data validation where we 
check the data for quality by addressing specific questions: Do the compositions inferred from 
metagenomic and 16S sequencing data agree? How well does metagenomic sequencing 
capture antibiotic resistance genes? Can the metagenomic data recapitulate the genomic 
difference of bacterial pathogens? We display the 395 shotgun samples on a t-SNE map of the 
>10,000 samples of 16S amplicon sequencing1. We then investigate correlations between the 
consistency of stool samples and the read counts of shotgun samples, and we check the 
correlation of composition between 16S amplicon sequencing and shotgun metagenomes. We 
then validate the ability to detect antibiotic resistance genes using an orthogonal detection of the 
vanA gene for vancomycin resistance using a PCR test.  We used the available tools from 
PATRIC, a publicly accessible database and tool repository for bacterial genome analysis, to do 
compositional analysis (kranken2), virulence gene (VFDB) and antibiotic resistant gene (CARD) 
identification. We assembled metagenomically assembled genomes (MAGs) from shotgun 
reads and compared them with genomes sequenced from isolates of Enterococcus faecium 
obtained from the same samples35. We provide Matlab code to compile the output of these 
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metagenomic analysis tools in a Github repository 
https://github.com/joaobxavier/shotgun_scientific_data. 
 
Methods 
Library preparation, shotgun sequencing and human genome decontamination. We 
compiled 395 of the >10,000 stool samples acquired from allo-HCT patients1, extracted the 
genomic DNA and sequenced on the Illumina HiSeq platform as described previously14,16. We 
removed normal optical duplicates in paired FASTQ files using the clumpify.sh tool from the 
BBMap package (BBMap – Bushnell B. – https://www.sourceforge.net/projects/bbmap/), 
producing a pair of read files without duplicates. Using the bbduk.sh script in the BBMap 
package, we trimmed the right and left side of a read in a pair to Q10 using the Phred algorithm. 
A pair of reads was dropped if any one of them had a length shorter than 51 nucleotides after 
trimming. We trimmed 3’-end adapters using a kmer of length 31, and a shorter kmer of 9 at the 
other end of the read. One mismatch was allowed in this process, and we allowed adapter 
trimming based on pair overlap detection (which does not require known adapter sequences) 
using the ‘tbo’ parameter. We used the ‘tpe’ parameter to trim the pair of reads to the same 
length. We removed human contamination using Kneaddata employing BMTagger. The 
BMTagger database was built with human genome assembly GRCh38. The paired end read 
files were uploaded into the Short Read Archive (SRA) of the National Center for Biotechnology 
Information (NCBI). 
 
Taxonomy classification and specific gene mapping for metagenomic reads. We used the 
services provided by the Pathosystems Resource Integration Center (PATRIC)2. PATRIC can 
take input as the SRA accession number of each sample and output the microbiome 
composition in taxa, as well as genes encoding virulence factors and antibiotic resistances. It 
uses the algorithm Kraken 227 for taxonomic classification, and the algorithm KMA36 to align the 
metagenomic reads to non-redundant databases. The virulence factor composition analysis is 
based on the Virulence Factor Database29 and the antibiotic resistance composition is based on 
the Comprehensive Antibiotic Resistance Database (CARD)28. The taxonomy, virulence factor 
and antibiotic resistance table for each of the 395 samples are provided as text tables. 
 
Genome assembly. We adapted a recently published pipeline to assemble the genomes of 
bacteria from shotgun sequenced samples37. Briefly, the pipeline first assembled contigs using 
metaSPAdes38. Then, it binned the contigs into MAGsusing three different methods: Metabat230 
CONCOCT31 and Maxbin2 39. The results were then aggregated using DASTool which 
implements a dereplication, aggregation and scoring strategy40 to produce the strain-level 
genomes. 
 
Data Records 

The shotgun sequenced samples were deposited in the NCBI/SRA as paired-end fastq 
files decontaminated of human reads. We updated the data table tblASVsamples.csv in 
Figshare (https://doi.org/10.6084/m9.figshare.12016983.v8) that we had previously published as 
part of our microbiota compilation1: We added a new column to the table, 'AccessionShotgun', 
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which lists the SRA accession record for each of the 395 samples presented here. All other 
samples were left with an empty entry in column 'AccessionShotgun'. The table can be updated 
in the future as new shotgun sequences become available. 
We compiled the additional tables for each sample as comma-separated value (csv) files in 
Figshare (https://figshare.com/account/home#/projects/120102) as following:  
● ReadCounts.csv: list the 395 samples used this study for shotgun 

○ SampleID: Name of samples 
○ Readcount: Number of reads for each sample after decontamination of human 

reads. 
● Abundance: A Kraken 2 report provides information of the bacterial taxa in each sample. 

○ Kindom, Phylum, Class, Order, Family, Genus: Each column contains name of 
taxonomic classification of each sample 

○ ColorOrder: Numeric data representing the order that each taxa was plotted in 
our manuscript. 

○ HexColor: Color code in hex format for each taxa 
○ 395 columns using sample names as column names: Numeric data as the 

relative abundance of each sample. Every column should sum to 1. 
■ NOTE: The (U)nclassified reads from kraken2 are not included in the 

calculation. 
■ The sample names of those columns are modified to be compatible with 

the format requirement in matlab. To convert the names back to match 
the SampleID in the rest of the files,  's' at the beginning of each column 
name should be removed, and underscore ('_') needs to be converted to 
period (eg. 'sFMT_0001A' will become 'FMT.0001A'). 

● CARD.csv: A table provides information of the antibiotic resistance genes in each sample.  
○ Template: Hit of resistant genes in CARD 
○ Accession: NCBI accession number of the template 
○ Genome: Strain names where the template gene is found 
○ Species: The species of the strain  
○ resistGene: Gene name if available.  
○ resistMechanism: Mechanism of resistance interpreted by CARD 
○ Zoliflodacin-unknown (multiple columns): Antibiotics whether the gene is 

predicted to be resistant to, including unknown. 
○ Score, Expected, Template_length, Template_Identity, Template_Coverage, 

Query_Identity, Query_Coverage, Depth, q_value, p_value: Parameters reported 
by CARD to show how well the match is. 

○ shotgunReadcount: Number of reads for each sample after decontamination of 
human reads. 

○ RelavantPercentInCARD: The number of reads matched to the template resistant 
gene / Total reads matched to all CARD genes in the sample 

○ PercentageInShotgun: The number of reads matched to the template resistant 
gene / Total reads in the sample 

○ Mutation: Information whether the antibiotic resistance is conferred by mutation 
○ SampleID: Sample ID for each shotgun sequencing 
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● VFDB.csv: A VFDB report provides information of the virulence factors in each sample.  

○ Template: Hit of virulence genes in VFDB 
○ Function: Predicted function of the template 
○ Genome: Strain names where the template is found 
○ Score, Expected, Template_length, Template_Identity, Template_Coverage, 

Query_Identity, Query_Coverage, Depth, q_value, p_value: Parameters output 
by VFDB that report how well the match is. 

○ shotgunReadcount: Number of reads for each sample after decontamination of 
human reads 

○ RelavantPercentInVF: The number of reads matched to the virulence gene / 
Total reads matched to virulence genes in the sample 

○ PercentageInShotgun: The number of reads matched to the virulence gene / 
Total reads in the sample 

○ SampleID: Sample ID for each shotgun sequencing 
● Taxa_Not_In_16S.csv: Taxa absent in 16S gene sequencing but present in shotgun 

metagenomic sequencing in our 395 samples 
○ TaxaName: Name of missing taxa 
○ Taxa: Classification level of taxa names (eg. Genus) 
○ frequencyPresentInShotgun: Counts of non-zero abundance found in shotgun 

sequencing(non-zero) / Total number of samples 
○ medianRelAbdInShotgun: Median of relative frequency in shotgun metagenomic 

sequencing of that taxa 
● Taxa_Not_In_Shotgun.csv: Taxa absent in shotgun sequencing but present in 16S gene 

sequencing in our 395 samples 
○ TaxaName: Name of missing taxa 
○ Taxa: Classification level of taxa names (eg. Genus) 
○ frequencyPresentIn16S: Counts of non-zero abundance found in 16S (non-zero) / 

total number of samples 
○ medianRelAbdIn16S: Median of relative frequency in 16S sequencing of that taxa 

 
Technical Validation 
The nested subset of shotgun-sequenced samples explores various microbiome states 
experienced by patients. Out of the >10,000 samples with 16S rRNA gene sequencing1, a 
total of 395 samples were sequenced using metagenomic shotgun technique for the purposes 
of different projects. Using a t-SNE map generated from Bray-Curtris dissimilarity matrix of 16S 
rRNA gene sequencing (Fig. 1a), we highlighted the samples with shotgun sequencing data 
available, which are distributed across the map (Fig. 1b). The nested subset captures a wide 
range of microbiome states, representing many states found in the original dataset of >10,000 
samples. For example, both Enterococcus-dominated “dysbiotic” states (dark green portion of t-
SNE projection in Fig 1a) as well as the “healthier” Clostridia-enriched states (grey portion of t-
SNE projection in Fig 1a) are well-represented by the nested shotgun dataset.  
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Figure 1. The metagenomic samples cover the majority of microbiome compositional states observed in fecal samples 
from allo-HCT patients. a. The t-SNE plot built using the taxonomic composition obtained by 16S amplicon sequencing of N 
samples from N unique patients1; the different colors indicate the most abundant taxon in each sample. b. Location of nested subset 
of N samples from N unique patients with shotgun sequencing is broadly distributed across the entire map. c.. The sequencing 
depth of shotgun sequenced samples varies between 106 reads to 108 reads, with outliers in the liquid samples whose microbiome 
may  yield different sizes of libraries. 
 

The stool consistency from these patients varies widely. At the time of stool aliquoting, 
stool consistency was assessed by laboratory technicians using a scale of “formed, semi-
formed, and liquid” to indicate the dry weight of stool41. The link between stool consistency and 
gut microbiota composition has been examined in the 16S amplicon sequencing pipeline 42. 
Before diving into the diversity analysis, we first tested if the stool consistency would associate 
with the read count of shotgun sequencing. We observed that the median of the three types of 
stool (formed, semi-formed and liquid) are all above 107 reads per sample (Fig. 1c), except for 
two samples from the liquid group that showed lower reads count than the rest of the samples 
(<105).  
 
Validating the taxonomic composition of the shotgun metagenomes. We first sought to 
compare the taxonomic classifications obtained by 16S rRNA gene sequencing1 and shotgun 
sequencing analyzed by Kraken 2. A visual inspection of the bacterial compositions suggests 
that the two ways to analyze the taxonomic composition of the bacterial population agree well: 
When we compare the compositions from the patient with the highest number of collected 
samples we can see a reasonable match (Fig. 2 a,b) between stacked bar plots of compositions 
color-coded according to a palette designed to highlight microbiome injury patterns1. 
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A closer inspection shows however that the Shotgun sequencing missed some of the 
taxa seen in the shotgun data (eg. the orange bar representing Erysipelotrichia in day 56, and 
the blue bar representing Bacilli in day 82). We then compared the relative abundance of 
different taxa as assessed by 16S and shotgun sequencing and identified the taxa with median 
relative abundance higher than 10% and significantly different between 16S and shotgun 
sequencing, among which the Firmicutes (phylum) has the overall highest abundances (Fig. 
2c), which could be explained by its higher copy number of rRNA in the genome 43. The other 
taxonomic groups are Bacilli (class), Clostridia (class), Clostridiales (order) and Lactobacillales 
(order). 
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Figure 2. Taxonomic composition of the microbiome in patient stool samples agrees in general between shotgun 
sequencing and 16S rRNA amplicon sequencing, with some notable differences.  a,b. The taxonomic composition is 
determined by 16S rRNA sequencing (A) and shotgun metagenomics (B) for the samples from a single patient (PatientID 1252). 
The samples are ordered in time and the dashed line separates the samples collected before and after allo-HCT. c. The median 
composition (red dot)  in Firmicutes can be notably different when determined using the two approaches (ranksum test, p<0.05).  

 
There were some taxa only found in either approach, and the shotgun sequencing found 

much more taxa than the 16S gene sequencing (1870 missing in 16S but present in shotgun; 
182 missing in shotgun but present in 16S; the .csv files can be found in Figshare). There are a 
few reasons that could possibly explain the disagreement between 16S and metagenomic 
shotgun sequencing: First is the ambiguous naming where a taxa was renamed later (e.g. 
Enterobacteriales was renamed to Enterobacterales), sharing the same sequencing of tested 
16S region (Escherichia and Shigella are the same in 16S gene sequencing), and poorly 
studied taxa (e.g. 'CAG-352' in 16S sequencing). The second is the detection variation. The 
taxa missing entirely either in 16S or in shotgun overall have very low median abundance even 
detected in the other pipeline – only 'Incertae Sedis' and 'CAG-352' found in 16S are between 1 
to 4 percent, while all other missing taxa show less than 1% median relative abundance in the 
other pipeline where they are found. The third reason could be differences between the 
databases used for taxonomy detection. To systematically compare 16S and shotgun 
sequencing, we calculated correlation of relative abundance between the two pipelines in 
taxonomic classification. The agreement between 16S and metagenomic shotgun were 
generally high and decreased for lower taxonomic ranks (Fig. 3), indicating that the two 
approaches have different sensitivities for taxonomy. The few samples with low correlation 
tended to be those sequenced at a lower read depth, but some samples sequenced deeply 
could also have low correlation (Fig. 3a-e), indicating that other factors than read counts may 
affect the taxonomic mapping of metagenomes. 

One possible explanation is that discrepancies between the database of bioinformatic 
pipelines may become especially visible for highly diverse samples, leading to low correlations. 
We therefore calculated the alpha-diversity as determined by the Shannon index for each 
taxonomic classification. Then we divided the values into three groups: high diversity (top 33%), 
middle diversity and low diversity (bottom 33%). Because stool consistency is a marker of 
species richness in microbiome42,  we stratified our samples by stool consistency and examined 
if the diversity clusters are discrete among different consistencies (Fig. 3f-j). The high diversity 
group does have overall lower correlation, which becomes more and more obvious from phylum 
to genus. We also noted 5 samples with both low diversity (in bottom 33% percentile) and low 
correlation (less than 0.01) between the taxonomies quantified by shotgun and 16S. Four 
samples with the lowest correlation (<0.001) in genus composition are also in the bottom  33% 
percentile of diversity, which were caused by a failure by the 16S pipeline to detect a bacterium 
of the genus Klebsiella.  This example illustrates a possible source of error in the 16S pipeline 
that may be improved using shotgun metagenomics. 
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Figure 3. Correlation between the taxonomic classifications obtained by shotgun sequencing and 16S rRNA amplicon     
sequencing. The correlation between the two approaches is different at each taxonomic level, but seems unaffected by the read 
depth of each sample (a-e). Formed stool mainly contains samples with higher diversity, and high diversity samples usually display 
lower correlation between the two sequencing pipelines (f-j). Each point is a taxon from one of 395 samples. Black dots in f-j 
indicate the median of each category. The numbers on the x-axes display the number of samples in different diversity groups. 
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Validating the detection of antibiotic resistance genes using a PCR to detect the vanA 
gene. PATRIC provides web services to quantify virulence factors and antibiotic resistance 
genes in the microbiome samples. To test how well this analysis detected antibiotic resistant 
genes, we used PCR to detect the presence of an important gene for vancomycin resistance 
vanA1 (Fig. 4a). Vancomycin is a glycopeptide antibiotic that is given to many of the allo-HCT 
patients in this cohort as prophylaxis to prevent infections by Streptococcus44. The samples 
chosen for the PCR test contain ≥2% enterococcal sequences, since the presence of vanA is 
usually a sign of Enterococcus domination45,46. We compared the relative abundance of the 
vanA gene, as quantified by the PATRIC analysis of CARD genes, in vanA PCR(-) versus vanA 
PCR(+) samples and we saw a significant agreement (Fig. 4b). In the PCR(+) group only 2 
samples (out of 120) have zero abundance of vanA in metagenomes while 143 out of 186 are 
zero in PCR(-) group, suggesting that shotgun sequencing may be more sensitive than the 
PCR. 

There are other genes besides vanA important for resistance to vancomycin. We 
examined whether the abundance of another vancomycin resistance gene, vanB, correlated 
with vanA. We saw that although those two genes are negatively correlated in our gut 
microbiome samples (r=-0.28, p<0.05), plotting the gene abundance (Fig. 4c) reveals that only 
six samples carry both vanA and vanB (Fig. 4c, green dots). In all the other cases, only vanA or 
vanB was found, suggesting that bacteria harboring these genes may be excluding invasion by 
competitors harboring the other gene. 

 
Figure 4. The shotgun sequencing detects the presence of antibiotic resistance genes, using the PATRIC service with the 
CARD database.  a. Localization of the vanA(+/-) samples in 16S clustering map shows a high concentration of vanA(+) samples in 
the region of domination by Enterococcus (green in Fig.1a). b. PCR(+) samples have higher relative abundance of the vanA gene 
detected by shotgun sequencing. c. The vanA and vanB genes are practically mutually exclusive in patients' stool samples. The 
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samples with two genes simultaneously detected represent a very small fraction of the total samples. The abundances of the two 
genes are not correlated. 
 
Validating the assembly of genomes from shotgun sequences. New bioinformatic pipelines 
have enabled us to assemble the genomes of bacteria from shotgun sequences37,47,48. To 
illustrate the utility of our data for this type of analysis, we ran a published metagenomic 
analysis pipeline to find MAGs (metagenome-assembled genomes) from the samples of 
PatientID 1044, where we know from genotyped isolates obtained in a previous study that the 
patient carried Enterococcus faecium in the gut35. We found 7 high-quality MAGs classified as 
E. faecium, each from a different stool sample and has a completeness higher than 95%. We 
then compared these MAGs with the genomes of our 26 E. faecium isolates35 in a phylogenetic 
tree (Fig. 5). Our previous study35 had shown that the patient contained at least two distinct 
strains of E. faecium. The MAGs confirmed the observation: Three MAGS, 
MAG_1044M_maxbin0003, MAG_1044P_maxbin002 and MAG_1044L_4, located in the tree 
branch of the strains from the same three samples that collected in the later days relevant to 
HCT, whereas four MAGs, MAG_1044J_16, MAG_1044G_10, MAG_1044H_27 and 
MAG_1044I_maxbin001, located in the tree branch of the other strains that were isolated from 
the same four samples from the earlier days after HCT. The comparative analysis indicates that 
the dominant E. faecium strain has shifted between day 5 and day 7 after HCT. 
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Figure 5. Shotgun sequencing data provide metagenomically-assembled genomes (MAGs) that compare well with the 
genomes of isolates from the same patient stool samples.  MAGs from E. faecium obtained from different samples collected 
from patient 1044 reveal an intraspecies diversity. The phylogenetic tree contains the 7 MAGs and 26 E. faecium genomes obtained 
from isolates and analyzed in a previous study35. The number of days after each sample is the day relative to the HCT of this 
patient. 
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Code Availability 
The customized analysis code (Matlab 2020a) used for the examples provided below is 
available in the GitHub repository (https://github.com/joaobxavier/shotgun_scientific_data). with 
each part in a separate directory: 
• Figure 1: Figuer1/scFigure1.m 
• Figure 2: Figuer2/scFigure2.m 
• Figure 3: Figuer3/scFigure3.m 
• Figure 4: Figuer4/scFigure4.m 
• Figures 5: Figuer5/scFigure5.m 
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