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Abstract

Hospitalized patients receiving hematopoietic cell transplants provide a unique opportunity to
study how the human gut microbiome changes in response to perturbations, and how the
resulting changes in the microbiome feedback on its living host. We previously compiled a large-
scale longitudinal dataset of stool microbiome compositions from these patients and associated
metadata’. In that dataset the microbiome analysis was limited to the taxonomic composition of
the bacterial population obtained from 16S rRNA gene sequencing. Here, we augment those
data with shotgun metagenomic sequences from a nested subset of 395 stool samples. We
provide accession numbers that link each sample to the paired-end sequencing files deposited
in a public repository, which can be directly accessed by the online services of PATRIC? to be
analyzed without the users having to download or transfer the files. We provide examples that
show how shotgun sequencing enriches microbiome analyses beyond the taxonomic
composition such as the analysis of gene functions including virulence factors and antibiotic
resistances, and the assembly of genomes from metagenomic data.

Background & Summary

The composition of gut microbiome changes in response to mild perturbations such as
changes in diet® and strong perturbations such as chemotherapy * and antibiotics ° that can
deplete the majority of the microbes and impact microbiome function®. Over the past decades,
the microbiome field has sought to characterize compositional changes to perturbations and
understand how those changes impact human health®. Cross-sectional or longitudinal multi-
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omics data yielded valuable insights into the population dynamics of gut microbes, their
ecological interactions and metabolic functions, and the molecular mechanisms of host-microbe
crosstalk’®. Data from patients hospitalized to receive allogeneic hematopoietic cell
transplantation (HCT) provide a unique chance to study the gut microbiome in extremely
perturbed conditions®'!. These perturbations caused by the treatment occur in a planned,
scheduled fashion as patients stay in the hospital for several weeks, which enables collecting
samples and clinical metadata. The patients receive many drugs including antibiotics that
impact the composition and function of the gut microbiome'>'. The data also allow us to study
how the microbiome composition feeds back on the state of its living host, and address some
basic science questions such as how the microbiome influences the dynamics of the human
immune system™.

We previously published the first data descriptor of our institutional microbiome dataset
of HCT patients (> 10,000 samples from >1,000 patients), where we compiled patients’ gut
microbiota compositions based on 16S rRNA gene sequencing of fecal samples and its
associated metadata’. Subsets of this comprehensive dataset were analyzed in a number of
publications®'*-23, Metagenomic shotgun sequencing is more expensive but has advantages
compared to 16S rRNA gene sequencing®*: it not only reveals the composition of the gut
microbiome but also the functions encoded by the genes in the microbiome?+?®. Bioinformatic
tools that analyze shotgun sequencing data for different purposes—taxonomic classification of
microbial composition?”, gene abundance prediction of specialty genes such as antibiotic
resistance®®? and virulence factors®*, genome identification of strain-level or species-level
metagenome-assembled genomes (MAGs)®**3! and metabolic model reconstruction that
translate the DNA sequences to biochemical reactions®**=*—are now readily available. Some of
these tools even work directly with the accession numbers of the sequencing data deposited in
public repositories, which greatly facilitates analysis.

Here we compile 395 human fecal samples that were analyzed by metagenomic shotgun
sequencing, which is a nested subset of samples we compiled previously and analyzed by 16S
rRNA amplicon sequencing’. We present examples of functional analyses, including taxonomic
composition, gene functions such as virulence factors and antibiotic resistance and the
assembly of genomes from metagenomic data. We first conduct a data validation where we
check the data for quality by addressing specific questions: Do the compositions inferred from
metagenomic and 16S sequencing data agree? How well does metagenomic sequencing
capture antibiotic resistance genes? Can the metagenomic data recapitulate the genomic
difference of bacterial pathogens? We display the 395 shotgun samples on a t-SNE map of the
>10,000 samples of 16S amplicon sequencing’. We then investigate correlations between the
consistency of stool samples and the read counts of shotgun samples, and we check the
correlation of composition between 16S amplicon sequencing and shotgun metagenomes. We
then validate the ability to detect antibiotic resistance genes using an orthogonal detection of the
vanA gene for vancomycin resistance using a PCR test. We used the available tools from
PATRIC, a publicly accessible database and tool repository for bacterial genome analysis, to do
compositional analysis (kranken2), virulence gene (VFDB) and antibiotic resistant gene (CARD)
identification. We assembled metagenomically assembled genomes (MAGs) from shotgun
reads and compared them with genomes sequenced from isolates of Enterococcus faecium
obtained from the same samples®®. We provide Matlab code to compile the output of these
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metagenomic analysis tools in a Github repository
https://github.com/joaobxavier/shotgun_scientific_data.

Methods

Library preparation, shotgun sequencing and human genome decontamination. We
compiled 395 of the >10,000 stool samples acquired from allo-HCT patients’, extracted the
genomic DNA and sequenced on the lllumina HiSeq platform as described previously'*'¢. We
removed normal optical duplicates in paired FASTQ files using the clumpify.sh tool from the
BBMap package (BBMap — Bushnell B. — https://www.sourceforge.net/projects/bbmap/),
producing a pair of read files without duplicates. Using the bbduk.sh script in the BBMap
package, we trimmed the right and left side of a read in a pair to Q10 using the Phred algorithm.
A pair of reads was dropped if any one of them had a length shorter than 51 nucleotides after
trimming. We trimmed 3’-end adapters using a kmer of length 31, and a shorter kmer of 9 at the
other end of the read. One mismatch was allowed in this process, and we allowed adapter
trimming based on pair overlap detection (which does not require known adapter sequences)
using the ‘tbo’ parameter. We used the ‘tpe’ parameter to trim the pair of reads to the same
length. We removed human contamination using Kneaddata employing BMTagger. The
BMTagger database was built with human genome assembly GRCh38. The paired end read
files were uploaded into the Short Read Archive (SRA) of the National Center for Biotechnology
Information (NCBI).

Taxonomy classification and specific gene mapping for metagenomic reads. We used the
services provided by the Pathosystems Resource Integration Center (PATRIC)?. PATRIC can
take input as the SRA accession number of each sample and output the microbiome
composition in taxa, as well as genes encoding virulence factors and antibiotic resistances. It
uses the algorithm Kraken 22 for taxonomic classification, and the algorithm KMA® to align the
metagenomic reads to non-redundant databases. The virulence factor composition analysis is
based on the Virulence Factor Database?® and the antibiotic resistance composition is based on
the Comprehensive Antibiotic Resistance Database (CARD)?. The taxonomy, virulence factor
and antibiotic resistance table for each of the 395 samples are provided as text tables.

Genome assembly. We adapted a recently published pipeline to assemble the genomes of
bacteria from shotgun sequenced samples®’. Briefly, the pipeline first assembled contigs using
metaSPAdes®. Then, it binned the contigs into MAGsusing three different methods: Metabat2*
CONCOCT?®" and Maxbin2 *. The results were then aggregated using DASTool which
implements a dereplication, aggregation and scoring strategy*® to produce the strain-level
genomes.

Data Records

The shotgun sequenced samples were deposited in the NCBI/SRA as paired-end fastq
files decontaminated of human reads. We updated the data table tbIASVsamples.csv in
Figshare (https://doi.org/10.6084/m9.figshare.12016983.v8) that we had previously published as
part of our microbiota compilation’: We added a new column to the table, 'AccessionShotgun’,
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which lists the SRA accession record for each of the 395 samples presented here. All other

samples were left with an empty entry in column 'AccessionShotgun'. The table can be updated

in the future as new shotgun sequences become available.

We compiled the additional tables for each sample as comma-separated value (csv) files in

Figshare (https://figshare.com/account/home#/projects/120102) as following:

e ReadCounts.csv: list the 395 samples used this study for shotgun

o SamplelD: Name of samples
o Readcount: Number of reads for each sample after decontamination of human
reads.

e Abundance: A Kraken 2 report provides information of the bacterial taxa in each sample.

o Kindom, Phylum, Class, Order, Family, Genus: Each column contains name of
taxonomic classification of each sample

o ColorOrder: Numeric data representing the order that each taxa was plotted in
our manuscript.
HexColor: Color code in hex format for each taxa
395 columns using sample names as column names: Numeric data as the
relative abundance of each sample. Every column should sum to 1.

m  NOTE: The (U)nclassified reads from kraken2 are not included in the
calculation.

m The sample names of those columns are modified to be compatible with
the format requirement in matlab. To convert the names back to match
the SamplelD in the rest of the files, 's' at the beginning of each column
name should be removed, and underscore ('_') needs to be converted to
period (eg. 'sFMT_0001A" will become 'FMT.0001A").

e CARD.csv: A table provides information of the antibiotic resistance genes in each sample.

Template: Hit of resistant genes in CARD

Accession: NCBI accession number of the template

Genome: Strain names where the template gene is found

Species: The species of the strain

resistGene: Gene name if available.

resistMechanism: Mechanism of resistance interpreted by CARD

Zoliflodacin-unknown (multiple columns): Antibiotics whether the gene is

predicted to be resistant to, including unknown.

o Score, Expected, Template_length, Template_ldentity, Template_Coverage,
Query_Identity, Query_Coverage, Depth, q_value, p_value: Parameters reported
by CARD to show how well the match is.

o shotgunReadcount: Number of reads for each sample after decontamination of
human reads.

o RelavantPercentinCARD: The number of reads matched to the template resistant
gene / Total reads matched to all CARD genes in the sample

o PercentagelnShotgun: The number of reads matched to the template resistant
gene / Total reads in the sample
Mutation: Information whether the antibiotic resistance is conferred by mutation
SamplelD: Sample ID for each shotgun sequencing

o O O O O ©O
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e VFDB.csv: A VFDB report provides information of the virulence factors in each sample.
o Template: Hit of virulence genes in VFDB
o Function: Predicted function of the template
o Genome: Strain names where the template is found
o Score, Expected, Template_length, Template_ldentity, Template_Coverage,
Query_Identity, Query_Coverage, Depth, q_value, p_value: Parameters output
by VFDB that report how well the match is.
o shotgunReadcount: Number of reads for each sample after decontamination of
human reads
o RelavantPercentinVF: The number of reads matched to the virulence gene /
Total reads matched to virulence genes in the sample
o PercentagelnShotgun: The number of reads matched to the virulence gene /
Total reads in the sample
o SamplelD: Sample ID for each shotgun sequencing
e Taxa_Not_In_16S.csv: Taxa absent in 16S gene sequencing but present in shotgun
metagenomic sequencing in our 395 samples
o TaxaName: Name of missing taxa
o Taxa: Classification level of taxa names (eg. Genus)
o frequencyPresentinShotgun: Counts of non-zero abundance found in shotgun
sequencing(non-zero) / Total number of samples
o medianRelAbdInShotgun: Median of relative frequency in shotgun metagenomic
sequencing of that taxa
e Taxa_Not_In_Shotgun.csv: Taxa absent in shotgun sequencing but present in 16S gene
sequencing in our 395 samples
o TaxaName: Name of missing taxa
o Taxa: Classification level of taxa names (eg. Genus)
o frequencyPresentin16S: Counts of non-zero abundance found in 16S (non-zero) /
total number of samples
o medianRelAbdIn16S: Median of relative frequency in 16S sequencing of that taxa

Technical Validation

The nested subset of shotgun-sequenced samples explores various microbiome states
experienced by patients. Out of the >10,000 samples with 16S rRNA gene sequencing’, a
total of 395 samples were sequenced using metagenomic shotgun technique for the purposes
of different projects. Using a t-SNE map generated from Bray-Curtris dissimilarity matrix of 16S
rRNA gene sequencing (Fig. 1a), we highlighted the samples with shotgun sequencing data
available, which are distributed across the map (Fig. 1b). The nested subset captures a wide
range of microbiome states, representing many states found in the original dataset of >10,000
samples. For example, both Enterococcus-dominated “dysbiotic” states (dark green portion of t-
SNE projection in Fig 1a) as well as the “healthier” Clostridia-enriched states (grey portion of t-
SNE projection in Fig 1a) are well-represented by the nested shotgun dataset.
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Figure 1. The metagenomic samples cover the majority of microbiome compositional states observed in fecal samples
from allo-HCT patients. a. The t-SNE plot built using the taxonomic composition obtained by 16S amplicon sequencing of N
samples from N unique patients’; the different colors indicate the most abundant taxon in each sample. b. Location of nested subset
of N samples from N unique patients with shotgun sequencing is broadly distributed across the entire map. c.. The sequencing
depth of shotgun sequenced samples varies between 10° reads to 108 reads, with outliers in the liquid samples whose microbiome
may yield different sizes of libraries.

The stool consistency from these patients varies widely. At the time of stool aliquoting,
stool consistency was assessed by laboratory technicians using a scale of “formed, semi-
formed, and liquid” to indicate the dry weight of stool*'. The link between stool consistency and
gut microbiota composition has been examined in the 16S amplicon sequencing pipeline *2.
Before diving into the diversity analysis, we first tested if the stool consistency would associate
with the read count of shotgun sequencing. We observed that the median of the three types of
stool (formed, semi-formed and liquid) are all above 10’ reads per sample (Fig. 1c), except for
two samples from the liquid group that showed lower reads count than the rest of the samples
(<10).

Validating the taxonomic composition of the shotgun metagenomes. We first sought to
compare the taxonomic classifications obtained by 16S rRNA gene sequencing' and shotgun
sequencing analyzed by Kraken 2. A visual inspection of the bacterial compositions suggests
that the two ways to analyze the taxonomic composition of the bacterial population agree well:
When we compare the compositions from the patient with the highest number of collected
samples we can see a reasonable match (Fig. 2 a,b) between stacked bar plots of compositions
color-coded according to a palette designed to highlight microbiome injury patterns’.


https://doi.org/10.1101/2021.08.23.457365
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.23.457365; this version posted August 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A closer inspection shows however that the Shotgun sequencing missed some of the
taxa seen in the shotgun data (eg. the orange bar representing Erysipelotrichia in day 56, and
the blue bar representing Bacilli in day 82). We then compared the relative abundance of
different taxa as assessed by 16S and shotgun sequencing and identified the taxa with median
relative abundance higher than 10% and significantly different between 16S and shotgun
sequencing, among which the Firmicutes (phylum) has the overall highest abundances (Fig.
2c), which could be explained by its higher copy number of rRNA in the genome “*. The other
taxonomic groups are Bacilli (class), Clostridia (class), Clostridiales (order) and Lactobacillales
(order).
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Figure 2. Taxonomic composition of the microbiome in patient stool samples agrees in general between shotgun
sequencing and 16S rRNA amplicon sequencing, with some notable differences. a,b. The taxonomic composition is
determined by 16S rRNA sequencing (A) and shotgun metagenomics (B) for the samples from a single patient (PatientID 1252).
The samples are ordered in time and the dashed line separates the samples collected before and after allo-HCT. ¢. The median
composition (red dot) in Firmicutes can be notably different when determined using the two approaches (ranksum test, p<0.05).

There were some taxa only found in either approach, and the shotgun sequencing found
much more taxa than the 16S gene sequencing (1870 missing in 16S but present in shotgun;
182 missing in shotgun but present in 16S; the .csv files can be found in Figshare). There are a
few reasons that could possibly explain the disagreement between 16S and metagenomic
shotgun sequencing: First is the ambiguous naming where a taxa was renamed later (e.qg.
Enterobacteriales was renamed to Enterobacterales), sharing the same sequencing of tested
16S region (Escherichia and Shigella are the same in 16S gene sequencing), and poorly
studied taxa (e.g. 'CAG-352' in 16S sequencing). The second is the detection variation. The
taxa missing entirely either in 16S or in shotgun overall have very low median abundance even
detected in the other pipeline — only 'Incertae Sedis' and 'CAG-352' found in 16S are between 1
to 4 percent, while all other missing taxa show less than 1% median relative abundance in the
other pipeline where they are found. The third reason could be differences between the
databases used for taxonomy detection. To systematically compare 16S and shotgun
sequencing, we calculated correlation of relative abundance between the two pipelines in
taxonomic classification. The agreement between 16S and metagenomic shotgun were
generally high and decreased for lower taxonomic ranks (Fig. 3), indicating that the two
approaches have different sensitivities for taxonomy. The few samples with low correlation
tended to be those sequenced at a lower read depth, but some samples sequenced deeply
could also have low correlation (Fig. 3a-e), indicating that other factors than read counts may
affect the taxonomic mapping of metagenomes.

One possible explanation is that discrepancies between the database of bioinformatic
pipelines may become especially visible for highly diverse samples, leading to low correlations.
We therefore calculated the alpha-diversity as determined by the Shannon index for each
taxonomic classification. Then we divided the values into three groups: high diversity (top 33%),
middle diversity and low diversity (bottom 33%). Because stool consistency is a marker of
species richness in microbiome*?, we stratified our samples by stool consistency and examined
if the diversity clusters are discrete among different consistencies (Fig. 3f-j). The high diversity
group does have overall lower correlation, which becomes more and more obvious from phylum
to genus. We also noted 5 samples with both low diversity (in bottom 33% percentile) and low
correlation (less than 0.01) between the taxonomies quantified by shotgun and 16S. Four
samples with the lowest correlation (<0.001) in genus composition are also in the bottom 33%
percentile of diversity, which were caused by a failure by the 16S pipeline to detect a bacterium
of the genus Klebsiella. This example illustrates a possible source of error in the 16S pipeline
that may be improved using shotgun metagenomics.
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Figure 3. Correlation between the taxonomic classifications obtained by shotgun sequencing and 16S rRNA amplicon
sequencing. The correlation between the two approaches is different at each taxonomic level, but seems unaffected by the read
depth of each sample (a-e). Formed stool mainly contains samples with higher diversity, and high diversity samples usually display
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Validating the detection of antibiotic resistance genes using a PCR to detect the vanA
gene. PATRIC provides web services to quantify virulence factors and antibiotic resistance
genes in the microbiome samples. To test how well this analysis detected antibiotic resistant
genes, we used PCR to detect the presence of an important gene for vancomycin resistance
vanA’ (Fig. 4a). Vancomycin is a glycopeptide antibiotic that is given to many of the allo-HCT
patients in this cohort as prophylaxis to prevent infections by Streptococcus**. The samples
chosen for the PCR test contain 22% enterococcal sequences, since the presence of vanA is
usually a sign of Enterococcus domination*>*¢. We compared the relative abundance of the
vanA gene, as quantified by the PATRIC analysis of CARD genes, in vanA PCR(-) versus vanA
PCR(+) samples and we saw a significant agreement (Fig. 4b). In the PCR(+) group only 2
samples (out of 120) have zero abundance of vanA in metagenomes while 143 out of 186 are
zero in PCR(-) group, suggesting that shotgun sequencing may be more sensitive than the
PCR.

There are other genes besides vanA important for resistance to vancomycin. We
examined whether the abundance of another vancomycin resistance gene, vanB, correlated
with vanA. We saw that although those two genes are negatively correlated in our gut
microbiome samples (r=-0.28, p<0.05), plotting the gene abundance (Fig. 4c) reveals that only
six samples carry both vanA and vanB (Fig. 4c, green dots). In all the other cases, only vanA or
vanB was found, suggesting that bacteria harboring these genes may be excluding invasion by
competitors harboring the other gene.
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Figure 4. The shotgun sequencing detects the presence of antibiotic resistance genes, using the PATRIC service with the
CARD database. a. Localization of the vanA(+/-) samples in 16S clustering map shows a high concentration of vanA(+) samples in
the region of domination by Enterococcus (green in Fig.1a). b. PCR(+) samples have higher relative abundance of the vanA gene
detected by shotgun sequencing. c. The vanA and vanB genes are practically mutually exclusive in patients' stool samples. The

10


https://doi.org/10.1101/2021.08.23.457365
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.23.457365; this version posted August 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

samples with two genes simultaneously detected represent a very small fraction of the total samples. The abundances of the two
genes are not correlated.

Validating the assembly of genomes from shotgun sequences. New bioinformatic pipelines
have enabled us to assemble the genomes of bacteria from shotgun sequences®#"“8, To
illustrate the utility of our data for this type of analysis, we ran a published metagenomic
analysis pipeline to find MAGs (metagenome-assembled genomes) from the samples of
PatientID 1044, where we know from genotyped isolates obtained in a previous study that the
patient carried Enterococcus faecium in the gut®®. We found 7 high-quality MAGs classified as
E. faecium, each from a different stool sample and has a completeness higher than 95%. We
then compared these MAGs with the genomes of our 26 E. faecium isolates® in a phylogenetic
tree (Fig. 5). Our previous study® had shown that the patient contained at least two distinct
strains of E. faecium. The MAGs confirmed the observation: Three MAGS,
MAG_1044M_maxbin0003, MAG_1044P_maxbin002 and MAG_1044L_4, located in the tree
branch of the strains from the same three samples that collected in the later days relevant to
HCT, whereas four MAGs, MAG_1044J_16, MAG_1044G_10, MAG_1044H_27 and
MAG_10441_maxbin001, located in the tree branch of the other strains that were isolated from
the same four samples from the earlier days after HCT. The comparative analysis indicates that
the dominant E. faecium strain has shifted between day 5 and day 7 after HCT.
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Figure 5. Shotgun sequencing data provide metagenomically-assembled genomes (MAGs) that compare well with the
genomes of isolates from the same patient stool samples. MAGs from E. faecium obtained from different samples collected
from patient 1044 reveal an intraspecies diversity. The phylogenetic tree contains the 7 MAGs and 26 E. faecium genomes obtained
from isolates and analyzed in a previous study®. The number of days after each sample is the day relative to the HCT of this
patient.
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Code Availability

The customized analysis code (Matlab 2020a) used for the examples provided below is
available in the GitHub repository (https://github.com/joaobxavier/shotgun_scientific_data). with
each part in a separate directory:

* Figure 1: Figuer1/scFigure1.m

* Figure 2: Figuer2/scFigure2.m

* Figure 3: Figuer3/scFigure3.m

* Figure 4: Figuer4/scFigure4.m

* Figures 5: Figuer5/scFigure5.m
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