© 00 ~N o o B~ w N

N N N R N R N T e e T i o =
W N P O © 0 N O U A W N P O

N N
(62 BN

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428189; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Connectional Asymmetry of the Inferior Parietal Lobule Shapes Hemispheric Specialization in
Humans, Chimpanzees, and Rhesus Macaques

Lugi Cheng"??, Yuanchao Zhang!, Gang Li***, Jiaojian Wang!->, Chet C. Sherwood®, Gaolang

23,49 1,2,3,4,9%

Gong’®, Linzhong Fan , Tianzi Jiang
'Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University
of Electronic Science and Technology of China, Chengdu 610054, China

Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

3National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China

4School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China

Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China

®Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington
University, Washington, DC 20052, USA

’State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research,
Beijing Normal University, Beijing 100875, China

$Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China

9CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese

Academy of Sciences, Beijing 100190, China

*Corresponding Author: Tianzi Jiang, Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China. Email: jiangtz@nlpr.ia.ac.cn, Phone: 010 - 82544778, Fax: 010 - 82544777.
*Co-Corresponding Author: Lingzhong Fan, Institute of Automation, Chinese Academy of Sciences, Beijing

100190, China. Email: lingzhong.fan@ia.ac.cn, Phone: 010 - 82544523.


mailto:jiangtz@nlpr.ia.ac.cn
https://doi.org/10.1101/2021.01.26.428189
http://creativecommons.org/licenses/by-nc/4.0/

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428189; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Abstract

The inferior parietal lobule (IPL) is one of the most expanded cortical regions in humans relative to
other primates. It is also among the most structurally and functionally asymmetric regions in the human
cerebral cortex. Whether the structural and connectional asymmetries of IPL subdivisions differ across
primate species and how this relates to functional asymmetries remain unclear. We identified IPL
subregions that exhibited positive allometric in both hemispheres, scaling across rhesus macaque
monkeys, chimpanzees, and humans. The patterns of IPL subregions asymmetry were similar in
chimpanzees and humans, but no IPL asymmetries were evident in macaques. Among the comparative
sample of primates, humans showed the most widespread asymmetric connections in the frontal,
parietal, and temporal cortices, constituting leftward asymmetric networks that may provide an
anatomical basis for language and tool use. Unique human asymmetric connectivity between the IPL
and primary motor cortex might be related to handedness. These findings suggest that structural and

connectional asymmetries may underlie hemispheric specialization of the human brain.

Keywords: inferior parietal lobule; brain asymmetry; brain evolution; anatomical connectivity;

parcellation
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Introduction

The association cortex has expanded greatly in size and exhibits modified connectivity patterns in
human brain evolution (Orban et al., 2006; Mars et al., 2017; Ardesch et al., 2019; Van Essen et al.,
2019). Compared with the primary sensory and motor cortical regions, the association cortex displays
disproportionate expansion in conjunction with overall neocortical volume enlargement across
primates (Chaplin et al., 2013). Accordingly, association areas comprise a large percentage of the
neocortex in human brains (Orban et al., 2006; Van Essen and Dierker, 2007; Donahue ef al., 2018).
Functional and neuroanatomical asymmetries are also pronounced in the human brain, appearing to be
more extreme compared with other primate species, especially in the association cortex (Chance and
Crow, 2007). Nevertheless, cerebral asymmetry exists not only in humans but also in nonhuman
primates (Gomez-Robles et al., 2013; Hopkins, 2013). For example, olive baboons and chimpanzees
showed population-level leftward volumetric asymmetry in the planum temporale, which is thought to
be homologous to part of Wernicke’s area in humans and may have played a facilitating role in the
evolution of spoken language (Spocter et al., 2010; Marie et al., 2018). Comparative studies on brain
asymmetry are crucial for understanding the evolution and function of the modern human brain.

Language and complex tool use, which show considerable lateralization in the human brain, are
considered to be universal features of humans (Johnson-Frey ef al., 2005; Lewis, 2006; Binder ef al.,
2009). These specialized functions all involve the inferior parietal lobule (IPL), an area of the
association cortex that represents a zone of topographical convergence in the brain (Johnson-Frey,
2004; Binder et al., 2009). Moreover, the IPL is one of the most expanded regions in humans compared
with nonhuman primates (Orban ef al., 2006; Van Essen and Dierker, 2007; Kaas, 2012; Ardesch et al.,

2019). The functional diversity and expansion of the IPL imply that it contains subdivisions that may
3
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have been elaborated or developed in the ancestors of modern humans, allowing new abilities such as
extensive tool use and communication using gestures (Kaas, 2012). However, due to the scarcity of
data, different criteria, and methodological limitations for defining regions or subregions (Mars et al.,
2017), whether the internal organization of the IPL differs across species and how this relates to
different asymmetric functions remain unclear.

A major challenge for neuroscience is to translate results obtained using one method and in one species
to other methods and other species. Although the IPL has been subdivided into distinct subregions
using cytoarchitecture and this technique has provided invaluable information, cellular microstructure
alone is insufficient to completely represent brain organization, especially long-range connections,
which are the major determinant of regional specialization (Passingham et al., 2002; Caspers et al.,
2006). Furthermore, histological methods with postmortem brains cannot be readily scaled to large
populations. Recent advances in diffusion magnetic resonance imaging (MRI), which allow the
quantitative mapping of whole-brain neural connectivity in vivo, provide an alternative technique
called connectivity-based parcellation to subdivide specific regions of the brain or even the entire
cortex (Fan et al., 2016; Eickhoff ef al., 2018). In previous studies, this technique was successfully
used to characterize IPL subdivisions in different species as well as to perform cross-species
comparisons (Mars ef al., 2011; Wang et al., 2020).

Previous studies have assessed asymmetries of the IPL using local characteristics, such as cortical
volume, thickness, and surface area (Croxson et al., 2018; Kong et al., 2018). However, although such
regional asymmetries have been identified, additional analyses are needed to address the architecture
of neural connectivity (Ocklenburg et al., 2016). A recent “connectomic hypothesis for the

hominization of the brain” suggests neural network organization as an intermediate anatomical and
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functional phenotype between the genome and cognitive capacities, which are extensively modified in
the human brain (Changeux et al., 2020). The functions and interactions of brain regions are
determined by their anatomical connections (Passingham et al., 2002). Therefore, identifying
connectional asymmetries may provide new insights into the structural and functional specializations
of the human brain.

This study investigated asymmetries of IPL subregions in terms of both structure and anatomical
connectivity in rhesus macaques, chimpanzees, and humans. We first used connectivity-based
parcellations to subdivide the IPL to reveal consistent cross-species topographical organization. We
then investigated the volumetric allometric scaling and asymmetries of the IPL subregions across
species. Using vertex-, region of interest (ROI)-, and tract-wise analyses, we examined asymmetries
of the IPL subregions in terms of their connectivity profiles and subcortical white matter pathways to

identify evolutionary changes.

Results

Connectivity-based parcellation

For each species, a data-driven connectivity-based parcellation was applied to group the vertices in the
IPL into functionally distinct clusters based on anatomical connectivity (Figure 1). Because spectral
clustering does not require a specific number of clusters, we iterated the number of subregions from
two to twelve to search for the optimal number of subregions. To accomplish this, we identified the
optimal number of subregions of the IPL by choosing the maximum number of subregions that showed
a coherent topological organization across all species while balancing that by the minimum number of

subregions that could be identified based on their cytoarchitectural definitions in macaques,
5
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chimpanzees, and humans (Pandya and Seltzer, 1982; Reyes, 2017). The two- to five-cluster solutions
are shown in Supplementary Figure 1. The two- to four-cluster solutions showed a consistent rostral-
caudal pattern in all three species, but in the five-cluster solution a ventral cluster emerged in
chimpanzees and a dorsal cluster emerged in humans. The four-cluster solution revealed a rostral-
caudal topological pattern that was consistent with previous parcellations based on cytoarchitecture
and anatomical connectivity (Pandya and Seltzer, 1982; Caspers et al., 2006; Mars et al., 2011; Fan et
al., 2016). Also, the cytoarchitectural definition of macaques revealed four subregions in the IPL
(Pandya and Seltzer, 1982), which was fewer than the seven cytoarchitectural subregions of the human
IPL (Caspers et al., 2006). Although the four-cluster solution was not the finest, especially in humans,
it contained potentially valuable information about the differences between species. Furthermore, the
aim of our research was not to find the “best” cluster solution for the IPL but to identify an appropriate
parcellation that could shed light on the lateralization of the structure and connectivity of the IPL and
its subregions in this particular sample of three primate species. As such, we chose four clusters as the
optimal solution for the cross-species comparison.

It is widely accepted that the IPL contains two major cytoarchitectural divisions across species, the
anterior (PF) and posterior (PG) areas (von Economo and Koskinas, 1925; Von Bonin, 1947; Bailey et
al., 1950). Our results were consistent with this two-way parcellation and refined it into four
subdivisions, specifically, two anterior clusters (the C1 and C2) in the PF and two posterior clusters
(the C3 and C4) in the PG. In macaques and chimpanzees, the IPL was previously parcellated into four
distinct areas based on histology (Pandya and Seltzer, 1982; Reyes, 2017) in keeping with our four-
cluster solution. In humans, the IPL was cytoarchitecturally parcellated into seven distinct areas.

Although we proposed a four-cluster solution that has fewer areas than the cytoarchitectural map, it is
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also consistent with it (Caspers et al., 2006). Specifically, the rostral anterior cluster (C1) is similar to
the PFt and part of the PFop area defined using cytoarchitecture by Caspers et al. (2006), the caudal
anterior cluster (C2) corresponds to the PF and PFm areas, the rostral posterior cluster (C3) is similar
to the PGa area, and the caudal posterior cluster (C4) is similar to the PGp area. Our results did not
include the PFcm area because it is located deep in the parietal operculum. Given the limited
descriptions of subdivisions and connectivity of the IPL in chimpanzees, our parcellation of the IPL
can depict the subregions and connectivity of the IPL in chimpanzees from an evolutionary perspective.
To assess which hemisphere was dominant with respect to a given function of the human IPL
subregions, we decoded the functions of the human IPL subregions from the Neurosynth database
(Yarkoni et al., 2011) and calculated differences in the correlation values between the left and right
corresponding subregions (Supplementary Figure 2). The term tool showed a much higher
correlation with the left C1 than with the right C1, suggesting that the left C1 is more involved in tool
use. Terms such as tool and semantics showed relatively high correlations with the left C2, whereas
terms such as nogo and inhibition showed relatively high correlations with the right C2, suggesting
that the left C2 is more involved in tool use and language whereas the right C2 is more involved in
executive function. Terms such as retrieval, episodic, recollection, memories, and coherent showed
relatively high correlations with the left C3, whereas terms such as nogo, inhibition, and beliefs were
correlated with the right C3, suggesting that the left C3 is more involved in memory and language
whereas the right C3 is more involved in executive and social cognitive functions. Terms such as
episodic and coherent showed relatively high correlations with the left C4, whereas terms such as
spatial, attention, mentalizing, and relevance showed relatively high correlations with the right C4,

suggesting that the left C4 could be more involved in memory and language whereas the right C4 could
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be more involved in spatial attention and social functions.

A Define the seed masks
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Whole brain voxels

S80I)IBA Poas

S82IBA Pass

\
Tractography Connectivity matrix Similarity matrix
" seed vertices
(2]
8 &
< \‘e@g
g »
2
D
2]

Spectral clustering Group similarity matrix

Figure 1. Framework of the connectivity-based brain parcellation for macaques, chimpanzees, and
humans. (A) Defining the seed masks of the inferior parietal lobule (IPL) in surface space according
to the gyri and sulci. (B) Connectivity-based parcellation using anatomical connectivity. Probabilistic
tractography was applied by sampling 5000 streamlines at each vertex within the seed mask. Whole-

brain connectivity profiles were used to generate a connectivity matrix with each row representing the
8
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connectivity profile of each seed vertex. Next, a correlation matrix was calculated as a measure of
similarity between the seed vertices. Then, a group similarity matrix was calculated by averaging the
correlation matrix across subjects and spectral clustering was applied to it. (C) Parcellation results of
the IPL across species. The entire framework was applied independently for each hemisphere and each

species.

Allometric scaling and structural asymmetry of IPL subregions

When examining the relationship of the volume of each of the IPL subregions scaled against the total
grey matter volume, the scaling of all the IPL subregions showed positive allometry (all slopes > 1)
(Figure 2A). A statistical analysis revealed no significant differences between the slopes of each pair
of the bilateral IPL subregions. The asymmetry indices (Als) for the IPL subregions were calculated
and are shown in Figure 2B. The macaques showed no significant asymmetry after Bonferroni
correction for any of the subregions. The chimpanzees and humans both displayed leftward asymmetry
in the rostral IPL (the C1 and C2, all p <.001) and rightward asymmetry in the caudal IPL (the C3 and

C4, all p < .001).
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Figure 2. Structural allometric scaling and asymmetries of the inferior parietal lobule (IPL) subregions
across species. (A) Volumes of the IPL subregions plotted against total cortical gray matter volume
(GMYV). Solid lines represent the best fit using mean macaque, chimpanzee, and human data points;
dotted lines represent 95% confidence intervals. (B) Volumetric asymmetries of the IPL subregions.
Negative asymmetry index indicates leftward asymmetry and positive index indicates rightward
asymmetry. * denotes significance at the Bonferroni corrected level of p <.05. The error bars indicate

the standard error of the mean.

Connectional asymmetries of IPL subregions

To investigate the connectional asymmetries of the IPL subregions, we first calculated the connectivity
profiles of the left and right subregions in macaques, chimpanzees, and humans using probabilistic
tracking (Supplementary Figure 3). Visualization of the connectivity patterns of the IPL did not show
significant interhemispheric asymmetry in macaque monkeys or chimpanzees but did in humans,

especially in connections with the inferior frontal gyrus (IFG) and lateral temporal cortex. A vertex-

10
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wise analysis was then performed to examine the connectional asymmetry of each subregion for each
species by calculating the Als between its connectivity profiles for the two hemispheres (Figure 3).
Additionally, ROI- and tract-wise analyses were used to examine the asymmetry of the cortical regions
and subcortical white matter pathways connected to the subregions, respectively (Figure 4;
connectivity values shown in Supplementary Figure 4, 5). No significant asymmetries were found in
macaques in any of the statistical analyses after correction for multiple comparisons.

In chimpanzees, the C1 showed significant leftward asymmetry mainly in connections with the anterior
middle frontal gyrus (MFQ), anterior IFG, planum temporale, and insula. The C2 showed significant
leftward asymmetric connections with the insula and rightward asymmetric connections with the
superior parietal lobule (SPL) and superior longitudinal fasciculus 2 (SLF2). The C3 showed
significant leftward asymmetric connections with the anterior superior temporal gyrus (STG), anterior
superior temporal sulcus (aSTS), and occipitotemporal area and rightward asymmetric connections
with the SPL and posterior cingulate gyrus (PCC). The C4 showed significant leftward asymmetric
connections with the anterior STG (aSTG) and rightward asymmetry with the SPL and PCC.

In humans, the C1 showed significant leftward asymmetric connections with the ventral premotor and
motor cortices and insula, which was consistent with regional leftward asymmetric connections with
the precentral gyrus (PreG) and insula. The C1 also showed significant leftward asymmetric
connections with the posterior MFG, aSTG, and posterior middle temporal gyrus (MTG) and rightward
asymmetric connections with the orbital part of the IFG, posterior STS, and dorsal precuneus. The C2
showed significant leftward asymmetric connections with the posterior MFG, ventral premotor and
motor cortices, SPL, anterior temporal lobe, and posterior MTG, which was consistent with regional
leftward asymmetric connections with the IFG, PreG, postcentral gyrus (PostG), SPL, and STG and

11


https://doi.org/10.1101/2021.01.26.428189
http://creativecommons.org/licenses/by-nc/4.0/

215

216

217

218

219

220

221

222

223

224

225

226
227

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.26.428189; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

was supported by leftward asymmetric subcortical connections with the SLF2, SLF3, and arcuate
fasciculus (AF). The C2 also showed rightward asymmetric connections with the orbital part of the
IFG and posterior cingulate sulcus. The C3 showed significant leftward asymmetry mainly in the
connections with the anterior IFG, SPL, and almost all the lateral temporal cortex, which was
consistent with regional leftward asymmetric connections with the MTG and inferior temporal gyrus
(MTG/ITG). The C3 also showed rightward asymmetric connections with the IFG, which was
supported by leftward asymmetric subcortical connections with the SLF3. The C4 showed significant
leftward asymmetry mainly in the connections with the IFG and anterior and posterior temporal cortex.
The C4 also showed significant regional leftward asymmetric connections with the PreG, PostG, and

SPL in the ROI-wise analysis.

Macaque Chimpanzee

pMTG
IFG
aSTG aSTS
1 0.3 >R 1
-0.3 L<R 1 -0.3 L<R 1 -0.3 L<R 1
Effect size Effect size Effect size

Figure 3. Connectional asymmetries of the IPL subdivisions in the vertex-wise analyses across species.
12
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229

Effect size (Cohen’s d) related to asymmetric connections of IPL subdivisions displayed on the left
230

hemisphere of a species-specific standard brain (leftward asymmetry: yellow, rightward asymmetry:

blue) for each species for areas showing significance at the p < .05 level corrected for multiple
231

comparisons using false discovery rate correction. PreG, precentral gyrus; SPL, superior parietal lobule;
232 aSTG, anterior superior temporal gyrus; aSTS, anterior superior temporal sulci; PT, planum temporale;
233  VPMC, ventral premotor cortex; pMTG, posterior middle temporal gyrus; IFG, inferior frontal gyrus;
234  Ins, insula.
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237  Figure 4. (A) Connectional asymmetries of IPL subdivisions in the region of interest (ROI)-wise
238  analyses across species. Connectional asymmetry was calculated for the connections between each IPL
239
240

subregion and eleven ROIs. (B) Connectional asymmetries of the IPL subdivisions in the tract-wise

analysis across species. Connectional asymmetry was calculated for the connections between each IPL
13
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subregion and the seven tracts. For all plots, the four quadrants of each circle correspond to the four
IPL subregions. The outermost circles represent ROIs or tracts. The three inner circles from inside to
outside represent macaques, chimpanzees, and humans, respectively. For all plots, only the
connectivity showing a significance at a Bonferroni corrected level of p < .05 are displayed. SFG,
superior frontal gyrus; IFG, inferior frontal gyrus; CGa, anterior cingulate gyrus; Orb, orbitofrontal
cortex; PreG, precentral gyrus; PostG, postcentral gyrus; SPL, superior parietal lobule; STG, superior
temporal gyrus; MTG/ITG, middle temporal gyrus and inferior temporal gyrus; Ins, insula; SLFI,
SLF2, SLF3, the three branches of the superior longitudinal fasciculus; AF, arcuate fasciculus; MdLF,
middle longitudinal fasciculus; ILF, inferior longitudinal fasciculus; IFOF, inferior fronto-occipital

fasciculus.

Discussion

In the present study, we investigated asymmetries of the IPL in the structure and connectivity of rhesus
macaques, chimpanzees, and humans. In the structural analysis, the IPL and its subregions exhibited a
similar pattern of positive allometric scaling between hemispheres. In addition, the chimpanzees and
humans shared similar asymmetric patterns in the IPL subregions, i.e., left asymmetry in the anterior
part and right asymmetry in the posterior part, whereas macaques did not display asymmetry. In the
connectivity analysis, the chimpanzees showed some connectional asymmetric regions including the
SPL, insula, planum temporale, aSTG, and aSTS. The humans showed widespread connectional
asymmetric regions including the primary motor and premotor cortices, SPL, insula, and the entire

lateral temporal lobe. These regions are associated with language, tool use, and handedness, suggesting
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a potential relationship between the connectional asymmetry and the functional hemispheric

specialization of the human brain.

Positive allometric scaling and structural asymmetry of IPL subregions

Brain allometry describes the quantitative scaling relationship between changes in the size of one
structure relative another structure, often the whole brain or cerebral cortex (Mars et al., 2017; Smaers
et al., 2017). Previous allometric studies suggested that the association cortex (prefrontal, temporal,
and parietal regions) scales with positive allometry (i.e., increases in size disproportionally, or more
rapidly) across primates (Passingham and Smaers, 2014; Mars ef al., 2017). Utilizing parcellation-
based delineations, a recent study provided evidence that human brains have a greater proportion of
prefrontal cortex gray matter volume than other primates (Donahue et al., 2018) and other studies
demonstrate that human prefrontal expansion is greater than would be expected from allometric scaling
in nonhuman primates (Passingham and Smaers, 2014; Smaers et al., 2017), although some conflicting
analyses remain (Gabi et al., 2016). In the present study, we used macro-anatomical boundaries to
identify the boundaries of the IPL and a connectivity-based parcellation approach to subdivide the IPL,
which helped to reveal its internal organization. We found that the bilateral IPL subregions exhibited
consistent, positive allometric scaling, which suggests that allometric scaling of the internal
organization of the IPL was similar and was also consistent between homotopic regions during the
evolution of the IPL in anthropoid primates. With only three species in the sample, our dataset does
not allow us to use phylogenetic comparative statistical methods or determine whether human IPL
subregions fall significantly above allometric expectations from nonhuman primates; future research

that incorporates a broad phylogenetic sample of diverse primate brains would be necessary.
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We found that chimpanzees and humans showed a similar dichotomous asymmetric pattern in their
IPL subregions, i.e., leftward asymmetry in the anterior portion (the C1 and C2) and rightward
asymmetry in the posterior portion (the C3 and C4), but macaques did not show any asymmetry. The
result in humans is consistent with a recent study using data from a large consortium showing leftward
asymmetry in the supramarginal gyrus and rightward asymmetry in the angular gyrus in terms of
surface area (Kong et al, 2018). The divergent volumetric asymmetries suggest functional
heterogeneities of the IPL and emphasize the importance of analyzing subregions within the IPL. The
shared asymmetric pattern also suggests that divergences in the internal organization of the IPL
evolved prior to the common ancestor of chimpanzees and humans and after the common ancestor of

the three species.

Connectional asymmetries underlying human language and complex tool use

Recent neuroimaging studies have highlighted specific brain regions and pathways that may be
necessary for tool use (Lewis, 2006; Stout and Chaminade, 2012). We found that humans showed
leftward asymmetric connectivity between the IPL (the C2) and the primary motor cortex, ventral
premotor cortex, SPL, and posterior MTG, all of which were activated in tasks related to tool use and
might constitute a cortical network underlying complex tool use (Lewis, 2006). In addition, portions
of this network appeared to represent part of a system that is tightly linked with language systems. The
interaction between the tool use system and the language system, though with a clear left hemisphere
bias, is responsible for representing semantic knowledge about familiar tools and their uses and for
acquiring the skills necessary to perform these actions (Johnson-Frey, 2004; Lewis, 2006; Stout and

Chaminade, 2012; Mars ef al., 2017). Several theories suggest that the evolutionary path leading to
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language and tool use in humans may be built upon modifications of circuits that subserve gestures
and imitation (Lewis, 2006). Macaques are thought to emulate the goals and intentions of others,
whereas chimpanzees can also imitate certain specific actions, but humans have an even stronger bias
for high-fidelity copying of precise sequences of actions, which has been called “overimitation” (Hecht
et al., 2013). Our findings provide a potential explanation for these phenomena in that the macaques
showed no asymmetric network connections, the chimpanzees showed a few asymmetric connections,
but the humans showed a large number of asymmetric connections. These species differences in
leftward asymmetric connections involving language and tool use may reflect human specializations
for language and complex tool use.

Unlike the humans, who showed considerable leftward asymmetry connectivity between the IPL and
the lateral temporal cortex, the chimpanzees showed few leftward asymmetric connections between
the IPL and the temporal cortex, including the planum temporale, aSTG, and aSTS, while macaques
showed symmetric connections between the IPL and temporal cortex. The planum temporale is
considered to include part of Wernicke’s area homolog (Spocter ef al., 2010), and displays leftward
anatomical asymmetry in humans and great apes (Gannon et al., 1998; Hopkins et al., 1998). Recent
work suggested a left-hemispheric size predominance of the planum temporale in olive baboons, a
nonhominid primate species (Marie ef al., 2018). We speculate that this planum temporale asymmetry
may not be the only prominent characteristic related to language lateralization. The patterns from
symmetry in macaques to asymmetry in humans and chimpanzees in the present study provide a
possible new evidence that neural connectivity asymmetry may underlie the roots of language
specialization, with the initial emergence of hemispheric specializations in apes which are elaborated
even further in human brain evolution. In addition, identifying increased asymmetric connections
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between the IPL and planum temporale in human brains compared to chimpanzees and macaques
reinforces the evidence that the evolutionary origin of human language capacities is related to further
left hemispheric specialization of neural substrates for auditory processing that are shared with other
primates (Balezeau et al., 2020). Since the aSTG and aSTS have been implicated in semantic and
phonologic processing in humans (Vigneau et al., 2006), the leftward asymmetric connections of the
IPL with the aSTG and aSTS may be relevant to the evolution of human language processing. Our
results suggest an evolutionary trajectory for the connectivity of the IPL with the temporal cortex; that
is, the connectivity started as symmetric in macaque monkeys, began to develop asymmetrically in
chimpanzees, and finally achieved the greatest degree of asymmetry and is refinement in humans. This

sequence may support the emergence of language and language-related functions.

Species-specific differences in asymmetric connectivity in chimpanzees and humans

Species-specific differences in asymmetric connectivity between the IPL and SPL were found in
chimpanzees and humans, with leftward asymmetry in the former and rightward asymmetry in the
latter, whereas no asymmetry of this connectivity was found in macaques. These species differences
in hemispheric asymmetry may reflect evolutionary changes responsible for adaptations or the
production of new abilities in the human brain. Structurally, in chimpanzees, right anatomical
asymmetry in the white matter below the SPL (Hopkins ef al, 2010) may increase the right
connectivity between the IPL and SPL compared with the left side. In humans, the leftward volumetric
asymmetry in the SPL (Goldberg et al., 2013), together with leftward volumetric asymmetry in the [PL
(the C2), may support the leftward asymmetric connectivity. Functionally, interaction between the IPL

and SPL is crucial for tool use, which is dominant in the left hemisphere, and visuospatial function,
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which is dominant in in the right (Lewis, 2006; De Schotten et al., 2011b; Catani et al., 2017). As for
tool use, in contrast to the relatively simple tools used by chimpanzees and other species, humans can
create complex artifacts through a sequence of actions that may incorporate multiple parts, reflecting
a deep understanding of the kinematics of our bodies, the mechanical properties of surrounding objects,
and the unique demands of the external environments in which we live (Povinelli ez al., 2000; Johnson-
Frey, 2004). In addition, complex tool use requires the SPL to code the location of the limbs relative
to other body parts during planning and executing tool-use movements or hand gestures (Wolpert et
al., 1998; Johnson-Frey et al., 2005; Lewis, 2006). Leftward asymmetric connectivity between the IPL
and SPL may have provided a connectional substrate for complex tool use during human evolution.
As for visuospatial functions, the rightward asymmetric connectivity between the IPL and SPL in
chimpanzees may indicate that visuospatial functions are dominant in the right hemisphere and had
already been lateralized to the right hemisphere from the common ancestor with macaques. During
evolution, these lateralized functions may be retained in the human brain. Meanwhile, the lateralized
directional reversal of this connectivity from the right to the left hemisphere may reflect evolutionary

adaptations for the emergence of new abilities, such as sophisticated and complex tool making and use.

Human unique asymmetric connectivity of IPL subregions

Unlike the chimpanzees and macaques, humans showed leftward asymmetry in the connection
between the rostral IPL (the C1 and C2) and the primary motor cortex, which is consistent with a larger
neuropil volume in the left primary motor cortex than in the right side (Amunts et al., 1996).
Meanwhile, the leftward asymmetric volume of the anterior IPL and the primary motor cortex may

also increase the neural connectivity between these two regions in the left hemisphere compared with
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the right side. Such a leftward connection is thought to be related to handedness and hand manual skills
(Amunts et al., 1996; Amunts et al., 1997). In contrast to humans, chimpanzees and macaques did not
show any asymmetric connectivity between the IPL and the primary motor cortex. A more recent study
reported that, in olive baboons, contralateral hemispheric sulcus depth asymmetry of the central sulcus
related to the motor hand area is correlated with the direction and degree of hand preference, as
measured by a bimanual coordinated tube task, but only about 41% of them were classified as right-
handed and 33% were classified as left-handed (Margiotoudi et al., 2019). Although previous studies
have shown that chimpanzees exhibit population-level handedness in the use of tools and a
corresponding asymmetry in the primary motor cortex, inferior frontal cortex, and parietal operculum
(Gilissen and Hopkins, 2013; Hopkins et al., 2017), they do not show handedness as a more universal
trait or exhibit manual dexterity to the same extent as humans. One possible explanation is that humans
developed the asymmetric connectivity that became the structural basis for specific behaviors of
handedness and hand skills during evolution.

An unexpected finding was that in humans the IPL, particularly the C3, showed rightward asymmetric
connectivity with the IFG. Since the IPL and the IFG are interconnected through the SLF3, which is
strongly rightward asymmetric (De Schotten e al., 2011b), it may also increase the connection between
the IPL and IFG in the right hemisphere. Functionally, the left IFG is involved in various aspects of
language functions, including speech production and semantic, syntactic, and phonological processing
(Wang et al., 2020), whereas the right IFG is associated with various cognitive functions, including
attention, motor inhibition, and social cognitive processes (Hartwigsen et al., 2019). Our result of
rightward asymmetry in this connectivity seems to be associated with attention and social function,
but not language, although language dominance in the left hemisphere is considered to be a common
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characteristic in humans.

The widespread asymmetric connections of the IPL in humans compared with the other two primates
is in keeping with the inter-hemispheric independence hypothesis, in which, during evolution, brain
size expansion led to hemispheric specialization due to time delays in neuron signaling over increasing
distances, resulting in decreased inter-hemispheric connectivity and increased intra-hemispheric
connectivity (Ringo et al., 1994; Phillips et al., 2015). While having more cortical neurons (local
characteristics) in one hemisphere than the other seems to be a necessary condition for asymmetries of
complex and flexible behaviors, it is not a full condition for such behaviors. Given that a function or
behavior in an area is determined by its connectivity or networks in which it is involved (Passingham
et al., 2002), the widespread lateralized connections may provide the human brain with the increased
computational capacity necessary for processing language and complex tool use and may play a

facilitating role in human cognitive and behavioral specialization.

Methodological considerations

The three levels of analyses, i.e., the vertex-wise, ROI-wise, and tract-wise analyses, were performed
to provide a full description of the connectivity asymmetry. However, it should be noted that some
analyses produced results that were not completely consistent with each other. In humans, the
connectivity of the IPL with SLF3 and AF was left-lateralized in the C2 while right-lateralized in the
C3. The previous studies assessed the asymmetry of the SLF3 and AF with local characteristics such

as cortical volume, voxel count, and FA and their average across all the voxels in the tracts (de Schotten
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et al., 2011a; De Schotten et al., 2011b; Kamali et al., 2014), the SLF3 and AF were usually found to
have a single pattern, e.g., leftward asymmetry, rightward asymmetry, or symmetry. However, our
results seem to indicate two different asymmetric patterns for the SLF3 and AF, both of which connect
the IPL subregion C2 and C3 to the IFG (De Schotten et al., 2011b; Hecht et al., 2015; Barbeau et al.,
2020). Furthermore, these connectivity asymmetries matched well with the ROI-wise and tract-wise
analyses. The leftward connectivity asymmetry of the human C2 with the SLF3 and AF using the tract-
wise approach corresponds to that of the human C2 with the IFG and precentral gyrus using the ROI-
wise approach. The rightward connectivity asymmetry of the human C3 with the SLF3 and AF using
the tract-wise approach corresponds to that of the human C3 with the IFG using the ROI-wise approach.
The SLF3, located at the ventrolateral SLF, connects to the IPL, especially the anterior part, and from
there predominantly to the ventral premotor and prefrontal areas (De Schotten et al., 2011b; Kamali et
al.,2014; Barbeau et al., 2020). The C2 and C3 appear to separate the SLF3 into two finer components,
one connecting the posterior IFG and anterior IPL with leftward asymmetry, and one connecting the

anterior IFG to the posterior IPL with rightward asymmetry. The two types of connectivity patterns are
consistent with previous studies using invasive tract-tracing findings in macaque monkeys and resting-
state functional connectivity results in humans to study frontal and parietal connectivity (Petrides and
Pandya, 2009; Margulies and Petrides, 2013). Our results indicated that both cortical areas, such as the
IFG, and subcortical tracts, such as the SLF3 and AF, have at least two distinct subcomponents.

The inconsistency was observed when significant ROI-wise connectivity asymmetry was found but
few or no significant tract-wise connectivity asymmetries were found. For example, the human C1

showed ROI-wise connectivity asymmetry with the precentral gyrus and insula but no significant tract-
wise connectivity asymmetry. The IPL is connected to the precentral gyrus mainly through the SLF3,
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which in turn is connected to not only the precentral gyrus but also the IFG and MFG in the prefrontal
cortex (De Schotten et al., 2011b; Kamali et al., 2014; Hecht et al., 2015; Barbeau et al., 2020). The
connectivity between the C1 and the precentral gyrus may include only a portion of the SLF3; this
may have diluted the laterality effect from the SLF3 because it may include other pathways that were
not in our selected tracts and could, thus, have affected the observed lateralization. In other words, the
traditionally defined major fiber tracts are not a single bundle but, instead, contain many
subcomponents. Therefore, the patterns of lateralization might not yet have been fully explored in our
study. A recent work also suggested that the SLF2, SLF3, and AF could be separated into several
branches based on their projections into the prefrontal and/or temporal areas (Barbeau et al., 2020).
This may be true for the other major fiber tracts, such as the ILF (Latini et al., 2017), uncinate
fasciculus (Hau et al., 2017), and cingulum bundle (Jones et al., 2013). On the other hand, brain regions,
such as the IFG were connected to many fiber tracts, including the SLFII, SLFIII, and AF. Hence, we
did not find tract-wise connectivity asymmetry that corresponded to the ROI-wise connectivity
asymmetry in the human C1. This was also the case for the chimpanzee and human C4. The creation
of a finer tract atlas should be a priority for future work because this would help to map the tract-wise

connectivity asymmetry at a higher resolution.

In conclusion, we identified similar topographical maps of the IPL to study structural and connectional
asymmetry in macaques, chimpanzees, and humans. We found that the structural asymmetry of the
IPL was independent of the allometric scaling of this region. The connectional analysis revealed that
humans had the largest connectional asymmetries of IPL subregions compared to macaques and
chimpanzees. The regions showing larger asymmetric connections with the human IPL were associated
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with language, complex tool use, and handedness, which provided potential anatomical substrates for
functional and behavioral lateralization in humans. The opposite asymmetric connection between the
IPL and SPL in chimpanzees and humans may reflect distinct species-specific modifications to cortical

circuits during the course of ape and human evolution.

Materials and methods

Human data

Data from 40 right-handed healthy adults (age: 22-35, 18 males) were randomly selected from the
S500 subjects release of the Human Connectome Project (HCP) database (Van Essen et al., 2013)
(http://www.humanconnectome.org/study/hcp-young-adult/). T1-weighted (T1w) MPRAGE images
(resolution: 0.7mm isotropic, slices: 256; field of view: 224 x 320; flip angle: 8°), and diffusion-
weighted images (DWI) (resolution: 1.25mm isotropic; slices: 111; field of view: 210 x 180; flip angle:
78°; b-values: 1000, 2000, and 3000 s/mm?) were collectedona 3 T Skyra scanner (Siemens, Erlangen,

Germany) using a 32-channel head coil.

Chimpanzee data

Data from 27 adult chimpanzees (Pan troglodytes, 14 males) were made available by the National
Chimpanzee Brain Resource (http://www.chimpanzeebrain.org, supported by the NIH National
Institute of Neurological Disorders and Stroke). Data, including T1w and DWI, were acquired at the
Yerkes National Primate Research Center (YNPC) on a 3T MRI scanner under propofol anesthesia (10

mg/kg/h) using previously described procedures (Chen et al., 2013). All procedures were carried out
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in accordance with protocols approved by YNPRC and the Emory University Institutional Animal Care
and Use Committee (Approval no. YER-2001206).

DWI were acquired using a single-shot spin-echo echo-planar sequence for each of 60 diffusion
directions (b=1000 s/mm?, repetition time 5900 ms; echo time 86 ms; 41 slices; 1.8 mm isotropic
resolution). DWI with phase-encoding directions (left-right) of opposite polarity were acquired to
correct for susceptibility distortion. For each repeat of a set of DWI, five b=0 s/mm? images were also
acquired with matching imaging parameters. T1w images were also acquired for each subject (218

slices, resolution: 0.7x0.7x 1 mm).

Macaque data

Data from 8 male adult rhesus macaque monkeys (Macaca mulatta) were obtained from
TheVirtualBrain (Shen ef al., 2019). All surgical and experimental procedures were approved by the
Animal Use Subcommittee of the University of Western Ontario Council on Animal Care (AUP no.
2008-125) and followed the Canadian Council of Animal Care guidelines. Surgical preparation and
anesthesia as well as imaging acquisition protocols have been previously described (Shen et al., 2019).
Images were acquired using a 7-T Siemens MAGNETOM head scanner. Two diffusion-weighted scans
were acquired for each animal, with each scan having opposite phase encoding in the superior-inferior
direction at 1 mm isotropic resolution, allowing for correction of susceptibility-related distortion. For
five animals, the data were acquired with 2D EPI diffusion, while for the remaining three animals, a
multiband EPI diffusion sequence was used. In all cases, data were acquired with b= 1000 s/mm?, 64
directions, 24 slices. Finally, a 3D T1w image was also collected for each animal (128 slices, resolution:

0.5 mm isotropic).
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Image preprocessing

The human T1w structural data had been preprocessed following the HCP's minimal preprocessing
pipeline (Glasser et al., 2013), while the chimpanzee and monkey T1w structural data had been
preprocessed following the HCP's nonhuman preprocessing pipelines described in previous studies
(Glasser et al., 2013; Donahue et al., 2018). Briefly, the processing pipeline included imaging
alignment to standard volume space using FSL, automatic anatomical surface reconstruction using
FreeSurfer, and registration to a group average surface template space using the Multimodal Surface
Matching (MSM) algorithm (Robinson et al., 2014). Human volume data were registered to Montreal
Neurological Institute (MNI) standard space and surface data were transformed into surface template
space (fs_LR). Chimpanzee volume and surface data were registered to the Yerkes29 chimpanzee
template (Donahue et al., 2018). Macaque volume and surface data were registered to the Yerkes19
macaque template (Donahue et al., 2018).

Preprocessing of the diffusion-weighted images was performed in a similar way in the human,
chimpanzee, and macaque datasets using FSL. FSL’s DTIFIT was used to fit a diffusion tensor model
for each of the three datasets. Following preprocessing, voxel-wise estimates of the fiber orientation
distribution were calculated using Bedpostx, allowing for three fiber orientations for the human dataset
and two fiber orientations for the chimpanzee and macaque datasets due to the b-value in the diffusion

data.

Definition of the IPL

The IPL, located at the lateral surface of the ventral posterior parietal lobe, is surrounded by several

sulci including the Sylvian fissure, superior temporal sulcus (STS), and intraparietal sulcus (IPS) (von
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Economo and Koskinas, 1925; Von Bonin, 1947; Bailey et al., 1950; Pandya and Seltzer, 1982). In the
absence of detailed homologous definitions, it is necessary to use cytoarchitectonic delineations and
macroscopic boundaries, such as gyri and sulci, that can be reliably identified in all species as the
boundaries of the IPL. The region of interest (ROI) of the IPL was manually drawn on the standard
surface template using Connectome Workbench (Glasser et al., 2013). In the present study, we
restricted the ROI to the lateral surface of the IPL and excluded the cortex buried in the sulci, especially
the lateral bank of the IPS and the upper bank of the Sylvian fissure. Rostrally, the IPL borders the
vertical line between the Sylvian fissure and the rostral lip of the IPS. Dorsally, the IPL borders the
lateral bank of the IPS. Ventrally, the anterior ventral IPL borders the upper bank of the Sylvian fissure.
The border of the posterior and ventral IPL is formed by the extension of the Sylvian fissure to the top
end of the STS in chimpanzees and macaques but by the extension of the Sylvian fissure to the posterior

end of the IPS in humans.

Connectivity-based parcellation

We used a data-driven connectivity-based parcellation framework modified from Fan et al (2016)
(Figure 1). All steps in the framework were processed on surface data because the surface-based
method has advantages, such as cortical areal localization (Coalson et al., 2018), over the traditional
approach and because the use of surface meshes is a straightforward way to improve existing
tractography processing pipelines, such as the precise locations of streamline seeding and termination
(St-Onge et al., 2018). The surface ROI was first registered to native surface using MSM (Robinson
et al., 2014). The probabilistic tractography was performed on the native mesh representing the

gray/white matter interface using Probtrackx. The pial surfaces were used as stop masks to prevent
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streamlines from crossing sulci. 5000 streamlines were seeded from each of the white matter surface
vertices in the seed region to estimate its whole-brain connectivity profile and were downsampled to
5 mm isotropic voxels to construct the native connectivity M-by-N, a matrix between all the IPL
vertices (M) and the brain voxels (N). Based on the native connectivity matrix, a symmetric cross-
correlation M-by-M matrix was calculated to quantify the similarity between the connectivity profiles
of each IPL vertex. A group cross-correlation matrix was calculated by averaging the cross-correlation
matrix across subjects.

Data-driven spectral clustering was applied to the group cross-correlation matrix to define the
anatomical boundaries of the IPL. Spectral clustering can capture clusters that have complicated shapes,
making them suitable for parcellating the structure of complicated brain regions such as the IPL. In
addition, the spectral clustering algorithm was successfully used to establish the Brainnetome Atlas
(Fan et al., 2016). However, the number of clusters must be defined by the experimenter when using

this method. In the current study, we explored from two to twelve parcellations.

Volumetric analysis of the IPL

The cortical gray matter volumetric measurements were calculated using Freesurfer. Total cortical
volumes were determined by the space between the white and pial surfaces in native space. Each
subregion drawn on standard surface space was registered to native surface space using an existing
mapping between the two meshes. The volume of the IPL and its subregions was determined by

averaging all the vertices for each subject.
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Functional decoding of each subregion of the human IPL

Each subregion was first mapped to MNI volume space using a ribbon-constrained method in
Connectome Workbench. To decode the functions of each subregion, we used the automated meta-
analysis database, Neurosynth (Yarkoni et al., 2011) to identify the terms that were the most associated
with each subregion. The top five non-anatomical terms with the highest correlation values were kept
for all subregions and redundant terms, such as ‘semantic’ and ‘semantics’, were only considered once.
For simplicity, we only showed the positive correlations found by decoding because negative
correlations do not directly inform us about the functions of the subregions. The lateralization for each
term was obtained by calculating the difference in the correlation values of the subregions between the

left and right hemispheres.

Mapping anatomical connectivity profiles

To map the whole-brain anatomical connectivity pattern for each cluster, we performed probabilistic
tractography by drawing 5000 samples from each vertex in each cluster. The resulting tractograms
were log-transformed, normalized by the maximum, and then projected onto surface space using the
‘surf proj’ command in FSL to obtain tractograms in surface space. The surface tractograms were
smoothed using a 4 mm kernel for humans, 3 mm kernel for chimpanzees, and 2 mm kernel for
macaques. We subsequently averaged the surface tractograms across subjects for the left and right
hemispheres separately to obtain population tractograms, which were thresholded by a value of 0.5 for
humans, 0.2 for chimpanzees, and 0.3 for macaques due to data quality. The resultant population
tractograms represented approximately twenty percent of the non-zero vertexes in the non-thresholded

population tractograms and were used for the vertex-wise and ROI-wise comparisons. The volumetric
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tractograms were used for the tract-wise comparison.

Vertex-wise analysis

For each subregion, we restricted the analysis to the group mask defined by the combination of the left
and mirrored right population tractograms described above. We here used the connectivity probabilistic
value to quantify the connectivity between the IPL and each vertex of the rest of the brain. A higher

value in the vertex means a higher likelihood of being connected to the IPL than other vertices.

ROI-wise analysis

Although previous studies have devoted much effort to establishing homologous regions in primates,
these are still limited to a few regions, particularly in chimpanzees. To make comparisons across
species possible, here we used the common principle of macroscopic anatomical boundaries based on
the gyri and sulci to define ROIs in the cerebral cortex. Specifically, the Desikan—Killiany—Tourville
(DKT) atlas was used for humans (Desikan et al., 2006), a modified DKT atlas for the chimpanzees,
and the Neuromaps atlas for the macaques (Rohlfing ef al., 2012). Because the Neuromaps atlas is
volumetric, we first mapped it to surface space for the subsequent calculations. A total of eleven
cortical ROIs were chosen for each hemisphere: the superior frontal gyrus (SFG), inferior frontal gyrus
(IFG, a combination of the pars triangularis and pars opercularis in humans and chimpanzees), anterior
cingulate gyrus (CGa, a combination of the rostral and caudal anterior-cingulate in humans and
chimpanzees), orbitofrontal cortex (Orb), precentral gyrus (PreG), postcentral gyrus (PostG), superior
parietal lobule (SPL), precuneus, superior temporal gyrus (STG), middle temporal gyrus and inferior

temporal gyrus (MTG/ITG), and insula. The MTG/ITG was a combination of the MTG and ITG in
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humans and chimpanzees due to the absence of the MTG in macaques. The connectional value for
each ROI was calculated by averaging all vertices in the ROI on the individual surface tractogram for

each subregion.

Tract-wise analysis

To investigate which subcortical fiber tracts are associated with lateralization of cortical areas
connected to the IPL, we analyzed the lateralization of the subcortical white matter tracts connected to
the IPL across species. A total of seven tracts were chosen: the three branches of the superior
longitudinal fasciculus, arcuate fasciculus, middle longitudinal fasciculus, inferior longitudinal
fasciculus, inferior fronto-occipital fasciculus. The automated tractographic protocols for tracts for
each species were from previous studies (Bryant et al., 2020) and these tracts were reconstructed using
the Xtract tool (Warrington ef al., 2020). The mean value for each tract was calculated by averaging

all voxels in the tract in the individual volumetric tractogram for each subregion.

Statistical analysis

To investigate the allometric relationship between the volume of each of the IPL subregions and the
total gray matter volume using log-transformed data (Donahue et al., 2018), linear regression was
performed by pooling the human, chimpanzee, and macaque data for each of the IPL subregions,
separately. To test whether the scaling regression slopes differed significantly between the two
hemispheres, we performed an ANCOVA for comparisons across the two regression slopes for each
plot.

In all the analyses of the structural and connectional asymmetries (i.e., volumetric, vertex-wise, ROI-
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wise, and tract-wise), the asymmetry index (Al) was defined as the difference between values for the
left and right hemispheres according to the formula Al =2 x (R — L)/ (R + L). For the vertex-wise
analysis, a one-sample ¢ test was performed at each vertex on the group mask for each species using
PALM, with 5000 permutations with a sign-flip strategy (Winkler et al., 2014). The statistically
significant level was set at false discovery rate corrected p < .05. The effect sizes (Cohen’s d) were
displayed on the average surface. For the volumetric, ROI-wise, and tract-wise analysis, a two-sided
Wilcoxon signed-rank test was performed for each subregion. Bonferroni correction was then used for

multiple comparisons for seeds, ROIs or tracts, and species, with statistical significance set at p <.05.
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