bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.454172; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Determining the stability of genome-wide factors in BMI between ages 40 to 69 years.

Nathan A Gillespie'?, Amanda Elswick Gentry', Robert M Kirkpatrick!, Hermine H
Maes?, Chandra A Reynolds*, Ravi Mathur®, Kenneth S Kendler?,
Roseann E. Peterson'S & Bradley T. Webb'5S

! Virginia Institute for Psychiatric and Behavior Genetics, Department of Psychiatry,
Virginia Commonwealth University, Richmond VA, USA.

2 QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.

3 Virginia Institute for Psychiatric and Behavior Genetics, Department of Human and
Molecular Genetics & Massey Cancer Center, Virginia Commonwealth University,
Richmond VA, USA.

4 Department of Psychology, University of California, Riverside CA 92521

5 RTI International, Research Triangle Park, NC, USA

S Shared senior authorship

Corresponding author: Nathan Gillespie (nathan.gillespie@vcuhealth.org)

Abstract

Genome-wide association studies (GWAS) have successfully identified common
variants associated with BMI. However, the stability of genetic variation influencing BMI
from midlife and beyond is unknown. By analyzing BMI data collected from 165,717
men and 193,073 women from the UKBiobank, we performed BMI GWAS on six
independent five-year age intervals between 40 and 73 years. We then applied genomic
structural equation modeling (QSEM) to test competing hypotheses regarding the
stability of genetic effects for BMI. LDSR genetic correlations between BMI assessed
between ages 40 to 73 were all very high and ranged 0.89 to 1.00. Genomic structural
equation modeling revealed that genetic variance in BMI at each age interval could not
be explained by the accumulation of any age-specific genetic influences or
autoregressive processes. Instead, a common set of stable genetic influences appears
to underpin variation in BMI from middle to early old age in men and women alike.

Introduction

Body mass index (BMI) is a commonly assessed trait in population studies and often
used to index underweight, normal weight, overweight, or obese individuals. An
individual’s BMI and how it changes can differentially predict numerous health (e.g.,
cardiometabolic, diabetes, dementia '?) and mortality outcomes 3. Despite the known
limitations of BMI 4 and value added by considering additional adiposity indices such
as waist-to-hip ratio and waist circumference for predicting cardio-metabolic diseases ’
and mortality 8, increased BMI still remains a significant predictor of dementia 2°1° and
all-cause mortality '', including more recently, COVID19-related hospitalization and
death 2. Understanding the genetic and environmental etiology of BMI is therefore a
public health priority. Among the many endeavors aimed at identifying the loci
underpinning variation in complex traits '3, genome-wide association scan (GWAS)
analyses of adult BMI '* are some of the most successful. For instance, BMI meta-
analytic GWAS results can now account for a significant proportion of BMI heritability
1516 A limitation however, of these results is their reliance on aggregated data, which
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include different cohorts sampled from varying geographic and economic regions,
comprising multiple birth cohorts, and age distributions. Here, we examine the last
caveat because it remains to be empirically determined if genome-wide variation
associated with adult BMI is age-invariant or age-specific.

BMI heritability & longitudinal genetic correlations

Despite moderate stability across time 1729, average adult BMI increases from age 20
to age 65 at which time it levels off until age 80 ' when it begins to decline. Such
changes might be attributed to variable contributions of genetic and environmental risks
across the lifespan. Apart from birth cohort differences, Dahl et al. ', found that factors
such as an obesity genetic risk score, type-2 diabetes mellitus, cardiovascular disease,
substance use, and educational attainment were all differentially predictive of both
average BMI and changes in BMI before and after age 65. In contrast, many of these
risks were no longer predictive after age 65.

Whereas average lifetime BMI heritability is 0.75 ¢ with estimates range from 0.47 -
0.90 and from 0.24 - 0.81 in twin studies and family studies respectively 62 - heritability
actually increases throughout infancy and adolescence 22 before decreasing during
adulthood 8. Twin studies have shown that genetic influences in BMI are correlated
across time from infancy to adolescence 71922 and from early adulthood to midlife 2%-23
and sometimes very highly 24, which indicates continuous expression of the same
genetic influences 2°. However, longitudinal genetic correlations for BMI never reach
unity. Indeed, there is considerable variability in longitudinal genetic correlations
(rg=~.55-.95). This is consistent with age-specific genetic influences, which could be
obscured in GWAS meta-analyses that model age as a covariate.

In addition to biometrical genetics or longitudinal twin designs, molecular methods such
as linkage disequilibrium score regression (LDSR) 26 can leverage GWAS summary
statistics and population reference panels to estimate correlations (rG) across unrelated
and independent samples. Extending this approach to cohort studies with different ages
can address the question of whether or not genetic risks in BMI are correlated across
time. Currently, there is a paucity of reports examining BMI rG across time using GWAS
data. Studies to date have implemented a variety of approaches and produced mixed
results. For instance, Trzaskowski et al. ?” used LDSR to report a genetic correlation
(rg=0.86) between BMI assessed at ages 11 and 65. Winkler et. al. 28 estimated
Spearman rank genetic correlations between BMI assessed in populations above and
below age 50, which revealed a much smaller correlations (rg= 0.12). Notwithstanding
the need for greater precision regarding longitudinal genetic correlations, such
correlations are descriptive and provide no insight regarding competing theories
underlying developmental processes in BMI.

We propose that at least two theoretical mechanisms 2° can explain the observed
continuity in genetic correlations. The first is a growth process whereby genetic or
environmental factors determine the levels and rates of change in BMI over time. In this
model, variances and covariances between longitudinal measures of BMI depend on
individual genetic or environmental differences in growth patterns unfolding with age


https://doi.org/10.1101/2021.07.28.454172
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.28.454172; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(“random growth curves”) 30-34. We are aware of three twin studies that have applied
genetically informative growth models to longitudinal BMI data 35-37. Unfortunately,
random growth curves do not determine the extent to which stability or changes in BMI
are governed by time-invariant versus age-specific genetic influences. To address this
question, the second mechanism predicts that variances and covariances are
determined by random, time-specific genetic and environmental effects, which are more
or less persistent over time i.e., autoregressive effects’ 34, lllustrated in Figure 1, this
approach predicts a causal hypothesis of inertial effects, whereby genetic factors
contributing to BMI at one time causally affect BMI at the next. We have applied this
approach to personality !, anxiety and depression 4243, substance use 44 and brain
aging *°. We are aware of two reports that have tested the fit of autoregession models to
BMI data 1825, In addition to age-invariant genetic risks, Cornes et al. '@ also found
evidence of distinct, age-specific genetic influences on BMI at ages 12, 14 and 16. To
our knowledge, autoregressive effects have not been tested in adult BMI, especially
across a wide window comprising narrow age intervals in adults. Fortunately, the recent,
innovative application of structural equation modelling (SEM) to LDSR genetic
correlations 6 based on available GWAS results can now address the aforementioned

gaps.
Figure 1. Autoregression model depicting genome-wide variation in BMI at each age interval in By app|yln9 genomlc
terms of time-specific variation or “innovations” & the causal contribution of genome-wide SEM or “gSEM” to BMI
variation from previous age intervals. Model also includes residual genetic variation not GWAS d

ata from the UK

otherwise explained by the autoregression.
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e latent factor #8, provided
a better fit to the data. Given that standardized estimates of BMI heritability for men and
women are statistically equal '® and that there appear to be no sex differences in terms
of the observed adult decline in heritability 4°, we hypothesized that developmental
processes governing changes in heritability over time likewise ought to be comparable
across sex.
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Methods

All BMI and GWAS data came from the UK Biobank, which is accessible to the scientific
community, which is a large and detailed prospective study of over 500,000 subjects
aged 40-73 years recruited from 2006 to 2010 of predominantly European ancestry 4’.

BMI data

Described in detail elsewhere *°, weight was collected from subjects using a Tanita
BC418MA body composition analyzer. Standing and sitting height measurements were
collected from subjects using a Seca 240cm height measure. Weight and height were
amalgamated into mass index (BMI) calculated as weight divided by height squared
(kg/m2). We divided the BMI data into six age intervals: 40-44; 45-49; 50-54; 55-59; 60-
64; and 65-73 years based on age and BMI at baseline assessment. The range was
based on available data whereas the number of age tranches was selected to maximize
our power to choose between competing longitudinal and multivariate models without
minimizing the statistical power of the GWAS analyses at each interval. The number of
subjects with complete BMI and GWAS data are shown in Supplementary Table S1.

Genotypic data

Genotype data were filtered according to the Neale Lab pipeline, using filtration
parameters and scripts publicly available from the lab’s GitHub 5" repository. Samples
were filtered to retain only unrelated subjects of British ancestry (n=359,980.) Imputed
variants % were filtered based on INFO scores > 0.8, MAF > 0.001, and HWE p-value >
1e-10.

GWAS analyses

This is proof-of-principle illustration of the application of structural equation modelling
(SEM) to GWAS summary data to test longitudinal hypotheses. While a subset of UKB
subjects has repeated BMI measures, the data freeze used here contained insufficient
subjects with a minimum of three BMI assessments required to fit autoregression
models. To maximize power and subject inclusion, we divided the sample into 5-year
age intervals, which yielded 6 age tranches for GWAS and the subsequent gSEM
pseudo-longitudinal analyses. Separate GWAS analyses were conducted for each 5-
year age interval using BGENIE (version 1.3.) 52. The first 10 ancestry principal
components were included as covariates in all models and sex was also included as a
covariate in the non-sex stratified models.

Genomic structural equation modelling

We then applied the gSEM software package “¢ in R (version 4.0.3) 3 to estimate the
genetic variance-covariance (S) and asymptotic sampling covariance ‘weight’ (V)
matrices based on the 6 BMI GWAS results combined across, and second, based on
the separate GWAS results by sex. Estimation of the S and V matrices is a 3-step
process. In step 1, the raw GWAS summary statistics were manipulated using the
gSEM munge option to remove all SNPs with MAF < 1%, information scores < 0.9, and
SNPs in the MHC region. In step 2, we used the gSEM Idsc option to run multivariate
LD score regression %6 to estimate the covariance (S) and asymptotically weighted
covariance (V) matrices between the GWAS summary statistics. In step 3, we then used
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the lavaan (version 0.6-7) 5* in R (version 4.0.3) ®3 to fit and compare competing
longitudinal and multivariate models to the S and V matrices.

The autoregression model predicts that time-specific random genetic or environmental
effects “innovations” are more or less persistent over time (autoregressive effects) 8. As
described by Eaves and others 2-4° and illustrated in Figure 1, genetic variance at each
occasion is a function of i) new random effects “innovations” on the phenotype as well
as ii) the linear contribution of genetic differences expressed at the preceding time. We
assume that cross-temporal correlations arise because the innovations have a more or
less persistent effect over time and may, under some circumstances accumulate,
potentially giving rise to developmental increases in genetic variance and increased
correlations between adjacent measures. One consequence of the autoregressive
model is the tendency of cross-temporal correlations to decay as a function of
increasing lag-time. Depending on the magnitude of an innovation and its relative
persistence, the observed variances and cross-temporal covariances may increase
towards a stable asymptotic value. We tested this autoregression model by fitting
genetic innovations at the 45-49, 50-54, 55-59, 60-64 and 65-73 age-intervals, which we
then successively dropped. We then specified an autoregression model that included a
single source of genetic variance at the 40-44 age interval, which accounted for genetic
variance at all subsequent age intervals. Finally, we fitted an exploratory factor analysis
comprising a single factor.

Model fit indices & comparisons

In gSEM analyses there is no one sample size to speak of. This is because GWAS
studies from which the summary statistics are derived can vary in size and subject
overlap. Thus, potentially, a different (effective) sample size may apply to each element
of S. We were therefore limited to fit indices that do not explicitly depend upon sample
size: the pseudo Akaike Information Criterion (pseudoAlC); Comparative Fit Index (CFl);
Tucker Lewis Index (TFI); and the Standardized Root Mean Square Residual (SRMR) to
judge the best-fitting model. Both the CFl and TFI are incremental fit indices that
penalize models with increasing complexity. The SRMR is an absolute measure of fit
based on the difference between the observed and predicted correlations under each
model, such that a value of zero indicates a perfect fit. The pseudoAIC is a comparative
fit index, whereby the model with the lowest AIC values is interpreted as the best-fitting.

Table 1. Sample sizes, estimates of SNP-based heritability (including standard errors along diagonal) & linkage
disequilibrium score regression genetic correlations between the six age intervals based on the combined male
& female GWAS summary statistics.

Sample size 1. 2. 3. 4, 5. 6.
1. BMI GWAS 40-44 yrs 34,001  0.23 (0.02)
2. BMI GWAS 45-49 yrs 45,294 1.00 0.26 (0.02)
3. BMI GWAS 50-54 yrs 53,602 0.99 1.00 0.26 (0.02)
4. BMI GWAS 55-59 yrs 64,891 0.93 0.93 0.95 0.29 (0.01)
5. BMI GWAS 60-64 yrs 89,824 0.95 0.94 0.93 0.90 0.24 (0.01)

6. BMI GWAS 65-73 yrs 71,178 0.97 0.96 0.95 0.93 1.00 0.22 (0.01)
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Results

Combined male & female analyses

The LDSR-based genome-wide genetic correlations between the six GWAS summary
statistics, including GWAS sample sizes and SNP-based heritability at each age
interval, are shown in Table 1. The correlations do not continue to decline with
increasing time intervals, which would be indicative of a simplex structure best
explained by autoregression models. For example, the LDSR genetic correlation (rg)
between BMI at ages 40-45 and 66-73 years was higher than the rqy between BMI at
ages 40-45 and 56-60 years (rg=0.97 vs 0.93). Overall, the genetic correlations were
very high and ranged from 0.93 to 1.00.

Table 2. Multivariate modeling fitting comparisons based on the combined male & female GWAS summary
statistics.

Models Chi-square@n p pseudoAIC CFI  TLI SRMR

(
Full auto-regression (AutoReg) 21.113¢13 0.071  55.113 0.999 0.999 0.039
AutoReg: genetic innovation at 65-73 yrs dropped 22419014 0.070 54.419 1.000 0.999 0.039
AutoReg: genetic innovation at 60-64 yrs dropped 20.872¢14 0.105 52.872 1.000 0.999 0.039
AutoReg: genetic innovation at 55-59 yrs dropped 25.403¢14 0.031 57.403 0.999 0.999 0.041
AutoReg: genetic innovation at 50-54 yrs dropped 21.768¢14) 0.084 53.768 0.999 0.999 0.040
AutoReg: genetic innovation at 45-49 yrs dropped 34.073¢14 0.002 66.073 0.998 0.998 0.051
AutoReg: genetic innovations at 45-73 yrs dropped  46.133¢14y 0.000 70.133 0.998 0.998 0.056
Exploratory factor analysis - 1 factor 13.0059 0.162 37.005 1.000 1.000 0.016

Note: AIC = Akaike Information Criterion, CFl = comparative fit indice, TLI = Tucker Lewis Indice, SRMR =
(Standardized) Root Mean Square Residual

Formal model fitting comparisons are shown in Table 2. We began with a fully saturated
autoregression model comprising unique genetic influences or innovations at each age
interval (Figure 1). This provided a reasonable fit to the data as judged by the non-

Figure 2. Best-fitting common factor (CF) model based on the combined male and Slgmﬂcant Chl-square, very hlgh
female GWAS data. This model best explains the covariation between the six GWAs| CFI| and TLI values and very
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a genome-wide SNP heritability of 24%.

Sex specific analyses

An identical pattern emerged when the model fitting was repeated by sex. Male and
female sample sizes at each age interval are shown in Supplementary Table S1. Table
3 shows the LDSR genetic correlations for men and women. Varying only slightly, the
separate male and female genetic correlations were again high and ranged from rg=0.88
to rg=1.00. Supplementary Table S1 also shows the SNP-based heritability estimates by
sex, which were not only very similar at each age interval, but were largely unchanged
when 40 ancestry principal components were included as covariates.

Table 3. Linkage disequilibrium score regression genetic
correlations based on the male (below diagonal) & female (above
diagonal italics) GWAS summary statistics at six age intervals.

1. 2. 3. 4. 5. 6.
1. BMI GWAS 40-44 yrs 1 099 099 091 095 092
2. BMI GWAS 45-49yrs 0.98 1 1.00 0.96 0.93 0.93
3. BMI GWAS 50-54 yrs 1.00 0.99 1 0.95 0.91 0.90
4. BMI GWAS 55-59yrs 093 0.89 0.93 1 0.88 0.93
5. BMI GWAS 60-64 yrs 0.97 090 095 0.88 1 0.98
6. BMI GWAS 65-73yrs 0.97 090 096 093 099 1

As shown in Table 4, the genetic innovation parameters at ages 46-73 years for each
sex could each be dropped from the full autoregression model as judged by the non-
significant chi-square value. Overall, however, a model with a single common factor
again provided the best fit to the data for each sex in terms of the lowest chi-square,
pseudoAlIC and SRMR values (see Figure 3). This suggests that there is no evidence of
age-specific genetic variation in BMI for either men or women.

Table 4. Multivariate modeling fitting comparisons based on the combined MALE GWAS summary statistics
at six age intervals.

Women ChiSquareqs p pseudoAIC CFlI TLI SRMR

Full auto-regression (AutoReg) 15.019¢13 0.306 49.019 1.000 1.000 0.043
AutoReg: genetic innovation at 65-73 yrs dropped 14.866(14) 0.387 46.866 1.000 1.000 0.043
AutoReg: genetic innovation at 60-64 yrs dropped 14.883(14) 0.386 46.883 1.000 1.000 0.043
AutoReg: genetic innovation at 55-59 yrs dropped 16.813(14) 0.266 48.813 0.999 0.999 0.046
AutoReg: genetic innovation at 50-54 yrs dropped 14.213¢14y 0.434 46.213 1.000 1.000 0.043
AutoReg: genetic innovation at 45-49 yrs dropped 21.482¢14 0.090 53.482 0.998 0.998 0.057
AutoReg: genetic innovations at 45-73 yrs dropped 25.617¢14 0.109 49.617 0.998 0.999 0.059
)

Exploratory factor analysis - 1 factor 8.832¢9) 0.453 32.832 1.000 1.000 0.023
Men
Full auto-regression (AutoReg) 11.858113y 0.539 45.858 1.000 1.000 0.054

(13)
AutoReg: genetic innovation at 65-73 yrs dropped 12.814¢14p 0.541 44814 1.000 1.000 0.054
AutoReg: genetic innovation at 60-64 yrs dropped 12.085(1s) 0.599 44.085 1.000 1.000 0.053
AutoReg: genetic innovation at 55-59 yrs dropped 11.889¢14) 0.615 43.889 1.000 1.000 0.053
AutoReg: genetic innovation at 50-54 yrs dropped 21.826(14y 0.082 53.826 0.998 0.998 0.064
AutoReg: genetic innovation at 45-49 yrs dropped 12718414y 0.549 44718 1.000 1.000 0.059
AutoReg: genetic innovations at 45-73 yrs dropped 1628.983(14y 0.000 1652.983 0.168 0.001 0.803
Exploratory factor analysis - 1 factor 43989 0.883 28.398 1.001 1.000 0.018

Note: AIC = Akaike Information Criterion, CFl = comparative fit indice, TLI = Tucker Lewis Indice, SRMR =
(Standardized) Root Mean Square Residual
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Figure 3. Best-fitting common factor (CF) models based on separate male and
female GWAS data. To identify these models, the factor loadings on the BMI GWAS
at 40-45 years were constrained to one. The double-headed arrow on the CF
denotes the standardized variance, or SNP-based heritability, for BMI. Double-
headed arrows on the residuals denote genetic variation at each age interval not
otherwise explained by the CF.
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Discussion

This is the first study to test a
genetic developmental theory
of BMI heritability using
molecular data and structural
equation modeling. From ages
40 and 73, changes in BMI
heritability could not be
explained by age-specific
genetic factors or an
accumulation of new sources of
genetic variance over time.
Instead, individual differences
in BMI genetic variance across
this time span were best
explained by a single or
common set of stable, genetic
influences that are observable
in early midlife. This pattern
was observed in both men and
women.

Dahl et al.’s ! analysis of
Swedish twin data revealed that
for men and women, BMI
increases across midlife, before
leveling off at 65 years and
declining at approximately age
80. The extent to which the
inflexion at age 65 is
characterized by genetic
innovations was unsupported
by our results. In fact, we found
that the genetic correlation
between the GWAS based on
BMI assessed at ages 60-64

and the other age intervals were all equally high. Thus, the genetic variance at age 60-
64 does not appear to be linked to any age-specific or distinct genetic processes

occurring around this time.

The extent to which our observed pattern of homogenous and stable genetic influences
is replicable at younger ages remains to be determined. Longitudinal genetic
correlations assessed at intervals spanning infancy, adolescence and young adult range
from moderate to high 17:19.55.56_ Felix et al. %7 estimated a high genetic correlation
between childhood and adult BMI of 0.73. Typically, however, higher correlations are
observed between shorter intervals. For example, Silventoinen et al. 7 reported an rg of
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0.31 between BMI at ages 1 and 18 that increased to 0.93 between BMI at ages 17 and
18 years. Haberstick et al. '° reported a similarly high genetic correlation (rg = 0.97)
between BMI at ages 17 and 22 years. The autoregressive modeling reported by
Cornes et al. '8 found evidence of distinct, age-specific genetic influences on BMI at
ages 12, 14 and 16. However, the authors also found large transmission coefficients in
both sexes, which means that same genetic factors were largely responsible for the
observed variation across the three measurement occasions. In older samples,
longitudinal genetic correlations between BMI assessed at age 20 and when subjects
were in their mid-forties range from 0.60 to 0.69 223, In terms of GWAS findings, many
adult BMI variants have also been observed in early growth traits in childhood, but not
infancy %8. We note that Sovio et al. identified one the clearest examples using
molecular data of age-specific genetic effects, whereby the effect of the FTO locus on
BMI reverses between adiposity peak adiposity rebound during infancy %°. In terms of
LDSR findings, Trzaskowski et al. 2’ reported a genetic correlation of 0.86 between BMI
at ages 11 and 65. The same authors also found that the adult PRS for BMI explained
at most 10% of the phenotypic variance in childhood BMI. Combined, the moderate to
high longitudinal genetic correlations based on twin and molecular data suggest that
individual differences in heritability spanning infancy, adolescence and early adult are
likely to be explained by a combination of mostly age-invariant, and age-specific genetic
influences.

Limitations
Our findings should be interpreted in the context of four limitations.

First, the BMI data were not based on repeated measures. Consequently, our approach
relied on between-subject analyses that assumed no year of birth or cohort effects.
Analyses of Danish and Swedish twin data have shown that increases in mean BMI in
successively younger cohorts have been accompanied by larger standardized estimates
of heritability 6°6'. To examine if cohort effects exist, we inspected the LDSR genetic
correlations between the youngest and oldest age intervals i.e., two maximally age-
discrepant samples of unrelated individuals. The genetic correlation was rg = 0.97 (see
Table 1), which suggests that the impact of cohort-related genetic heterogeneity, if
present, was likely to be minimal.

Second, the UKB recruitment process did not represent a random sample of the UK
population 2. Subjects were predominately European ancestry, more likely to be older,
female, to live in less socioeconomically deprived areas than nonparticipants, and when
compared with the general population, were also less likely to be obese, to smoke, and
to drink alcohol daily while reporting fewer self-reported health conditions 6364, Although
Silventoinen et al.’s meta-analysis of twin data reported only minor differences in BMI
heritability across divergent cultural-geographic regions %86, the extent to which the
molecular-based genetic covariance structure observed here generalizes to non-
European populations remains to be determined.

Third, while our results illustrate the flexibility of SEM in terms of its application to
GWAS data to test a theory of longitudinal change, our modeling was not exhaustive.
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For instance, we were unable to test the hypothesis that changes in heritability could be
better explained either by latent growth processes or mixture distributions 6768 capable
of discerning distinct genetic trajectories. We emphasize that the current method is
limited to the analysis of summary variance-covariance matrices derived from the
GWAS analysis of common variants. GenomicSEM does not model observed
phenotypic information. Consequently, sample means could not be generated with
which to model latent growth or mixture distributions. We also did not test hypotheses
regarding sex differences other than to report results by sex. Dubois’ meta-analysis of
23 twin birth-cohorts found evidence of sex-limitation in terms of greater genetic
variance in boys in early infancy through to 19 years ©°. In contrast, Elks et al.’s meta-
regression of 88 twin-bases estimates of BMI heritability found no evidence of sex
effects 8. It remains to be determined if the observed minor differences in the genetic
covariances and the ultimate, best fitting single-factor structure are empirically
equivalent across sex.

Finally, our genomic modelling was based on aggregated GWAS summary data and so
was entirely independent of environmental risks, which are known to be significant in
the etiology of complex traits ’°. Consequently, our current approach precludes
modeling the contribution of environmental influences with increasing age 7! or making
allowances for phenomenon such as genetic control of sensitivity to the environment
i.e., GXE interaction %, which may explain the previously observed decreases in
heritability during adulthood 8. In this regard, methods capable of simultaneously
modelling the joint effect of genes and environment are likely to prove more informative.
For instance, innovative approaches capable of applying genomic-relatedness based
restricted maximum-likelihood 72 to structural equation modeling software packages
such as OpenMx 3 have the potential to analyze individual GWAS and phenotypic data
and hold promise.

Conclusion

In absence of true longitudinal repeated measures, SEM based analyses of genetic
covariances derived from independent age restricted GWAS can be used to investigate
questions regarding the stability and independence of genetic influences across time.
Applying this framework to BMI across middle to late adulthood and testing two
competing hypotheses, revealed that differences in BMI across age could not be
explained by the accumulation of age-specific genetic influences or autoregressive
processes. Instead, a common set of stable genetic influences appears to underpin
genome-wide variation in BMI from middle to early old age in both men and women.
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Supplementary Table S1. Number of men & women with complete
BMI & GWAS data at each age interval, as well as genomic inflation (1)
& SNP-based heritability (h?) for the GWAS analyses comprising 10
versus 40 principal components (PCs).

Sample 10 PCs 40 PCs

Women size A h? SE A h? SE
1. BMI GWAS 40-44 yrs 18,110 1.08 0.26 0.03 1.08 0.26 0.03
2. BMI GWAS 45-49 yrs 24,975 1.12 0.28 0.03 1.12 0.27 0.03
3. BMI GWAS 50-54 yrs 30,149 1.12 0.27 0.02 1.12 0.26 0.02
4. BMI GWAS 55-59 yrs 36,010 1.18 0.30 0.02 1.17 0.30 0.02
5. BMI GWAS 60-64 yrs 48,369 1.21 0.25 0.01 1.21 0.25 0.01
6. BMI GWAS 65-73 yrs 35,460 1.16 0.23 0.02 1.15 0.23 0.02

Men
1. BMI GWAS 40-44 yrs 15,891 1.08 0.24 0.03 1.08 0.29 0.03
2. BMI GWAS 45-49 yrs 20,319 1.09 0.28 0.03 1.08 0.17 0.03
3. BMI GWAS 50-54 yrs 23,453 1.12 0.31 0.03 1.09 0.24 0.02
4. BMI GWAS 55-59 yrs 28,881 1.16 0.32 0.02 1.12 0.25 0.02
5. BMI GWAS 60-64 yrs 41,455 1.19 0.27 0.02 1.16 0.22 0.01
6. BMI GWAS 65-73 yrs 35,718 6 0.24 0.02 1.18 0.31 0.02
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