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Abstract 
Genome-wide association studies (GWAS) have successfully identified common 
variants associated with BMI. However, the stability of genetic variation influencing BMI 
from midlife and beyond is unknown. By analyzing BMI data collected from 165,717 
men and 193,073 women from the UKBiobank, we performed BMI GWAS on six 
independent five-year age intervals between 40 and 73 years. We then applied genomic 
structural equation modeling (gSEM) to test competing hypotheses regarding the 
stability of genetic effects for BMI. LDSR genetic correlations between BMI assessed 
between ages 40 to 73 were all very high and ranged 0.89 to 1.00. Genomic structural 
equation modeling revealed that genetic variance in BMI at each age interval could not 
be explained by the accumulation of any age-specific genetic influences or 
autoregressive processes. Instead, a common set of stable genetic influences appears 
to underpin variation in BMI from middle to early old age in men and women alike.   
 
Introduction 
Body mass index (BMI) is a commonly assessed trait  in population studies and often 
used to index underweight, normal weight, overweight, or obese individuals. An 
individual’s BMI and how it changes can differentially predict numerous health (e.g., 
cardiometabolic, diabetes, dementia 1,2) and mortality outcomes 3. Despite the known 
limitations of BMI 4-6 and value added by considering additional adiposity indices such 
as waist-to-hip ratio and waist circumference for predicting cardio-metabolic diseases 7 
and mortality 8, increased BMI still remains a significant predictor of dementia 2,9,10 and 
all-cause mortality 11, including more recently, COVID19-related hospitalization and 
death 12. Understanding the genetic and environmental etiology of BMI is therefore a 
public health priority. Among the many endeavors aimed at identifying the loci 
underpinning variation in complex traits 13, genome-wide association scan (GWAS) 
analyses of adult BMI 14 are some of the most successful. For instance, BMI meta-
analytic GWAS results can now account for a significant proportion of BMI heritability 
15,16. A limitation however, of these results is their reliance on aggregated data, which 
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include different cohorts sampled from varying geographic and economic regions, 
comprising multiple birth cohorts, and age distributions. Here, we examine the last 
caveat because it remains to be empirically determined if genome-wide variation 
associated with adult BMI is age-invariant or age-specific.  
 
BMI heritability & longitudinal genetic correlations  
Despite moderate stability across time 1,17-20, average adult BMI increases from age 20 
to age 65 at which time it levels off until age 80 1 when it begins to decline. Such 
changes might be attributed to variable contributions of genetic and environmental risks 
across the lifespan. Apart from birth cohort differences, Dahl et al. 1, found that factors 
such as an obesity genetic risk score, type-2 diabetes mellitus, cardiovascular disease, 
substance use, and educational attainment were all differentially predictive of both 
average BMI and changes in BMI before and after age 65. In contrast, many of these 
risks were no longer predictive after age 65.  
 
Whereas average lifetime BMI heritability is 0.75 16 with estimates range from 0.47 - 
0.90 and from 0.24 - 0.81 in twin studies and family studies respectively 16,21 - heritability 
actually increases throughout infancy and adolescence 22 before decreasing during 
adulthood 16. Twin studies have shown that genetic influences in BMI are correlated 
across time from infancy to adolescence 17-19,22 and from early adulthood to midlife 20,23 
and sometimes very highly 24, which indicates continuous expression of the same 
genetic influences 25. However, longitudinal genetic correlations for BMI never reach 
unity. Indeed, there is considerable variability in longitudinal genetic correlations 
(rg=~.55-.95). This is consistent with age-specific genetic influences, which could be 
obscured in GWAS meta-analyses that model age as a covariate.  
 
In addition to biometrical genetics or longitudinal twin designs, molecular methods such 
as linkage disequilibrium score regression (LDSR) 26 can leverage GWAS summary 
statistics and population reference panels to estimate correlations (rG) across unrelated 
and independent samples. Extending this approach to cohort studies with different ages 
can address the question of whether or not genetic risks in BMI are correlated across 
time. Currently, there is a paucity of reports examining BMI rG across time using GWAS 
data. Studies to date have implemented a variety of approaches and produced mixed 
results. For instance, Trzaskowski et al. 27 used LDSR to report a genetic correlation 
(rg=0.86) between BMI assessed at ages 11 and 65. Winkler et. al. 28 estimated 
Spearman rank genetic correlations between BMI assessed in populations above and 
below age 50, which revealed a much smaller correlations (rg= 0.12). Notwithstanding 
the need for greater precision regarding longitudinal genetic correlations, such 
correlations are descriptive and provide no insight regarding competing theories 
underlying developmental processes in BMI. 
 
We propose that at least two theoretical mechanisms 29 can explain the observed 
continuity in genetic correlations. The first is a growth process whereby genetic or 
environmental factors determine the levels and rates of change in BMI over time. In this 
model, variances and covariances between longitudinal measures of BMI depend on 
individual genetic or environmental differences in growth patterns unfolding with age 
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(“random growth curves”) 30-34. We are aware of three twin studies that have applied 
genetically informative growth models to longitudinal BMI data 35-37. Unfortunately, 
random growth curves do not determine the extent to which stability or changes in BMI 
are governed by time-invariant versus age-specific genetic influences. To address this 
question, the second mechanism predicts that variances and covariances are 
determined by random, time-specific genetic and environmental effects, which are more 
or less persistent over time i.e., autoregressive effects’ 38-40. Illustrated in Figure 1, this 
approach predicts a causal hypothesis of inertial effects, whereby genetic factors 
contributing to BMI at one time causally affect BMI at the next. We have applied this 
approach to personality 41, anxiety and depression 42,43, substance use 44 and brain 
aging 45. We are aware of two reports that have tested the fit of autoregession models to 
BMI data 18,25. In addition to age-invariant genetic risks, Cornes et al. 18 also found 
evidence of distinct, age-specific genetic influences on BMI at ages 12, 14 and 16. To 
our knowledge, autoregressive effects have not been tested in adult BMI, especially 
across a wide window comprising narrow age intervals in adults. Fortunately, the recent, 
innovative application of structural equation modelling (SEM) to LDSR genetic 
correlations 46 based on available GWAS results can now address the aforementioned 
gaps.  

By applying genomic 
SEM or “gSEM” to BMI 
GWAS data from the UK 
Biobank 47, our aim was 
to determine if genetic 
influences across middle 
age were best explained 
by age-dependent 
versus age-invariant 
processes. We also 
tested if alternative, 
more parsimonious 
theoretical explanations 
i.e., common factor 
models, whereby 
covariance between 
genetic influences 
across time could be 
captured by a single 
latent factor 48, provided 

a better fit to the data. Given that standardized estimates of BMI heritability for men and 
women are statistically equal 16 and that there appear to be no sex differences in terms 
of the observed adult decline in heritability 49, we hypothesized that developmental 
processes governing changes in heritability over time likewise ought to be comparable 
across sex.  
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Figure 1. Autoregression model depicting genome-wide variation in BMI at each age interval in 
terms of time-specific variation or “innovations” & the causal contribution of genome-wide 
variation from previous age intervals. Model also includes residual genetic variation not 
otherwise explained by the autoregression. 

Note: Double-headed arrows denote variation associated with innovations & residuals at each 
age interval. Beta (β) denotes the causal contribution of variance from one age interval to the 
next. 
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Methods 
All BMI and GWAS data came from the UK Biobank, which is accessible to the scientific 
community, which is a large and detailed prospective study of over 500,000 subjects 
aged 40–73 years recruited from 2006 to 2010 of predominantly European ancestry 47.  
 
BMI data 
Described in detail elsewhere 50, weight was collected from subjects using a Tanita 
BC418MA body composition analyzer. Standing and sitting height measurements were 
collected from subjects using a Seca 240cm height measure. Weight and height were 
amalgamated into mass index (BMI) calculated as weight divided by height squared 
(kg/m2). We divided the BMI data into six age intervals: 40-44; 45-49; 50-54; 55-59; 60-
64; and 65-73 years based on age and BMI at baseline assessment. The range was 
based on available data whereas the number of age tranches was selected to maximize 
our power to choose between competing longitudinal and multivariate models without 
minimizing the statistical power of the GWAS analyses at each interval. The number of 
subjects with complete BMI and GWAS data are shown in Supplementary Table S1. 
 
Genotypic data 
Genotype data were filtered according to the Neale Lab pipeline, using filtration 
parameters and scripts publicly available from the lab’s GitHub 51 repository. Samples 
were filtered to retain only unrelated subjects of British ancestry (n=359,980.) Imputed 
variants 52 were filtered based on INFO scores > 0.8, MAF > 0.001, and HWE p-value > 
1e-10. 
 
GWAS analyses 
This is proof-of-principle illustration of the application of structural equation modelling 
(SEM) to GWAS summary data to test longitudinal hypotheses. While a subset of UKB 
subjects has repeated BMI measures, the data freeze used here contained insufficient 
subjects with a minimum of three BMI assessments required to fit autoregression 
models. To maximize power and subject inclusion, we divided the sample into 5-year 
age intervals, which yielded 6 age tranches for GWAS and the subsequent gSEM 
pseudo-longitudinal analyses. Separate GWAS analyses were conducted for each 5-
year age interval using BGENIE (version 1.3.) 52. The first 10 ancestry principal 
components were included as covariates in all models and sex was also included as a 
covariate in the non-sex stratified models.  
 
Genomic structural equation modelling  
We then applied the gSEM software package 46 in R (version 4.0.3) 53 to estimate the 
genetic variance-covariance (S) and asymptotic sampling covariance ‘weight’ (V) 
matrices based on the 6 BMI GWAS results combined across, and second, based on 
the separate GWAS results by sex. Estimation of the S and V matrices is a 3-step 
process. In step 1, the raw GWAS summary statistics were manipulated using the 
gSEM munge option to remove all SNPs with MAF < 1%, information scores < 0.9, and 
SNPs in the MHC region. In step 2, we used the gSEM ldsc option to run multivariate 
LD score regression 46 to estimate the covariance (S) and asymptotically weighted 
covariance (V) matrices between the GWAS summary statistics. In step 3, we then used 
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the lavaan (version 0.6-7) 54 in R (version 4.0.3) 53 to fit and compare competing 
longitudinal and multivariate models to the S and V matrices.  
 
The autoregression model predicts that time-specific random genetic or environmental 
effects “innovations” are more or less persistent over time (autoregressive effects) 38. As 
described by Eaves and others 38-40 and illustrated in Figure 1, genetic variance at each 
occasion is a function of i) new random effects “innovations” on the phenotype as well 
as ii) the linear contribution of genetic differences expressed at the preceding time. We 
assume that cross-temporal correlations arise because the innovations have a more or 
less persistent effect over time and may, under some circumstances accumulate, 
potentially giving rise to developmental increases in genetic variance and increased 
correlations between adjacent measures. One consequence of the autoregressive 
model is the tendency of cross-temporal correlations to decay as a function of 
increasing lag-time. Depending on the magnitude of an innovation and its relative 
persistence, the observed variances and cross-temporal covariances may increase 
towards a stable asymptotic value. We tested this autoregression model by fitting 
genetic innovations at the 45-49, 50-54, 55-59, 60-64 and 65-73 age-intervals, which we 
then successively dropped. We then specified an autoregression model that included a 
single source of genetic variance at the 40-44 age interval, which accounted for genetic 
variance at all subsequent age intervals. Finally, we fitted an exploratory factor analysis 
comprising a single factor.  
 
Model fit indices & comparisons 
In gSEM analyses there is no one sample size to speak of. This is because GWAS 
studies from which the summary statistics are derived can vary in size and subject 
overlap. Thus, potentially, a different (effective) sample size may apply to each element 
of S. We were therefore limited to fit indices that do not explicitly depend upon sample 
size: the pseudo Akaike Information Criterion (pseudoAIC); Comparative Fit Index (CFI); 
Tucker Lewis Index (TFI); and the Standardized Root Mean Square Residual (SRMR) to 
judge the best-fitting model. Both the CFI and TFI are incremental fit indices that 
penalize models with increasing complexity. The SRMR is an absolute measure of fit 
based on the difference between the observed and predicted correlations under each 
model, such that a value of zero indicates a perfect fit. The pseudoAIC is a comparative 
fit index, whereby the model with the lowest AIC values is interpreted as the best-fitting.   
 
Table 1. Sample sizes, estimates of SNP-based heritability (including standard errors along diagonal) & linkage 
disequilibrium score regression genetic correlations between the six age intervals based on the combined male 
& female GWAS summary statistics. 
 Sample size 1. 2. 3. 4. 5. 6. 
1. BMI GWAS 40-44 yrs 34,001 0.23 (0.02)      
2. BMI GWAS 45-49 yrs 45,294 1.00 0.26 (0.02)     
3. BMI GWAS 50-54 yrs 53,602 0.99 1.00 0.26 (0.02)     
4. BMI GWAS 55-59 yrs 64,891 0.93 0.93 0.95 0.29 (0.01)    
5. BMI GWAS 60-64 yrs 89,824 0.95 0.94 0.93 0.90 0.24 (0.01)   
6. BMI GWAS 65-73 yrs 71,178 0.97 0.96 0.95 0.93 1.00 0.22 (0.01)  
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Results 
Combined male & female analyses  
The LDSR-based genome-wide genetic correlations between the six GWAS summary 
statistics, including GWAS sample sizes and SNP-based heritability at each age 
interval, are shown in Table 1. The correlations do not continue to decline with 
increasing time intervals, which would be indicative of a simplex structure best  
explained by autoregression models. For example, the LDSR genetic correlation (rg) 
between BMI at ages 40-45 and 66-73 years was higher than the rg between BMI at 
ages 40-45 and 56-60 years (rg=0.97 vs 0.93). Overall, the genetic correlations were 
very high and ranged from 0.93 to 1.00.  

 
Formal model fitting comparisons are shown in Table 2. We began with a fully saturated 
autoregression model comprising unique genetic influences or innovations at each age 
interval (Figure 1). This provided a reasonable fit to the data as judged by the non-

significant chi-square, very high 
CFI and TLI values and very 
low SRMR. Autoregression sub-
models in which the genetic 
innovations at ages 65-73, 60-
64, and  
65-73, 60-64, 55-59, 50-54 and 
45-49 years were each 
successively removed provided 
only marginal improvements in 
terms of their pseudoAIC 
values. In contrast, the model 
with a single factor provided the 
overall best fit in terms of the 
smallest chi-square, lowest 
pseudoAIC and lowest SRMR. 
Under this model (see Figure 
2), genetic variance at each 
five-year age interval was best 
explained by a single factor with 

Table 2. Multivariate modeling fitting comparisons based on the combined male & female GWAS summary 
statistics. 

Models Chi-square(df) p pseudoAIC CFI TLI SRMR 
Full auto-regression (AutoReg) 21.113(13) 0.071 55.113 0.999 0.999 0.039 
 AutoReg: genetic innovation at 65-73 yrs dropped 22.419(14) 0.070 54.419 1.000 0.999 0.039 
 AutoReg: genetic innovation at 60-64 yrs dropped 20.872(14) 0.105 52.872 1.000 0.999 0.039 
 AutoReg: genetic innovation at 55-59 yrs dropped 25.403(14) 0.031 57.403 0.999 0.999 0.041 
 AutoReg: genetic innovation at 50-54 yrs dropped 21.768(14) 0.084 53.768 0.999 0.999 0.040 
 AutoReg: genetic innovation at 45-49 yrs dropped 34.073(14) 0.002 66.073 0.998 0.998 0.051 
 AutoReg: genetic innovations at 45-73 yrs dropped 46.133(14) 0.000 70.133 0.998 0.998 0.056 
Exploratory factor analysis - 1 factor 13.005(9) 0.162 37.005 1.000 1.000 0.016 
Note: AIC = Akaike Information Criterion, CFI = comparative fit indice, TLI = Tucker Lewis Indice, SRMR = 
(Standardized) Root Mean Square Residual 
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Figure 2. Best-fitting common factor (CF) model based on the combined male and 
female GWAS data. This model best explains the covariation between the six GWAS 
summary statistics based on five-year age intervals between ages 40-73 years. To 
identify this model, the factor loading on the BMI GWAS at 40-45 years was 
constrained to one. The double-headed arrow on the CF denotes the standardized 
variance, or SNP-based heritability, for BMI. Double-headed arrows on the residuals 
denote genetic variation at each age interval not otherwise explained by the CF. 
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a genome-wide SNP heritability of 24%.  
 
Sex specific analyses  
An identical pattern emerged when the model fitting was repeated by sex. Male and 
female sample sizes at each age interval are shown in Supplementary Table S1. Table 
3 shows the LDSR genetic correlations for men and women. Varying only slightly, the 
separate male and female genetic correlations were again high and ranged from rg=0.88 
to rg=1.00. Supplementary Table S1 also shows the SNP-based heritability estimates by 
sex, which were not only very similar at each age interval, but were largely unchanged 
when 40 ancestry principal components were included as covariates. 
 

Table 3. Linkage disequilibrium score regression genetic 
correlations based on the male (below diagonal) & female (above 
diagonal italics) GWAS summary statistics at six age intervals.  

1. 2. 3. 4. 5. 6. 
1. BMI GWAS 40-44 yrs 1 0.99 0.99 0.91 0.95 0.92 
2. BMI GWAS 45-49 yrs 0.98 1 1.00 0.96 0.93 0.93 
3. BMI GWAS 50-54 yrs 1.00 0.99 1 0.95 0.91 0.90 
4. BMI GWAS 55-59 yrs 0.93 0.89 0.93 1 0.88 0.93 
5. BMI GWAS 60-64 yrs 0.97 0.90 0.95 0.88 1 0.98 
6. BMI GWAS 65-73 yrs 0.97 0.90 0.96 0.93 0.99 1 

 
As shown in Table 4, the genetic innovation parameters at ages 46-73 years for each 
sex could each be dropped from the full autoregression model as judged by the non-
significant chi-square value. Overall, however, a model with a single common factor 
again provided the best fit to the data for each sex in terms of the lowest chi-square, 
pseudoAIC and SRMR values (see Figure 3). This suggests that there is no evidence of 
age-specific genetic variation in BMI for either men or women.  
 
Table 4. Multivariate modeling fitting comparisons based on the combined MALE GWAS summary statistics 
at six age intervals. 

Women ChiSquaredf p pseudoAIC CFI TLI SRMR 
Full auto-regression (AutoReg) 15.019(13) 0.306 49.019 1.000 1.000 0.043 
 AutoReg: genetic innovation at 65-73 yrs dropped 14.866(14) 0.387 46.866 1.000 1.000 0.043 
 AutoReg: genetic innovation at 60-64 yrs dropped 14.883(14) 0.386 46.883 1.000 1.000 0.043 
 AutoReg: genetic innovation at 55-59 yrs dropped 16.813(14) 0.266 48.813 0.999 0.999 0.046 
 AutoReg: genetic innovation at 50-54 yrs dropped 14.213(14) 0.434 46.213 1.000 1.000 0.043 
 AutoReg: genetic innovation at 45-49 yrs dropped 21.482(14) 0.090 53.482 0.998 0.998 0.057 
 AutoReg: genetic innovations at 45-73 yrs dropped 25.617(14) 0.109 49.617 0.998 0.999 0.059 
Exploratory factor analysis - 1 factor 8.832(9) 0.453 32.832 1.000 1.000 0.023 

Men       
Full auto-regression (AutoReg) 11.858(13) 0.539 45.858 1.000 1.000 0.054 
 AutoReg: genetic innovation at 65-73 yrs dropped 12.814(14) 0.541 44.814 1.000 1.000 0.054 
 AutoReg: genetic innovation at 60-64 yrs dropped 12.085(14) 0.599 44.085 1.000 1.000 0.053 
 AutoReg: genetic innovation at 55-59 yrs dropped 11.889(14) 0.615 43.889 1.000 1.000 0.053 
 AutoReg: genetic innovation at 50-54 yrs dropped 21.826(14) 0.082 53.826 0.998 0.998 0.064 
 AutoReg: genetic innovation at 45-49 yrs dropped 12.718(14) 0.549 44.718 1.000 1.000 0.059 
 AutoReg: genetic innovations at 45-73 yrs dropped 1628.983(14) 0.000 1652.983 0.168 0.001 0.803 
Exploratory factor analysis - 1 factor 4.398(9) 0.883 28.398 1.001 1.000 0.018 
Note: AIC = Akaike Information Criterion, CFI = comparative fit indice, TLI = Tucker Lewis Indice, SRMR = 
(Standardized) Root Mean Square Residual 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2021. ; https://doi.org/10.1101/2021.07.28.454172doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454172
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 
This is the first study to test a 
genetic developmental theory 
of BMI heritability using 
molecular data and structural 
equation modeling. From ages 
40 and 73, changes in BMI 
heritability could not be 
explained by age-specific 
genetic factors or an 
accumulation of new sources of 
genetic variance over time. 
Instead, individual differences 
in BMI genetic variance across 
this time span were best 
explained by a single or 
common set of stable, genetic 
influences that are observable 
in early midlife. This pattern 
was observed in both men and 
women. 
 
Dahl et al.’s 1 analysis of 
Swedish twin data revealed that 
for men and women, BMI 
increases across midlife, before 
leveling off at 65 years and 
declining at approximately age 
80. The extent to which the 
inflexion at age 65 is 
characterized by genetic 
innovations was unsupported 
by our results. In fact, we found 
that the genetic correlation 
between the GWAS based on 
BMI assessed at ages 60-64 

and the other age intervals were all equally high. Thus, the genetic variance at age 60-
64 does not appear to be linked to any age-specific or distinct genetic processes 
occurring around this time. 
 
The extent to which our observed pattern of homogenous and stable genetic influences 
is replicable at younger ages remains to be determined. Longitudinal genetic 
correlations assessed at intervals spanning infancy, adolescence and young adult range 
from moderate to high 17,19,55,56. Felix  et al. 57 estimated a high genetic correlation 
between childhood and adult BMI of 0.73. Typically, however, higher correlations are 
observed between shorter intervals. For example,  Silventoinen et al. 17 reported an rg of 
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Figure 3. Best-fitting common factor (CF) models based on separate male and 
female GWAS data. To identify these models, the factor loadings on the BMI GWAS 
at 40-45 years were constrained to one. The double-headed arrow on the CF 
denotes the standardized variance, or SNP-based heritability, for BMI. Double-
headed arrows on the residuals denote genetic variation at each age interval not 
otherwise explained by the CF. 
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0.31 between BMI at ages 1 and 18 that increased to 0.93 between BMI at ages 17 and 
18 years. Haberstick et al. 19 reported a similarly high genetic correlation (rg = 0.97) 
between BMI at ages 17 and 22 years. The autoregressive modeling reported by 
Cornes et al. 18 found evidence of distinct, age-specific genetic influences on BMI at 
ages 12, 14 and 16. However, the authors also found large transmission coefficients in 
both sexes, which means that same genetic factors were largely responsible for the 
observed variation across the three measurement occasions. In older samples, 
longitudinal genetic correlations between BMI assessed at age 20 and when subjects 
were in their mid-forties range from 0.60 to 0.69 20,23. In terms of GWAS findings, many 
adult BMI variants have also been observed in early growth traits in childhood, but not 
infancy 58. We note that Sovio et al. identified one the clearest examples using 
molecular data of age-specific genetic effects, whereby the effect of the FTO locus on 
BMI reverses between adiposity peak adiposity rebound during infancy 59. In terms of 
LDSR findings, Trzaskowski et al. 27 reported a genetic correlation of 0.86 between BMI 
at ages 11 and 65. The same authors also found that the adult PRS for BMI explained 
at most 10% of the phenotypic variance in childhood BMI. Combined, the moderate to 
high longitudinal genetic correlations based on twin and molecular data suggest that 
individual differences in heritability spanning infancy, adolescence and early adult are 
likely to be explained by a combination of mostly age-invariant, and age-specific genetic 
influences. 

 
Limitations 
Our findings should be interpreted in the context of four limitations.  
 
First, the BMI data were not based on repeated measures. Consequently, our approach 
relied on between-subject analyses that assumed no year of birth or cohort effects. 
Analyses of Danish and Swedish twin data have shown that increases in mean BMI in 
successively younger cohorts have been accompanied by larger standardized estimates 
of heritability 60,61. To examine if cohort effects exist, we inspected the LDSR genetic 
correlations between the youngest and oldest age intervals i.e., two maximally age-
discrepant samples of unrelated individuals. The genetic correlation was rg = 0.97 (see 
Table 1), which suggests that the impact of cohort-related genetic heterogeneity, if 
present, was likely to be minimal.  
 
Second, the UKB recruitment process did not represent a random sample of the UK 
population 62. Subjects were predominately European ancestry, more likely to be older, 
female, to live in less socioeconomically deprived areas than nonparticipants, and when 
compared with the general population, were also less likely to be obese, to smoke, and 
to drink alcohol daily while reporting fewer self-reported health conditions 63,64. Although 
Silventoinen et al.’s meta-analysis of twin data reported only minor differences in BMI 
heritability across divergent cultural-geographic regions 65,66, the extent to which the 
molecular-based genetic covariance structure observed here generalizes to non-
European populations remains to be determined.  
 
Third, while our results illustrate the flexibility of SEM in terms of its application to 
GWAS data to test a theory of longitudinal change, our modeling was not exhaustive. 
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For instance, we were unable to test the hypothesis that changes in heritability could be 
better explained either by latent growth processes or mixture distributions 67,68 capable 
of discerning distinct genetic trajectories. We emphasize that the current method is 
limited to the analysis of summary variance-covariance matrices derived from the 
GWAS analysis of common variants. GenomicSEM does not model observed 
phenotypic information. Consequently, sample means could not be generated with 
which to model latent growth or mixture distributions. We also did not test hypotheses 
regarding sex differences other than to report results by sex. Dubois’ meta-analysis of 
23 twin birth-cohorts found evidence of sex-limitation in terms of greater genetic 
variance in boys in early infancy through to 19 years 69. In contrast, Elks et al.’s meta-
regression of 88 twin-bases estimates of BMI heritability found no evidence of sex 
effects 16. It remains to be determined if the observed minor differences in the genetic 
covariances and the ultimate, best fitting single-factor structure are empirically 
equivalent across sex. 
 
Finally, our genomic modelling was based on aggregated GWAS summary data and so 
was entirely independent of environmental risks, which are known to be significant in 
the etiology of complex traits 70. Consequently, our current approach precludes 
modeling the contribution of environmental influences with increasing age 71 or making 
allowances for phenomenon such as genetic control of sensitivity to the environment 
i.e., GxE interaction 65, which may explain the previously observed decreases in 
heritability during adulthood 16. In this regard, methods capable of simultaneously 
modelling the joint effect of genes and environment are likely to prove more informative. 
For instance, innovative approaches capable of applying genomic-relatedness based 
restricted maximum-likelihood 72 to structural equation modeling software packages 
such as OpenMx 73 have the potential to analyze individual GWAS and phenotypic data 
and hold promise.  
 
Conclusion 
In absence of true longitudinal repeated measures, SEM based analyses of genetic 
covariances derived from independent age restricted GWAS can be used to investigate 
questions regarding the stability and independence of genetic influences across time. 
Applying this framework to BMI across middle to late adulthood  and testing two 
competing hypotheses, revealed that differences  in BMI across age could not be 
explained by the accumulation of age-specific genetic influences or autoregressive 
processes. Instead, a common set of stable genetic influences appears to underpin 
genome-wide variation in BMI from middle to early old age in both men and women. 
 
Data Availability 
All BMI and GWAS data used here are publicly available from the UK Biobank 
(https://www.ukbiobank.ac.uk).  
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Supplementary Table S1. Number of men & women with complete 
BMI & GWAS data at each age interval, as well as genomic inflation (l) 
& SNP-based heritability (h2) for the GWAS analyses comprising 10 
versus 40 principal components (PCs). 
 Sample 

size 
 10 PCs  40 PCs 

Women   l h2 SE   l h2 SE 
1. BMI GWAS 40-44 yrs 18,110  1.08 0.26 0.03  1.08 0.26 0.03 
2. BMI GWAS 45-49 yrs 24,975  1.12 0.28 0.03  1.12 0.27 0.03 
3. BMI GWAS 50-54 yrs 30,149  1.12 0.27 0.02  1.12 0.26 0.02 
4. BMI GWAS 55-59 yrs 36,010  1.18 0.30 0.02  1.17 0.30 0.02 
5. BMI GWAS 60-64 yrs 48,369  1.21 0.25 0.01  1.21 0.25 0.01 
6. BMI GWAS 65-73 yrs 35,460  1.16 0.23 0.02  1.15 0.23 0.02 

Men          
1. BMI GWAS 40-44 yrs 15,891  1.08 0.24 0.03  1.08 0.29 0.03 
2. BMI GWAS 45-49 yrs 20,319  1.09 0.28 0.03  1.08 0.17 0.03 
3. BMI GWAS 50-54 yrs 23,453  1.12 0.31 0.03  1.09 0.24 0.02 
4. BMI GWAS 55-59 yrs 28,881  1.16 0.32 0.02  1.12 0.25 0.02 
5. BMI GWAS 60-64 yrs 41,455  1.19 0.27 0.02  1.16 0.22 0.01 
6. BMI GWAS 65-73 yrs 35,718  1.16 0.24 0.02  1.18 0.31 0.02 
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