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Abstract

To engage with the world, we must regularly make predictions about the outcomes of physical scenes. How do
we make these predictions? Recent evidence points to simulation - the idea that we can introspectively manipulate
rich, mental models of the world - as one possible explanation for how such predictions are accomplished. While
theories based on simulation are supported by computational models, neuroscientific evidence for simulation is
lacking and many important questions remain. For instance, do simulations simply entail a series of abstract
computations? Or are they supported by sensory representations of the objects that comprise the scene being
simulated? We posit the latter and suggest that the process of simulating a sequence of physical interactions is likely
to evoke an imagery-like envisioning of those interactions. Using functional magnetic resonance imaging, we
demonstrate that when participants predict how a ball will fall through an obstacle-filled display, motion-sensitive
brain regions are activated. We further demonstrate that this activity, which occurs even though no motion is being
sensed, resembles activity patterns that arise while participants perceive the ball’s motion. This finding suggests that
the process of simulating the ball’s movement is accompanied by a sensory representation of this movement. These
data thus demonstrate that mental simulations recreate sensory depictions of how a physical scene is likely to unfold.

Introduction “intuitive physics engine” to simulate rigid body
dynamics of object interactions successfully capture
human behavior on a variety of psychophysical tasks
(Battaglia et al., 2013).

While the fact that people appear capable of physics
simulation is an exciting finding, it marks only the
beginning of potential interesting investigations into this
topic. If we are to leverage our knowledge of simulations
in the brain for real-world applications (for example,
computer vision) or to inform therapeutic health
interventions, it behooves us to fully understand the
underlying mechanisms and circuits that enable our
mental models. One immediate question that comes to
mind concerns the fabric of the simulation itself. Are the
physical simulations we employ represented in the brain
as merely a series of computations between abstractly
held entities? Or do our mental models evoke sensory
representations of the physical interactions being
simulated, even if they are not literally perceived?

Past research on the interplay between cognition
and vision suggests that the latter might be true. For
instance, decades of neuroimaging experiments have
demonstrated that when we imagine stimuli with our
eyes shut (a phenomenon termed “mental imagery” in
the literature), early visual areas are activated as if those
same stimuli were in fact being perceived (Klein et al.,
2004; Kosslyn et al., 1995, 1997, 2001). A similar finding
emerges when people are asked to rotate 3D shapes in
their mind. Specifically, area MT, which is known for its
role in the perception of motion, appears to be activated

An intuitive understanding of the laws of physics is
one of the fundamental, underlying aspects of our daily
interactions with the world around us. Almost every
action we take relies on our brain’s ability to effortlessly
compute possible physical outcomes. Given the diversity
of scenarios that we navigate every day, it seems likely
that we use a variety of different strategies to parse
physical scenes. One strategy that has recently risen in
prominence is that of simulation (Bates et al., 2019;
Fischer et al., 2016; Hegarty, 2004; Rajalingham et al.,
2021; Ullman et al., 2017). Simulation refers to one’s
ability to run a “mental model” of a physical scene in
order to determine an outcome. Physics simulations
have long been a centerpiece of industries such as
computer graphics, video games, and even architecture
and construction. The idea that the human brain might
rely on simulation as a general mode of cognition is not
new. Dating as far back as the 18™ century, philosophers
David Hume and Adam Smith postulated that the way
human beings enact empathy is by adopting mental
models of one another (Hume, 1739; Smith, 1759).
Kenneth Craik extended this concept beyond human
interactions and argued that many everyday problems
are resolved through the use of “small-scale models”
that reflect reality while existing entirely in the mind
(Craik, 1943). Most recently, the simulation theory has
been put to the test in the lab in the context of physical
scene understanding. For instance, Battaglia et al. have
shown that computational models that make use of an
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during mental rotation of objects, even in the absence
of a visual stimulus (Shelton & Pippitt, 2006). Based on
these discoveries, scientists have concluded that the
process of internally envisioning stimuli that are not in
fact present can evoke “simulated” sensory
representations (Pearson, 2019). Given these findings,
one may hypothesize that physics simulations of events
could also evoke corresponding, internally generated
visual representations.

We were interested in testing exactly this hypothesis.
What might a visual representation of a physics
simulation in the brain look like, and where might we
expect to find its neural correlates? Considering the
dynamic nature of our mental models, simulations of
physical interactions must often incorporate the
movements of objects, even if these movements are not
being directly perceived at the time of the simulation.
We thus theorized that, as in studies of mental rotation,
we might find evidence of visual representations of
physics simulations in brain regions such as area MT that
are specialized for the perception of motion. This notion
is further supported by past research showing that area
MT can become active in response to static stimuli that
contain elements of implicit or implied motion (Kourtzi
& Kanwisher, 2000; Lorteijie et al., 2011).

In a previous study, we designed a novel task in
which participants had to predict a ball’s likely trajectory
as it fell through an obstacle filled display (Ahuja &
Sheinberg, 2019). We refer to this as the ball fall task.
The task could be solved by internally simulating the
ball’s trajectory (including the various physical
interactions encompassed within it) and using the
outcome of that simulation to inform one’s answer.
Through our prior work, we have provided behavioral,
oculomotor, and computational evidence consistent
with the idea that participants engage in simulation as
they perform the ball fall task. In the present study, we
recruited a new cohort of participants and asked them
to perform the ball fall task while undergoing functional
magnetic resonance imaging (fMRI). We sought to
determine whether there was neural evidence
supporting the idea that a physical simulation of an
object’s trajectory would recruit neural circuits involved
in the visual perception of that same trajectory. We
hypothesized that if this indeed were the case, then we
would observe voxel-wise activity pattern similarity in
motion-sensitive regions of the brain between
conditions in which participants simulated the ball’s
motion trajectory, and conditions in which they
perceived the ball’s motion trajectory. We found that
this was indeed the case for all participants. This
similarity effect between simulation and perception of
the ball was not present outside of motion-sensitive

brain regions. These findings provide evidence for a
visual correlate of physical simulation.

Methods

Participants

Twelve individuals (4 male; 8 female) participated in
this study. Participants were recruited from the Brown
University campus and the surrounding community. All
participants had normal vision and reported that they
were not colorblind. Participants were screened for MRI
contraindications, and were only included if they passed
all  screening requirements. Participants were
compensated a base amount for their time, with
additional compensation provided for correct responses
on trials. Signed consent was received from all
participants. The study was approved by the Brown
University IRB.

Motion Localizer

The first task the participants performed was a
motion localizer task (Figure 3A). We used the motion
localizer to define a motion-sensitive functional region
of interest (ROI) for subsequent analyses. The localizer
in this study was based on the one used in Sunaert et al.,
1999. Localizer runs started with a 16-second lead-in
period with only a yellow fixation point on screen with a
black background. Participants fixated on the point for
the entire 16 seconds. This was followed by randomly
ordered 20-second blocks of white dots that either
coherently moved in a given direction (i.e., the Motion
condition), or remained completely stationary (i.e., the
Static condition). During the Motion and Static
conditions, the vyellow fixation point remained on
screen, and participants were required to continue
fixating (while ignoring the white dots in the
background). The white dots were presented in a
circular area with a radius of 6 degrees visual angle
around the yellow fixation point. White dots were 0.07
degrees visual angle in size and had a density of
69/degrees?. During the Motion condition, the white
dots moved at 5 degrees/second, randomly changing
direction once per second. Each run had 3 blocks of each
condition (leading to a total of one minute per
condition). Participants performed either one or two
runs of the localizer task, depending on the time
constraints of the session.

Task

To evoke dynamic physics simulations, we used what
we refer to as the ball fall task (Figure 1A). The stimulus
used for a single trial in the ball fall task consists of one
“ball” at the top, a set of semi-randomly arranged
“planks” throughout the middle, and two “catchers” at
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the bottom. We refer to each display as a “board”.
Participants were asked to determine which of the two
catchers the ball would land in were it to be dropped
from its given position, and indicate their choice by
pressing one of two buttons.

Boards were generated by randomly picking an x
position, y position, length, and angle of rotation value
for each of ten planks. We then used the Newton
Dynamic library (http://newtondynamics.com), to
simulate what would occur if the ball were dropped from
its position at the top of a given board. A board was
stored if the simulation resulted in the ball falling into
one of the two catchers — otherwise, it was discarded,
and the process was started over.

In the present study, we sought to determine whether
there was neural evidence for the idea that a physical
simulation of an object’s trajectory (in this case, the ball)
would recruit neural circuits involved in the visual
perception of that same trajectory. We hypothesized
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that if this indeed were the case, then we would observe
voxel-wise activity pattern similarity in motion-sensitive
regions of the brain between conditions in which
participants simulated the ball’s motion trajectory, and
conditions in which they perceived the ball’'s motion
trajectory. To test this hypothesis, we devised three task
variants that participants performed in the MRl scanner:

1. Simulation variant: On this variant, participants were
shown a board and asked to indicate which catcher
they thought the ball would land in. This variant thus
served as the experimental condition of interest.

2. Perception variant: On this variant, the ball dropped
on its own as soon as the board appeared, and
participants indicated which catcher the ball landed
in, after the fact. Participants were instructed to
pursue the ball as it fell. This variant thus served as
our positive control.

3. Control variant: On this variant, participants were
shown a board comprised of the same items as the
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Figure 1: Task Design. (A) An example of a board that constituted the primary stimulus in the ball fall task.
Participants had to determine which of the two catchers the ball would land in if dropped (B) A schematic
depicting the blocked design of the task variants (Simulation, Perception, Control, and Native), as well as the
internal composition of a block. (C) A schematic depicting the trial outlines for each of the three variants of
interest. The Native variant was not included in the subsequent fMRI analyses and is hence not shown here.
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first two variants, except that the planks were more
likely to adhere to either a vertical or horizontal
orientation. Participants were asked to use this
orientation property to inform their response — if the
majority of the planks were vertical, they had to press
one button, whereas if the majority of the planks
were horizontal, they had to press the other.
Although the ball was still present on screen during
this variant, it was irrelevant to the task and was never
dropped into either catcher. Note that the planks in
the Simulation and Perception variants could also be
horizontal or vertical — they were simply more likely
to be so in the Control variant. Thus, for this variant,
the visual stimuli were comprised of the same
physical objects as in the previous two variants, but
the task demands were changed entirely such that no
physical interactions needed to be simulated. This
allowed us to account for changes in BOLD signal
attributable to the visual display (independent of the
cognitive process acting on it) as well as eye
movements (since all variants permitted free viewing
of the scene). This variant served as the negative
control.

A schematic depicting the progression of a trial for
each of the three variants is shown in Figure 1C. We also
had participants perform a fourth variant called the
Native variant. This variant was essentially the
Simulation and Perception variants combined -
participants initially made a judgement about the ball’s
trajectory, and once they had responded, we actually
dropped the ball for them and let them view whether or
not their answer was correct. The function of this variant
was largely behavioral — it was necessary to have a
condition where participants received immediate visual
feedback about their choice so as to ensure that their
internal model of the world and its physical properties
remained accurate. While participants did perform this
variant inside the scanner, the data from this variant was
not analyzed for this study (nor were the trial timings
optimized for fMRI data analysis). All the data presented
comes from the Simulation, Perception, and Control
variants.

Participants were pre-trained on all variants, and
only progressed to the MRI scanner once they reported
feeling comfortable with the demands of the task.
Subjects generally reported feeling comfortable with the
task after having attempted 10-20 practice trials per
variant. Once in the scanner, variants were presented in
unified blocks, with approximately 2 minutes of break
time provided in between. Each scanning run was made
up of one variant block. Each variant block was repeated
three times over the course of a session, and variant
block order was pseudorandomized. Each block started

with a 16 second fixation period during which
participants were asked to foveate a fixation spot
presented at the center of the screen. Following this
fixation period, the block progressed on to 24 task trials.
Task variant identity was cued by the color of a fixation
spot that was presented at the start of each trial. Trial
durations depended on participants’ reaction times and
were thus self-paced, although we did impose an
eventual 6 second timeout for unusually long trials.
Trials had a variable intertrial interval (ITl) of 1-6
seconds, with an average ITI of 2 seconds. Finally, each
block ended with another 16 second fixation period
during which participants were asked to foveate a
fixation spot presented at the center of the screen. A
schematic depicting the progression of blocks through a
session is shown in Figure 1B. Since each block
corresponded to one run and participants performed a
total of 3 blocks per task variant, we collected 12 total
runs from each participant.

Classification of Boards

To explicitly relate the properties of the stimuli to
physics simulation, we leveraged our control over the
embedded Newton Dynamics library to constrain certain
properties of the boards. Specifically, we classified
boards in the Simulation condition along two relevant
dimensions. The first is what we have termed
“simulation length”. This dimension refers to the length
of the hypothetical simulation required to mentally
recreate the ball’s full trajectory for a given board. We
use the number of planks hit by the ball as the measure
of simulation length because 1) as the number of planks
involved increases, the length of the ball’s trajectory also
inevitably increases, and 2) each additional plank
represents a physical interaction that must be
incorporated into the simulation, thereby lengthening it.
We divided our boards into two simulation length
categories — short (the ball hit 2 planks), or long (the ball
hit 4 planks). Examples of short and long simulation
length boards are shown in Figures 2A and 2B.

The second dimension that we looked at is what we
have termed “simulation uncertainty”. This term refers
to the degree of uncertainty involved in simulating a
given trajectory. We assigned simulation uncertainty by
determining the number of realistic alternate outcomes
one might consider within a simulation strategy.
Simulation uncertainty was quantified by repeatedly
introducing some positional jitter to each plank on a
given board, and re-simulating (via our physics engine)
the ball’s trajectory on the jittered replicate. This
process was carried out offline, 150 times for each
board. For some boards, slight jitter of the planks caused
major deviations to the ball’s calculated path (relative to
the path in the original plank configuration). This meant
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Figure 2: Board Designations for Behavioral
Analyses. (A) An example of a board on which the
ball only hit two planks. Such boards were classified
as having a short simulation length. (B) An example
of a board on which the ball hit four planks. Such
boards were classified as having a long simulation
length. (C) An example of a board where slightly
jittering the position of each plank (four jittered
examples are shown to the right) had a minimal
impact on the ball’s final position. Such boards were
classified as having a low simulation uncertainty. (D)
An example of a board where slightly jittering the
position of each plank (four jittered examples are
shown to the right) greatly impacted the ball’s final
position. Such boards were classified as having a
high simulation uncertainty.

that a noisy simulation could lead to any one of many
plausible outcomes. If the majority of jittered
configurations for a given board led to a change in the
ball’s final position, that board would be classified as a
high simulation uncertainty board. An example of a high
simulation uncertainty board is shown in Figure 2D. For
other boards, jitter had only a minor effect on the
trajectory—the ball generally ended up in the same
place. If the majority of jittered configurations for a

given board resulted in no change in the ball’s final
position, that board would be classified as a low
simulation uncertainty board. An example of a low
simulation uncertainty board is shown in Figure 2C. A
dynamic demonstration of these uncertainty categories
is shown in a supplementary video from our previous
paper (Ahuja & Sheinberg, 2019). Simulation length and
simulation uncertainty categories were
counterbalanced, leading to six trials per length and
uncertainty combination per block (2 length categories
X 2 uncertainty categories X 6 = 24 trials). The Simulation
and Perception variant blocks did not use exactly the
same set of boards, but the boards in each variant were
matched for length and uncertainty.

fMRI Procedure and Preprocessing

A Siemens 3T PRISMA MRI system with a 64-channel
head coil was used for whole-brain imaging. First, a high-
resolution T1 weighted multiecho MPRAGE anatomical
image was collected for visualization (repetition time,
1900 ms; echo time, 3.02 ms; flip angle, 9°; 160 sagittal
slices; 1 x 1 x 1 mm). Functional images were acquired
using a fat-saturated gradient-echo echo-planar
sequence (TR, 2000 ms; TE, 28 ms; flip angle, 90°; 38
interleaved axial slices; 3 x 3 x 3 mm). Head motion was
restricted using padding that surrounded the head.
Visual stimuli were displayed on a 24-inch MRI safe
screen (Cambridge Research Systems) and viewed
through a mirror attached to the head coil. Participants
responded using an MR compatible two-button
response pad (VPixx Technologies). Preprocessing and
analysis of fMRI data were performed using SPM12
(www fil.ion.ucl.ac.uk/spm). The images were first
corrected for differences in slice acquisition timing by
resampling slices in time to match the first slice. Next,
images were corrected for motion by realigning them to
the start of the session using a rigid transformation.
Realigned images were then normalized to Montreal
Neurological Institute (MNI) stereotaxic space. We
opted to not smooth our images and instead preserve as
much voxel-unique information as possible because our
subsequent analyses focused on individual voxel-level
comparisons between conditions.

Behavioral Analyses

In our earlier experiments, we showed that
participants’ reaction times increased commensurately
with an increase in simulation length, suggesting that
they were engaging in a simulation of the ball’s
trajectory. Participants’ accuracy on the task, however,
was unaffected by simulation length. Further, we
showed that participants’ reaction times were greater
and accuracy was lower on high simulation uncertainty
boards relative to low simulation uncertainty boards.
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Figure 3: fMRI Analysis Pipeline. (A) A schematic of the motion localizer task. The display alternated between
blocks of moving and static dots, flanked by periods of fixation. (B) A hypothetical activation map of motion-
sensitive voxels derived from a Motion > Static localizer contrast, plotted as a 3D point cloud to demonstrate
ROI selection. (C) An example participant’s t-values in the ROl from (B) for each of the three task conditions,
contrasted to baseline. Based on these t-maps, we assessed whether the voxel-wise representation in the
Simulation condition was more similar to the Perception condition (S-P) or the Control condition (S-C). (D) A line
graph showing an example comparison of S-P and S-C similarities. The participant shown in (C) is highlighted in
color in (D), and the grey lines represent a hypothetical group effect if the analysis were repeated for all 12

participants.

(Ahuja & Sheinberg, 2019). Here, we sought to replicate
these effects from our past experiments to verify that
participants’ behavior on the task matched what we
have previously presented as evidence in favor of
simulation. To that end, we assessed participants’
reaction times and accuracy on the Simulation variant of
the task as a function of simulation length and
uncertainty.

General Linear Modeling

To account for neural activity of interest, we
modeled our hypothesized BOLD response during the
pre-trial period of each variant using a boxcar regressor
that spanned the period from stimulus onset till
participant response. Because we used a variable
duration boxcar model that reflected participants’
reaction times, we were able to appropriately account
for the shape of the observed BOLD signal on a trial-by-
trial basis, even though each trial lasted for a slightly
different amount of time (Grinband et al., 2006; Yarkoni
et al., 2009). We modeled the first two trials of each run

as nuisance regressors to account for potential noise
associated with block initiation and changes in variant
identity. Additional nuisance regressors included trials
with outlier reaction times, six motion estimates
(translation and rotation), and run identity. These were
combined with the HRF-convolved task regressors in a
design matrix for the entire session. Finally, we used
general linear modeling to fit our regressors of interest
to the observed BOLD signal and derived beta and t-
statistic values by estimating a linear contrast for our
task variants relative to an implicit baseline. This analysis
was carried out for each of the twelve participants.

Representational Similarity and Searchlight Analysis

Having derived activity estimates for all variants
across all participants, we carried out Representational
Similarity Analysis (RSA). In RSA, an activity pattern
across a set of voxels for a given condition is treated as
the “representation” of that condition in the brain
(Kriegeskorte et al., 2008). Representations for various
conditions can then be compared to one another to
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calculate the degree of similarity between them using a
metric such as the Euclidean Distance or Spearman
correlation (Nili et al., 2014). In the present study, we
used the voxel-wise t-statistics derived for each
condition (contrasted against baseline) as the activity
estimates because they are univariately noise-
normalized and have been shown to be more reliable
than beta values for RSA (Walther et al., 2015). For the
similarity metric,c we opted to use a Spearman
correlation. Example t-maps from one participant in the
Simulation > Baseline, Perception > Baseline, and
Control > Baseline contrasts are shown in a motion-
sensitive ROl in Figure 3C. We calculated the degree of
similarity between the Simulation and Perception
conditions (S-P), as well as the Simulation and Control
conditions (S-C) for each participant. We then directly
compared the observed S-P and S-C similarities to one
another (Figure 3D). To reiterate, we hypothesized that
if the process of simulation was capable of evoking
sensory representations, then the S-P similarity would
be greater than the S-C similarity in motion-sensitive
areas of the brain.

We also repeated the aforementioned analyses using
a searchlight approach. We did this to ensure that any
effects that might be observed in the motion-sensitive
ROI were in fact specific to those voxels. In a typical
searchlight analysis, a cube of voxels is tiled across every
possible location in the brain to form several mini-ROIs
which can then be analyzed. In the present study, we
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tiled a 3x3x3 voxel cube over the entire brain for each
subject and calculated the representational similarity
between conditions at each location. Next, we assessed
which loci exhibited a greater S-P similarity compared to
S-C similarity in all twelve of our subjects. This approach
allowed us to stringently safeguard against the inflated
risk of false positives as well as the potential inter-
subject variability that comes with doing a searchlight
analysis (Etzel, Zacks, & Braver, 2013). Finally, we
analyzed the brain regions revealed by our searchlight
analysis to evaluate whether our effect of interest was
indeed specific to these motion-sensitive regions of
interest.

Results

Behavioral Results

Figure 4A shows participants’ performance on the
task across the three variants. Participants were
generally very good at all three task variants and
performed far better than chance, which was defined as
50% correct (Simulation: 89.8%, [t11 =39.745, p < 0.001];
Perception: 99.6% [t;1 = 199.23, p < 0.001]; Control:
99.4% [t11 = 155.45, p < 0.001]). Subjects’ reaction times
in the three variants were significantly different from
one another as assessed by a repeated measures
analysis of variance (rmANOVA) followed by post-hoc
pairwise t-tests with Holm-Bonferroni correction for
multiple comparisons (Fy12 = 81.85, p < 0.001;
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Figure 4: Behavioral Results. (A) Participants’ mean task accuracy across the three variants of interest.
Participants were extremely good at all three variants. (B) Participants’ mean reaction times as a function of
simulation length and uncertainty. We found that simulation length and simulation uncertainty affected
participants’ reaction times on the task. (C) Participants’ average accuracy on the task as a function of simulation
length and uncertainty. We found that simulation uncertainty affected participants’ reaction times, whereas
simulation length did not. Both of these behavioral effects were previously reported in Ahuja & Sheinberg, 2019.
Error bars in all figures represent the standard error of the mean performance for the twelve subjects.
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Table 1: MINI activation coordinates for the Motion > Static contrast from the motion localizer task

Functional Designation Anatomical Designation BA Peakx Peaky Peakz Peak t-value
Right V1 Calcarine fissure 17 16 -92 2 495
Left V2/V3 Left middle occipital gyrus 18 -22 -96 10 8.16
Right V2/V3 Right middle occipital gyrus 18 26 -84 16 5.65
Left V5/MT+ Left middle temporal gyrus 19 -40 -66 6 8.1
Right V5/MT+ Right middle temporal gyrus 19 40 -70 10 5.7
Left superior PPC Left superior parietal gyrus 7 -32 -46 60 5.79
Right superior PPC Right inferior parietal gyrus 7 30 -48 50 4.32
Left premotor cortex Left superior frontal gyrus 6 -22 -6 60 5.03

Simulation v Control: p < 0.001; Simulation v Perception:
p < 0.05; Perception v Control: p < 0.001).

Previously, we showed that people perform the ball
fall task via simulation by relating their reaction times
and accuracy to two simulation-based metrics — length
and uncertainty (Ahuja & Sheinberg, 2019). Specifically,
we showed that as simulation length increased, so did
participants’ reaction times. We also showed that as
simulation uncertainty increased, participants’ reaction
times increased, and their accuracy on the task
decreased. To ensure that the participants in this study
were also engaging in simulation, we repeated this same
behavioral analysis on trials from the Simulation variant.
Figure 4B shows participants’ average reaction times as
a function of simulation length and uncertainty. A two-
way repeated measures analysis of variance (rmANOVA)
revealed a main effect of both simulation length (F1,11 =
6.2, p < 0.05) and simulation uncertainty (F1,11 =51.22, p
< 0.001). Figure 4C shows participants’ average accuracy
on the task as a function of simulation length and
uncertainty. A two-way rmANOVA revealed a main
effect of simulation uncertainty (F1,11 = 93.78, p < 0.001)
but not length (F1,11 = 0.04, p = 0.84). We were thus able
to recreate the observed effects from our previous work
and directly relate participants’ behavior to simulation-
based metrics, thereby verifying that participants were

PPC

indeed engaging in a simulation of the ball’s trajectory
during the Simulation variant.

Localizer Activity

To delineate motion-sensitive voxels that could serve
as an ROI for the subsequent analyses, we compared
differential neural responses to passive viewing of
moving dots versus stationary dots during the localizer
task. Several brain regions, such as area MT and the
Posterior Parietal Cortex (PPC) were found to be more
active during the Motion condition relative to the Static
condition in a second-level Motion > Static contrast
(Figure 5). Both area MT and PPC have repeatedly been
highlighted in past research for their responsivity to
moving stimuli, and the same effect is replicated here
(Bremmer et al., 2001). Other early visual and premotor
areas that have previously been reported to be activated
by motion localizer tasks were also observed (Sunaert et
al., 1999). Overall, our analysis was successful at
identifying motion-sensitive voxels in brain regions that
are well-known to be specialized for motion perception.
To ensure that the ROI for our subsequent analyses
would involve minimal experimenter bias, we used all
voxels from the Motion > Static group level contrast
(family-wise error [FWE] cluster corrected for multiple
comparisons at p < 0.05, extent threshold 187) as our
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Figure 5: Localizer Results. Activation maps for a second level Motion > Static contrast at a p < 0.05 threshold
(family-wise error [FWE] cluster corrected for multiple comparisons, extent threshold 187). We observed several
canonically motion sensitive regions such as area MT and PPC in this contrast. These voxels were used to define

ROIS for subsequent RSA analyses.
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Figure 6: RSA Results. (A) Pairwise comparisons of S-P and S-C representational similarities in a motion-sensitive
ROI. Each pair of points represents one participant. We found that for all participants, the representational
similarity between the Simulation and Perception conditions was greater (evidenced by a higher Spearman
correlation) than the representational similarity between the Simulation and Control conditions (B) The same
analysis as in (A), repeated for an MT ROI. (C) The same analysis as in (A), repeated for a PPC ROI.

functional ROI. The complete set of activation
coordinates for this contrast can be found in Table 1.

Task Activity and RSA

Having defined an unbiased functional ROl for
motion-responsive voxels in the brain, we turned to a
representational similarity analysis of activity estimates
in these voxels from the pre-response period of the
three task variants. Specifically, we compared the
degree of representational similarity between the
Simulation and Perception conditions (S-P) as well as the
Simulation and Control conditions (S-C). We then
compared these S-P and S-C similarity estimates to one
another for each participant. There were two potential
outcomes of interest, each with a different
interpretation. The first possibility was that the
Simulation and Control conditions would be more
similar to one another in their representations than the
Simulation and Perception conditions. Given the
sensorimotor properties of each variant and the motion-
sensitive ROI, this would not at all be surprising, and
might even be expected. After all, the Simulation and
Control conditions were both comprised of entirely
static displays, and participants made self-directed
saccades in each, whereas the Perception condition
contained a moving ball in it, and participants largely

engaged in guided smooth pursuit of its trajectory. A
greater S-C similarity relative to S-P would likely suggest
that these voxels faithfully represent the sensory
experience of each condition and remain unmodulated
by any higher-order cognitive processes or task
demands.

The other possibility was that the S-P similarity would
be greater than the S-C similarity. If this were the case,
it would suggest that despite stimulus-level differences,
the cognitive processing engaged in the Simulation
condition, i.e., a simulation of the ball’s trajectory, can
modulate the activity of motion-sensitive voxels to
resemble how these voxels behave when perceiving the
ball’s trajectory. In other words, even though the ball’s
motion and physical interactions are not being literally
perceived, the process of simulating them gives rise to a
corresponding sensory representation that is akin to a
weak form of perception. In the present study, we
predicted that this latter possibility would be the case.

A comparison of the observed S-P and S-C similarity
estimates is shown in Figure 6A. The S-P
representational similarity was greater than the S-C
representational similarity for each of our twelve
participants. A paired t-test revealed a significant
difference between the S-P and S-C similarities (t1; =
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Table 2: Common ROIs highlighted by the motion
localizer and the searchlight analysis

Localizer ROIs BA Searchlight ROls
Right V1 17 Right V1
Left V2/V3 18 Left V2/V3
Right V2/V3 18 Right V2/V3
Left V5/MT+ 19 Left V5/MT+
Right V5/MT+ 19
Left superior PPC 7 Left superior PPC
Right superior PPC 7 Right superior PPC
Left premotor 6 Left premotor
cortex cortex
Right premotor
cortex
40 Left inferior PPC
39/40 Right inferior PPC
Right primary
1 somatosensory
cortex

5.75, p < 0.001). This finding reflects the second of the
two possibilities mentioned earlier and provides
evidence for our hypothesis that an internal simulation
of physical interactions can give rise to sensory activity
in visual areas that look as if one were indeed perceiving
these interactions. Next, we wanted to check whether
the effect we observed in our multi-region motion-
sensitive ROl would also be present in smaller sub-
regions within that ROI. We thus repeated the same RSA
in two sub-regions — area MT and PPC — using the
bilateral activation clusters outlined in Table 1 as the
ROIs. A comparison of the observed S-P and S-C
similarity estimates in these ROIs is shown in Figures 6B
and 6C. We found that both in Area MT (t11 = 7.75, p <
0.001) and PPC (ti1 = 4.59, p < 0.001), the S-P
representational similarity was greater than the S-C
representational similarity. This finding shows that the
effect shown in Figure 6A is not simply being driven by a

PPC

small subset of voxels, but that it is present across
several motion-responsive functional areas.

We further wanted to establish that the observed
increase in representational similarity between the
Simulation and Perception conditions was not simply a
distributed property found all over the entire brain, but
that it was specific to our motion-sensitive ROIl. We
accomplished this by calculating S-P and S-C similarity
estimates at every possible 3X3X3 voxel locus in the
brain using searchlight analysis (for more details, see
Methods). We found that the voxel loci that consistently
showed a greater S-P than S-C representational
similarity fell largely within the same brain regions that
we had already independently isolated using our motion
localizer task. These voxel clusters are shown in Figure 7.
Table 2 shows a comparison of regions highlighted by
the searchlight analysis and the motion localizer. Rows
shaded in green represent regions that were identified
by both, rows shaded in yellow represent regions that
were unilateral in one but bilateral in the other, and
rows shaded in blue represent regions that were
highlighted by the searchlight only. This result
demonstrates that the effect we observed in the
motion-sensitive ROIs is indeed quite specific to those
voxels.

Discussion

Recent studies suggest that simulation is a key
cognitive faculty employed to make physics predictions
(Ahuja & Sheinberg, 2019; Fischer et al., 2016;
Rajalingham et al.,, 2021). While behavioral and
computational evidence supporting this idea is
compelling, little is known about the neural mechanisms
that underlie such simulations. We theorized that a
simulation of a series of events could evoke activity in
the brain, akin to how the brain might respond were it
to visually perceive the same events. As such, we liken
simulation to mental imagery, except with a dynamic
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Figure 7: Searchlight Results. Clusters of voxels that were highlighted by a searchlight analysis for consistently
exhibiting the main effect from Figure 5. The searchlight largely revealed the same regions as we had previously
isolated using the motion localizer task (slices here are the same as in Figure 4).


https://doi.org/10.1101/2021.09.14.460312
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.14.460312; this version posted November 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

internal representation of the external world as opposed
to a static one.

In this study, we asked human participants to
perform a task in which they had to ascertain the path
of a falling ball while in an MRI scanner. We have
previously shown (and behaviorally replicated in this
study) that participants solve this task via simulation. We
found that when participants engaged in a simulation of
the ball’s trajectory, motion-sensitive regions of the
brain were active, even though no motion was being
perceived. Further, this activity bore a high degree of
representational similarity to conditions in which
participants actually witnessed the ball fall. This finding
thus directly complements previous research on mental
imagery and rotation, and extends the idea of self-
generated sensory representations to dynamic physics
simulations (Kaas et al., 2010; Shelton & Pippitt, 2006).

It is worth noting that the opposite perspective
has been argued in the past (i.e., that simulations are
explicitly non-imagery based) (Hegarty, 2004). This
assertion has been based on a few findings. First, past
research has shown that when individuals simulate
complex mechanical systems (for example, a series of
interconnected pulleys), they tend to do so in a
piecemeal fashion (Hegarty, 1992). This finding has been
used to argue that simulation must not involve holistic
visual representations, since if that were the case, the
entire scene could be inspected at once and the
outcome could be determined without needing to
sequentially simulate individual pieces. We would raise
the counterpoint that scenes are in fact rarely perceived
with uniform salience across one’s visual field, and that
complex stimuli are often parsed in a piecemeal fashion
via a shifting spotlight of attention (Buschman & Miller,
2010). Given this fact, it is reasonable that a simulated
visual representation would also be inspected step-by-
step depending on the progression of the corresponding
physics simulation. Nonetheless, interesting questions
persist about the role of attention in simulation that
would be fruitful to explore in future studies. In the
present study, the trajectory of the ball and the various
plank interactions were inherently sequential in nature,
which circumvented this issue entirely.

The second argument against the involvement of
visual areas in simulation has to do with reported
discrepancies between task performance when
participants have their eyes open versus when they have
them closed. For instance, it has been shown that when
participants are asked to close their eyes and tilt a glass
until an imagined amount of water has poured out, they
tend to misestimate the exact angle of their own tilt and
must usually adjust the tilt angle upon opening their
eyes (Schwartz & Black, 1999). This has been interpreted

to mean that participants must not have an accurate
visual representation of the glass while performing the
task with their eyes closed — if they did, they would not
need to make adjustments when reopening their eyes.
However, there are a few other factors involved in this
scenario that must be considered. First, since this
specific experiment requires participants to directly
interact with the object they are simulating, it is entirely
possible that they prioritize motor and proprioceptive
information over a visual representation. Just as
simulation is not the only strategy one may employ to
make physics predictions, it may indeed be that self-
generated visual representations only accompany some
types of simulations but not others, depending on the
task demands and context. Further, it is important to
keep in mind that simulated visual representations are
unlikely to be perfectly isomorphic and are instead
better thought of as useful but crude approximations. As
such, it is entirely possible that even if individuals had
visually represented the glass in this study, that they
would be inclined to make minor refinements when
allowed to open their eyes.

Our goal in the present study was to simply assess
whether visual areas have any involvement at all in the
simulation process. As such, our design doesn’t lend
itself to any strong causal conclusions about the
contributions of individual brain regions. While this is a
limitation of the study, we can still look at the network
of regions in which we observed relevant activity for
important clues. For instance, we showed that our main
similarity effect was present both in area MT, which is
known mostly for its role in perception of motion, as well
as in PPC, which has been implicated not only in motion
perception, but also in spatial reasoning and attentional
allocation (Born & Bradley, 2005; Wendelken, 2015). We
therefore theorize that PPC might contain the neural
apparatus for representing a mental model of the
physics within the task, whereas area MT may house the
depictive elements of reasoning through it. The two
areas may then cooperate as part of a larger network to
successfully execute a physics simulation. It is important
to note, however, that proponents of mental model
theory and mental imagery theory have sought to
distinguish the two as separate cognitive frameworks
(Sima, Schultheis, & Barkowsky, 2013). For instance,
Knauff and Johnson-Laird have argued that mental
models are primarily propositional (Knauff & Johnson-
Laird, 2002). Kosslyn, on the other hand, places less
emphasis on the mental model, and has argued that
mental visual depictions are in fact the key piece of the
puzzle for reasoning about complicated problems
(Kosslyn, Thompson, & Ganis, 2006). We do not see the
mental model theory and mental imagery theory as
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necessarily distinct from one another. In the case of
something as complex as a physics simulation, it seems
entirely possible that the two theories can converge and
that the relevant properties of a scene may be
represented in a mental model which is then run with
the aid of self-generated visual representations. A
theoretical framework that unifies mental models with
mental imagery is supported by the neural findings we
report in this study. Additional research that specifically
probes these theories is necessary to definitively assign
causal roles to the various brain regions that likely
contribute to the execution of physics simulations.

An important aspect of simulation to consider is the
role of eye movements. We felt that it was important to
let participants freely view the scene as they attempted
to ascertain the ball’s trajectory to ensure that their
approach would remain as naturalistic and ecologically
valid as possible. To ensure that the effect of eye
movements was properly accounted for in our
comparisons, we also permitted free viewing of the
scene in the Control condition. The Simulation and
Control conditions were thus similar to one another at a
sensorimotor level — both conditions contained entirely
static stimuli as well as self-directed saccades.
Conversely, the Perception condition, contained a
moving stimulus that participants were instructed to
smoothly pursue, making it different from the other two
conditions. Despite this fact, the Simulation condition
bore a closer neural resemblance to the Perception
condition. This finding indicates that the encoded
representation in motion-sensitive brain areas is not
merely about the eye movements taking place, but
rather about the cognitive process that they represent
(in this case, simulation). This idea is supported by the
theory of deictic coding, which states that eye
movements serve to orient and ground cognitive
phenomena in the real world (Ballard et al.,, 1997).
Finally, the effect that we highlight here was present
even when we constrained the ROI to areas such as area
MT which has been shown to be unaffected by saccade-
induced retinal motion (Russ et al., 2016).

An alternate potential explanation for the finding we
report here is that it is largely driven by the homogenous
plank orientations that distinguished the Control variant
from the Simulation and Perception variants. This
possibility is plausible because regions such as area MT
have been shown to contain orientation-selective
neurons (Albright, 1984). That said, we observed the
similarity effect even in a multi-areal motion-sensitive
ROI as shown in Figure 6A. If it were the case that
orientation-sensitive MT voxels were exclusively
representing the similarity between conditions, it is
unlikely that the effect would be present in the large,

multi-area ROI. Next, when breaking the larger ROl into
its component parts, we also examined anatomical
designations outside of just area MT, such as area PPC
(Figure 6C). Here too, we clearly observed the effect,
even though we are not aware of any literature on PPC
neurons responding selectively to oriented bars. The
searchlight analysis also failed to raise other brain
regions that would lend credence to the orientation
hypothesis. Instead, we found that the effect is almost
exclusively present in areas highlighted by the motion
localizer. Taken together, we believe our findings make
the orientation hypothesis unlikely, and that our results
are driven by activity representing real and imagined
motion.

A final topic worth discussing in a discussion about
simulation is the role of experience and familiarity.
While the idea of internal visual playback of mental
models in the brain is certainly exciting, it also seems
likely that implementing simulations in this way would
be computationally costly. Intricate and vivid
simulations might be useful in some contexts (especially
ones that are novel and that permit ample decision
time), but they may not always be the optimal approach.
For instance, following extensive experience with a
certain type of problem, one is likely able to form mental
shortcuts which in turn allow for quick, approximate
judgements. This fact has been shown to be true of chess
players — novices tend to engage in “look ahead”
strategies to plan out their moves, whereas
grandmasters can make rapid but highly effective moves
with only a momentary glance at the board (Calderwood
et al., 1988; Gobet & Simon, 1996; Holding & Reynolds,
1982). Given this fact, it is possible that participants with
extensive experience on the ball fall task may not
necessarily simulate the ball’s trajectory. In such a
scenario, subjects’ behavior on the task would likely shift
such that it would no longer be well-explained by
simulation-based metrics. This idea is supported by the
fact that convolutional neural networks that are trained
to solve the ball fall task make very different errors than
human participants do (Ahuja & Sheinberg, 2019). In
regard to neural activity, we would hypothesize that
motion-sensitive regions would no longer represent
aspects of the ball’s motion, and that activity in these
areas would likely more closely resemble what we see in
the Control condition. However, more research on this
question is warranted before any conclusions can be
drawn about whether or not visual representations play
a role in facilitating non-simulation based prediction
methods.

To conclude, we have presented evidence supporting
the idea that when simulating the trajectory of a falling
ball, motion-sensitive areas of the brain respond as if the
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ball’s trajectory were being perceived. This effect is
specific to a motion-sensitive ROl and emerges despite
differences in oculomotor dynamics during simulation
and perception of the ball’s trajectory. These findings
suggest that physics simulations evoke observable visual
representations. Future research that tackles this
question using more causal methods (such as
transcranial magnetic stimulation) will be key in further
elucidating the exact role of vision in physics
simulations.
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