

1 When Does Mutualism Offer a Competitive Advantage? A Game-Theoretic Analysis of

2 Host-Host Competition in Mutualism

3 Abdel H. Halloway^{1,2,3}, Katy D. Heath¹, and Gordon G. McNickle^{2,3*}

4 ¹ Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 South Goodwin
5 Ave., Urbana, IL 61801

6 ²Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West
7 Lafayette, IN, 47907, USA.

8 ³ Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.

9 *correspondence

10 gmcnickle@purdue.edu

11 765-494-4645

12 Abstract

13 Plants due to their non-motile nature rely heavily on mutualistic interactions to obtain resources
14 and carry out services. One key mutualism is the plant-microbial mutualism in which a plant
15 trades away carbon to a microbial partner for nutrients like nitrogen and phosphorous. Plants
16 show much variation in the use of this partnership from the individual level to entire lineages
17 depending upon ecological, evolutionary, and environmental context. We sought to determine
18 how this context dependency could result in the promotion, exclusion, or coexistence of the
19 microbial mutualism by seeing if and when the partnership provided a competitive advantage to
20 the plant. To that end, we created a simple 2×2 evolutionary game in which plants could either
21 be a mutualist and pair with a microbe or a non-mutualist and forgo the partnership. This model
22 included nutrients freely available to the plant, nutrients obtained only through mutualism with
23 microbes, the cost of producing roots, the cost of trade with microbes, and the size of the local
24 competitive neighborhood. Not surprisingly, we found that mutualism could offer a competitive
25 advantage if its net benefit was positive. Coexistence between strategies is possible though due
26 to competition between mutualists over the microbially obtained nutrient. In addition, the greater
27 the size of the local competitive neighborhood, the greater the region of coexistence but only at
28 the expense of mutualist fixation (non-mutualist fixation was unaffected). Our model, though
29 simple, shows that plants can gain a competitive advantage from using a mutualism depending
30 upon the context and points to basic experiments that can be done to verify the results.

31 **Introduction**

32 Mutualisms are an important aspect of plant ecology. The non-motile nature of plants
33 means they frequently rely on other organisms to carry out functions such as seed dispersal,
34 pollination, and nutrient acquisition (Howe and Westley 1990). Two key nutrient acquisition
35 strategies for plants are the microbial symbioses with mycorrhizae (in 80% of plant species and
36 92% of plant families (Simon *et al.* 1993; Wang and Qiu 2006)) and symbiotic nitrogen-fixing
37 bacteria (in a smaller subset of families (de Faria *et al.* 1989; Sprent 2005)). In these mutualisms,
38 the plants trade carbon in the form of carbohydrates and lipids while receiving nutrients like
39 nitrogen and phosphorous (Hawkins *et al.* 2000; Hodge *et al.* 2001; Sessitsch *et al.* 2002;
40 Sawada *et al.* 2003; Leigh *et al.* 2009). Across the plant kingdom, the commonality of partnering
41 with microbial mutualists implies that doing so often offers a fitness benefit to plants (Hartnett *et*
42 *al.* 1993). However, it is also known that the costs and benefits of mutualism depend upon
43 ecological and evolutionary factors such as nutrient availability and genotype (Peng *et al.* 1993;
44 Heath and Tiffin 2007; Bronstein 2009; Chamberlain *et al.* 2014; Lu and Hedin 2019). These
45 variations in benefits can have knock-on effects at larger scales leading to the variation in the
46 presence or absence of the mutualist partnership among lineages (de Faria *et al.* 1989; Werner *et*
47 *al.* 2015; Maherali *et al.* 2016). In this paper, we sought to determine how ecological, and
48 environmental context could promote or exclude the microbial mutualistic partnership and
49 ultimately lead to its evolution in a species.

50 To understand how context determines evolution of microbial mutualisms, we turned to
51 mathematical analysis. Mathematical analysis has been widely used to understand the evolution
52 and persistence of mutualism (Noë and Hammerstein 1995; Ferriere *et al.* 2002; West *et al.*
53 2002; Hoeksema and Kummel 2003; Akçay and Roughgarden 2007; Akçay and Simms 2011).

54 Typically, the focus of these models has been on the stability and maintenance of interactions
55 between partners, the host and the symbiont, with reasons such as partner selection (West *et al.*
56 2002; Akçay and Roughgarden 2007; Akçay and Simms 2011) and spatial structure given (see
57 (Wilson *et al.* 2003) for a model of seed dispersal). That said, intraspecific individual
58 competition is a necessary component of evolution by natural selection as the adaptations of
59 more fit individuals become common within the population (Darwin 1859). As such, mutualism
60 must also offer a competitive advantage to a host if it is to evolve (Jones *et al.* 2012). We wanted
61 to explore how host-host competition affects the evolution of mutualism. To do so, we turned to
62 evolutionary game theory. Originally developed to understand animal behavior, evolutionary
63 game theory is a mathematical framework that examines how strategies perform, in terms of
64 fitness, against other interacting strategies (Maynard-Smith and Price 1973; Geritz *et al.* 1998;
65 Brown 2016). It has been applied widely across taxa; for plants, it has been used to understand
66 properties such as defense against herbivory and biomass allocation with competition (Givnish
67 1982, 1995; Augner *et al.* 1991; McNickle *et al.* 2016). Recently, evolutionary game theoretic
68 host-host competition has been used to understand the global distribution of nutrient acquisition
69 strategies (Lu and Hedin 2019). Viewing the partnership with microbes (and its complement,
70 non-partnership) as strategies in an evolutionary game narrows our focus to just the competitive
71 interactions between hosts and the ecological and environmental contexts that benefit one
72 strategy over the other.

73 To this end, we created a simple 2×2 matrix game to determine how nutrient
74 availability, frequency of alternate strategies, and competitor density may (or may not) offer an
75 intraspecific competitive advantage to a plant that partners with a microbe to obtain nutrients. In
76 our model, we assume that the mutualism partnership is itself a strategy, the equivalent of a

77 functional trait (Violle *et al.* 2007), where a plant can either be a non-mutualist and only acquire
78 benefits from freely available nutrients in the soil or be a mutualist and receive additional
79 benefits from microbially obtained nutrients. All plants must pay a cost to acquire the freely
80 available nutrients with mutualists paying an additional cost for the microbially obtained
81 nutrients. Besides these four parameters, we also included local competitor number as a
82 parameter to see how density-dependence may influence selection (Clarke 1972). We analyzed
83 our game for the fixation of either strategy as well as coexistence of both strategies within a
84 population. We discuss what our results mean for the evolution of and variation in mutualist
85 strategies in plant-microbe systems.

86 **Model Analysis**

87 Competition with one plant

88 In our model, we start out by assuming there are two pools of nutrients available to a
89 plant: one that is freely available AN and one that is only obtained through microbial mutualism
90 MN . These nutrients provide fitness benefits of B_{AN} and B_{MN} respectively to a plant. Some
91 proportion of the population is the genotype of plants with the ability to partner with microbial
92 mutualists while the remainder is made up of the genotype that cannot; we hereafter refer to
93 those genotypes as mutualists and non-mutualists respectively. Non-mutualist plants only get the
94 fitness benefit from the freely available nutrients while mutualists get fitness benefits from both
95 freely available nutrients and microbially obtained nutrients. All plants must produce roots to
96 obtain the freely available nutrient at a cost of c_r . Mutualists however have to pay an additional
97 fitness cost c_t to obtain the microbial nutrients due to trade and other mechanisms (e.g.,
98 allocation of biomass to nodules in the case of rhizobia mutualism). Finally, we begin our
99 analysis by assuming only two plants compete at a given instant with each plant having equal

100 competitive ability. From these assumptions, we construct the following fitness matrix for each
 101 type of plant:

		Resident	
		Non-Mutualist	Mutualist
Focal Invader	Non-Mutualist	$\frac{B_{AN}}{2} - c_r$	$\frac{B_{AN}}{2} - c_r$
	Mutualist	$\frac{B_{AN}}{2} - c_r + B_{MN} - c_t$	$\frac{B_{AN}}{2} - c_r + \frac{B_{MN}}{2} - c_t$

102 Since all individuals have access to freely available nutrients and must produce roots, all
 103 individuals get a net fitness benefit of $\frac{B_{AN}}{2} - c_r$ regardless of strategy as competition over the
 104 freely available nutrients means each individual only receives half of the potential fitness benefit
 105 from that pool of resources. If a mutualist competes with a non-mutualist, the mutualist gets the
 106 full benefit of the microbially obtained nutrients while paying the cost of trade $B_{MN} - c_t$;
 107 however, when competing with another mutualist, both compete over and therefore equally share
 108 the microbially obtained nutrients leading to a net benefit of $\frac{B_{MN}}{2} - c_t$.

109 Since all individuals receive the exact same fitness benefit from the freely available
 110 nutrient and pay the exact same cost for the roots $\frac{B_{AN}}{2} - c_r$, these terms can be removed to arrive
 111 at the simpler payoff matrix below:

		Resident	
		Non-Mutualist	Mutualist
Focal Invader	Non-Mutualist	0	0
	Mutualist	$B_{MN} - c_t$	$\frac{B_{MN}}{2} - c_t$

112 From this simplified matrix, we can quickly arrive at conditions for fixation of mutualist
 113 or non-mutualist varieties. Specifically, if the cost of trade outweighs the total benefit of
 114 microbially obtained nutrients $c_t > B_{MN}$, then mutualist do worse, and non-mutualism is the
 115 dominant strategy (Fig 1a,b). This is intuitive and true of any trait: when the fitness costs

116 outweigh the benefits, no trait should be favored by natural selection. However, if the benefits of
117 microbially obtained nutrients after competition with other mutualist plants in the population is
118 greater than the cost of trade $\frac{B_{MN}}{2} > c_t$, then mutualists always do better and so become the
119 dominant strategy (Fig 1 c,d). Interestingly, the difference between B_{MN} and $\frac{B_{MN}}{2}$ creates a region
120 of the fitness landscape where mutualists and non-mutualists can coexist within a population.
121 Indeed, if the total benefit of microbially obtained nutrients is greater than the cost of trade but
122 the benefit of microbially obtained nutrients under competition is lower than the cost of trade
123 (i.e. $B_{MN} > c_t > \frac{B_{MN}}{2}$), then both genotypes coexist in the same shared space (Figure 1e,f).
124 Solving for the equilibrium proportion of mutualists in the population gives $x^* = 2 \left(1 - \frac{c_t}{B_{MN}}\right)$
125 (Figure 2). This coexistence point is a stable equilibrium (Figure 1f).

126 Competition and neighborhood size

127 Above, we assumed that plants competed with only one other individual at a given time.
128 While the non-motile nature of plants means that they compete on local spatial scales, this
129 neighborhood of competitive interactions is generally more than one neighbor. It can be
130 especially true when nutrients are scarce and multiple individuals must draw from the same pool
131 leading to each individual taking up a smaller share of nutrients. For a mutualist plant, its share
132 of the microbially available nutrients will also depend on the frequency of mutualists in the
133 neighborhood which ultimately depends on the frequency of mutualists in the population.
134 Therefore, we modify our game to have a plant compete with any number of individual plants in
135 its local neighborhood. We can generalize our fitness matrix such that

		Resident Neighbourhood (n)		
		Purely Non-Mutualist	Mixed Neighbourhood	Purely Mutualist
Focal	Non-	$\frac{B_{AN}}{n+1} - c_r$	$\frac{B_{AN}}{n+1} - c_r$	$\frac{B_{AN}}{n+1} - c_r$
Invader	Mutualist			

	Mutualist	$\frac{B_{AN}}{n+1} - c_r + B_{MN} - c_t$	$\frac{B_{AN}}{n+1} - c_r + \frac{B_{MN}}{xn+1} - c_t$	$\frac{B_{AN}}{n+1} - c_r + \frac{B_{MN}}{n+1} - c_t$
--	-----------	---	--	---

136 where n is the number of competitors per plant, i.e., the size of its local neighborhood, and x is
 137 the proportion of mutualists in that neighborhood. Like before, fitness benefits from freely
 138 available nutrients are invariant with strategy. Therefore, it can be subtracted from each
 139 expression to arrive at the simpler matrix below.

		Resident Neighbourhood (n)		
		Purely Non-Mutualist	Mixed Neighbourhood	Purely Mutualist
Focal Invader	Non-Mutualist	0	0	0
	Mutualist	$B_{MN} - c_t$	$\frac{B_{MN}}{xn+1} - c_t$	$\frac{B_{MN}}{n+1} - c_t$

140 Following from Hauert et al.(2006), we derive overall fitness of a mutualist plant to be

141 $\frac{B_{MN}(1-(1-x)^{n+1})}{x(n+1)} - c_t$ assuming local neighborhoods are generated randomly (see SI for
 142 derivation). With a larger neighborhood of interaction, the criterion for non-mutualist fixation is
 143 unchanged and still requires that the cost of mutualism without mutualist competitors must be
 144 greater than the benefits $c_t > B_{MN}$. Fixation of the mutualist strategy requires that the benefit of
 145 mutualism when solely competing with mutualist must be greater than the costs $\frac{B_{MN}}{1+n} > c_t$. We
 146 can express this criterion in terms of a cost-benefit ratio $\frac{B_{MN}}{c_t} > n + 1$. From this ratio, we can
 147 see that as n increases, there needs to be more benefits relative to the costs, reducing the
 148 possibility of fixation. This means that mutualist strategy is more likely to appear in coexistence
 149 with the non-mutualist strategy with an increasing number of competitors (Figure 3). Solving for
 150 this coexistence equilibrium proportion of mutualists is significantly harder with multiple
 151 competitors, and is analytically impossible with five or more individuals, but we can arrive at the
 152 solution $x^* = \frac{1}{2} \left(3 - \sqrt{12 \frac{c_t}{B_{MN}} - 3} \right)$ when there is a neighborhood of two plant competitors (see
 153 SI for the solution for three competitors).

154 **Discussion**

155 In this study, we wanted to see how the ecological and environmental context in which a
156 plant that partners with a microbe to obtain nutrients finds itself could lead to an intraspecific
157 competitive advantage. Many models of mutualism evolution focus on the stability of the plant-
158 microbe partnership, especially with regard to microbial cheating and the maintenance of
159 beneficial variants (West *et al.* 2002; Akçay and Roughgarden 2007; Akçay and Simms 2011).
160 Host-host interactions are usually not a focus in these models of evolution but rather are treated
161 implicitly (Bergstrom and Lachmann 2003) (however see (Lu and Hedin 2019)). Our model
162 explicitly focuses on host-host competition and the competitive advantage for a host plant. Using
163 evolutionary game theory, we found the unsurprising result that if the cost of mutualism
164 outweighed the benefit, then non-mutualists would entirely exclude mutualist while if the benefit
165 of mutualism was greater than the cost under at least some conditions, then mutualism would be
166 a viable strategy. That evolution favors traits with higher benefits compared to costs is well
167 known, but by expanding the neighborhood size, we gained more precise insight into how
168 benefits and costs combined within the context of intraspecific plant competition shape the
169 evolution of mutualism. In particular, the evolution of mutualism was heavily influenced by the
170 number of plants in the local neighborhood with which an individual would compete, as fixation
171 of the mutualism strategy became harder with a larger local neighborhood, instead more often
172 resulting in coexistence between mutualist and non-mutualist strategies. Alternatively, fixation of
173 the non-mutualist strategy was invariant with the size of the neighborhood (Fig 3). Thus, our
174 model predicts that mutualist and non-mutualists should frequently coexist within the same
175 population and that the frequency of mutualists declines with the size of the local neighborhood.

176 Our model was simple. It assumed that the benefits and costs of obtaining nutrients were
177 constant, only changing with competition between host plants. Because all host plants competed
178 equally for the same freely available nutrients regardless of strategy, it had no effect on our
179 results. All that mattered was the net benefit of mutualism. This conflicts with empirical studies
180 that have shown that increasing nitrogen availability leads to a reduction in the mutualist
181 partnership (Vitousek *et al.* 1997; Weese *et al.* 2015; McCoy *et al.* 2018; Taylor and Menge
182 2018) (but see (Simonsen *et al.* 2015)). This suggests that microbial mutualism does not simply
183 occur as an added benefit to the plant. Instead, there must be some tradeoff between using freely
184 available nutrients and microbially obtained nutrients. This could be due to a fixed resource
185 budget on the part of the plant – anywhere between 4% and 20% of total plant carbon is traded to
186 mychorrhizal partners (Johnson *et al.* 1997; Voisin *et al.* 2003; Taylor and Menge 2018) –
187 varying marginal costs of investment in the sources of the nutrients, preference for the form the
188 nutrient comes in (Falkengren-Grerup 1995), or some combination of the three.

189 One interesting result of our model is that coexistence only happened if mutualists
190 competed for the same microbially obtained nutrients. If they did not compete, then it would lead
191 to fixation of either strategy as either could be competitively dominant. We know that some
192 microbial mutualisms differ in their nutrient sources. Mycorrhizae obtain their traded nutrients
193 such as phosphorous and nitrogen from organic sources (Hawkins *et al.* 2000; Hodge *et al.* 2001;
194 Leigh *et al.* 2009), a depletable resource likely shared between mutualist competitors. Rhizobia,
195 on the other hand, get their traded nitrogen from fixing atmospheric nitrogen, a functionally
196 unlimited resource that likely is not locally depletable (Sessitsch *et al.* 2002; Sawada *et al.* 2003).
197 In the rhizobial mutualism, benefits may not change in the presence of competitors with the same
198 strategy. This lack of sharing the microbially derived resources may add to the explanation as to

199 why legumes are so dominant in mutualistic invasions compared to mycorrhizal associated plants
200 (Richardson *et al.* 2000; Castro-Díez *et al.* 2014). If a mutualist invader must share its resources
201 with other competitors, it becomes limited by its own success; with more individuals using the
202 same strategy, frequency dependence puts an upper limit on how successful an invader can be,
203 especially with a larger neighborhood of competition. By not having to share resources, invading
204 legumes may represent a purely dominant strategy, at least in the right conditions.(de Faria *et al.*
205 1989; Simon *et al.* 1993; Sprent 2005; Wang and Qiu 2006; Werner *et al.* 2015)(Maherali *et al.*
206 2016; Lu and Hedin 2019)(Downie 2014; Hoffman *et al.* 2014)

207 Modifications to this model can be made to reveal other aspects of mutualism evolution.
208 For example, we assumed that a plant either was a mutualist and so fully invested in mutualism
209 or was not a mutualist regardless of whether net benefits were positive or negative. This is likely
210 true at larger scales and interactions at the intertaxonomic level where entire lineages show the
211 presence or absence of mutualism strategies (Sprent 2005; Werner *et al.* 2015). However, at
212 smaller scales of the individual and population, variation in mutualism is likely to present itself
213 in a more continuous and quantitative fashion (Heath and Stinchcombe 2014). The abstract
214 nature of mathematical modelling does mean that our equilibrium proportion x^* could be
215 understood as the proportion of mutualists in a population or community depending on whether
216 the interactions are thought to be intra- or interspecific respectively as well as probability of any
217 individual using the mutualism strategy. However, different processes and properties operate on
218 these different scales (Jablonski 2008). At the individual level, timescales are within a lifetime,
219 and the response is governed at the anatomy and physiology specific to that organism. At the
220 population and community level, timescales operate over generations with variation between
221 individuals leading to variations in fitness and reproduction which drive the response. Both

222 scales are unique but influence each other; seeing how plasticity at the individual level drives
223 variation at the population/community level and vice versa would certainly reveal much about
224 the dynamics of mutualism evolution. Such a model of plasticity in the amount of trade would
225 require more than just fitness benefits of nutrients, it would require a second resource (i.e.
226 carbon) for the plant to trade. We suggest that this model could become a more process-based
227 model of plant growth that includes photosynthesis to acquire carbon for trade as well as nutrient
228 dynamics in soil. A number of models of plant growth with limitation from multiple essential
229 resources exist (Pacala and Tilman 1994; Craine *et al.* 2005; Dybzinski *et al.* 2011; McNickle *et*
230 *al.* 2016). Future work could explore introducing some of the insights gained in our simple
231 model into those more complex models of plant growth and allocation.

232 This simplicity of our model does offer an advantage in that it can be easily translated to
233 an experimental setup for falsification. One potential set up could be pot experiments with
234 mutualist and non-mutualist varieties of plants (McNickle *et al.*, 2020). Some plant species have
235 loss of function mutants that allow for resource mutualisms to be turned on or off such as *DMII*
236 in *Medicago* and *sym8* in *Pisum* (Markwei and LaRue 1992; Balaji *et al.* 1994; Guinel and Geil
237 2002; Ané *et al.* 2004). One could grow the mutants and wildtype of the same species together in
238 the same space with different densities and nutrient concentrations to see how they respond.
239 Fitness proxies like seed and flower number, average seed size, plant height, and root and shoot
240 biomass could be measured for comparisons between wildtype and mutants (subsequent
241 statistical analyses would have to take into account intrinsic fitness differences between wildtype
242 and mutant as wildtype typically have greater fitness than mutants). Because these mutants do
243 not express mutualisms with both mycorrhizae and rhizobia, comparisons between different
244 microbial partners can also be made.

245 **Conclusion**

246 Our model, though simple, reveals that a host can gain a competitive advantage from
247 partnering with a microbe, leading to the evolution of mutualism in a population and fixation in a
248 lineage. It also points to the possibility of coexistence of mutualist strategies in a population, an
249 experimentally testable hypothesis. The results elucidate the basic conditions of positive net
250 benefit and low local competition needed for this competitive advantage, why mutualisms may
251 be prevalent yet variable, and how this prevalence and variation depends on sharing of resources.
252 We suggest that future models incorporate mutualism into process-based models of plant growth.

253 **References**

254 **Akçay E, Roughgarden J. 2007.** Negotiation of mutualism: Rhizobia and legumes. *Proceedings*
255 *of the Royal Society B: Biological Sciences* **274**: 25–32.

256 **Akçay E, Simms EL. 2011.** Negotiation, sanctions, and context dependency in the legume-
257 rhizobium mutualism. *American Naturalist* **178**: 1–14.

258 **Ané JM, Kiss GB, Riely BK, et al. 2004.** Medicago truncatula DMI1 Required for Bacterial and
259 Fungal Symbioses in Legumes. *Science* **303**: 1364–1367.

260 **Augner M, Fagerström T, Tuomi J. 1991.** Competition, defense and games between plants.
261 *Behav Ecol Sociobiol* **29**: 231–234.

262 **Balaji B, Ba AM, LaRue TA, Tepfer D, Piché Y. 1994.** Pisum sativum mutants insensitive to
263 nodulation are also insensitive to invasion in vitro by the mycorrhizal fungus, Gigaspora
264 margarita. *Plant Science* **102**: 195–203.

265 **Bergstrom CT, Lachmann M. 2003.** The Red King effect: When the slowest runner wins the
266 coevolutionary race. *Proceedings of the National Academy of Sciences of the United States of*
267 *America* **100**: 593–598.

268 **Bronstein JL. 2009.** Mutualism and symbiosis In: Levin SA, ed. *The Princeton Guide to*
269 *Ecology*. Princeton, NJ, USA: Princeton University Press, 233–238.

270 **Brown JS. 2016.** Why Darwin would have loved evolutionary game theory. *Proceedings of the*
271 *Royal Society B: Biological Sciences* **283**: 20160847–undefined.

272 **Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldaña A. 2014.** What explains variation in
273 the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. *Ecology Letters* **17**:
274 1–12.

275 **Chamberlain SA, Bronstein JL, Rudgers JA. 2014.** How context dependent are species
276 interactions? *Ecology Letters* **17**: 881–890.

277 **Clarke B. 1972.** Density-Dependent Selection. *The American Naturalist* **106**.

278 **Craine JM, Fargione J, Sugita S. 2005.** Supply pre-emption, not concentration reduction, is the
279 mechanism of competition for nutrients. *New Phytologist* **166**.

280 **Darwin C. 1859.** *On the Origin of Species*. London, UK: John Murray.

281 **Downie JA. 2014.** Legume nodulation. *Current Biology* **24**.

282 **Dybzinski R, Farior C, Wolf A, Reich PB, Pacala SW. 2011.** Evolutionarily stable strategy
283 carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: An
284 analytically tractable, individual-based model and quantitative comparisons to data. *American*
285 *Naturalist* **177**.

286 **Falkengren-Grerup U. 1995.** Interspecies Differences in the Preference of Ammonium and
287 Nitrate in Vascular Plants. *Source: Oecologia* **102**: 305–311.

288 **de Faria SM, Lewis GP, Sprent JI, Sutherland JM. 1989.** Occurrence of nodulation in the
289 Leguminosae. *New Phytologist* **111**.

290 **Ferriere R, Bronstein JL, Rinaldi S, Law R, Gauduchon M. 2002.** Cheating and the
291 evolutionary stability of mutualisms. *Proceedings of the Royal Society B: Biological Sciences*
292 **269**.

293 **Geritz SAH, Kisdi É, Meszéna G, Metz JAJ. 1998.** Evolutionarily singular strategies and the
294 adaptive growth and branching of the evolutionary tree. *Evolutionary Ecology* **12**.

295 **Givnish TJ. 1982.** On the adaptive significance of leaf height in forest herbs (*Aster*
296 *macrophyllus*). *American Naturalist* **120**.

297 **Givnish TJ. 1995.** Plant stems: Biomechanical adaptation for energy capture and influence on
298 species distributions In: Gartner BL, ed. *Plant stems: Physiology and functional morphology*.
299 New York, New York, USA: Chapman and Hall, 3–49.

300 **Guinel FC, Geil RD. 2002.** A model for the development of the rhizobial and arbuscular
301 mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the
302 establishment of these two symbioses. *Canadian Journal of Botany* **80**.

303 **Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ. 1993.** Mycorrhizal Influence on Intra-
304 and Interspecific Neighbour Interactions among Co-Occurring Prairie Grasses. *The Journal of*
305 *Ecology* **81**.

306 **Hauert C, Michor F, Nowak MA, Doebeli M. 2006.** Synergy and discounting of cooperation in
307 social dilemmas. *Journal of Theoretical Biology* **239**.

308 **Hawkins H-J, Johansen A, George E. 2000.** Uptake and transport of organic and inorganic
309 nitrogen by arbuscular mycorrhizal fungi. *Plant and Soil* **226**: 275–285.

310 **Heath KD, Stinchcombe JR. 2014.** Explaining mutualism variation: A new evolutionary
311 paradox? *Evolution* **68**.

312 **Heath KD, Tiffin P. 2007.** Context dependence in the coevolution of plant and rhizobial
313 mutualists. *Proceedings of the Royal Society B: Biological Sciences* **274**.

314 **Hodge A, Campbell CD, Fitter AH. 2001.** An arbuscular mycorrhizal fungus accelerates
315 decomposition and acquires nitrogen directly from organic material. *NATURE* **413**.

316 **Hoeksema JD, Kummel M. 2003.** Ecological Persistence of the Plant-Mycorrhizal Mutualism:
317 A Hypothesis from Species Coexistence Theory. *American Naturalist* **162**: S40–S50.

318 **Hoffman BM, Lukyanov D, Yang ZY, Dean DR, Seefeldt LC. 2014.** Mechanism of nitrogen
319 fixation by nitrogenase: The next stage. *Chemical Reviews* **114**: 4041–4062.

320 **Howe HF, Westley LC. 1990.** *Ecological Relationships of Plants and Animals*. Oxford, UK:
321 Oxford University Press.

322 **Jablonski D. 2008.** Biotic interactions and macroevolution: Extensions and mismatches across
323 scales and levels. *Evolution* **62**.

324 **Johnson NC, Graham JH, Smith FA. 1997.** Functioning of mycorrhizal associations along the
325 mutualism-parasitism continuum. *New Phytologist* **135**.

326 **Jones EI, Bronstein JL, Ferrière R. 2012.** The fundamental role of competition in the ecology
327 and evolution of mutualisms. *Annals of the New York Academy of Sciences* **1256**.

328 **Leigh J, Hodge A, Fitter AH. 2009.** Arbuscular mycorrhizal fungi can transfer substantial
329 amounts of nitrogen to their host plant from organic material. *New Phytologist* **181**: 199–207.

330 **Lu M, Hedin LO. 2019.** Global plant–symbiont organization and emergence of biogeochemical
331 cycles resolved by evolution-based trait modelling. *Nature Ecology and Evolution* **3**: 239–250.

332 **Maherali H, Oberle B, Stevens PF, Cornwell WK, Mcglinn DJ. 2016.** Mutualism Persistence
333 and Abandonment during the Evolution of the Mycorrhizal Symbiosis. *American Naturalist* **188**:
334 E113–E125.

335 **Markwei CM, LaRue TA. 1992.** Phenotypic characterization of sym8 and sym9, two genes
336 conditioning non-nodulation in *Pisum sativum* “Sparkle” In: *Canadian Journal of Microbiology*.

337 **Maynard-Smith J, Price GR. 1973.** The logic of animal conflict. *Nature* **246**.

338 **McCoy JM, Kaur G, Golden BR, et al. 2018.** Nitrogen Fertilization of Soybean Affects Root
339 Growth and Nodulation on Two Soil Types in Mississippi. *Communications in Soil Science and*
340 *Plant Analysis* **49**: 181–187.

341 **McNickle GG, Gonzalez-Meler MA, Lynch DJ, Baltzer JL, Brown JS. 2016.** The world’s
342 biomes and primary production as a triple tragedy of the commons foraging game played among
343 plants. *Proceedings of the Royal Society B: Biological Sciences* **283**.

344 **Noë R, Hammerstein P. 1995.** Biological markets. *Trends in Ecology & Evolution* **10**.

345 **Pacala SW, Tilman D. 1994.** Limiting similarity in mechanistic and spatial models of plant
346 competition in heterogeneous environments. *American Naturalist* **143**.

347 **Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC. 1993.** Growth depression in
348 mycorrhizal citrus at high-phosphorus supply: Analysis of carbon costs. *Plant Physiology* **101**.

349 **Richardson DM, Allsopp N, D’antonio CM, Milton SJ, Rejmánek M. 2000.** Plant invasions
350 — the role of mutualisms. *Biological Reviews* **75**.

351 **Sawada H, Kuykendall LD, Young JM. 2003.** Changing concepts in the systematics of
352 bacterial nitrogen-fixing legume symbionts. *Journal of General and Applied Microbiology* **49**.

353 **Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E. 2002.** Advances in
354 Rhizobium research. *Critical Reviews in Plant Sciences* **21**.

355 **Simon L, Bousquet J, Lévesque RC, Lalonde M. 1993.** Origin and diversification of
356 endomycorrhizal fungi and coincidence with vascular land plants. *Nature* **363**.

357 **Simonsen AK, Han S, Rekret P, Rentschler CS, Heath KD, Stinchcombe JR. 2015.** Short-
358 termfertilizer application alters phenotypic traits of symbiotic nitrogen fixing bacteria. *PeerJ*
359 **2015**.

360 **Sprent JI. 2005.** Nitrogen in soils | symbiotic fixation In: Hillel D, ed. *Encyclopedia of Soils in*
361 *the Environment*. Elsevier, .

362 **Taylor BN, Menge DNL. 2018.** Light regulates tropical symbiotic nitrogen fixation more
363 strongly than soil nitrogen. *Nature Plants* **4**: 655–661.

364 **Violle C, Navas ML, Vile D, et al. 2007.** Let the concept of trait be functional! *Oikos* **116**.

365 **Vitousek PM, Aber JD, Howarth RW, et al. 1997.** Human alteration of the global nitrogen
366 cycle: Sources and consequences. *Ecological Applications* **7**.

367 **Voisin AS, Salon C, Jeudy C, Warembourg FR. 2003.** Symbiotic N₂ fixation activity in
368 relation to C economy of *Pisum sativum* L. as a function of plant phenology. *Journal of*
369 *Experimental Botany* **54**: 2733–2744.

370 **Wang B, Qiu YL. 2006.** Phylogenetic distribution and evolution of mycorrhizas in land plants.
371 *Mycorrhiza* **16**.

372 **Weese DJ, Heath KD, Dentinger BTM, Lau JA. 2015.** Long-term nitrogen addition causes the
373 evolution of less-cooperative mutualists. *Evolution* **69**: 631–642.

374 **Werner GDA, Cornwell WK, Cornelissen JHC, Kiers ET. 2015.** Evolutionary signals of
375 symbiotic persistence in the legume-rhizobia mutualism. *Proceedings of the National Academy*
376 *of Sciences of the United States of America* **112**: 10262–10269.

377 **West SA, Toby Kiers E, Pen I, Denison RF. 2002.** Sanctions and mutualism stability: When
378 should less beneficial mutualists be tolerated? *Journal of Evolutionary Biology* **15**.

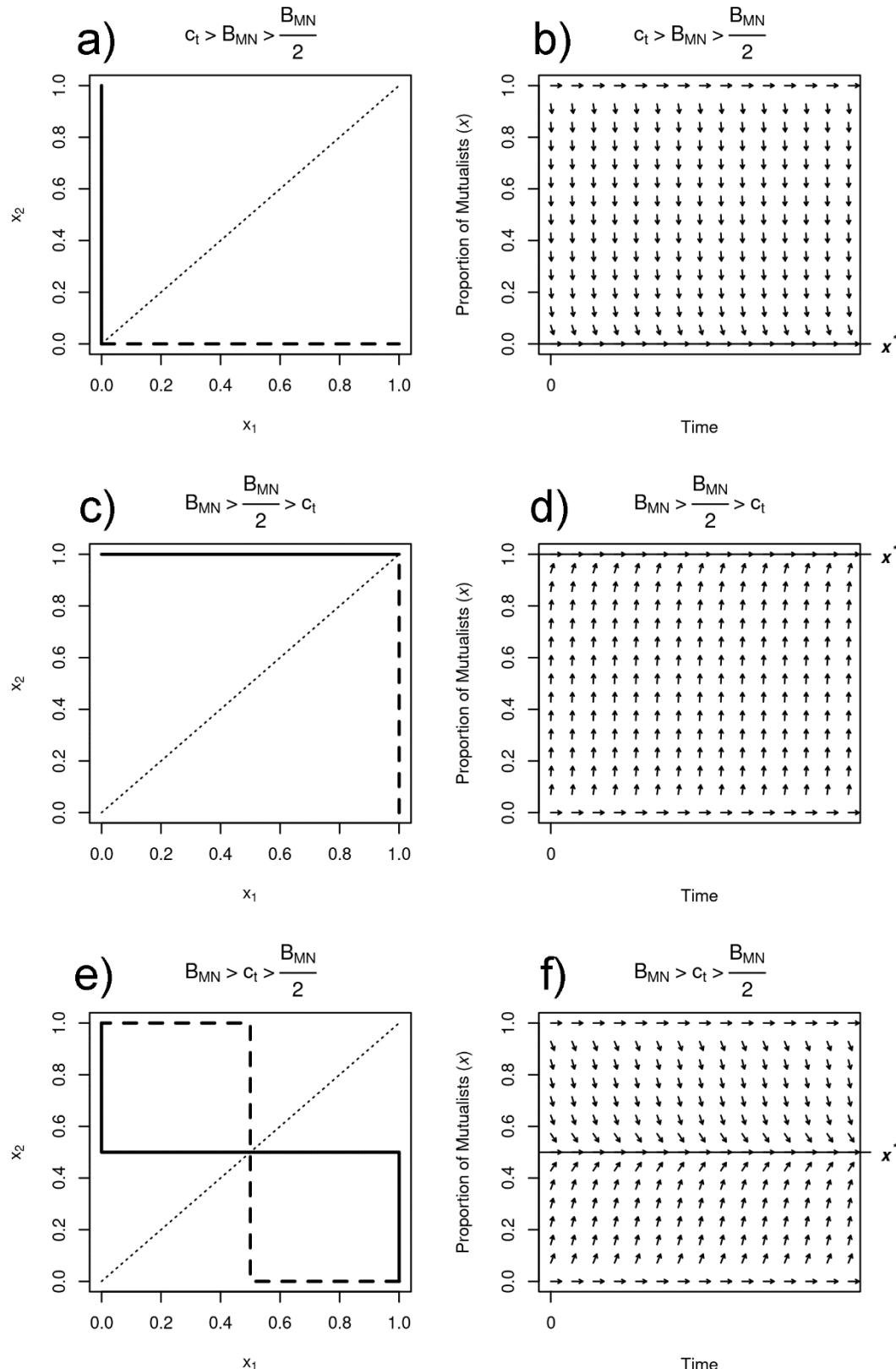
379 **Wilson WG, Morris WF, Bronstein JL. 2003.** *COEXISTENCE OF MUTUALISTS AND*
380 *EXPLOITERS ON SPATIAL LANDSCAPES*.

381

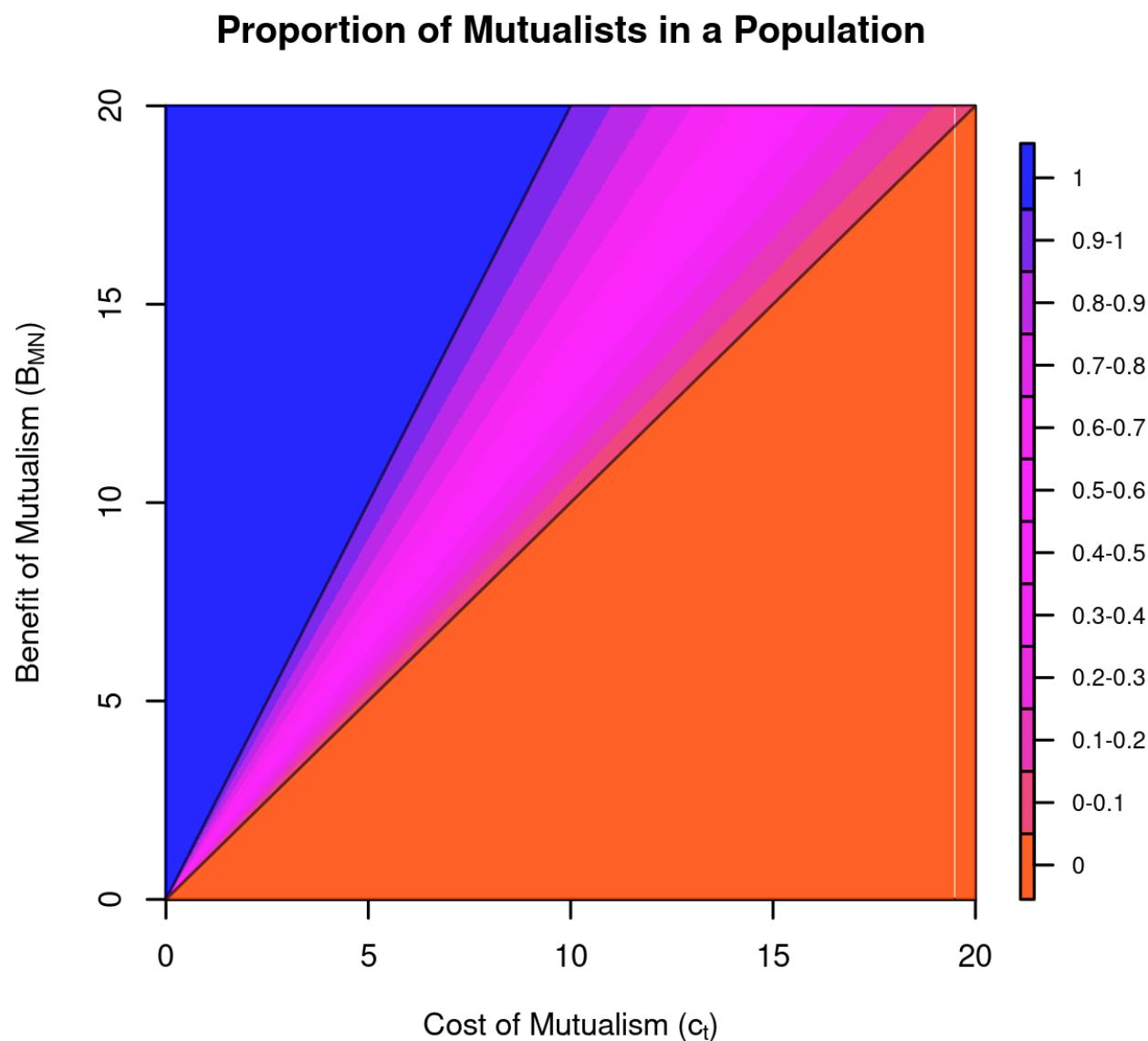
382

383 **Acknowledgements**

384 AHH's contribution to this work was supported by the National Science Foundation Postdoctoral
385 Research Fellowship in Biology Grant no. 2010972. GGM was supported by the USDA National
386 Institute of Food and Agriculture Hatch project 1010722.

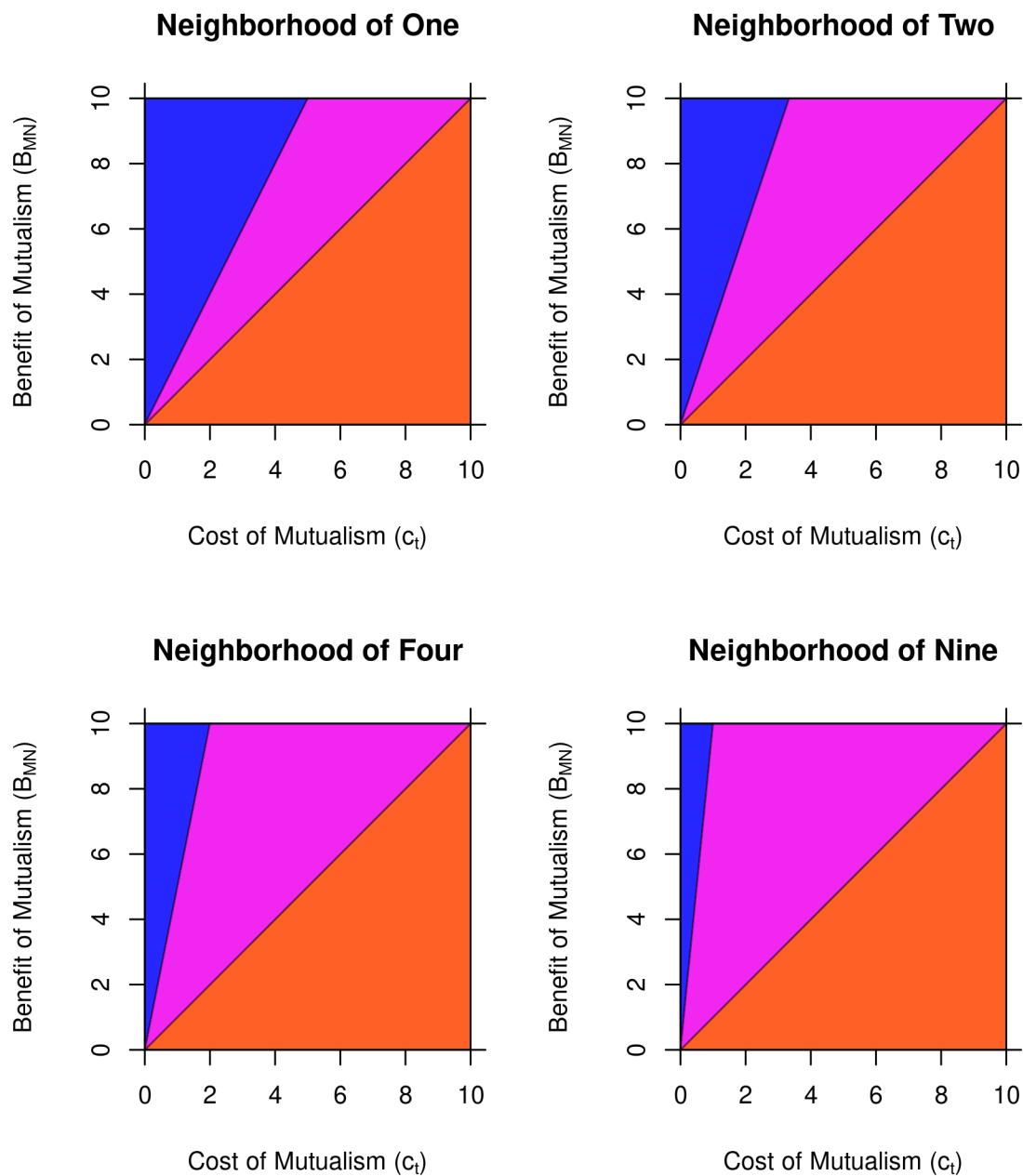

387 **Fig. 1** Evolutionary dynamics as seen through best response curves (a, c, e) and directional fields
388 (b, d, f) for the three qualitatively different scenarios. In the first scenario (a, b), the cost of
389 mutualism outweighs any benefit regardless of the opposing player's strategy. In the second
390 scenario (c, d), the benefit of mutualism outweighs the cost regardless of the opposing player's
391 strategy. In the third scenario (e, f), the benefit of mutualism outweighs the cost only when the
392 opposing player is a non-mutualist. Results are shown specifically for $x^* = 0.5$ ($c_t = 1$ and
393 $B_{MN} = 4$) but generally apply to $0 > x^* > 1$. For the best response curves (a, c, e), x_i indicates
394 the best strategy for the i -th player with greater values of x_i indicating mutualism. Solid lines are
395 the best response for player 1 and dashed lines for player 2. As this is an intraspecific
396 evolutionary game of a single population, the dotted line $x_1 = x_2$ indicates the feasible set of
397 solutions. Actual solutions for x^* are the intersection of all three lines. (a) The best response
398 leads to a single strategy ESS of non-mutualism fixation. (c) The best response leads to a single
399 strategy ESS of mutualism fixation. (e) The best response leads to a multiple strategy ESS of
400 coexistence between mutualism and non-mutualist types. Replicator dynamics show the same
401 results as the best response curves (b, d, f); the only difference is that fixation of either strategy is
402 an equilibrium in all three scenarios but the stability of those two equilibria varies according to
403 the cost-benefit ratio.

404 **Fig. 2** A plot of the proportion of mutualists in a population x^* for combinations of B_{MN} and c_t .
405 Orange-red indicates non-mutualist fixation, blue indicates mutualist fixation, and magenta
406 indicates coexistence.


407 **Fig. 3** Plots of how regions of coexistence change with increasing neighborhood size. The colors
408 remain the same as Figure 2. The region of fixation for the non-mutualist strategy does not
409 change with neighborhood size and the same is true for the region where mutualist strategy is

410 present, i.e., the combined region of mutualist fixation and coexistence. However, the region of
411 mutualist fixation becomes smaller, expanding the region of coexistence between strategies.

412 Fig. 1



414 Fig. 2

415

416 Fig. 3

417