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Abstract

Plants due to their non-motile nature rely heavily on mutualistic interactions to obtain resources
and carry out services. One key mutualism is the plant-microbial mutualism in which a plant
trades away carbon to a microbial partner for nutrients like nitrogen and phosphorous. Plants
show much variation in the use of this partnership from the individual level to entire lineages
depending upon ecological, evolutionary, and environmental context. We sought to determine
how this context dependency could result in the promotion, exclusion, or coexistence of the
microbial mutualism by seeing if and when the partnership provided a competitive advantage to
the plant. To that end, we created a simple 2 X 2 evolutionary game in which plants could either
be a mutualist and pair with a microbe or a non-mutualist and forgo the partnership. This model
included nutrients freely available to the plant, nutrients obtained only through mutualism with
microbes, the cost of producing roots, the cost of trade with microbes, and the size of the local
competitive neighborhood. Not surprisingly, we found that mutualism could offer a competitive
advantage if its net benefit was positive. Coexistence between strategies is possible though due
to competition between mutualists over the microbially obtained nutrient. In addition, the greater
the size of the local competitive neighborhood, the greater the region of coexistence but only at
the expense of mutualist fixation (non-mutualist fixation was unaffected). Our model, though
simple, shows that plants can gain a competitive advantage from using a mutualism depending

upon the context and points to basic experiments that can be done to verify the results.
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Introduction

Mutualisms are an important aspect of plant ecology. The non-motile nature of plants
means they frequently rely on other organisms to carry out functions such as seed dispersal,
pollination, and nutrient acquisition (Howe and Westley 1990). Two key nutrient acquisition
strategies for plants are the microbial symbioses with mycorrhizae (in 80% of plant species and
92% of plant families (Simon ef al. 1993; Wang and Qiu 2006)) and symbiotic nitrogen-fixing
bacteria (in a smaller subset of families (de Faria et al. 1989; Sprent 2005)). In these mutualisms,
the plants trade carbon in the form of carbohydrates and lipids while receiving nutrients like
nitrogen and phosphorous (Hawkins et al. 2000; Hodge ef al. 2001; Sessitsch et al. 2002;
Sawada et al. 2003; Leigh et al. 2009). Across the plant kingdom, the commonality of partnering
with microbial mutualists implies that doing so often offers a fitness benefit to plants (Hartnett et
al. 1993). However, it is also known that the costs and benefits of mutualism depend upon
ecological and evolutionary factors such as nutrient availability and genotype (Peng et al. 1993;
Heath and Tiffin 2007; Bronstein 2009; Chamberlain ef al. 2014; Lu and Hedin 2019). These
variations in benefits can have knock-on effects at larger scales leading to the variation in the
presence or absence of the mutualist partnership among lineages (de Faria et al. 1989; Werner et
al. 2015; Maherali ef al. 2016). In this paper, we sought to determine how ecological, and
environmental context could promote or exclude the microbial mutualistic partnership and
ultimately lead to its evolution in a species.

To understand how context determines evolution of microbial mutualisms, we turned to
mathematical analysis. Mathematical analysis has been widely used to understand the evolution
and persistence of mutualism (No€ and Hammerstein 1995; Ferriere ef al. 2002; West et al.

2002; Hoeksema and Kummel 2003; Ak¢ay and Roughgarden 2007; Ak¢ay and Simms 2011).
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Typically, the focus of these models has been on the stability and maintenance of interactions
between partners, the host and the symbiont, with reasons such as partner selection (West et al.
2002; Akcay and Roughgarden 2007; Ak¢ay and Simms 2011) and spatial structure given (see
(Wilson et al. 2003) for a model of seed dispersal). That said, intraspecific individual
competition is a necessary component of evolution by natural selection as the adaptations of
more fit individuals become common within the population (Darwin 1859). As such, mutualism
must also offer a competitive advantage to a host if it is to evolve (Jones et al. 2012). We wanted
to explore how host-host competition affects the evolution of mutualism. To do so, we turned to
evolutionary game theory. Originally developed to understand animal behavior, evolutionary
game theory is a mathematical framework that examines how strategies perform, in terms of
fitness, against other interacting strategies (Maynard-Smith and Price 1973; Geritz et al. 1998;
Brown 2016). It has been applied widely across taxa; for plants, it has been used to understand
properties such as defense against herbivory and biomass allocation with competition (Givnish
1982, 1995; Augner et al. 1991; McNickle et al. 2016). Recently, evolutionary game theoretic
host-host competition has been used to understand the global distribution of nutrient acquisition
strategies (Lu and Hedin 2019). Viewing the partnership with microbes (and its complement,
non-partnership) as strategies in an evolutionary game narrows our focus to just the competitive
interactions between hosts and the ecological and environmental contexts that benefit one
strategy over the other.

To this end, we created a simple 2 X 2 matrix game to determine how nutrient
availability, frequency of alternate strategies, and competitor density may (or may not) offer an
intraspecific competitive advantage to a plant that partners with a microbe to obtain nutrients. In

our model, we assume that the mutualism partnership is itself a strategy, the equivalent of a
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functional trait (Violle et al. 2007), where a plant can either be a non-mutualist and only acquire
benefits from freely available nutrients in the soil or be a mutualist and receive additional
benefits from microbially obtained nutrients. All plants must pay a cost to acquire the freely
available nutrients with mutualists paying an additional cost for the microbially obtained
nutrients. Besides these four parameters, we also included local competitor number as a
parameter to see how density-dependence may influence selection (Clarke 1972). We analyzed
our game for the fixation of either strategy as well as coexistence of both strategies within a
population. We discuss what our results mean for the evolution of and variation in mutualist
strategies in plant-microbe systems.

Model Analysis

Competition with one plant

In our model, we start out by assuming there are two pools of nutrients available to a
plant: one that is freely available AN and one that is only obtained through microbial mutualism
MN. These nutrients provide fitness benefits of B,y and By respectively to a plant. Some
proportion of the population is the genotype of plants with the ability to partner with microbial
mutualists while the remainder is made up of the genotype that cannot; we hereafter refer to
those genotypes as mutualists and non-mutualists respectively. Non-mutualist plants only get the
fitness benefit from the freely available nutrients while mutualists get fitness benefits from both
freely available nutrients and microbially obtained nutrients. All plants must produce roots to
obtain the freely available nutrient at a cost of ¢,.. Mutualists however have to pay an additional
fitness cost ¢; to obtain the microbial nutrients due to trade and other mechanisms (e.g.,
allocation of biomass to nodules in the case of rhizobia mutualism). Finally, we begin our

analysis by assuming only two plants compete at a given instant with each plant having equal
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competitive ability. From these assumptions, we construct the following fitness matrix for each

type of plant:
Resident
Non-Mutualist Mutualist
Non- Ban Ban
Focal Mutualist ™ — T Cr
Invader ) B B B
Mutualist % — ¢, + Byy — C; % - I;N .

Since all individuals have access to freely available nutrients and must produce roots, all
T B o
individuals get a net fitness benefit of % — ¢, regardless of strategy as competition over the

freely available nutrients means each individual only receives half of the potential fitness benefit
from that pool of resources. If a mutualist competes with a non-mutualist, the mutualist gets the
full benefit of the microbially obtained nutrients while paying the cost of trade Byy — ¢¢;

however, when competing with another mutualist, both compete over and therefore equally share
the microbially obtained nutrients leading to a net benefit of BMTN — ¢t

Since all individuals receive the exact same fitness benefit from the freely available
nutrient and pay the exact same cost for the roots B“?N — ¢, these terms can be removed to arrive

at the simpler payoff matrix below:

Resident
Non-Mutualist Mutualist
Non-
Focal Mutualist 0 0
I ) B
nvader Mutualist Byn — ¢ —I;N -

From this simplified matrix, we can quickly arrive at conditions for fixation of mutualist
or non-mutualist varieties. Specifically, if the cost of trade outweighs the total benefit of
microbially obtained nutrients ¢; > By, then mutualist do worse, and non-mutualism is the

dominant strategy (Fig 1a,b). This is intuitive and true of any trait: when the fitness costs
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outweigh the benefits, no trait should be favored by natural selection. However, if the benefits of

microbially obtained nutrients after competition with other mutualist plants in the population is

B .
greater than the cost of trade % > ¢, then mutualists always do better and so become the

dominant strategy (Fig 1 c,d). Interestingly, the difference between B,y and BMTN creates a region

of the fitness landscape where mutualists and non-mutualists can coexist within a population.
Indeed, if the total benefit of microbially obtained nutrients is greater than the cost of trade but

the benefit of microbially obtained nutrients under competition is lower than the cost of trade

(i.e. Byy > ¢ > B%), then both genotypes coexist in the same shared space (Figure le,f).

Solving for the equilibrium proportion of mutualists in the population gives x* = 2 (1 — Bct )
MN

(Figure 2). This coexistence point is a stable equilibrium (Figure 1f).

Competition and neighborhood size

Above, we assumed that plants competed with only one other individual at a given time.
While the non-motile nature of plants means that they compete on local spatial scales, this
neighborhood of competitive interactions is generally more than one neighbor. It can be
especially true when nutrients are scarce and multiple individuals must draw from the same pool
leading to each individual taking up a smaller share of nutrients. For a mutualist plant, its share
of the microbially available nutrients will also depend on the frequency of mutualists in the
neighborhood which ultimately depends on the frequency of mutualists in the population.
Therefore, we modify our game to have a plant compete with any number of individual plants in

its local neighborhood. We can generalize our fitness matrix such that

Resident Neighbourhood (n)
Purely Non-Mutualist Mixed Neighbourhood Purely Mutualist
Focal Non- By Ban Ban
Invader | Mutualist nt1 nt1 nt1
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BAN

— ¢ +Byy — ¢t

Bun
xn+1

Ban e
n+1 "

Ban e
n+1 "

BMN

n+1

where n is the number of competitors per plant, i.e., the size of its local neighborhood, and x is

the proportion of mutualists in that neighborhood. Like before, fitness benefits from freely

available nutrients are invariant with strategy. Therefore, it can be subtracted from each

expression to arrive at the simpler matrix below.

Resident Neighbourhood (n)

Purely Non-Mutualist | Mixed Neighbourhood Purely Mutualist
Non-
Focal | Mutualist 0 0 0
Invader ) Bun Bun
Mutualist Byy — € — —
M ‘ xn+1 c n+1 ct

Following from Hauert et al.(2006), we derive overall fitness of a mutualist plant to be

BMN(l—(l—x)"+1)
x(n+1)

— ¢; assuming local neighborhoods are generated randomly (see SI for

derivation). With a larger neighborhood of interaction, the criterion for non-mutualist fixation is

unchanged and still requires that the cost of mutualism without mutualist competitors must be

greater than the benefits ¢; > B)y. Fixation of the mutualist strategy requires that the benefit of

. . . . B
mutualism when solely competing with mutualist must be greater than the costs ﬁ > c;. We

can express this criterion in terms of a cost-benefit ratio

Byn

Ct

> n + 1. From this ratio, we can

see that as n increases, there needs to be more benefits relative to the costs, reducing the

possibility of fixation. This means that mutualist strategy is more likely to appear in coexistence

with the non-mutualist strategy with an increasing number of competitors (Figure 3). Solving for

this coexistence equilibrium proportion of mutualists is significantly harder with multiple

competitors, and is analytically impossible with five or more individuals, but we can arrive at the

solution x* = %(3 — |12

Ct

Byn

SI for the solution for three competitors).

— 3) when there is a neighborhood of two plant competitors (see
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Discussion

In this study, we wanted to see how the ecological and environmental context in which a
plant that partners with a microbe to obtain nutrients finds itself could lead to an intraspecific
competitive advantage. Many models of mutualism evolution focus on the stability of the plant-
microbe partnership, especially with regard to microbial cheating and the maintenance of
beneficial variants (West et al. 2002; Ak¢ay and Roughgarden 2007; Ak¢ay and Simms 2011).
Host-host interactions are usually not a focus in these models of evolution but rather are treated
implicitly (Bergstrom and Lachmann 2003) (however see (Lu and Hedin 2019)). Our model
explicitly focuses on host-host competition and the competitive advantage for a host plant. Using
evolutionary game theory, we found the unsurprising result that if the cost of mutualism
outweighed the benefit, then non-mutualists would entirely exclude mutualist while if the benefit
of mutualism was greater than the cost under at least some conditions, then mutualism would be
a viable strategy. That evolution favors traits with higher benefits compared to costs is well
known, but by expanding the neighborhood size, we gained more precise insight into how
benefits and costs combined within the context of intraspecific plant competition shape the
evolution of mutualism. In particular, the evolution of mutualism was heavily influenced by the
number of plants in the local neighborhood with which an individual would compete, as fixation
of the mutualism strategy became harder with a larger local neighborhood, instead more often
resulting in coexistence between mutualist and non-mutualist strategies. Alternatively, fixation of
the non-mutualist strategy was invariant with the size of the neighborhood (Fig 3). Thus, our
model predicts that mutualist and non-mutualists should frequently coexist within the same

population and that the frequency of mutualists declines with the size of the local neighborhood.
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Our model was simple. It assumed that the benefits and costs of obtaining nutrients were
constant, only changing with competition between host plants. Because all host plants competed
equally for the same freely available nutrients regardless of strategy, it had no effect on our
results. All that mattered was the net benefit of mutualism. This conflicts with empirical studies
that have shown that increasing nitrogen availability leads to a reduction in the mutualist
partnership (Vitousek et al. 1997; Weese et al. 2015; McCoy et al. 2018; Taylor and Menge
2018) (but see (Simonsen ef al. 2015)). This suggests that microbial mutualism does not simply
occur as an added benefit to the plant. Instead, there must be some tradeoff between using freely
available nutrients and microbially obtained nutrients. This could be due to a fixed resource
budget on the part of the plant — anywhere between 4% and 20% of total plant carbon is traded to
mychorrhizal partners (Johnson et al. 1997; Voisin et al. 2003; Taylor and Menge 2018) —
varying marginal costs of investment in the sources of the nutrients, preference for the form the
nutrient comes in (Falkengren-Grerup 1995), or some combination of the three.

One interesting result of our model is that coexistence only happened if mutualists
competed for the same microbially obtained nutrients. If they did not compete, then it would lead
to fixation of either strategy as either could be competitively dominant. We know that some
microbial mutualisms differ in their nutrient sources. Mycorrhizae obtain their traded nutrients
such as phosphorous and nitrogen from organic sources (Hawkins et al. 2000; Hodge et al. 2001;
Leigh et al. 2009), a depletable resource likely shared between mutualist competitors. Rhizobia,
on the other hand, get their traded nitrogen from fixing atmospheric nitrogen, a functionally
unlimited resource that likely is not locally depletable (Sessitsch et al. 2002; Sawada et al. 2003).
In the rhizobial mutualism, benefits may not change in the presence of competitors with the same

strategy. This lack of sharing the microbially derived resources may add to the explanation as to
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why legumes are so dominant in mutualistic invasions compared to mycorrhizal associated plants
(Richardson et al. 2000; Castro-Diez et al. 2014). If a mutualist invader must share its resources
with other competitors, it becomes limited by its own success; with more individuals using the
same strategy, frequency dependence puts an upper limit on how successful an invader can be,
especially with a larger neighborhood of competition. By not having to share resources, invading
legumes may represent a purely dominant strategy, at least in the right conditions.(de Faria et al.
1989; Simon et al. 1993; Sprent 2005; Wang and Qiu 2006; Werner et al. 2015)(Maherali ef al.
2016; Lu and Hedin 2019)(Downie 2014; Hoffman et al. 2014)

Modifications to this model can be made to reveal other aspects of mutualism evolution.
For example, we assumed that a plant either was a mutualist and so fully invested in mutualism
or was not a mutualist regardless of whether net benefits were positive or negative. This is likely
true at larger scales and interactions at the intertaxonomic level where entire lineages show the
presence or absence of mutualism strategies (Sprent 2005; Werner ef al. 2015). However, at
smaller scales of the individual and population, variation in mutualism is likely to present itself
in a more continuous and quantitative fashion (Heath and Stinchcombe 2014). The abstract
nature of mathematical modelling does mean that our equilibrium proportion x* could be
understood as the proportion of mutualists in a population or community depending on whether
the interactions are thought to be intra- or interspecific respectively as well as probability of any
individual using the mutualism strategy. However, different processes and properties operate on
these different scales (Jablonski 2008). At the individual level, timescales are within a lifetime,
and the response is governed at the anatomy and physiology specific to that organism. At the
population and community level, timescales operate over generations with variation between

individuals leading to variations in fitness and reproduction which drive the response. Both
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222 scales are unique but influence each other; seeing how plasticity at the individual level drives
223 variation at the population/community level and vice versa would certainly reveal much about
224 the dynamics of mutualism evolution. Such a model of plasticity in the amount of trade would
225  require more than just fitness benefits of nutrients, it would require a second resource (i.e.

226  carbon) for the plant to trade. We suggest that this model could become a more process-based
227  model of plant growth that includes photosynthesis to acquire carbon for trade as well as nutrient
228  dynamics in soil. A number of models of plant growth with limitation from multiple essential
229  resources exist (Pacala and Tilman 1994; Craine ef al. 2005; Dybzinski et al. 2011; McNickle et
230  al 2016). Future work could explore introducing some of the insights gained in our simple

231  model into those more complex models of plant growth and allocation.

232 This simplicity of our model does offer an advantage in that it can be easily translated to
233 an experimental setup for falsification. One potential set up could be pot experiments with

234  mutualist and non-mutualist varieties of plants (McNickle et al., 2020). Some plant species have
235  loss of function mutants that allow for resource mutualisms to be turned on or off such as DMI1
236  in Medicago and sym8 in Pisum (Markwei and LaRue 1992; Balaji ef al. 1994; Guinel and Geil
237 2002; Ané et al. 2004). One could grow the mutants and wildtype of the same species together in
238  the same space with different densities and nutrient concentrations to see how they respond.

239  Fitness proxies like seed and flower number, average seed size, plant height, and root and shoot
240  biomass could be measured for comparisons between wildtype and mutants (subsequent

241  statistical analyses would have to take into account intrinsic fitness differences between wildtype
242  and mutant as wildtype typically have greater fitness than mutants). Because these mutants do
243 not express mutualisms with both mycorrhizae and rhizobia, comparisons between different

244  microbial partners can also be made.
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245  Conclusion

246 Our model, though simple, reveals that a host can gain a competitive advantage from

247  partnering with a microbe, leading to the evolution of mutualism in a population and fixation in a
248  lineage. It also points to the possibility of coexistence of mutualist strategies in a population, an
249  experimentally testable hypothesis. The results elucidate the basic conditions of positive net

250  benefit and low local competition needed for this competitive advantage, why mutualisms may
251  be prevalent yet variable, and how this prevalence and variation depends on sharing of resources.

252 We suggest that future models incorporate mutualism into process-based models of plant growth.
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Fig. 1 Evolutionary dynamics as seen through best response curves (a, c, ¢) and directional fields
(b, d, f) for the three qualitatively different scenarios. In the first scenario (a, b), the cost of
mutualism outweighs any benefit regardless of the opposing player’s strategy. In the second
scenario (c, d), the benefit of mutualism outweighs the cost regardless of the opposing player’s
strategy. In the third scenario (e, f), the benefit of mutualism outweighs the cost only when the
opposing player is a non-mutualist. Results are shown specifically for x* = 0.5 (¢; = 1 and

Byn = 4) but generally apply to 0 > x* > 1. For the best response curves (a, ¢, €), x; indicates
the best strategy for the i-th player with greater values of x; indicating mutualism. Solid lines are
the best response for player 1 and dashed lines for player 2. As this is an intraspecific
evolutionary game of a single population, the dotted line x; = x, indicates the feasible set of
solutions. Actual solutions for x* are the intersection of all three lines. (a) The best response
leads to a single strategy ESS of non-mutualism fixation. (c) The best response leads to a single
strategy ESS of mutualism fixation. (¢) The best response leads to a multiple strategy ESS of
coexistence between mutualism and non-mutualist types. Replicator dynamics show the same
results as the best response curves (b, d, f); the only difference is that fixation of either strategy is
an equilibrium in all three scenarios but the stability of those two equilibria varies according to
the cost-benefit ratio.

Fig. 2 A plot of the proportion of mutualists in a population x* for combinations of B,y and c;.
Orange-red indicates non-mutualist fixation, blue indicates mutualist fixation, and magenta
indicates coexistence.

Fig. 3 Plots of how regions of coexistence change with increasing neighborhood size. The colors
remain the same as Figure 2. The region of fixation for the non-mutualist strategy does not

change with neighborhood size and the same is true for the region where mutualist strategy is
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410  present, i.e., the combined region of mutualist fixation and coexistence. However, the region of
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