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Abstract  

Using microbial enzymes in transgenesis is a powerful means to introduce new functionalities in 

plants. Glucuronoyl esterase (GCE) is a microbial enzyme hydrolyzing the ester bond between 

lignin and 4-O-methyl-α-D-glucuronic acid present as a side chain of glucuronoxylan. This bond 

mediates lignin-carbohydrate complex (LCC) formation, considered as crucial factor of 

lignocellulose recalcitrance to saccharification. Previous studies showed that hybrid aspen (Populus 
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tremula L. x tremuloides Michx.) constitutively expressing Phanerochaete carnosa Burt GCE 

(PcGCE) had better efficiency of cellulose-to-glucose conversion but were stunned and had lower 

cellulose content indicating that more studies are needed to design strategy for deployment of this 

enzyme in planta. Here we report that the transgenic plants exhibit premature leaf senescence, 

increased accumulation of calcium oxalate crystals, tyloses and necrotic lesions and have strongly 

activated immune defense reactions as revealed by their altered profiles of transcriptomes, 

metabolomes and hormones in the leaves. To elucidate if these effects are triggered by damage-

associated molecular patterns (DAMPs) or by PcGCE protein perceived as a pathogen-associated 

molecular pattern (PAMP), we ectopically expressed in aspen an enzymatically inactive 

PcGCES217A. The mutated PcGCE induced similar growth retardation, leaf necrosis and premature 

senescence as the active one, providing evidence that PcGCE protein is recognized as PAMP. 

Transcriptomics analysis of young expanding leaves of 35S:PcGCE plants identified several 

candidates for receptors of PcGCE, which were not expressed in developing wood tissues. Grafting 

experiments showed that PcGCE transcripts are not cell-to-cell mobile and that PcGCE expressing 

leaves augment systemic responses. In agreement, expressing PcGCE in developing wood by using 

the wood-specific promoter (WP), avoided all off-target effects. Moreover, WP:PcGCE lines grew 

better than control plants providing evidence that this strategy can be used in transgenic crops 

dedicated for biorefinery. 

Introduction 

Saprophytic and pathogenic microbes living on lignocellulose developed specific ways of 

decomposing it. The repertoire of microbial enzymes has been greatly explored for enzymatic 

lignocellulose digestion in vitro (Thapa et al., 2020). Additionally, such enzymes, generally not 

found among native plant enzymes, have been successfully used in different crops for post-synthetic 

modification of cell wall (Brandon and Scheller, 2020). For example, expression of the ferulic acid 

esterase from Aspergillus niger van Thieghem (AnFAE) in the forage crop tall fescue (Festuca 

arundinacea Schreb.), increased biomass digestibility by cellulases (de Buanafina et al., 2008; 

2010). Xylan, which is a key factor of lignocellulosic biomass recalcitrance by reducing cellulose 

accessibility, has been a main target for plant cell wall modification for biorefinery (Donev et al., 

2018). Expression of fungal acetyl xylan esterases from A. niger (AnAXE1) or from Hypocrea 

jecorina Berkeley & Broome (formerly Trichoderma reesei Simmons) (HjAXE) in hybrid aspen 

(Populus tremula L. x tremuloides Michx.) increased yield of glucose by 20 to 30% in enzymatic 

saccharification without pretreatment with additional benefits of increased lignin solubility (Pawar 

et al., 2017b) and cell wall nanoporosity Wang et al., 2020). Even greater saccharification benefits 
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were reported in poplar (Populus alba L.) expressing fungal xylanase HvXYL1 (Kaida et al., 2009). 

Moreover, expressing microbial enzymes targeting the primary plant cell wall constituents, 

xyloglucan and pectins, also proved successful in reducing plant lignocellulose recalcitrance (Park 

et al., 2004; Kaida et al., 2009; Tomassetti et al., 2015). 

However, microbial enzymes expressed in planta to modify plant cell wall sometimes triggered 

diverse immune responses, such as premature leaf senescence, necrotic lesions in the leaves, 

accumulation of reactive oxygen species (ROS) and induction of genes involved in biotic and 

abiotic stress responses (Bailey et al., 1990; Avni et al., 1994; de Buanafina 2012; Pogorelko et al., 

2013; Tsai et al., 2017). It has been suggested that cell wall modifying enzymes could generate 

oligosaccharide fractions such as, oligogalacturonides (OGs) (Legendre et al., 1993; Norman et al., 

1999; D'Ovidio et al., 2004), cellooligomers (Souza et al., 2017) or xyloglucan oligosaccharides 

(Claverie et al., 2018), which can be perceived by the plant cell as damage-associated molecular 

patterns (DAMPs).  

 
Plants are also capable to recognize some exogenous microbial compounds, known as microbe- or 

pathogen-associated molecular patterns (MAMPs/PAMPs) (Boller and Felix 2009; Raaymakers and 

Van den Ackerveken 2016). For example, the 22-amino-acid N-terminal peptide of flagellin (flg22) 

of gram-negative bacteria displays a conserved elicitor activity across plant kingdom (Felix et al., 

1999). Fragments of chitin, which is a fungal cell wall homopolymer shared among many classes of 

pathogens (Latgé, 2007), also act as PAMPs (Felix et al., 1998). Microbial enzymes can also be 

perceived as foreign compounds. For example, the ethylene-inducing xylanase (EIX) from 

Trichoderma viride Pers. has been discovered, which independently of its xylan degradation activity 

(Enkerli et al., 1999; Rotblat et al., 2002) induces pathogenesis-related (PR) proteins in tobacco 

(Nicotiana tabacum L.) and tomato plants (Solanum lycopersicum L.) (Bailey et al., 1990; Avni et 

al., 1994; Sussholz et al., 2020).  

 

PAMPs and DAMPs are recognized by cell surface-localized receptor proteins, called pattern 

recognition receptors (PRRs) (Couto and Zipfel 2016; He et al., 2018). The stimulation of PRRs 

activates basal resistance response against broad range of pathogens, called pattern-triggered 

immunity (PTI) (Yu et al., 2017). Moreover, virulence factors could activate cytoplasmic 

intracellular resistance (R) proteins and initiate effector triggered immunity (ETI) (Jones and Dangl, 

2006; Cui et al., 2015), which amplifies the basal PTI transcriptional program and triggers localized 

programmed cell death (PCD) (Balint-Kurti, 2019). Thus, the expression of microbial enzymes in 

plants potentially could trigger DAMP or PAMP signaling and activate defense responses and 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.09.23.460629doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.460629
http://creativecommons.org/licenses/by-nc/4.0/


                                                                              4 

immunity. Indeed, transgenic plants expressing microbial enzymes frequently exhibit increased 

immunity against different pathogens (Pogorelko et al., 2013; Klose et al., 2015; Pawar et al., 2016; 

Reem et al., 2020). 

 

Among different microbial enzymes, glucuronoyl esterase (GCE) has a potential for decreasing 

lignocellulose recalcitrance by hydrolyzing the ester bond between 4-O-methyl-α-D-glucuronic 

acid and lignin (Spániková and Biely, 2006; Biely et al., 2015; Bååth et al., 2016). This bond is 

thought to mediate the formation of lignin-carbohydrate complexes (LCCs) in woody species, 

considered as crucial factors of lignocellulose recalcitrance (Giummarella et al., 2019). When GCE 

from necrotrophic wood decaying white-rot basidiomycete, Phanerochaete carnosa Burt (PcGCE), 

was ectopically expressed in Arabidopsis thaliana (L.) Heynh. and hybrid aspen, leaf senescence 

was accelerated and growth was reduced (Tsai et al., 2012; Gandla et al., 2015; Tsai et al., 2017). 

The wood of transgenic hybrid aspen had increased lignin and decreased cellulose and extractives 

contents (Gandla et al., 2015). But despite highly elevated lignin content, the conversion of wood 

cellulose to glucose (Glc) after acid pretreatment was increased as predicted. To elucidate the cause 

of untargeted effects of PcGCE in transgenic plants, we characterized physiological responses to the 

transgene in more detail, determining changes in their transcriptome, metabolome, in levels of their 

hormones and reactive oxygen species (ROS). We also investigated the progress of these changes 

during leaf development and their transmission through grafts. The results indicated that PcGCE is 

a potent elicitor of stress responses in aspen recognized by PAMP signaling, most probably in the 

leaves. Moreover, we demonstrated that expressing the same enzyme using the wood-specific 

promoter, avoids all undesirable responses providing a strategy for deployment of this enzyme in 

transgenic crops dedicated for biorefinery. The analysis also revealed novel genes and metabolic 

pathways in aspen involved in perception of pathogens and in downstream defense reactions.  

Results 

Ectopically expressed PcGCE induced developmental defects and defense responses in aspen 

Hybrid aspen lines ectopically expressing PcGCE displayed reduced stem height and diameter, and 

root dry weight compared to wild-type (WT) (Fig. 1, ABC). As observed previously, all transgenic 

lines developed leaf necrosis and premature senescence (Gandla et al., 2015). The necrotic spots 

first appeared on fully expanded leaves, then they rapidly enlarged occupying most of the leaf area, 

(Fig. 1D) and the leaves were shed prematurely. Using a dye uptake analysis, we found that the 

hydraulic continuity was compromised in the leaves of transgenic plants before the necrotic spots 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.09.23.460629doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.460629
http://creativecommons.org/licenses/by-nc/4.0/


                                                                              5 

appeared (Fig.1, EF). This was visible as unstained areas on leaves of branches immersed in a 

staining solution. Anatomical analyses of the unstained areas revealed that xylem vessels were 

blocked by gels and tyloses (Fig. 1, GH), indicative of activation of defense responses to pathogen 

attack and/or herbivory and signaling by ethylene (ET) and jasmonic acid (JA) (Leśniewska et al., 

2017).  

To see if other defense responses were activated in transgenic plants, we analyzed cuticle and lipids 

which are known to respond to biotic stresses (Ziv et al., 2018). The abaxial and adaxial epidermis 

of transgenic plants exhibited strongly reduced cuticle thickness (Fig. 1, IJ). This was accompanied 

by a reduction of several species of free fatty acids (FAs) as evidenced by analysis of leaves 10, 13, 

and 15 in line 10 and in WT. In young expanding leaves (leaf 10), the FAs with chains of 18 

carbons or longer, were affected including C18:1 cis 9, C18:2 cis 9 and 12, C20:0, C21:0 and C22:0 

(Fig. S1, AB). In older fully expanded leaves (leaf 13 and 15), the changes were more pronounced 

and C18:0 FA had also reduced content in transgenic plants. These results indicate a disruption of 

very long chain fatty acids (VLCFA) biosynthesis in transgenic plants. Since VLCFA are essential 

for wax biosynthesis, we examined wax profiles in chloroform extracts of expanded leaves of line 

10, line 23 and WT plants using GC-MS. Unexpectedly, the transgenic plants showed increased 

contents of chloroform-extracted fatty wax components, including mid-chain and long-chain FA, 

long-chain fatty esters, especially C37:3 ester, fatty alcohols, and alkanes, and glycerol, whereas the 

content of eluted cinnamic acid was greatly reduced (Fig. S1C). Overall, the data show that the 

transgenic plants exhibit disrupted long- and VLCFA biosynthesis, thinner cuticle and that they 

have altered composition of chloroform-extracted wax compounds.  

Herbivory stress is known to induce the accumulation of calcium oxalate (CaOx) crystals (Molano-

Flores, 2001). Therefore, we investigated if the abundance of crystals was increased in leaves of 

transgenic plants. In hybrid aspen, prismatic crystals are localized mostly along the veins and their 

density increases with leaf age (Fig. 1, KL, Fig. S2). The crystals displayed higher density and 

larger size in transgenic plants compared to WT plants. The chemical identity of the crystals was 

established by X-ray diffraction as calcium oxalate (CaOx) or whewellite, CaC2O4 x H2O.  

In all, the above data suggested that aspen plants constitutively expressing PcGCE activate defense 

responses to herbivory and pathogen attack. Since ROS induction is one of first responses following 

pathogen attack, we examined ROS levels in fully expanded leaves 21 and 23 of the three 

transgenic lines, 10, 21 and 23 by diaminobenzidine (DAB) staining (Fig. 2, AB). Leaf 21 was 

always symptom-free, whereas leaf 23 typically exhibited first necrotic spots. Both leaves of all 
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three transgenic lines showed a strong increase in DAB staining compared to WT, and an increase 

in staining in the older compared to younger leaf, indicative of increased ROS levels.  

Molecular changes caused by PcGCE in aspen leaves  

To characterize the molecular pathways used by PcGCE to stimulate variety of stress symptoms 

observed (Figs. 1, 2), we analyzed transcriptomes, metabolomes and hormonomes of leaves 21 and 

23 in transgenic lines 10 and 23, and in WT. We found that the lines expressing PcGCE had 

massively disrupted transcriptome profiles with as many as 16,087 genes (39% of all protein-coding 

genes) differentially expressed (DE) in at least one line and at least in one leaf developmental stage 

(Table S2), and 4,143 and 6,126 genes (10 and 15% of protein coding genes) differentially 

expressed in leaf 21 and leaf 23, respectively, in both transgenic lines (Fig. 3A, Table S3). The gene 

ontology analysis of DE genes in both lines (Fig. 3B) showed enrichment in oxidation-reduction 

processes, regulation of transcription, defense signaling in biotic and abiotic stresses, signaling by 

JA, SA and ET, metabolic processes, response to red light, malate metabolism, and photosynthesis. 

The biotic stress related genes affected in both lines (233 genes) were mostly upregulated, in 

agreement with the physiological changes observed in the transgenic plants, whereas abiotic 

response genes (143 genes) were mostly downregulated (Table S3). Among redox-related genes 

(107) there were 21 peroxidases, which were all upregulated. Among DE phenyl propanoid (49 

genes) and flavonoid biosynthetic (36 genes), pathway genes the majority were highly upregulated. 

Almost all JA-related DE genes (51) were upregulated, whereas SA-related DE genes (18) were 

mostly downregulated. ET-related DE genes (105) were strongly either up- or downregulated. 

Among 118 photosynthesis-related DE genes, the majority were downregulated. Among a large 

group of receptor-encoding DE genes (453), majority were upregulated, particularly in the younger 

leaf. Among 365 identified DE genes encoding channels and transporters, majority of genes 

encoding ABC, and sulphate transporters were upregulated, whereas those encoding aminoacidic 

transporters were downregulated. The latter could be related to general downregulation of genes 

involved in protein biosynthesis in transgenic lines. We identified 517 putative transcription factors 

(TFs) among the DE genes, majority of which were downregulated, which corresponded to 

downregulation of majority of genes involved in developmental programs, DNA and chromatin 

organization, and transcription. Opposite to this general trend, several MYB TFs, including 

MYB15, MYB62, MYB63, MYB66, MYB68, MYB73, MYB84, and MYB116, and several 

WRKY TFs, such as WRKY6, WRKY51 and WRKY75 were highly upregulated.  
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The hormone profiling (Šimura et al., 2018) further provides evidence of hormonal signaling of 

stress responses downstream of PcGCE. The analysis targeted compounds related to cytokinins, 

auxins, gibberellins, jasmonates, SA and brassinosteroids, but not ET. Leaf 21 hormone profile 

(Fig. 3C) showed induction of JA and its precursor 12-oxophytodienoic acid (OPDA), SA, 

inactivated auxin (OxIAA), cytokinin precursor isopentenyl-adenenosine (IPR), active cytokinin 

dihydrozeatin (DHZ) and some of their degradation products [cis-zeatin-O-glucoside (cZOG), 

isopentenyladenine-9-glucoside (IP9G)], whereas an active cytokinin isopentenyl-adenine (IP) and 

cytokinin degradation products [dihydrozeatin riboside-O-glucoside (DHZROG), dihydrozeatin 

riboside (DHZR), dihydrozeatin-O-glucoside (DHZOG), cis-zeatin riboside-O-glucoside (cZROG), 

trans-zeatin-riboside-O-glucoside (tZROG)] were reduced. Furthermore, auxin precursors, 

tryptamine (TRPA) and tryptophan (Trp) were downregulated. In leaf 23, we observed increased 

levels of hormones affected in the younger leaf and in addition, an induction of SA, ABA, IAA and 

active cytokinins [DHZ and trans-zeatin (tZ)] cytokinin precursor IPR as well as cytokinin 

degradation product IPA9G and cytokinins with unknown function (methylthio-cis-zeatin (MScZ) 

and methylthio-isopentenyladenosine (MeSiPR)], which correlated with the formation of leaf 

necrotic spots. Thus, the analysis revealed altered hormonal levels of stress-related phytohormones 

and cytokinins, which are considered to be a hub for defense responses mediated by other hormones 

(Choi et al. 2011).  

Metabolomic analysis (Fig. 3D), revealed upregulation of hydroxy-3-methyl glutaric acid 

(mevalonate), myo-inositol, glycerol-3-phosphate (Gly-3-P), saccharate, ribose, and metabolites 

related to the TCA cycle, such as iso-citrate, and keto-glutarate. In contrast, the contents of 

aminoacids (Ile, Lys, Tyr, Val) and malate were reduced. Contents of fructose, raffinose, succinate, 

p-coumaric acid and caffeic acid were upregulated in leaf 23 of transgenic plants, underlying the 

progressive response to transgene in older leaves. Mevalonate (Nelson et al., 1994) and Gly-3-P 

(Chanda et al., 2008) have been associated with basal resistance and induction of systemic 

immunity. Furthermore, enhanced levels of sugars have been observed during stress response 

(Gómez-Ariza et al., 2007; Conrath, 2011) and may indicate formation of sink at the pathogen 

perception site (Sutton et al., 2007; Essmann et al., 2008). Lower amino acid content corresponds to 

general decrease in protein biosynthesis and amino acid metabolism reflected in transcriptome 

(Table S3).  

Overall, the omics analyses revealed heavily disrupted metabolism in transgenic plants, with 

activation of biotic stress and downregulation of growth and development. 
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Sequential analysis of developing leaves revealed three distinct stages of disease development  

Since transcriptomics, hormonomics and metabolomics analyses revealed more differences between 

transgenic and WT plants in leaf 23 than in leaf 21, we investigated if the expression of transgene is 

stable in sequential leaf samples from the apical bud to mature necrotic leaves by reverse 

transcription quantitative polymerase chain reaction (RT-qPCR) analysis. It showed that PcGCE 

mRNA was accumulating exponentially in developmental leaf series (Fig. 4A).  

We further investigated the pattern of defense responses in successive leaf samples. ROS content in 

transgenic plants showed an early small peak around leaf 13, and then a rapid increase from leaf 14 

to 18 (Fig. 4B). No DAB signals were seen in WT. We further studied expression of marker genes 

selected among the DE genes in leaves 21 and 23 (Fig. 4C). The selected genes represented 

different pathways based on the affected processes as revealed by transcriptomics. Homolog of 

JAZ1 (Potri.003G068900) representing JA signaling pathway responsive to JA levels (Chung et al., 

2008) was highly upregulated starting from leaf 8 and further increasing up to 16-fold in leaf 17. 

The high expression was maintained in leaves 21 and 23 (Table S3). Homolog of RBOHD 

(Potri.001G070900) representing ROS generating pathway of systemic acquired resistance (SAR) 

triggering hypersensitive response (HR) response (Nühse et al., 2007; Lew et al., 2020) was 

upregulated only in older, necrosis-affected leaves (Fig. 4C), corresponding to the main ROS peak 

(Fig.4B). Also, homologs of EDS1 (Potri.015G069600) and WRKY51 (Potri.005G085200), 

involved in HR and antagonizing JA signaling (Gao et al., 2011) were induced at high levels in 

older leaves (Fig. 4C). Thus, the analysis revealed two main stages in the progress of PcGCE stress 

induction in developing leaves, namely an early stage dominated by JA signaling, and a late stage 

characterized by SAR driven HR. 

Grafting experiments revealed that JAZ1 and RBOHD were induced at a distance from the stimulus 

but the transgene mRNA was not mobile 

Since the above transcriptomics (Table S3), hormonomics (Fig. 3C) and sequential leaf analyzes 

(Fig. 4) demonstrated upregulation of signaling by JA, SA, as well as ROS accumulation and SAR 

development, we wondered which of defense reactions were systemically induced by PcGCE. To 

distinguish between local and systemic responses to PcGCE, the scions of five-week-old transgenic 

and WT plants were grafted onto the transgenic or WT rootstocks in all possible combinations (Fig. 

5A). First, we analyzed the presence of PcGCE transcripts in the grafted plants and found them only 

in the leaves of transgenic scions and rootstocks (Fig. 5B). This indicates that the transcripts are not 
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transmitted to WT shoots or rootstocks of the grafted plants, and thus any disease symptoms in non-

transgenic parts must be induced by PcGCE at a distance.  

Increase in ROS was observed in WT scions grafted on transgenic rootstocks, and in WT rootstocks 

carrying transgenic scions compared to WT/WT grafts (Fig. 5C), indicating that this SAR symptom 

is graft-transmittable and induced at a distance by PcGCE. Furthermore, removal of leaves from 

transgenic rootstocks did not affect ROS propagation to WT scions.  

Expression of JAZ1 and RBOHD was induced in leaves of WT scions grafted on transgenic 

rootstocks and in leaves of WT rootstocks carrying transgenic scions compared to WT/WT grafts 

(Fig. 5D). The induction of these genes in WT scions depended on the presence of transgenic leaves 

in transgenic rootstocks, suggesting that the transgenic leaves are important for the propagation of 

systemic signal responsible for marker gene induction.  

Expressing of PcGCE from wood-specific promoter allows normal growth  

The grafting experiments showed that although stress symptoms and marker genes were induced at 

a distance when PcGCE was expressed in distant plant organs, the transcripts of the transgene were 

not mobile in the plant. This suggests that expressing PcGCE in a tissue that is unable to perceive 

this enzyme, would avoid development of stress symptoms. To test this hypothesis, we expressed 

the transgene in cells developing secondary cell walls using the wood-specific promoter (WP) 

(Ratke et al., 2015). Three lines most highly expressing PcGCE (line 8, 9 and 14) were selected 

from 20 independent transformation events and grown in the greenhouse for 11 weeks. The lines 

did not show any growth defects and they grew slightly better than WT (Fig. 6A). In contrast, 

35S:PcGCE lines that were grown along exhibited pronounced premature leaf senescence and 

necrosis. Two lines of WP:PcGCE and 35S:PcGCE constructs were subsequently selected for more 

thorough analyses. In the leaves, transcripts levels of WP lines were much reduced compared to 35S 

lines whereas in developing wood the two types of transgenic plants exhibited comparable 

transgene expression (Fig. 6B). Growth analyses showed a significant increase in plant height and 

diameter in both transgenic WP:PcGCE lines, and an increase in root mass and leaf size in line 14 

compared to WT (Fig. 6 CDEF). To check if using WP prevented ROS accumulation in the leaves 

of transgenic lines, we analyzed leaves at successive stages of development by DAB staining. 

Interestingly, ROS levels were slightly higher compared to WT, especially in line 8 that was more 

highly expressing the transgene (Fig. 6GH), but in contrast to 35S:PcGCE lines, which exhibited 
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progressive increase in ROS during leaf development (Fig. 3B), the levels of ROS in WP:PcGCE 

lines remained stable (Fig. 6G).  

Transcriptomic analysis of the leaves revealed 62 DE genes as compared to WT in one or both 

transgenic lines in leaf 21 or 23 (Fig. 6I, Table S4). Only three of these genes were DE in both 

investigated lines in leaf 21, and these three genes were also affected in leaf 23. These genes 

included an extracellular cellulase PtCel9B3 (Takahashi et al., 2009) which was upregulated, and 

two downregulated genes: a homolog of phytosulfokine receptor 1 (PSKR1) and a homolog of 

MILDEW RESISTANCE LOCUS O 5 (MLO5), both involved in Ca-signaling during developmental 

and biotic stress responses (Mosher et al., 2013; Hartmann et al., 2014; Meng et al., 2020). Leaf 23 

exhibited one more DE gene encoding histone 2A, which was upregulated (Table S4). 

Hormonomics analysis revealed downregulation of active cytokinins, their degradation products, 

ABA and SA, and auxin precursor tryptamine in transgenic lines (Table S5). Cytokinin species 

reacted the same way in WP:PcGCE as in 35S:PcGCE lines but with much reduced intensity. Other 

hormonal responses, particularly those concerning jasmonates and SA, which were strongly 

upregulated in 35S:PcGCE lines (Fig. 3C), did not show similar response in WP:PcGCE plants 

(Table S5). Metabolomic analysis revealed slight upregulation of some monosaccharides (Table 

S6), which were seen strongly upregulated in 35S:PcGCE lines (Fig. 3D). However, metabolites 

related to the TCA cycle, inorganic phosphate, caffeic acid, and amino acids were not altered in 

WP:PcGCE lines, suggesting that the activated metabolic pathways in lines with 35S and WP 

promoters are not overlapping. These data clearly show that the growth inhibition and stress-related 

symptoms that were observed in 35S:PcGCE expressing plants were avoided when the same protein 

was expressed from WP promoter.  

Transcriptomics of early stages of leaf development identified putative receptors and signaling 

components involved in the perception of PcGCE 

Since grafting experiments indicated that leaves could be the site of PcGCE perception and source 

of signal that induces stress responses systemically, we analyzed transcriptomes of developing 

leaves in 35S:PcGCE line 10 and WT plants at a younger stage to reduce influence of secondary 

effects of PcGCE expression and reveal candidate genes encoding proteins involved in PcGCE 

perception. We targeted the earliest stages of leaf development to minimize secondary effects: the 

first unfolded leaf (leaf 8) and a young expanding leaf (leaf 11). Expression of the transgene was 

approximately two times higher in leaf 11 than in leaf 8 (Fig. 7A), confirming the RT-qPCR 
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analysis (Fig. 4A), whereas the corresponding increase in the number of DE genes was 

approximately 4-fold, from 1,571 DE genes in leaf 8 to 6,328 DE genes in leaf 11, among which 

941 genes were DE in both leaves (Fig. 7B; Table S7). This indicates that PcGCE initially affects 

relatively small number of genes that in turn induce a cascade of transcriptomic responses. Gene 

ontology (GO) enrichment analysis of Arabidopsis homologous genes (Table S8) shows 65 

significantly affected processes in leaf 8, including developmental processes as well as biotic and 

abiotic stress responses. Fewer and not much overlapping processes were affected in leaf 11. 

Functional annotation of P. trichocarpa DE transcripts revealed that the house-keeping activities 

and development were massively affected in leaf 11, whereas the response in leaf 8 was more 

attenuated. For example, genes involved in protein biosynthetic machinery, cell cycle, general 

transcriptomic machinery, DNA and chromatin organization and cytoskeleton were largely affected 

(downregulated) in leaf 11 but they were little altered in leaf 8 (Fig. 7C; Table S7). Moreover, these 

house-keeping and development-related categories had larger proportions of upregulated genes in 

leaf 8 as compared to leaf 11. In comparison, proportionally more genes were already affected in 

leaf 8 in categories “Receptors” and “Ca signaling” and these categories tended to be more 

abundantly represented in leaf 11. The genes of these categories were mostly upregulated. 

Relatively larger proportions of genes uniquely affected in leaf 8 were found for the 

“Photosynthesis” and “Starch and sugars metabolism”. These genes were also mostly upregulated at 

both leaf developmental stages but more so at a younger stage and there was relatively little overlap 

between the stages. “Cell wall polysaccharides” related genes were by large downregulated in leaf 8 

and this trend tended to be reversed in leaf 11. Many lipid- and TCA metabolism-related genes were 

affected already in leaf 8. Thus, the earliest responses recorded in transcriptomes of developing 

leaves of transgenic plants were different from those seen at later stages, and indicated activation of 

biosynthesis of photosynthetic machinery, and induction of different receptors and proteins 

involved in Ca signaling. These early responses were followed by general downregulation of house-

keeping activities and development in older leaves, and further development of stress responses. 

To further reveal PcGCE perception-related genes, we focused on the early upregulated genes 

encoding receptors and signal transduction members, including cell wall, redox, signaling, 

transporters and channels, stress-related hormones, and transcription factors categories (Table S9). 

This resulted in a list of 464 genes. To further narrow down this candidate list, we examined their 

expression in developing wood using Aspwood database (Sundell et al., 2017) available at Popgenie 

website (www.popgenie.com). We reasoned that sought candidates should not be expressed in 

xylem cells forming secondary cell walls, as indicated by lack of biotic stress responses in 
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WP:PcGCE lines (Fig. 6). This filtering resulted in identification of 118 first sort candidates which 

were not expressed in wood developing tissues, and additional 276 of second sort candidates 

expressed in other stem tissues than secondary-wall forming xylem (Table S9). Majority of selected 

genes were upregulated in leaf 11 as well, and their degree of upregulation was by large higher for 

the candidates of sort one. We further analyzed the expression of the sort one and sort two 

candidates in different aspen tissues using public databases provided by Sundell et al., (2015) and 

Immanen et al. (2016). Majority of these genes exhibited highest expression in leaves, especially 

the leaves subjected to biotic and abiotic stress (Fig. 8). This indicates that the identified candidate 

genes are likely to mediate stress responses in leaves.  

The identified candidate lists included, among others, several genes encoding cell surface immune 

receptors, receptor-like proteins (RLPs), receptor-like kinases (RLKs), wall associated kinases 

(WAKs), malectin domain (MD) proteins, and glutamate receptors (GLR) (Table S9). There were 

factors associated with ET and ABA signaling. Among transporters there were transmembrane 

calcium transporters, cyclic nucleotide binding ion channels (CNGCs), calcium-transporting 

AUTOINHIBITED Ca2+ ATPases (ACA), ABC channels, glutamate receptors, one MLO protein 

and several highly upregulated metal channels. Several pectin methylesterases (PMEs), chitinases, 

and callose hydrolases (GH17) were found. We also identified many transcription factors, in 

particular, several WRKY factors. Some of these genes were found similarly affected in 

Arabidopsis stems ectopically overexpressing PcGCE (Tsai et al., 2017), as shown in Table S9. The 

identified genes constitute transcriptional modules that likely operate in recognition of PcGCE and 

other molecular patterns associated with pathogens to activate defense systems in aspen. 

Mutated PcGCE that does not have esterase activity induces similar stress responses in aspen as 

the active enzyme 

PcGCE could be perceived in hybrid aspen leaves as a pathogen-associated molecular pattern 

(PAMP) or its enzymatic activity could generate oligomers signaling cell wall damage. To 

distinguish between these two possibilities, we generated point mutation S217A in the active site of 

PcGCE and expressed mutated PcGCES217A, which lacks esterase activity in hybrid aspen under 

control of 35S promoter. All four investigated transgenic lines expressing the mutated enzyme 

displayed leaf necrosis, premature senescence and reduced growth after 7-week-cultivation in the 

greenhouse (Fig. 9ABC). The severity of these symptoms correlated with the transgene expression 

levels (Fig. 9D), where lines with highest expression of PcGCES217A exhibited most pronounced 

phenotypes. Glucuronoyl esterase activity was detected in proteins extracted from leaves of plants 
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expressing wild-type PcGCE whereas no activity was detected in the plants expressing mutated 

PcGCES217A (Fig. 9F) indicating that the perception of PcGCE protein is capable of triggering 

defense responses. 

Next, we expressed and purified active and mutated S217A PcGCE proteins in yeast and tested 

their elicitor activity in aspen leaves using the luminol assay (Bisceglia et al., 2015). Aspen leaf 

discs were treated with either PcGCE, PcGCES217A, bacterial glucuronoyl esterase from 

Ruminococcus flavefaciens (RfGCE), flagellin-derived flg22 peptide or with buffer without 

elicitors. Both active and inactive PcGCE induced ROS in aspen leaves, with notably higher levels 

than flg22 (Fig. 9F). RfGCE applied to aspen leaves did not induce ROS. These results indicate that 

PcGCE protein is sufficient for ROS induction, independently of glucuronoyl esterase activity. 

 

Discussion 

PcGCE is a potent inducer of defense responses in plants 

P. carnosa is a basidiomycete pathogen of forest trees found on bark and wood of conifers (Burt, 

1925). It decomposes wood causing white rot is considered as a source of potent lignocellulolytic 

enzymes with a wide range of technological applications (MacDonald et al., 2011; Suzuki et al., 

2012). Among other enzymes, a CE15 family enzyme glucuronoyl esterase is predicted to reduce 

lignocellulose recalcitrance to saccharification caused by lignin carbohydrate cross-links (Bååth et 

al., 2016). Indeed, ectopically expressing PcGCE in plants improved xylan extractability in A. 

thaliana (Tsai et al., 2012) and cellulose conversion to glucose in aspen (Gandla et al., 2015). 

However, it also induced premature leaf senescence and impaired growth. Here we present a 

detailed analysis of aspen off-target responses to PcGCE propose their mechanisms and 

demonstrate an alternative strategy for deployment of this enzyme that avoids such off-target 

effects. 

Reaction to ectopically expressed PcGCE in aspen included inhibition of stem diameter and height 

growth, and very strongly suppression of root system development. Detailed analysis of leaves of 

transgenic plants revealed altered leaf expansion, defective hydraulic conductivity of xylem due to 

blockage by tyloses and gels, increased formation of calcium oxalate crystals, presence of necrosis 

and premature shedding (Fig. 1). These alterations were gradually developed as leaves matured. 

Transcriptomes of developing leaves were massively altered even at youngest developmental stages 
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long before any visible disease symptoms appeared (Fig. 4, 7; Table S7). These early changes in 

transcriptome indicated stimulated development of photosynthetic machinery, altered sugar and 

lipid metabolism and activation of signaling of biotic stress pathways involving JA and ET. At later 

developmental stages, we additionally detected an activation of SAR as evidenced by increase in 

ROS content and RBOHD expression (Fig. 2, 4), increase in SA content (Fig. 3) and activation of 

SA-related transcriptome (Fig. 4; Table S3, S7). These responses are typical to pattern-triggered 

immunity (PTI) induced be various pathogen- or damaged plant-derived molecules during pathogen 

attack (Yu et al., 2017).  

Similar to aspen, Arabidopsis expressing PcGCE exhibited transcriptomic changes typical of biotic 

stress responses, SA signaling (Tsai et al., 2017). Moreover, several biotic-stress related genes were 

affected in common in both species, including glutamate receptor GLR2.7, recently shown to 

constitute a core stress response gene (Bjornson et al., 2021), WRKY51 that mediates JA signaling 

inhibition by SA and low oleic acid levels (Gao et al., 2011), SOBIR1 that together with BAK1 and 

RLK23 recognizes NLP20 peptide inducing necrosis (Albert et al., 2015), and other genes which 

we identified as putative candidates for early PcGCE responses in aspen leaves (Table S9). This 

suggests that a common perception system for PcGCE protein exists in diverse plants.  

PcGCE mRNA is not cell-to-cell mobile, increases with leaf age and induces systemic stress signals 

Grafting experiments showed that PcGCE mRNA is only present in transgenic plant parts (Fig. 5) 

indicating that the transcripts are not cell-to-cell mobile. Unexpectedly, the level of transgene 

transcripts increased exponentially with leaf age (Fig. 4), which must be due either to age-

dependent increase in 35S promoter activity or to high stability of PcGCE transcripts resulting in 

their accumulation. The cauliflower mosaic virus (CaMV) 35S promoter includes several response 

elements such as As-1, As-2, Dof and I-box that provide means for regulated activity in plants 

(Bhullar et al., 2007) and there are reports of 35S-driven transgene induction in response to heat 

(Boyko et al., 2010) or aging (Kiselev et al., 2021). There were several transcripts corresponding to 

heat shock- and senescence-related proteins in 35S:PcGCE lines (Table S3, S7), suggesting that 

PcGCE induces activity of 35S promoter, thus creating a positive regulatory feedback loop resulting 

in exponential transgene accumulation. 

Grafting experiments showed that some effects of PcGCE on gene expression are systemically 

induced and depend on the presence of distant transgenic leaves where the transgene is expressed 

(Fig. 5). Such leaves are likely a source of diffusible signal(s) inducing systemic responses. In 
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contrast, systemic increase in ROS content in WT shoots was observed also in the absence of 

transgenic distal leaves (Fig. 5). This rises a possibility that systemic ROS signals could be 

generated in a different way than systemic signals involved in gene regulation. Induction of ROS 

but not marker gene expression was observed from developing xylem cells expressing PcGCE (Fig. 

6), suggesting that developing xylem cells of transgenic rootstocks could be a source of ROS 

signals in WT scions. Propagation of such signals might involve H2O2 wave along veins (Choi et 

al., 2016; Lew et al., 2020).  

PcGCE protein is perceived as PAMP and involves upregulation of large number of proteins 

PTI -like responses to ectopically expressed PcGCE were observed in transgenic aspen plants 

expressing mutated form of PcGCE that is enzymatically inactive (Fig. 9), indicating that PcGCE 

protein is recognized as PAMP. The exact sequence that is recognized by plant is currently 

unknown. We did not find significant similarity between PcGCE AA sequence and known elicitor 

peptides such as peptides from EIXs (Noda et al., 2010; Frías et al., 2019), flg22 (Naito et al., 

2008), elf18 (Kunze et al., 2004) or nlp20 (Böhm et al., 2014b). Nevertheless, PcGCE is a new 

microbial enzyme with demonstrated elicitation of defense responses in so diverse plants as aspen 

and Arabidopsis, suggesting a broad specificity of epitope recognition. Since its elicitor activity is 

independent of its enzymatic activity, it is possible that other glucuronoyl esterases from other 

microorganisms do not show such elicitation. This is supported by a lack of ROS induction by 

exogenously applied bacterial RfGCE to aspen leaves (Fig. 9F).  

Receptor(s) for PcGCE epitope are currently unknown, but the transcriptomics analysis of early 

developmental leaf stages provides large number of potential candidates. A striking results of 

transcriptome analyses (Table S3, S7, S9) is an evidence for regulation of i) multitude of signal 

transduction modules and ii) regulation of groups of similar potential members of these modules by 

PcGCE. This on one hand reflects complexity of immune responses as recently discussed by 

Kanyuka and Rudd (2019) and on the other is in line with current concepts of a need for redundancy 

in the pathogen perception and response systems to allow rapid evolution (Adachi et al., 2019). 

Among the affected genes, we find several members of the modules for pattern recognition 

described in other plant species (Böhm et al., 2014a; Couto and Zipfel 2016; Yu et al., 2017; He et 

al., 2018; Kanyuka and Rudd 2019). Because it is secreted to the apoplast, PcGCE protein is 

expectedly recognized by a surface PRR. Coordinated up-regulation of cell surface LRR-RLPs and 

LRR-RLKs suggests the involvement of these proteins and their complexes. An example of a 

complex that could be involved is SOBIR1-RLP-BAK1 complex (Jehle et al., 2013; Zhang et al., 
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2013; Albert et al., 2015; Zhang et al., 2014). RLP recognizing PcGCE could be RLP13 

(Potri.001G064100), RLP21 (Potri.006G061000), RLP27 (Potri.T164200 and Potri.T114000), 

RLP34 (Potri.T086100), RLP41 (Potri.T164100) or RLP43 (Potri.012G005600). Some of these 

RLPs are very similar, and likely have redundant functions. BAK1 function could be encoded by 

Potri.003G023000 or Potri.001G206700 (Table S7) and SOBIR1 by Potri.012G090500 or 

Potri.015G086800 (Table S9). The SOBIR1-RLP43-BAK1 model is supported by induction of 

SOBIR1, RLP43, and BAK1 in PcGCE-expressing Arabidopsis (Tsai et al., 2017). Members of the 

PRR complexes have been shown to rapidly trans-phosphorylate each other within the complex and 

induce transient increase in intracellular calcium via passive or ATP-driven channels (Yu et al., 

2017), several of which, including glutamate receptors, were identified upregulated at early leaf 

developmental stages (Table S7, S9). Further, the extracellular alkalization and ROS burst is 

typically observed (Yu et al., 2017). A key player in the ROS is RBOHD (Potri.003G159800) along 

with extracellular peroxidases, and these enzymes were highly upregulated in leaf 9 and 11 (Table 

S7, S9).  

The transcriptomics revealed many other potential receptors, which are likely involved in 

downstream pathways triggered by the PcGCE perception. One example is FLS2 

(Potri.004G065400). In Arabidopsis, FLS2 together with BAK1 perceives flagellin-derived peptide 

fl22 providing resistance to a broad range of bacterial pathogens (Chinchilla et al., 2007). FLS2 was 

also induced in PcGCE-expressing Arabidopsis (Tsai et al., 2017). Another example is RALF-

mediated signaling. Two RALF27 homologs (Potri.017G098100 and Potri.017G098300) were 

upregulated by PcGCE (Table S9). RALF27 homologs were found in genomes of poplar fungal 

pathogens Sphaerulina musiva (Peck) Quaedvlieg, Verkley & Crous and Septoria populicola Peck 

but their role in virulence of these pathogens is unclear (Thynne et al., 2017). Nevertheless, the 

finding suggests a role for RALF27 in aspen immune responses. Incidentally, we observed 

upregulation of two clade XII malectin domain (MD) aspen genes, PtMD121 and PtMD105 (Kumar 

et al., 2020), which could be involved in RALF27-mediated signaling, as reported for other 

members of CrRLK1L family (Zhang et al., 2020). PcGCE induced genes also included ZAR1 

homologs (Potri.006G014400, Potri.005G119800, and Potri.016G092600) and ZAR1 was similarly 

upregulated in Arabidopsis (Tsai et al., 2017). ZAR1 is an NLR type of resistance protein forming 

the resistome complex in response to several effectors and mediating rapid HR (Adachi et al., 

2019). We also observed several genes associated with pectin modification, including PtPME2, 

PtPME3 and other pectin methyl esterases, upregulated early during leaf development in transgenic 

plants (Table S9). At a later developmental stage (leaf 11), genes encoding polygalacturonases 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.09.23.460629doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.460629
http://creativecommons.org/licenses/by-nc/4.0/


                                                                              17 

(PGs) were upregulated whereas several pectate lyases from family PL1 were downregulated (Table 

S7). PGs could be responsible for release of oligogalacturonides (OGs) to the apoplastic space, 

which are perceived by wall associated kinases (WAKs) activating a wide range of defense 

responses (Ferrari et al., 2013, Kohorn, 2016). WAK2 homologs (Potri.002G076000 and 

Potri.002G075900), and homologs of WAKL1 (Potri.009G154600) and WAKL5 

(Potri.009G154600) were highly upregulated in aspen by PcGCE (Table S9) and WAK2 was also 

upregulated by this enzyme in Arabidopsis (Tsai et al., 2017). WAK2 mediates immune responses 

via mitogen-activated protein kinase 6 (MPK6) (Kohorn et al., 2009). These examples show that 

PcGCE induces a series of immune responses possibly inducing defenses to pathogens. 

Specificity of transgene expression provides a powerful mean to avoid detrimental responses to 

transgene-encoded proteins 

We showed that expressing PcGCE from WP promoter derived from aspen GT43B gene, which is 

active in cells depositing xylan-type secondary walls (Ratke et al., 2015) avoids growth inhibition 

and premature senescence phenotypes that are observed in plants ectopically expressing the 

transgene (Fig. 6). The following observations indicate that this is due to a lack of PcGCE 

perception in secondary wall forming cells: i) majority of genes that are upregulated by PcGCE 

highly expressed in leaves and are not or only weakly expressed in the developing wood tissues 

(Fig. 8); ii) transcripts of Potri.012G005600 encoding RLP43 which is the prime candidate for 

PcGCE perception are not detected in developing wood (Table S9); iii) systemic induction of 

immune marker gene expression required expression of PcGCE in the leaves whereas its expression 

in the stems or roots was not capable of inducing systemic signals (Fig. 5). These observations 

suggest that systemic immune responses of PcGCE are initiated in the leaves. Since main pathogen 

entry is via epidermis or stomata and this is where the perception machinery is expectedly 

expressed, directing the expression of transgenes of microbial origin away from leaf epidermis and 

mesophyll can be a good strategy to avoid immune responses in general. 

 

Experimental Procedures 

Generation of transgenic aspen lines 

Phanareochete carnosa Burt glucuronoyl esterase (PcGCE) cDNA (NCBI accession: JQ972915; 

Tsai et al., 2012) with its native signal peptide replaced by the signal peptide of PttCel9B3 
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(GenBank accession AY660968.1) as described previously (Gandla et al, 2015) was used for the 

cloning of WP:PcGCE construct. The transgene in pENTR/D-TOPO vector (pENTR™ Directional 

TOPO Cloning Kits, Invitrogen) was subcloned into vector pK-pGT43B-GW7 (Ratke et al., 2015) 

containing the WP promoter. 

To clone the vector 35S:PcGCES217A with PcGCE carrying a point mutation S217A in the active 

site, pENTR/D-TOPO vector (pENTR™ Directional TOPO® Cloning Kits, Invitrogen), containing 

PcGCE cDNA with exchanged native signal peptide was PCR amplified to introduce a point 

mutation PcGCES217A using overlapping primers (Table S10). The pENTR/D-TOPO vector product 

was subsequently subcloned into binary vector pK2WG7.0 (Karimi et al., 2002) using Gateway® 

System (Invitrogen).  

Vectors were transferred into competent Agrobacterium tumefaciens (Smith and Townsend) Conn 

strain GV3101 by electroporation and used to transform hybrid aspen, Populus tremula L. x 

tremuloides Michx., clone T89 as described in Gandla et al. (2015). Twenty independent lines were 

obtained and clonally propagated and three lines of each construct with the highest expression 

levels were selected for this study. 

Glucuronoyl esterase activity 

Total proteins were extracted as previously described by Gandla et al. (2015) from mature necrosis-

free leaves. Shortly, 100 mg of frozen powder material was added to 0.5 mL of extraction buffer [50 

mM sodium phosphate buffer pH 6.0, 2 mM EDTA, 4% PVP mw 360,000, 1 M NaCl, and protease 

inhibitor cocktail (cOmplete, Roche)], and the sample was incubated for 1 h at 4°C. After 

centrifugation (20,000g, 15 min), the supernatant was desalted and concentrated using a column 

(Nanosep 30k omega OD30C34) by centrifugation (4,000g, approx. 10 min, four times) with four 

washes of 50 mM sodium phosphate buffer. Glucuronoyl esterase activity was measured using 

benzyl-D-glucuronate (Santa Cruz Biotechnology, sc-221344) as a substrate. The reaction mix 

having a final volume of 40 μL containing 50 mM sodium phosphate buffer pH 6, 5 mM substrate 

and extract containing 5μg of protein extract, was incubated at 30°C for 60 min. Remaining 

substrate was quantified by adding 80 μL of alkaline hydroxylamine hydrochloride (2 M 

hydroxylamine hydrochloride and 3.5 N sodium hydroxide, 1:1, v:v), incubating for 5 min, 

acidifying with 40 μL of 12% hydrochloric acid and adding 40 μL of 0.37 M ferric chloride before 

absorbance measurement at 540 nm (Hestrin, 1949). The standard curve was generated using 

between 0.1 mM to 3 mM benzyl-D-glucuronate. 
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Analysis of calcium oxalate crystals 

Successive leaves were collected from transgenic 35S:PcGCE plants (lines 4 and 10) and WT. They 

were stored in 70% ethanol before clearing in 2.5% commercial bleach solution of sodium 

hypochloride (NaClO) for approximately 8 hours until the chlorophyll was removed. Small sections 

from top, middle and bottom of each leaf were processed in four trees per genotype. The sections 

were washed with water and mounted in 50% glycerol for the observation using Axioplan 2 

microscope (Zeiss, Germany) and Nomarsky’s optic. Counts per vein area were performed using 

Image J, and data for top, middle, and bottom of the leaf were averaged.  

Crystal chemical nature was determined by X-ray diffraction (XRD) using ethanol-fixed dissected 

veins from leaf 20 of transgenic (35S:GE line 10) and WT plants. The XRD analysis was performed 

by a Bruker D8 advance X-ray diffractometer with Cu Kα radiation in Ɵ:Ɵ mode, equipped with a 

super speed VÅNTEC-1 detector. The samples were directly mounted on a Si low-background 

rotating sample holder and analyzed by continuous scanning for at least 4 h. Crystals were 

identified using Bruker software and the powder diffraction file PDF-2 (International Center for 

Diffraction Data, Newtown Square, USA, 2010). 

 

Dye uptake experiments 

To monitor hydraulic continuity of xylem in leaves, transgenic (two independent lines) and WT 

small lateral branches were placed in tubes containing 4 % basic fuchsin for 3-4 h after which the 

leaves were photographed with illumination from above. 

DAB staining 

1 cm2 leaf pieces from freshly collected leaves were submerged in 1 ml Diaminobenzidine 

tetrahydrochloride (DAB) reagent solution (1 mg/ml), pH 7.0 and incubated for ~ 24h at room 

temperature in the dark. Then the DAB solution was replaced with water followed by clearing the 

leaves in 95% ethanol for 24 h at 37 °C, rehydrating using a graded ethanol series and storing in 

0.05 M phosphate buffer pH 6.5. The material was mounted in 50% aqueous glycerin and observed 

using Axioplan 2 Universal Microscope (Carl Zeiss, Jena, Germany). The micrographs were 

converted to grey scale with pixel intensity between 0 and 256 using Pythons library OpenCV 

(https://pypi.python.org/pypi/opencv-python). The area of dark pixels (grey scale 0-31) considered 

as DAB signals was calculated as % of total area.  
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Microscopy of cuticle 

Cuticle was analyzed in fully expanded leaves in three trees of each of two independent transgenic 

lines per construct and WT. The leaf pieces were fixed in 2.5% glutaraldehyde, embedded in 

Steedman’s wax, and stained for lipids with Nile red (Sigma-Aldrich) as described by Dobrowolska 

et al. (2015). Sections were examined by epifluorescence microscopy (Axioplan 2; Zeiss, Germany) 

with excitation filter 450–490 nm and barrier filter 520 nm. Cuticle thickness was measured using 

Image J in six sections per tree, at six random places per section, for each abaxial and adaxial 

cuticle.  

Leaf wax and fatty acid analysis by fatty acid methyl esters (FAMEs)method 

For wax analysis, a 2 cm-diameter leaf disc was immersed in 1 mL chloroform and shaken for 30 

sec, and the total solvent volume was transferred into a micro vial. The chloroform volume was 

evaporated by flushing with N2 gas, until a wax pellet remained, and the material was stored at -

80°C until analysis. The waxes were derivatized by methoxyamination and silylation as described 

in Gullberg et al. (2004). The derivatized samples were analyzed as described in Diab et al. (2019b). 

The wax content is expressed as relative concentration. 

For fatty acid analysis, 19 to 21.6 mg of ground frozen leaf material was extracted with 500 µl of 

extraction buffer [2:1 v/v chloroform (Darmstadt, Germany): methanol (Waltham, MA, USA)] 

including following a modified Folch’s protocol (Diab et al., 2019a). The fatty acids were converted 

into their corresponding Fatty Acid Methyl Esters (FAME) by methylation with diazomethane. For 

absolute quantification, a calibration curve was prepared from the commercially available Supelco 

37 Component FAME Mix at 7 levels. Analysis was performed by GC-QqQ-MS equipped with a 

Zebron ZB-FAME 20 m x 0.18 mm i.d. fused silica capillary column.  

Data analysis /statistical methods for metabolomics  

For the GC-MS data, all non-processed MS-files from the metabolic analysis were exported from 

the ChromaTOF software in NetCDF format to MATLAB R2016a (Mathworks, Natick, MA, 

USA), where all data pre-treatment procedures, such as base-line correction, chromatogram 

alignment, data compression and Multivariate Curve Resolution were performed using custom 

scripts. The extracted mass spectra were identified by comparisons of their retention index and mass 

spectra with libraries of retention time indices and mass spectra 3. Mass spectra and retention index 

comparison was performed using NIST MS 2.0 software. Annotation of mass spectra was based on 
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reverse and forward searches in the library. Masses and ratio between masses indicative of a 

derivatized metabolite were especially notified. If the mass spectrum according to SMC ’s 

experience was with the highest probability indicative of a metabolite and the retention index 

between the sample and library for the suggested metabolite was ± 5 (usually less than 3) the 

deconvoluted “peak” was annotated as an identification of a metabolite. 

Principal component analysis (PCA) was performed in the R (v3.4.0; R Core Team, 2019) program, 

by using ggfortify (Horikoshi and Tang, 2018) package. 

Transcriptomic analyses 

Developing leaves (leaf number 8, 11, 21 and 23) were collected from ten-week-old hybrid aspen 

grown in the greenhouse. The RNA was extracted as described in Ratke et al. (2018). Five 

biological replicates of leaves 8, and 11 of line 35S:PcGCE - 10 and corresponding WT; as well as 

four biological replicates of leaves 21 and 23 of lines 35S:PcGCE - 10, 35S:PcGCE - 23, 

WP:PcGCE - 8, WP:PcGCE - 14 and eight biological replicates of corresponding WT were 

analyzed. cDNA was sequenced using Illumina HiSeq-PE150 platforms of Novogene 

Bioinformatics Technology Co., Ltd. (Beijing). Quality control and mapping to P. trichocarpa 

transcriptome v3.0 of leaf 8 and 11 samples were performed by Novogene. For other samples, 

RNA-seq raw data were filtered and mapped using methods described by Kumar et al. (2020). Raw 

counts were used for differential expression analyses using DESeq2, comparing genotype 

35S:PcGCE-10 (leaf 8, 11, 21 and 23), 35S:PcGCE-23 (leaf 21and 23), WP:PcGCE-8 (leaf 21 and 

23) and WP:PcGCE-14 to WT. The P-values were corrected for multiple testing using the 

Benjamini and Hochberg method to calculate Padj. Genes were considered as DE when Padj < 0.05 

and abs(Log2FC) > 0.3. For further processing of the data such as gene sorting, filtering, 

intersection, sample grouping and biological function summary, R (v3.4.0; R Core Team, 2019) and 

Python (Van Rossum and Drake, 2009) programs were used. 

Reverse transcription-quantitative polymerase chain reaction  

Developing leaves and developing xylem tissues scrapped from the stems after bark peeling were 

used for RNA extractions as described in Ratke et al. (2015) using three or four biological 

replicates. cDNA was synthesized using Bio-Rad iScript™ cDNA Synthesis kit. Quantitative 

polymerase chain reactions (qPCRs) were performed using LIGHTCYCLER 480 SYBR GREEN I 

Master Mix (Roche) either using 20 µL reaction volume in a LightCycler® 480 System II (Roche), 

or using 5 µL reaction volume in a C1000 Touch thermal cycler (Bio-Rad). The PCR program was: 
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95°C for 5 min, then 50 cycles of 95°C for 30 s, 60°C for 15 s, and 72°C for 30 s. UBQ-L 

(Potri.005G198700) was selected as reference gene based on GeNorm (Vandesompele et al., 2002) 

reference gene analysis chosen from four different genes. Primers are listed in Table S10. The 

relative expression level was calculated according to Pfaffl (2001), in the Python programming 

language (Van Rossum and Drake, 2009).  

Grafting  

The grafts were prepared from 5-week-old WT, 35S:PcGCE-10 and 35S:PcGCE-23 plants. The 

scions excised 5-10 cm below the shoot apex had their stems trimmed into wedges, inserted into 

longitudinally cut rootstocks between the stem halves, and sealed with Parafilm (Pechiney Plastic 

Packaging Company). Upper part of shoots of the grafted plants were enclosed in transparent plastic 

bags covering them from 10 cm bellow the stock/scion interface to the apex of the plant. Leaves 

were removed from the rootstocks of half of the grafted plants at the day of grafting. The bags were 

removed 7 to 10 days after grafting. 

Hormonomics 

Leaves 21 and 23 of four biological replicates of lines 35S:GCE-10 and 35S:GCE-23 and eight 

biological replicates of WT were ground in liquid N2. Samples were extracted, purified and 

analyzed according to method described in Šimura et al., (2018). Mass spectrometry analysis of 

targeted compounds (Table S11) was performed by an UHPLC-ESI-MS/MS system comprising of 

a 1290 Infinity Binary LC System coupled to a 6490 Triple Quad LC/MS System with Jet Stream 

and Dual Ion Funnel technologies (Agilent Technologies, Santa Clara, CA, USA). The 

quantification was carried out in Agilent MassHunter Workstation Software Quantitative (Agilent 

Technologies, Santa Clara, CA, USA). 

Metabolic profiling 

Leaves 21 and 23 of transgenic and WT plants were ground in liquid N2 and 9 - 12 mg portions 

were extracted in 500 µL of extraction buffer (20/20/60 v/v chloroform (Darmstadt, Germany): 

water Milli-Q: methanol (Waltham, MA, USA)) including internal standards (Gullberg et al., 2004). 

The standards: L-proline-13C5, alpha-ketoglutarate-13C4, myristic acid-13C3, and cholesterol-D7 

(Andover, MA, USA), as well as succinic acid-D4, salicylic acid-D6, L-glutamic acid-13C5,15N, 

putrescine-D4, hexadecanoic acid-13C4, D-glucose-13C6, D-sucrose-13C12 (Sigma, St. Louis, MO, 

USA), were added to ground frozen leaf material. The sample was shaken with a tungsten bead in a 
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mixer mill at 30 Hz for 3 minutes, the bead was removed and the sample was centrifuged at +4 °C, 

20 000 g, for 10 minutes. 75µL of supernatant was transferred to a micro vial and solvents were 

evaporated. Small aliquots of the remaining supernatants were pooled and used to create quality 

control (QC) samples. The samples were analyzed in batches according to a randomized run order 

on GC-MS.  

Derivatization and GC-MS analysis were performed as described previously (Gullberg et al. 2004). 

0.5 μL of the derivatized sample was injected in splitless mode by a L-PAL3 autosampler (CTC 

Analytics AG, Switzerland) into an Agilent 7890B gas chromatograph equipped with a 10 m x 0.18 

mm fused silica capillary column with a chemically bonded 0.18 μm Rxi-5 Sil MS stationary phase 

(Restek Corporation, U.S.) The injector temperature was 270 °C, the purge flow rate was 20 mL 

min-1 and the purge was turned on after 60 s. The gas flow rate through the column was 1 mL min-1, 

the column temperature was held at 70°C for 2 min, then increased at a rate of 40°C min-1 to 320°C, 

and maintained for 2 min. The column effluent was introduced into the ion source of a Pegasus BT 

time-of-flight mass spectrometer, GC/TOFMS (Leco Corp., St Joseph, MI, USA). The transfer line 

and the ion source temperatures were 250°C and 200°C, respectively. Ions were generated by a 70 

eV electron beam at an ionization current of 2.0 mA, and 30 spectra s-1 were recorded in the mass 

range m/z 50 - 800. The acceleration voltage was turned on after a solvent delay of 150 s. The 

detector voltage was 1800-2300 V. Data were analyzed by the same procedures as wax and fatty 

acids data. 

Purification of of PcGCE expressed in P. pastoris  

Generation of transgenic Pitchia pastoris (Guillermond) Pfaff strain GS115 expressing native 

PcGCE was described previously (Tsai et al., 2012). Similar strategy was followed to express 

mutated PcGCES217A. The strains were grown for 24 h in non-inductive buffered glycerol complex 

medium [BMGY: 1% yeast extract, 2% peptone, 100 mM potassium phosphate (pH 6.0), 1 % yeast 

nitrogen base with ammonium sulfate (YNB) without amino acids, 4x10-5 % biotin, 1% glycerol], 

followed by 4 days in inductive buffered methanol complex medium (BMMY) obtained by adding 

100 % methanol in BMGY to a final concentration of 0.5% methanol and then repeating the 

additions of the same volume every 24 h to maintain the induction during 72 h (Tsai et al., 2012). P. 

pastoris culture medium containing the recombinant protein was purified by affinity 

chromatography Ni-NTA agarose (Roche).  

Luminol assay for ROS 
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Leaf discs from young, expanded leaves of 7-week old hybrid aspen plants were sampled with a 

biopsy punch (4 mm diameter) and loaded into wells of 96-well plate (Roche LightCycler® 480 

System) containing 100 μL of water (one sample per well). The plate was kept overnight at room 

temperature in the dark. Then, the water was replaced with 100 μL of assay solution containing 

50mM phosphate buffer pH 6.5, 50 μM L-012 (Wako Chemicals, 120-04891), 10 μg/mL peroxidase 

from horseradish (Boehringer-Mannheim) and 200 nM of one of the tested elicitors: bacterial 

Ruminococcus flavefaciens glucuronoyl esterase (RfGCE) (Megazyme 9016-18-6), flg22 (AnaSpec 

AS-62633), purified native PcGCE, purified mutated PcGCES217A or no elicitor (control). The assay 

plate light emission was measured immediately using high resolution photon counting system 

(HRPCS5 PHOTEK). Luminescence peak area was calculated with Image32 (6.0.3, Photek, East 

Sussex, UK). 
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Figure S1. Leaves of transgenic aspen expressing 35S:PcCGE display altered free fatty acids and 

epicuticular wax profile. 

Figure S2. Leaves of transgenic aspen ectopically expressing PcCGE display increased deposition 

of prismatic crystals identified as calcium oxalate along the veins. 

Table S1. Relative content of wax compounds extracted by chloroform form expanded leaves (leaf 

14, 16, 18) of lines 10 and 23 constitutively expressing PcGCE and WT. Data are integrated peaks 

of GC-MS chromatograms. Only identified compounds are shown. 

Table S2. All differentially expressed genes in each transgenic line expressing PcGCE, 10 and 23, 

and each leaf developmental stage, leaf 21 and leaf 23.  

Table S3. Differentially expressed genes in both transgenic lines expressing PcGCE, 10 and 23, 

and either leaf developmental stage, leaf 21 and leaf 23.  

Table S4. All differentially expressed genes in each transgenic WP:PcGCE line, 8 and 14, and each 

leaf developmental stage , leaf 21 and leaf 23. 

Table S5. Differentially abundant hormones, their degradation products and their precursors in 

leaves 21 and 23 of transgenic plants (WP:PcGCE lines 8 and 14, combined) compared to WT. 

Table S6. Differentially abundant metabolites in leaves 21 and 23 of transgenic plants (WP:PcGCE 

lines 8 and 14, combined) compared to WT.  
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Table S7. All differentially expressed genes in transgenic line 10 ectopically expressing PcGCE at 

two developmental stages, leaf 8 and leaf 11. 

Table S8. GO enrichment analysis of DE genes in leaf 8 and 11 of 35S:PcGCE line 10 plants 

compared to WT. 

Table S9. All signal perception related genes upregulated at early leaf developmental stage in 

transgenic line 10 ectopically expressing PcGCE and their expression in developing wood and other 

aspen tissues. 

Table S10. Primers used in this study. 

Table S11. Phytohormones and related compounds targeted by hormonomics analysis. 
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25 cm

Figure 1. Transgenic aspen constitutively expressing PcCGE display different disease symptoms. Height (A), diameter (B),
and root weight (C) of eleven-week-old plants of three independent transgenic lines: 10, 21 and 23 and WT. N=24 for transgenic
and 40 for WT plants in (A) and (B), and 6 plants in (C). (D) Appearance of developing leaves in transgenic and WT plants. Note
the rapid progression of necroses in leaves of the transgenic plant. Shown are leaves 5, 10, 15, 20, 25 and 30 of line 10 and WT
plants. First necrotic spots are pointed by the arrow. (E, F) Hydraulic continuity is compromised in transgenic leaves as shown by
the dye uptake inhibition. Green areas indicate hydraulic blockage. (E) Leaf 22 in transgenic (line 10) and WT plants. Scale bar =
5 cm. (F) Progression of dye uptake blockage and necroses in successive leaves of a line 10 plant. Scale bar = 500 µm. (G, H)
Blockage of xylem vessels by tyloses (G, arrows) and gels (H, arrows) in the leaves of transgenic plants (line 10). Longitudinal
sections through vascular bundles stained with safranin and alcian blue. Scale bars = 20 µm. (I) Cuticle (arrows) in leaf epidermis
of line 10 and WT plants stained with Nile red. * is placed over epidermal cells, scale bars: 10 µm. (J) Cuticle thickness in
transgenic lines and WT. (K) Calcium oxalate crystals in the leaf veins of line 10 and WT plants. Note the higher density and
larger size of crystals in transgenic plants. Scale bar = 100 µm. (L) Crystal density over veins in leaves 10-30 of line 10 and WT
plants. Asterisks show significant differences compared to WT (Student’s T-test). Statistical significance: · - P< 0.1; * - P ≤ 0.05;
** - P ≤ 0.01;*** - P ≤ 0.001.
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A B

Figure 2. PcGCE induces ROS accumulation in the leaves of PcGCE expressing plants. Symptomless
leaves (L21) and in leaves with first necroses (L23) were analyzed by diaminobenzidine (DAB) staining in
three independent lines carrying 35S:PcGCE: 10, 21. and 23. (A) Area of DAB signals (pixels with intensity
between 0 and 31) quantified by image analysis. Means ± SE, n = 12. DAB signals were not detected (ND)
in WT. (B) Light microscopy images of representative leaf 21 and 23 (L21 and L23) in transgenic line
35S:PcGCE-10 and WT. Scale bar = 100 µm.
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Figure 3. Overview of transcriptomic and metabolomic changes in aspen ectopically expressing PcGCE, compared to wild type. Symptomless leaves (L21)
and in leaves with necrosis (L23) were analyzed in two independent transgenic lines: 35S:GCE-10 and 35S:GCE-23. (A) Venn diagram of differentially expressed
genes (DEGs). (B) Bar graph of Gene Ontology (GO) enrichment analysis of DEGs in both transgenic lines. (C, D) Volcano plots showing altered levels of
metabolites detected by hormonomics (C) and metabolomics (D) analyses in leaves 21 and 23. The significantly altered metabolites compared to WT are labeled
(Student’s T-test). Hormone abbreviations (C):ABA – abscisic acid; cZOG – cis-zeatin-O-glucoside; cZROG – cis-zeatin riboside-O-glucoside; DHZ –
dihydrozeatin; DHZR – dihydrozeatin riboside; DHZOG – dihydrozeatin-O-glucoside; DHZROG – dihydrozeatin riboside-O-glucoside; iP – N6-isopentenyl-
adenine; iPR – N6-iso-pentenyl-adenenosine; JA – jasmonic acid; JA-Ile; MeScZ – 2-methylthio-cis-zeatin; MeSiPR – 2-methylthio-isopentenyladenosine ; IAA –
Indole-3-acetic acid, iP9G – N6-isopentenyladenine-9-glucoside; OPDA – cis-12-oxo-phytodienoic acid; OxIAA - 2-oxoindole-3-acetic acid; SA – Salicylic acid;
Trp – tryptophan; TRPA – Tryptamine; tZ – trans-zeatin, tZROG – trans-zeatin-riboside-O-glucoside. Metabolite abbreviations (D): Alc-unk – unknown
alcohol; CA – caffeate; ETA – EtOH-amine; Fru – fructose; Gly-3-P – glycerol-3-P; Gri – glyceric acid; H3MG – hydroxy-3-methylglutaric acid; ICT – iso-
citrate; Ile – iso-leucine; α-KG – keto-glutarate; Lys – lysine; MI – myo-inositol; pCA – p-coumarate; PEA – phenetyl-amine; PPi – pyro-phosphate; Rib – ribose;
SUCC - succinate; SFA – sulfamic acid; TY – tyramine; Val – valine.
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Figure 4. Expression of PcGCE and
development of defense reactions in
sequential leaves of 8-week-old plants of
transgenic line 10. (A) PcGCE transcript levels
in developing leaves relative to levels in the bud
based on RT-qPCR. (B) ROS levels analyzed by
DAB staining. DAB signals were pixels with
gray scale level between 0 and 31. (C)
Transcript levels of defense response marker
genes: JAZ1 (Potri.003G068900), RBOHD
(Potri.001G070900), and stress marker genes
involved in response to low oleic acid levels
WRKY51 (Potri.005G085200) and EDS1
(Potri.015G069600). Data are means ± SE, n=3
biological replicates in A and C or 12 replicates
in B. Asterisks show significant differences
compared to WT (Student’s test; · - P≤ 0.1 ; * -
P ≤ 0.05; ** - P ≤ 0.01; *** - P ≤ 0.001).
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Figure 5. Grafting experiments indicate that defense responses are induced by PcGCE at a distance. (A) Schematics of
different types of grafts between WT and transgenic plants of line 10 and line 23. (-) indicates rootstocks where leaves were
removed from the main stem. (B) Levels of PcGCE transcripts in leaves of scions and rootstocks. (C) ROS levels in leaves of
scions and rootstocks determined by DAB staining and image analysis. (D) Marker gene induction in organs that do not
express PcGCE. Leaves 14, 17 and 20 (L14, L17, L20) were analyzed 48 days after grafting. ND – not detected; NA – not
analyzed. Expression values are fold change relative to the least expressing sample. Asterisks show significant differences
compared to WT/WT (Student’s test, - P≤ 0.1 ; * - P ≤ 0.05; ** - P ≤ 0.01; *** - P ≤ 0.001). The statistical analysis is shown
only for WT scions or rootstocks combined with transgenic rootstocks and scions, respectively.
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Figure 6. Transgenic aspen expressing PcGCE from the WP promoter does not show disease
symptoms during the 11-week-cultivation in the greenhouse. (A) Appearance of WP:PcGCE-8,
WP:PcGCE-9 and WP:PcGCE-14 lines compared to WT trees and lines expressing PcGCE
constitutively. (B) Transgene expression in mature leaves (L21) and developing xylem of three biological
replicates of 35S:PcGCE and WP:PcGCE lines analyzed by RT-qPCR. No expression was detected in
WT plants (ND). Expression was normalized to the lowest-expressing line. Height (C), diameter (D), dry
root mass (E) and leaf area (F) of eleven-week-old plants. (G) ROS levels in leaves analyzed by DAB
staining and image analysis. (H) Representative images of DAB-stained leaf 22 (L22) in transgenic and
WT plants. Scale bar = 100 µm. Data in B-G are means ± SE. Asterisks show significant differences
compared to WT (Dunnett’s test, · - P< 0.1; * - P ≤ 0.05; ** - P ≤ 0.01;*** - P ≤ 0.001). (I) Venn diagram
of differentially expressed genes (DEGs) in mature leaves 21 (L21) and 23 (L23) of transgenic lines:
WP:PcGCE-8 and WP:PcGCE-14 compared to WT.
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Figure 7. Overview of transcriptomic changes in young developing aspen leaves of 35S:PcGCE line
10. (A) Differential expression analysis of the transgene between leaf 11 (L11) and 8 (L8) reveled
significantly higher levels of PcGCE transcripts in L11 (Log2FC=0.68, Padj <0.023). (B) Venn diagram of
differentially expressed genes [DEGs: Padj<0.05 and abs(Log2FC) > 0.3] in transgenic compared to WT
plants. C) Proportions of DE genes in L8, both L8 and L11, and L11 (left) and proportion of
downregulated genes in each leaf (right) by different functional groups. Shown are examples of
functional groups of DE genes. All DE genes are listed in Table S7. First unfolded leaf (L8) and young
expanding leaf (L11) were analyzed in five trees.
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Figure 8. Expression patterns of
selected candidates for early PcGCE
perception and signaling. The
candidates (Table S8) were selected
based on assigned putative function,
upregulation in leaf 8 relative to WT and
no expression in secondary wall forming
xylem (Sundell et al., 2017). Normalized
expression in different tissues based on
expression databases described by
Sundell et al. (2015) and Immanen et al.
(2016) processed as described by Kumar
et al.,( 2020).
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Figure 9. Enzymatic activity of PcGCE is not needed to induce disease symptoms and stress responses in aspen.
Appearance (A), height (B), diameter (C), transgene transcript levels (D), and glucuronoyl esterase activity in mature
leaves necrosis-free leaves (E) of trees expressing mutated, enzymatically inactive PcGCES217A from 35S promoter
(35S:PcGCE-Mut) as compared to WT trees and line 35S:PcGCE-23 expressing native PcGCE, after 7-week-
cultivation in the greenhouse. Note premature leaf senescence and necrotic leaves in 35S:PcGE and 35S:PcGCE-Mut
lines (arrows in A). (B-E) Means ± SE, n=7 (B, C) or 4 (D, E); asterisks show means significantly different from WT
(Dunnett’s test; · - P≤ 0.1 ; * - P ≤ 0.05; ** - P ≤ 0.01; *** - P ≤ 0.001); ND-not detected. (F) Luminol-based assay for
detection of elicitor-induced production of ROS in aspen leaves. Elicitor activity of PcGCE and PcGCE-mut
compared to activity of flg22 peptide and bacterial Ruminococcus flavefaciens glucuronoyl esterase (RfGCE). Means
± CI68%; n = 4 independent experiments. Asterisks show significant differences compared to buffer control
(Dunnett’s test; · - P≤ 0.1 ; * - P ≤ 0.05).
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