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Abstract

Motivation: Drug combination therapy has become a increasingly promising method in the treatment of cancer.
However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations
through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug
combinations. Graph neural network have recently shown remarkable performance in the prediction of compound-protein
interactions, but it has not been applied to the screening of drug combinations.

Results: In this paper, we proposed a deep learning model based on graph neural networks and attention mechanism
to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of
drug molecule structure and gene expression profiles were taken as input to multi-layer feedforward neural network to
identify the synergistic drug combinations. We compared DeepDDS with classical machine learning methods and other
deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS
achieved better performance than competitive methods. Also, on an independent test set released by well-known
pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive
precision. Furthermore, we explored the interpretability of the graph attention network, and found the correlation matrix
of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool
that prioritized synergistic drug combinations for further wet-lab experiment validation.

Availability and implementation: Source code and data are available at
https://github.com/Sinwang404/DeepDDS/tree/master

Key words: Drug combination, attention mechanism, synergistic effect, graph neural network, deep learning, chemical
structure
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Traditional discovery of drug combinations is mainly based
on clinical trials and limited to only a few number of
drugs (Li et al., 2015), far from meeting the urgent need
for anticancer drugs. Due to the great number of possible
drug combinations, traditional method is cost-consuming and
impractical. With the development of high-throughput drug
screening technology, people can simultaneously carry out
large-scale screening of drug combinations over hundreds of
cancer cell lines (Hertzberg and Pope, 2000, Bajorath, 2002,
Macarron et al., 2011). Torres et al. utilized yeast to screen
a large number of drug combinations and provided a method
to identify preferential drug combinations for further testing
in human cells (Torres et al., 2013). In despite of high
degree of genomic correlation between the original tumor and
the derived cancer cell line, in witro experiments of high-
throughput drug screening still cannot accurately capture the
mode of action of drug molecules in vivo (Ferreira et al., 2013).
Microcalorimetry screening (Kragh et al., 2021) and genetically
encoded fluorescent sensors (Potekhina et al., 2021) have been
developed to screen effective antimicrobial combinations for
in vivo disease treatment. However, these techniques require
skilled operations and complicated experimental procedures.

In recent years, the datasets of single drug sensitivities to
cancer cell lines increase greatly, such as Cancer Cell Line
Encyclopedia (CCLE) (Barretina et al., 2012) and Genomics
of Drug Sensitivity in Cancer (GDSC), which contains drug
sensitivities to hundreds of human cancer cell lines, as
well as gene expression profiles, mutants and copy number
variants. Meanwhile, several large-scale data resource of drug
combinations have been released. For example, O’Neil et
al. released a large-scale drug pair synergy study, which
included more than 20,000 pairwise synergy scores between 38
unique drugs (O’Neil et al., 2016). The famous pharmaceutical
company AstraZeneca (Menden et al., 2019) released their
drug pair collaboration experiments, which includes 11,576
experiments of 910 drug combinations to 85 cancer cell lines
with genome-related information. DrugCombDB (Liu et al.,
2020) has collected more than 6,000,000 quantitative drug
dose responses, by which they calculated synergy scores to
evaluate synergy or antagonism for each drug combination.
In addition, quite a few data portal designed to collect drug
combinations and relevant knowledge have been developed.
The release of above-mentioned data resources motivated the
development of computational screening of drug combinations.
Many studies have been proposed to explore the vast
space of drug combinations to identify synergistic efficacy.
For example, classical machine learning methods, such as
support vector machine (SVM) and random forest, successfully
predicted the maximal antiallodynic effect of a new derivative
of dihydrofuran-2-one (LPP1) used in combination with
pregabalin (PGB) in the streptozocin-induced neuropathic pain
model in mice (Satat and Satat, 2013, Qi, 2012).

Recently, the deep learning is increasingly applied to
drug development and discovery. For example, DeepSynergy
(Preuer et al., 2018) combined the chemical information of
drugs and genomic features of cancer cells to predict drug pairs
with synergistic effects. TranSynergy (Liu and Xie, 2021) is
a mechanism-driven and self-attention boosted deep learning
model that integrates information from gene-gene interaction
networks, gene dependencies, and drug-target associations to
predict synergistic drug combinations and deconvolute the
cellular mechanisms. On the other hand, some studies applied
SMILES to characterize chemical properties of drugs. For
example, Gao et al. used the drug descriptors based on the
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SMILES to predict drug synergy. Liu et al. regarded the
SMILES code as a string and directly input into a convolutional
neural network (Liu et al., 2016) to extract drug features for
subsequent prediction task. More interesting, graph neural
network is used to learn feature representation from drug
chemical structure (Wu et al., 2018, Xiong et al., 2019).

In this paper, we propose a deep learning model, DeepDDS
(Deep Learning for Drug-Drug Synergy prediction), to predict
the synergistic effect of drug combinations. First, the drug
chemical structure is represented by a graph in which the
vertices are atoms and the edges are chemical bonds. Next,
a graph convolutional network and attention mechanism is
used to compute the drug embedding vectors. By integration
of the genomic and pharmaceutical features, DeepDDS can
capture important information from drug chemical structure
and gene expression patterns to identify synergistic drug
combinations to specific cancer cell lines. We compare
DeepDDS to both classical machine learning methods (SVM,
RF, GTB and XGBoost) and other latest deep learning
(DTF, DeepSynergy and TranSynergy) on benchmark data set,
DeepDDS significantly outperform other competitive methods.
In particular, we conducted leave-one-out experiments to verify
that DeepDDS achieved better performance when one drug
(combination) or one tissue is not included in the training
set. Also, on an independent test set released by well-known
pharmaceutical enterprise AstraZeneca, DeepDDS was superior
to competitive methods by more than 16% predictive precision.
We also explored the function of graph attention network in
revealing important chemical substructures of drugs, and found
the correlation matrix of atomic features showed clustering
patterns among atom subgroups during the training process.
Finally, we use the trained model to predict novel drug
combination and find two previously reported synergistic drug
combinations in the top 10 predicted results, MK2206 and
AZD5363, MK2206 and AZD6244 to HCC1806 breast cancer
cells. In summary, we believed that DeepDDS is an effective
tool that prioritized synergistic drug combinations for further
wet-lab experiment validation.

Materials and methods

Data source

The SMILES (Simplified Molecular Input Line Entry System)
(Weininger, 1988) of drugs are obtained from DrugBank
([Wishart et al., 2018]), based on which the chemical structure
of a drug can be converted to a graph using RDKit
([Landrum et al., 2006]). In the molecular graph, the vertices
are atoms and the edges are chemical bonds.

The gene expression data of cancer cell lines are obtained
from Cancer Cell Line Encyclopedia (CCLE, Barretina et al.,
2012), which is an independent project that makes effort to
characterize genomes, mRNA expression, and anti-cancer drug
dose responses across cancer cell lines. The expression data is
normalized through TPM (Transcripts Per Million) based on
the genome-wide read counts matrix.

To construct the benchmark set, we obtain the drug
combination sensitivity data from a recently released large-
scale oncology screening data set (O’Neil et al., 2016), where
the viability of 39 cancer cells treated with thousands of
drug combinations was evaluated by biochemical assay. The
Loewe Additivity score (Loewe, 1953), a quantitative metric
that defines the synergistic or antagonistic effect of the drug
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combination, was calculated based on the 4 by 4 dose-
response matrix using the Combenefit tool (Di Veroli et al.,
2016). Of note, multiple replicates of one drug combination
were assayed in the original data, and thus the average score
of the replicates was selected as the final synergistic score
for each unique drug-pair-cell-line combination. According to
the Loewe score, a combination with the score above zero
is regarded as synergistic, and with the score below zero is
antagonistic. Obviously, the drug combinations with higher
synergistic scores are more attractive candidates for further
clinical experiments. Since many additive combinations may
exist (synergy scores are around 0 due to noise), we choose
a stricter threshold to classify the combinations. Particularly,
combinations with synergy score higher than 10 are labeled
as positive (synergistic), and those with score less than 0 are
labeled as negative (antagonistic). This yielded a balanced
benchmark set that contains 12,415 unique drug pair-cell line
combinations, covering 36 anticancer drugs and 31 human

cancer cell lines.

Pipeline of DeepDDS

Figure 1 illustrates the end-to-end learning framework for the
prediction of synergistic drug combinations. For each pairwise
drug combination, the input layer firstly receives the molecular
graphs of two drugs and gene expression profiles of one cancer
We tested
two type of Graph Neural Networks (GNN), graph attention
network (GAT) and graph convolution network (GCN), to
extract features of drugs. The genomic feature representation of

cell line that was treated by these two drugs.

cancer cells is encoded by a multi-layer perception (MLP). The
embedding vectors are subsequently concatenated as the final
feature representation of each drug-pair-cell-line combination,
which is propagated through the fully-connected layers for
the binary classification of drug combinations (synergistic or
antagonistic).

Drug Representation based on GNN

We use the open-source chemical informatics software RDKit
(Landrum et al., 2006) to convert the SMILES into molecular
graphs, where the nodes are atoms and the edges are chemical
bonds. Specifically, a graph for a given drug is defined as G =
(V, E), where V is the set of N nodes that represented by a
C-dimensional vector, and E is the set of edges represented as
an adjacency matrix A. In a molecule graph, z; € V is the i-th
atom and e;; € F is the chemical bond between the i-th and j-
th atoms. The chemical molecular graph is non-Euclidean data
and lacks of translation invariance, therefore, we applied graph
neural network instead of traditional convolution network, to
extract drug feature representations based on the graphs.

For each node in a graph, we use DeepChem (Ramsundar et al.,
2019) to compute a set of atomic attributes as its initial
feature. Specifically, each node is represented as a binary vector
including five pieces of information: the atom symbol, the
number of adjacent atoms, the number of adjacent hydrogen,
whether the atom is

the implicit value of the atom, and

in an aromatic structure. In GNN, the learning process of
drug representation is actually the message passing between
each node and its neighbor nodes. In this paper, we consider
two types of GNN (graph convolution network and graph
attention network) in our learning framework and evaluate their

performance in the drug feature extraction.

qse. . . s .
or drug combination screening | 3

Graph Convolutional Network (GCN)
The input of the multi-layer GCN is the node feature matrix
X € RNV*C RNXN that

represents the connection of nodes. According to Welling et

and the adjacency matrix A €

al. (Kipf and Welling, 2016), it can write dissemination rules
in a standardized format to ensure stability.

The iteration process can be defined as below:

HFY = (D72 AD™ 2 HY W) (1)

where A = A + In(Iy is the identity matrix) is the adjacency
matrix of the undirected graph with added self-connections,
En = ZZ A“ ; HIFD ¢ RVNXC i5 the matrix of activation
in the lth layer, H©® = X o is an activation function, and W
is a learnable parameter.

The output Z € RVXF (F is the number of output features
per node) can be defined as below:

Z=D"

0=
1=

AD™:X© (2)
where © € RE*F (F is the number of filters or feature maps)
is the matrix of filter parameters.

Our GCN-based model uses three consecutive GCN layers
activated by ReLU function. The original GCN is a method for
classify the node by semi-supervised learning, i.e., the outputs
are the node-level feature vectors. To construct graph-level
feature vectors, we use Sum, Average, and Max Pooling to
aggregate the whole graph feature from learned node features
and evaluate their performance. We find that the use of Max
Pooling layer in GCN-based DeepDDS outperforms the others.
Therefore, we add a global Max Pooling layer after the last
GCN layer to extract the representation.

Graph Attention Network (GAT)

The graph attention network (GAT) proposes a multi-head
attention-based architecture to learn higher-level features of
nodes in a graph by applying a self-attention mechanism. Every
attention head has its own parameters. The GAT architecture
is built from the graphics attention layer. The output features
for nodes were computed as

hli = ‘|wz:1,u~,M(aTiWhi + Z a?fjWhj)

JEN(4)

(3

Where || concat the output results of multiple attention
mechanisms, M is the number of attetion heads, and W &
RE*C is a weight matrix. The attention coefficient o ;,
between each input node 7 and its first-order neighbor in the

graph, is calculated as follows:

ezp(elu(aT [Whi||[Wh;]))
Pken) expelu(aT [Wh;||Wh]))

4

Qij =

where a7 € RY is learnable weight vector, T is the
corresponding transpose, and elu is a Non-linear activation
function, when z is negative, y is equal to 0. Then, ’softmax’
function is introduced to normalize all neighbor nodes j of i for

easy calculation and comparison.

Cell Line Feature Extraction based on MLP

To alleviate the dimension imbalance between the feature
vectors of drugs and cell lines, we selected the significant genes
according to a LINCS project (Yang et al., 2012). The LINCS

project provides a set of about 1000 carefully chosen genes,
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Fully connected layers

Fig. 1. The pipeline of DeepDDS learning framework. The feature embedding of gene expression profiles of cancer cell line is obtained through Multi-

Layer Perception (MLP), and the feature embedding of drug is obtained through GAT or GCN based on the drug molecular graph generated from drug

SMILES. The embedding vectors of drug and cell line are subsequently concatenated to feed into a multi-layer fully connected network to predict the

synergistic effect.

referred to as 'Landmark gene set’, which can capture 80% of
the information based on the Connectivity Map (CMap) data
(Cheng and Li, 2016). The intersected genes between the CCLE
gene expression profiles and the Landmark set was chosen for
subsequent analysis. We used the gene annotation information
in the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al.,
2012) and the GENCODE annotation database (Derrien et al.,
2012) to remove the redundant data, as well as the transcripts
of non-coding RNA. Finally, we select 954 genes from raw
expression profiles as input to the model.

We adopt an MLP to extract the cell line features. The
MLP includes two hidden layers, and the number of hidden
units of each layer is selected via hyperparameter selection (See
Hyperparameter setting for detail).

Predicting the synergistic effect of drug combinations versus
cell lines

We formulated the prediction of synergistic drug combinations
as an end-to-end binary classification model. Upon the
embedding vectors of drugs through GAT or GCN, and
the embedding vectors of cell lines through MLP, they are
concatenated as the input of multiple fully-connected layers.
We adopt the spindle-shaped structure for the fully connected
layer. The probability of the synergistic effect (classification
label) was computed by the softmax function that follows the
output of the last hidden layer, as follows:

pt = softmax (Wout . al + bout) (5)

where p; is the probability of t, Wy, and by, are the weight
matrix and bias vector, a' are the embedding features learned

by previous layers, as follows:
at =o(Wha'™t + Y (6)

Where [ is the number of hidden layers, W and b are the
matrices corresponding to all hidden layers and output layers,

bias vector, a°

= concat(Rgrug1, Rarug2, Reellline) is the raw
input vector.

Given a set of combinations with labels, we adopted the
cross-entropy as the loss function to train the model, with the
aim to minimize the loss during the training process, which is

formulated as follows:

N
2
F = min (f Z logP:, + X ||@H> (7)
i=1

where © represents the set of all trainable weight and bias
parameters involved in the model, N is the total number of
samples in the training dataset, t; is the ith label, and X is an
L2 regularization hyper-parameter.

Result

Hyperparameter setting

The real architecture of DeepDDS is actually determined
by hyperparameter setting. The hyperparameters cover the
numbers of layers and units of each layer in MLP, GCN
and GAN, as well as the activation function and learning
rate. As exhaustive enumerations of the hyperparameters are
computationally inhibitive, thereby we adopt grid-like search
to tune the hyperparameters. As shown in Table 1, we
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have tested different structural forms and values of these
hyperparameters. We tuned the hyperparameters via five-fold
cross validations on benchmark dataset. The selected values
of these hyperparameters are displayed in boldface. The GCN
yield to better performance in the drug feature extraction
when its structure has three hidden layers and number of units
are 1024, 512 and 156, respectively. We have also
different number of hidden layers for GAN and
found they performed best with two hidden layers.

considered
MLP, and
For multi-
values are
evaluated. For the activation function, the ELU and ReLU
activation functions after the GAT layers at DeepDDS-GAT are
used. For DeepDDS-GCN, it also has similar layer structure,

head attention mechanism, multiple independent

but only ReLU is used as activation function.

Table 1. Hyperparameter settings of DeepDDS

Values

[1024,156];[1024,512,156];[512,256,156]
GAN Hidden units  [1024,512];[512,128];[1024,156];[512,156]
GAN attention Head 4, 8,10, 12, 16
MLP Hidden units [1024,512];[2048,512];[2048,1024];[4096,512]

FC hidden units [4096, 1024, 512]; [2048, 1024, 512];
[1024, 512, 128]; [1024, 512, 64]

107%;1073; 1074, 10°°

No dropout,0.1; 0.2; 0.3; 0.4; 0.5

Hyperparameter
GCN Hidden units

Learning rate
Dropout

Performance comparison on cross-validation

To evaluate the performance of DeepDDS, we compared
DeepDDS with some current state-of-the-art methods, including
both classical machine learning methods and deep learning-
based methods.
including Random Forests (RF), Gradient Boosting Machines
(GBM), Extreme Gradient Boosting (XGBoost), Adaboost,
Perceptron (MLP), Support Vector
(SVM), are considered in the performance comparison. Three

Six classical machine learning methods,

Multilayer Machines
deep learning-based methods are TranSynergy (Liu and Xie,
2021), DeepSynergy (Preuer et al., 2018) and Deep Tensor
Factorization (Sun et al., 2020).
between DeepDDS and these deep learning-based methods, we

To clarify the difference

summarize them as below:

e TranSynergy. TranSynergy includes three major components,

input dimension reduction component, self-attention

transformer component, and output fully connected
component. It combines the network propagated drug target
profile, gene dependency and gene expression to find novel
genes associated with the synergistic drug combination from
the learned biological relations.

e DeepSynergy. DeepSynergy uses molecular chemistry and
cell line genomic information as input, and a cone layer in a
neural network (DNN) to simulate drug synergy and finally
predict the synergy score.

e Deep Tensor Factorization (DTF). DTF combine
tensor-based framework and deep learning methods together
to predict synergistic effect of drug pairs, which is comprised
mainly by a tensor factorization method and a deep neural

network.

First, we conducted five-fold cross validation to benchmark
the predictive power of DeepDDS. The training samples (each
sample is a drug-drug-cell line triplet) are randomly split into

nse. S . -
or dl'ug (',()Hlblllatl(:)rl scr‘(:(‘,mng ‘ 9

five subsets of roughly equal size, each subset is taken in turn
as a test set and the remaining four subsets are used to train
the model, whose prediction accuracy on the test set is then
evaluated. The average prediction accuracy over the 5-folds is
used as the final performance measure. For clarity, we provide
typical performance measures widely used in classification
tasks, including area under the receiver operator characteristics
curve (ROC AUC), area under the precision recall curve (PR
AUC), accuracy (ACC), balanced accuracy (BACC), precision
(PREC), sensitivity (TPR) and Cohen Kappa. Table 2 shows
these performance measures of DeepDDS and other methods.
Clearly, DeepDDS-GAT achieved higher accuracy than all other
methods, and its performance measures of ROC AUC, PR AUC,
ACC, BACC, PREC, TPR, TNR and Kappa reach 0.93, 0.93,
0.85, 0.85, 0.85, 0.85, 0.85 and 0.71, respectively. In fact,
both DeepDDS-GAT and DeepDDS-GCN outperform others
We note that
the classifier XGBoost also achieved remarkable performance,

in terms of all these performance measures.

nevertheless still inferior to DeepDDS. The three deep learning-
based methods TranSynergy, DTF and DeepSynergy follow
closely XGBoost, but outperform other methods.

We further checked the top 100 drug pairs with highest
predicted synergy scores by DeepDDS-GAT (For detail see
Supplementary Table S1), and found that 98 drug pairs have
been experimentally validated to be synergistic combinations
over different cancer cell lines.

Performance evaluation by input permutation

We found that the higher the real synergy score, the higher the
predictive score. After normalization of real synergy scores to
[0, 1] region, we draw a scatter plot of the drug combinations
with respect to the predicted and real synergy scores. As shown
in Figure 2 (a), most points locate closely to the identity line.
The Pearson correlation between the predicted synergy scores
and real synergy scores reach 0.801. The results indicate our
method achieve superior predictive accuracy.

(a) (b)

Predict Score

DrugB-DrugA-cell line

00 02 04 s o8 10 02 04 06 o8 10
True Score DrugA-DrugB-cell line

Fig. 2. Scatter plots of synergy scores. (a) The scatter plot with respect
to the real synergy scores and predicted synergy score. (b) The scatter

plot of synergy score obtained from different input order of two drugs.

We go further to verify the predictive performance of
DeepDDS upon different input order of two drugs. For drug
A and drug B, we permutate the input features so that drug A-
drug B and drug B-drug A are regarded as two different samples
to train the model. Figure 2 (b) shows the predicted synergy
score upon different sequence of input features by DeepDDS-
GAT. It can be found that most values locate closely to the
identity line and the Pearson correlation coefficient reach 0.9.
It can prove that our model is insensitive to the sequence of
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Table 2. Performance comparison of DeepDDS and competitive methods on 5-fold cross-validation

Performance Metric ROC AUC PR AUC ACC BACC PREC TPR KAPPA
DeepDDS-GAT 0.93 + 0.01 0.93 + 0.01 0.85 + 0.07 0.85 + 0.07 0.85 + 0.07 0.85 + 0.07 0.71 + 0.21
DeepDDS-GCN 0.93 + 0.01 0.92 + 0.01 0.85 + 0.01 0.85 + 0.01 0.85 + 0.01 0.84 + 0.01 0.70 + 0.22
XGBoost 0.92 + 0.01 0.92 + 0.01 0.83 + 0.01 0.83 + 0.01 0.84 + 0.01 0.84 + 0.01 0.68 + 0.01
Random Forest 0.86 + 0.02 0.85 £+ 0.02 0.77 £ 0.01 0.77 £ 0.01 0.78 £+ 0.02 0.74 £+ 0.01 0.55 £+ 0.04
GBM 0.85 4+ 0.02 0.85 £ 0.01 0.76 £ 0.02 0.76 £ 0.02 0.77 4+ 0.01 0.74 £+ 0.01 0.53 4+ 0.04
Adaboost 0.83 + 0.01 0.83 4+ 0.03 0.74 + 0.01 0.74 + 0.02 0.74 + 0.02 0.72 + 0.01 0.48 + 0.03
MLP 0.65 4+ 0.02 0.63 £+ 0.05 0.56 £ 0.06 0.56 & 0.05 0.54 £+ 0.04 0.53 £+ 0.22 0.12 4+ 0.04
SVM 0.58 + 0.01 0.56 + 0.02 0.54 + 0.01 0.54 + 0.01 0.54 + 0.01 0.51 + 0.12 0.08 + 0.04
TranSynergy 0.90 4+ 0.01 0.89 £+ 0.01 0.83 £ 0.01 0.83 £+ 0.01 0.84 £+ 0.01 0.80 £+ 0.01 0.64 £+ 0.01
DTF 0.89 + 0.01 0.88 + 0.01 0.81 4+ 0.01 0.81 + 0.01 0.82 + 0.01 0.77 + 0.03 0.63 + 0.04
DeepSynergy 0.88 £+ 0.01 0.87 + 0.01 0.80 + 0.01 0.80 + 0.01 0.81 + 0.01 0.75 + 0.01 0.59 + 0.05

the input features of drug combinations. In addition, we found
that the ROC AUC and PR AUC obtained by drug A-drug B
and drug B-drug A both reach or be close to 0.93.

Performance evaluation by leave-one-out cross validation

We went further to verify the performance of the DeepDDS
model using leave-one-out cross validation. First, we conducted
the leave-one drug combination-out experiment. More precisely,
we iteratively exclude each drug combination from the training
set, use the remaining data to train the DeepDDS model
that is in turn used to predict the sensitivity of the excluded
drug combination to cancer cell lines. The result of the leave-
one drug combination-out experiment is shown in Table 3,
DeepDDS-GAT achieve notably performance by AUC value
0.89, followed by DeepDDS-GCN. It can be also found that
DeepDDS significantly outperform all other methods.

As the leave-one drug combination-out experiment did not
excluded single drug from the training set, we next leave one
drug out to prevent the information of certain drug being
seen by the model. The leave-one drug-out experiment check
the potential to learn the important features of unseen drug
from the chemical structures of those seen drugs. As shown in
Table 3, DeepDDS still achieve better performance than other
competitive methods.

As previous studies (Liu and Xie, 2021), we also carried out
leave-one cell line-out experiment to verify the performance
of DeepDDS. Take the cell line T47D as an example, the
drug combination between BEZ-235 and MK-8669, Dasatinib,
PD325901, Erlotinib, MK-4541,
ABT-888, all have a high
Expectedly, the
prediction scores of these drug combinations have prior rankings

Lapatinib, Geldanamycin,
Temozolomide, Vinorelbine,

experimental synergy scores (Loewe>100).

among all candidate drug pairs (See Supplementary Table S2-S3
for detail). In addition to the leave-one cell line-out evaluation
, Preuer et al., 2018), we adopt more rigorous strategy to
evaluate our method. We exclude all the cancer cell lines belong
to specific tissue from the training set, so that the model can
not see any gene expression information of a certain type of
tissue. We iteratively use the excluded cancer cell lines as
the validation set and the remaining samples as the training
set to train the model. Table 3 illustrated that DeepDDS-
GAT achieve the best performance on leave-one tissue-out
evaluation. Also, DeepDDS performs better than all classical
machine learning methods and deep learning-based methods.
Moreover, Figure 3 show the ROC AUC values of DeepDDS-
GAT, DeepSynergy and TranSynergy on six different tissues,

including breast, colon, lung, melanoma, ovarian and prostate.
It can be found that DeepDDS-GAT is better than other two
deep learning-based methods with ROC AUC 0.84, 0.867, 0.821,
0.828, 0.843 and 0.775 by leave-one tissue-out cross validation,
respectively.

BREAST COLON LUNG MELANOMA  OVARIAN PROSTATE
DeepSynergy = TranSynergy B DeepDDS(GAT)

Fig. 3. The ROC AUC values of DeepDDS-GAT, DeepSynergy and
TranSynergy upon leave-tissue-out evaluations on six different tissues,

including breast, colon, lung, melanoma, ovarian and prostate.

Evaluation on independent test set

To verify the generalization ability of our method, we use
the benchmark dataset (O’Neil et al., 2016) to train our
model, and then employ an independent test set released by
AstraZeneca (Menden et al., 2019) to evaluate the performance
of DeepDDS and other competitive methods. The independent
test set contains 668 unique drug-pair-cell-line combinations,
covering 57 drugs (Supplementary Table S4) and 24 cell lines
(Supplementary Table S5).

Table 4 shows the performance achieved by DeepDDS and
competitive methods on the independent test set. It can be
seen that the performance of DeepDDS is better than all
competitive methods in terms of every performance measure.
For clarity, we draw the ROC curves of DeepDDS and other
methods, as shown in Figure 4. DeepDDS-GAT and DeepDDS-
GCN account for top 2, followed by DeepSynergy. Meanwhile,
it can be found that most machine learning-based methods
perform just as random guess. This result indicate classical
machine learning methods run into overfitting, while deep
learning-based method acquire better generalization ability.
In particular, DeepDDS-GAT and DeepDDS-GCN correctly


https://doi.org/10.1101/2021.04.06.438723
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.06.438723; this version posted July 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-ND 4.0 Internationall\}c\?

qse. . . .
or drug combination screening | 7

Table 3. Performance on DeepDDS and competitive methods on leave-drug combination-out, leave-drug-out and leave-tissue-out experiments

Leave-drug combination-out

Leave-drug-out Leave-tissue-out

ROC AUC PR AUC ACC ROC AUC PR AUC ACC ROC AUC PR AUC ACC
DeepDDS-GAT 0.89 + 0.02 0.88 + 0.06 0.81 + 0.03 0.73 + 0.01 0.72 + 0.05 0.66 + 0.02 0.83 + 0.04 0.82 + 0.4 0.74 + 0.03
XGBoost 0.84 + 0.02 0.83 £ 0.04 0.75 +0.02 0.66 + 0.09 0.65 £ 0.06 0.61 &+ 0.06 0.82 + 0.01 0.81 £ 0.01 0.73 £ 0.01
TranSynergy 0.81 &+ 0.01 0.79 &+ 0.02 0.73 + 0.03
DeepSynergy  0.83 £ 0.03 0.81 &+ 0.05 0.77 £ 0.03 0.71 £ 0.07 0.64 & 0.06 0.61 £ 0.07 0.80 £ 0.01 0.79 4+ 0.04 0.71 4+ 0.05
Random Forest 0.82 £ 0.02 0.81 £ 0.03 0.74 £ 0.02 0.67 £ 0.08 0.66 = 0.05 0.62 &+ 0.06 0.80 £ 0.08 0.80 £ 0.05 0.71 £ 0.05
MLP 0.82 + 0.03 0.81 £ 0.05 0.74 +0.02 0.69 + 0.05 0.68 £ 0.04 0.624+ 0.06 0.77 &+ 0.07 0.76 £ 0.05 0.70 £ 0.06
GBM 0.81 + 0.03 0.81 £ 0.04 0.74 £0.02 0.64 £ 0.09 0.63 £0.09 0.60 & 0.06 0.81 + 0.08 0.81 £ 0.05 0.72 £ 0.06
Adaboost 0.77 +£ 0.02 0.78 £ 0.02 0.69 &+ 0.03 0.62 + 0.11 0.61 £ 0.06 0.58 &+ 0.11 0.77 £ 0.12 0.78 £ 0.11 0.70 £ 0.11
SVM 0.66 + 0.01 0.65 £ 0.05 0.58 & 0.01 0.60 & 0.02 0.59 £ 0.05 0.55 & 0.03 0.66 & 0.04 0.66 £ 0.07 0.59 £ 0.05

predicted 421 (421/668=0.63) and 402 (402/668=0.6) drug
pairs included in the independent test set, which outperform
DeepSynergy correct prediction 317 (317/668=0.47) by 16%
and 13%, respectively. The confusion matrices in Figure S3
show detailed numbers of correctly and falsedly predicted
samples by the three methods.

Predictive performance on novel drug combinations

1.0

0.8 1

0.6

DeepDDS-GAT(AUC = 0.662)
DeepDDS-GCN(AUC = 0.672)
DeepSynergy(AUC = 0.556)
RF(AUC = 0.499)

SVM(AUC = 0.500)
MLP(AUC = 0.533)
GBM(AUC = 0.510)
XGB(AUC = 0.518)
AdaBoost(AUC = 0.486)

0.4 1

True Positive Rate

0.2 1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 4. ROC curves and AUC values of DeepDDS and competitive

methods on independent test dataset released by AstraZeneca.

Graph attention network reveals important chemical
substructure

DeepDDS-GAT model iteratively passes messages between
nodes so that each node can capture the information of its
neighboring nodes. Meanwhile, each neuron is connected to the
neighborhood upper layer through a set of learnable weights
in the GAT network. As a result, the feature representation
actually encodes the information of the chemical substructure
around the atom, including formal charge, water solubility and
other physicochemical properties. This motivate us to explore
the implications of the attention mechanism in revealing the
important chemical substructures.

For example, previous study has showed that EGFR
inhibitor Afatinib and AKT inhibitor MK2206 play synergistic
effect in the treatment of lung cancer, head and neck squamous
cell carcinoma (HNSCC) (Modjtahedi et al., 2014,Silva-Oliveira
2017,Hung et al., 2016). We investigate how the atomic feature

vectors evolved during the learning process, by measuring the
Pearson correlation coefficient between atom pairs based on the
feature vectors. The heat maps of the atom correlation matrix is
plotted to observe the change of feature patterns. The similarity
scores are displayed in the cells and indicated by the color
scheme. It can be seen that before training the visual patterns in
the heat maps of two drugs shows some degree of chaos. After
training, however, the heat map of both drugs show obvious
atomic clusters in a specific order. In particular, the atom of
drug Afatinib is clustered into five subgroups, while MK2206
clustered into two atom subgroups (one big and one small
block), as shown in figure 5. Without loss of generalization,
we randomly select a few other drug combinations to check
whether their feature vectors undergo similar pattern changes
during the training process. These drug combinations include
AZD2014 and AZD6244, AZD8931 and AZD5363, GDC0941
and AZD6244,GDC0941 and MK2206. As expected, the atomic
feature vectors of the involved drugs gradually cluster into
several subgroups (See Supplementary Figure S2-S6 for more
detail).

We go a step further to explore the interpretability of the
graph attention network in revealing the chemical substructures
that are potential components exerting synergistic effect of
the drug combinations. We compute the Pearson correlation
so that
significant association between chemical subgroups of different

coefficients between atom pairs across two drugs,

drugs can be uncovered. Take the drug combinations Afatinib
and MK2206 as example again, we find that the heat map of
the atom correlation matrix have no clear clustering pattern
before training, while it show two notably linking blocks after
training, as shown in Figure 6 (a). More interesting, these two
linking blocks exactly indicate that the bigger atom subgroup
(No.1-25 atoms) of MK2206 associates to the 3th and 5th atom
subgroups (No.9-14 atoms and No.21-33 atoms) of Afatinib.
From the 3D structures of the two drugs, they are just the
main functional groups of Afatinib and MK2206, respectively.
For other examples mentioned above, we found that their inter-
drug atom correlation matrices also display clustering patterns,
as shown in Figure S3-S6.

As a result, the atom embedding vectors display clear
feature patterns during the training process, namely, the atom
correlation matrices clearly cluster into several atom subgroups,
and the degree of association between atom subgroups of
different drugs transfer from chaos to order. We adventure
to speculate that the atom subgroups included in these two
drugs play key role in their synergistic function, although the

ot aPharmacological mechanism in vivo remains unclear to date.
>
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Table 4. Performance metrics for the classification task in independent test set

Performance Metric ROC AUC PR AUC ACC BACC PREC TPR KAPPA
DeepDDS-GAT 0.66 + 0.12 0.82 + 0.15 0.64 + 0.15 0.62 + 0.13 0.80 + 0.11 0.67 + 0.12 0.21 + 0.29
DeepDDS-GCN 0.67 + 0.12 0.83 + 0.13 0.60 + 0.11 0.63 + 0.13 0.83 + 0.10 0.56 + 0.20 0.21 4+ 0.23
DeepSynergy 0.55 + 0.15 0.71 4+ 0.13 0.47 + 0.14 0.53 + 0.13 0.75 + 0.14 0.39 + 0.17 0.04 + 0.15
Random Forest 0.53 + 0.14 0.76 + 0.16 0.50 £+ 0.14 0.54 + 0.13 0.75 + 0.14 0.49 4+ 0.14 0.06 4+ 0.11
MLP 0.53 + 0.13 0.74 + 0.12 0.53 + 0.15 0.53 + 0.15 0.74 + 0.13 0.53 + 0.13 0.05 + 0.11
GBM 0.51 + 0.10 0.71 4+ 0.09 0.45 + 0.12 0.47 + 0.08 0.69 + 0.14 0.43 + 0.12 -0.03 £ 0.14
XGBoost 0.52 + 0.11 0.73 + 0.12 0.45 + 0.15 0.49 + 0.11 0.71 4+ 0.09 0.38 + 0.17 -0.01 £+ 0.14
Adaboost 0.49 + 0.09 0.69 £+ 0.14 0.46 4+ 0.17 0.47 + 0.12 0.69 + 0.14 0.46 + 0.15 -0.05 £ 0.17
SVM 0.47 + 0.11 0.71 + 0.13 0.54 + 0.13 0.47 + 0.15 0.70 4+ 0.13 0.63 4+ 0.11 -0.04 £+ 0.15
Before training After training
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Fig. 5. Heat map of the atomic feature similarity matrices of Afatinib and MK2206 before and after training. The heat maps show clear clustering

patterns during the learning process. The diagrams of chemical structures of Afatinib and MK2206 display the five and two subgroups according to

their clusters of heat maps.

Predicting novel synergistic combinations

The performance evaluation experiments above have shown
that our DeepDDS model
thereby we apply DeepDDS to predict novel
combination. We use the O’Neil drug combination dataset
to train the DeepDDS model. To generate candidate drug
combinations, we selected 42 small molecule targeted drugs
approved by the FDA (Bedard et al., 2020) and then generated
855 candidate drug pairs (see Supplementary Table S6). We
listed the top 10 predicted drug combinations in Table 5. To
verify the reliability of the predicted results,
an non-exhaustive literature search and found there are at

achieve superior performance,

synergistic

we conducted

least six predicted drug combinations are consistent with
the observations in previous studies or under clinical trials.
We presented the PMIDs or DOI identifiers of these related
publications in Table 5.

For example, the CDK4/6 inhibitor abemaciclib and
EGFR inhibitor lapatinib significantly enhanced growth-
inhibitory for HER2-positive breast cancer (Goel et al., 2016).
Ye et al. found that Copanlisib reduced Sorafenib-induced
phosphorylation of p-AKT and enhanced synergistically
of antineoplastic effect 2019). Also,
the combination of Erlotinib and Regorafenib in the

treatment of hepatocellular carcinoma successfully overcome

in vitro (Ye et al.,

the interference of epidermal growth factors (DAlessandro et al.,

Table 5. Top 10 predicted novel synergistic combinations on A375
cancer cell line

Drug A Drug B Cell Predict Publications
line  Score

Abemaciclib Lapatinib  A375 0.9977 26977878, 33389550,
26977873

Binimetinib  Sorafenib A375 0.9974 NA

Copanlisib Regorafenib A375 0.9973 NA

Copanlisib Sorafenib  A375 0.9973 30962952, 27259258,
doi:10.5282/edoc.24304

Binimetinib Regorafenib A375 0.9971 NA

Erlotinib Regorafenib A375 0.997 25907508

Vemurafenib Sorafenib  A375 0.9969 33119140, 30076136,
30844744, 29605720,
doi:10.21037/tcr.2020.01.62

Vemurafenib Regorafenib A375 0.9967 NA

Lapatinib Regorafenib A375 0.9967 27864115, 24911215

Pazopanib Sorafenib A375 0.9965 NA

2015). Addition of Sorafenib to Vemurafenib increased

thus
sensitivity of melanoma cells to vemurafenib (Tang et al.,
2020). Zhang et al. reproted that the Regorafenib combined

ROS production through ferroptosis, increasing the
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Fig. 6. The heat maps of Pearson correlation coefficients between atom
pairs across Afatinib and MK2206. Pearson correlation coefficients are
computed using the feature vector before and after training. (a) The heat
map shows no clear visual pattern before training, but after training shows
two clear linking blocks. (b) The bigger atom subgroup (No.1-25 atoms)
of MK2206 associates remarkably to the 3th and 5th atom subgroups
(No0.9-14 atoms and No.21-33 atoms) of Afatinib.

with the Lapatinib could improve anti-tumor efficacy in
human colorectal cancer (Zhang et al., 2017). We believe that
other predicted drug pairs are also promising combinations
await for further validation.

Discussion and Conclusion

In this paper, we have proposed a novel method to
predict synergistic drug combination to specific cancer cells.
Overall, our method performs significantly better than
other competitive methods on the five-fold cross validation
experiments. However, we noticed that the predictive accuracy
of our method are still limited on the independent test
set, although the performance of our method is greatly
superior than all competitive methods. We think the limited
performance is mainly attributed to the small number of
training samples. In fact, the benchmark dataset actually
includes only 38 unique drugs and 39 cancer cell lines, while
the space for possible drug combinations is much larger when
novel drugs are included

Two different graph neural network, GAT and GCN, are
used to learn drug embedding vectors in our method. We
extensively compared their performance to each other, as well
as to quite a few competitive methods. Overall, GAT performs
slightly better than GCN, and thus we further explored the
interpretability of the GAT model. However, we have realized
that the physicochemical properties of the molecular graph
and attention weights between the atoms have not been fully
understood. In the future, we are interested in studying the
connections between atoms to incorporate more information
resources into the DeepDDS model to improve the model
interpretability and predictability.

€. . . .
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In conclusion, we have proposed a novel method DeepDDS
to predict the synergy of drug combinations for cancer
cell lines with high accuracy. Our performance comparison
experiments showed that DeepDDS performs better than other
competitive methods. We have demonstrate that DeepDDS
achieve state-of-the-art performance in a cross-validation
setting with an independent test set. We believe that with
the increasing size of the data set available, DeepDDS can
be further improved and applied to other fields where drug
combinations play an essential role, such as antiviral (Akhtar,
2020), antifungal (Pereira et al., 2021) and multi-drug synergy
prediction(Ontong et al., 2021). Overall, we believe that our
method will yield some inspiring insights into the discovery of
synergistic drug combinations.
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