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Abstract

Nonlinear mixed effects models provide a way to mathematically describe experimental data
involving a lot of inter-individual heterogeneity. In order to assess their practical identifiability
and estimate confidence intervals for their parameters, most mixed effects modelling programs
use the Fisher Information Matrix. However, in complex nonlinear models, this approach can
mask practical unidentifiabilities. Herein we rather propose a multistart approach, and use it to
simplify our model by reducing the number of its parameters, in order to make it identifiable.
Our model describes several cell populations involved in the in vitro differentiation of chicken
erythroid progenitors grown in the same environment. Inter-individual variability observed
in cell population counts is explained by variations of the differentiation and proliferation
rates between replicates of the experiment. Alternatively, we test a model with varying initial
condition. We conclude by relating experimental variability to precise and identifiable variations
between the replicates of the experiment of some model parameters.

1 Introduction

Inter-individual variability is ubiquitous in biology, from the fluctuations of molecular contents across
populations of single cells [1], to the variations of physiologial parameters between whole organisms [2].
This variability has uncountable consequences, for instance at the scale of developmental [3], ecological
or evolutionary processes [4, 5].

As a result, one often faces significant amounts of variations between replicates of the same biological
experiment, which we will refer to as experimental variability. This variability can be taken into account
by deterministic dynamical models of the biological system, as a random variation around its predicted
behaviour [6, 7]. Such models thus disregard the fact that variability is inherent to the biological nature
of the system under study.

Another difficulty that can arise from this approach is when some parameters of the model are
unidentifiable. A parameter is said identifiable when a particular measurement of the model output
(potentially affected by measurement error) is associated to a unique parameter value [6]. Otherwise it is
unidentifiable. The model itself is said identifiable if all its parameters are identifiable, and unidentifiable
if at least one of its parameters is unidentifiable.

More precisely, a model can be unidentifiable for several reasons. If some parameters are redundant,
meaning that they can be varied together in such a manner that the model output is kept constant, they
are called structurally unidentifiable. If the data quantity (sample size) or quality (measurement error) are
insufficient to precisely infer some parameter values, these parameters are said practically unidentifiable.
It should be noted that while all practically identifiable parameters of a model are also structurally
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identifiable, the converse is not necessarily true (see for instance the recent review on identifiabilty by
Wieland et al. [8]). For this reason, the focus of this paper is on practical identifiability, and unless
stated otherwise we will be referring to the practical identifiability of model parameters.

When the parameters of a model have a precise physical or biological interpretation, it can be tempting
to use their estimates to formulate predictions about the system. However, as these estimates are not
uniquely determined in unidentifiable models, an unidentifiable model should never be used for predictive
purposes [9].

In order to interpret experimental heterogeneity, we propose to use nonlinear Mixed Effects Models
(MEM). In particular, we are interested in the identifiability of such models. MEM work by applying the
same mathematical model to all the individuals of the population, with different parameter values for
each individual, and thus have been used in a variety of fields involving inter-individual variability [10].
This approach allows to assign different levels of variability for each parameter by making the distinction
between population parameters, that are the means and variances of the parameter values across the
whole population, and individual parameters, that are the precise parameter values assigned to each
individual.

In the context of experimental variability, one might for instance consider all replicates of the ex-
periment as individuals coming from the same population (the theoretical population of all the possible
outcomes of the experiment). Assigning different parameter values in a dynamic model for each individ-
ual (i.e. each replicate of the experiment) would then allow to assess which parameters of the model
are mostly affected by experimental variability (i.e. which parameters are the most variable between
individuals). The question that naturally arises is whether or not such a model would be identifiable.

In general, one argument in favour of the use of MEM is the fact that using the population distribution
as a prior can help with the estimation of the individual parameters, thus improving their practical
identifiability [11]. This rationale is based upon the fact that most MEM calibration methods estimate
the population parameters in a first step, using the data from the whole population, and then estimate
individual values for every parameter in a bayesian way, an approach referred to as Empirical Bayesian
Estimation [12].

However, this first intuitive argument on parameter identifiability in MEM is somewhat challenged
by another consideration: the intricate definition and estimation of population and individual parameters
might in fact complicate the assessment, and even the definition, of parameter identifiability in MEM
[13]. As a consequence, the identifiability of MEM parameters is of critical importance to their widespread
applications, and should not be neglected [9, 14]. In general, practical parameter identifiability depends
on the precise definition of the model parameters (in the case of MEM, that is the definition of the
distributions of the individual parameters across the population), together with the quantity and quality
of the experimental data used for calibration [6]. Several kinds of approaches for structural identifiability
analysis, that were developped for models without mixed effects, have been adapted in a mixed effect
context [15, 16]. Regarding practical identifiability analysis, two different kinds of empirical approaches
are reported for MEM [13], though with a lot of potential refinements.

First, the Fisher Information Matrix (FIM), which is computed from the Hessian of the likelihood,
estimated at the optimal parameter set, allows for a quadratic approximation of the likelihood surface
near its optimum. This in turn, allows to infer confidence intervals for any parameter at any level,
provided that the FIM is non-singular [17, 18]. In this setting, a singular FIM indicates that some
parameters are structurally unidentifiable. Conversely, a near-singular FIM could indicate that some
parameters are practically unidentifiable. However, the quadratic approximation of the likelihood surface
might mask practically unidentifiable parameters in the case of nonlinear, partially observed models. In
extreme cases, the FIM can even make some practically unidentifiable parameters appear as identifiable
[6]. As a consequence, while the FIM is still relevant to assess the structural identifiability of models, it is
completely inadequate to study practical identifiability. Since our focus is on the practical identifiability
of MEM, we will not use the FIM to assess the identifiability of our models. Other methods have been
developed for models without mixed effects, such as the profile likelihood [6], but to our knowledge
they have not yet been implemented in any of the existing software for MEM calibration. Given the
widespread use of these software for the calibration of MEM in pharmacology and personalized medicine
[19], it would be particularly interesting to be able to empirically study the practical identifiability of
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MEM, directly from the calibration software.
Secondly, one might run the estimation algorithm several times, using a sample of initial guesses for

the parameter values [13]. In that case, the convergence of the algorithm to a unique likelihood optimum,
with different optimal parameter values, indicates that the parameters are unidentifiable. We refer to
this approach as Initial Guess Sampling (IGS). It has also been termed the multistart approach, and the
samples of estimated parameter values that it provides do not contain any information regarding the
variance of the estimation or the confidence intervals of the parameters [20]. Since this method requires
a potentially large sample of runs of the estimation algorithm, it is more costly in terms of computational
power than a simple evaluation of the FIM eigenvalues. As a consequence, most approaches to the
identifiability analysis of MEM rely on the FIM [10, 13, 14, 21–23], despite its proven inaccuracy at
assessing practical identifiability [6].

Since the practical identifiability of a model depends on both the definition of the model and the data
used to calibrate it, there are two broad classes of approaches for dealing with an unidentifiable model. On
one hand, it is possible to increase the amount of data available for parameter estimation. For instance
measuring an additional, previously unobserved quantity might remove structural unidentifiabilities. It is
also possible to use the tools of experimental design [22, 23] to define a new set of more informative
experiments, that can then be used to estimate new parameter values and assess their identifiability.
However, experimental design approaches are approximate and there is no a priori proof that performing
the optimal experiment will actually make the model identifiable [24, 25]. On the other hand, it is also
possible to change the definition of the model parameters, in order to simplify the estimation for the
other parameters [26, Section 10.2], an approach which we refer to as model reduction. For instance,
reparameterizing the model in terms of the estimable parameter combinations would remove any structural
unidentifiabilities, while potentially sacrificing the biological interpretation of these parameters. It is also
possible to constrain the value of some unidentifiable parameters (for instance setting them to zero)
in order to simplify the estimation task. But then, which criterion would allow us to choose which
parameters to remove from the model?

This consideration is particularly important for MEM, as all individual parameters might not have
the same variance across the population. Thus, the size of the sampled dataset (in terms of the number
of individuals) is critical for the estimation of the population variances, since a sampling bias in a small
dataset could mask the variance on some parameters. From the point of view of experimental design,
the determination of the necessary sample size in order to guarantee a certain level of confidence on all
parameters in MEM is a central question, which has already been covered to a certain extent [22, 27],
using geometric features of the likelihood surface approximated from the FIM [28, section 10.5.3]. From
the point of view of model reduction, it would be tempting to remove the unidentifiable variances by
setting them to zero, potentially improving the estimation of the other parameters of the MEM without
affecting the quality of the model fit to the data. In some cases however, adding a random effect or
a covariate to a MEM could improve parameter identifiability [26, Section 5.1], as it might split out
combinations of structurally unidentifiable parameters.

In this paper, we adress these questions using a MEM of the in vitro erythropoeisis that we adapt
from a previous model, proven to relevantly reproduce the dynamics of single replicates of the experi-
ment [29]. This MEM accounts for experimental variability by assigning different parameter values for
proliferation and differentiation in each replicate of an identical experiment. We assess its identifiability
using a multistart approach, based on extensive parameter estimations with the MEM calibration soft-
ware Monolix [30]. Then, we reduce the model in order to make it identifiable, using the correlations
between the estimated parameter values. Alternatively, we test whether or not the observed variations
in the outcome of our experiment could be explained by variations in the initial condition of the experi-
ment rather than variations of the differentiation and proliferation dynamics. Our final model associates
different levels of variability for each dynamic parameter, which allows us to identify which features of
the erythroid differentiation are the most variable from experiment to experiment. Moreover, this work
proposes a multistart approach for MEM identifiability analysis, which appears as a promising alternative
to the FIM.
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Figure 1: Data used in this study. They comprise the total number of living cells in the LM1 and in
the DM17 media (in log-scale), as well as the number of differentiated cells in DM17 (represented as a
fraction of the total number of cells) in 7 independent replicates of the experiment.

2 Materials and methods

T2EC cell culture

The experimental setting from which all the data used in this study were obtained consists in a culture of
25000 chicken erythroid progenitors called T2EC that were extracted from the bone marrow of 19 days-
old embryos of SPAFAS white leghorn chickens (INRA, Tours, France). They may either be maintained
in a proliferative state or induced to differentiate into mature erythrocytes depending on the medium in
which they are grown, as previously described [29, 31–33].

In the self-renewal medium (referred to as the LM1 medium) the progenitors self-renew, and undergo
successive rounds of division. Its composition is given in Table S1 in the Supplementary Materials. Cell
population growth was evaluated by counting living cells in a 30 µL sample of the 1mL culture using a
Malassez cell and Trypan blue staining (SIGMA), which specifically dyes dead cells, each 24h after the
initial sowing of 25000 cells in the culture, as previously described [29, 31–33].

T2EC can be induced to differentiate by removing the LM1 medium and placing cells into 1mL of the
differentiation medium, referred to as DM17. Its composition is given in Table S1 in the Supplementary
Materials. Upon the switching of culture medium, a fraction of the progenitors undergoes differentiation
and becomes erythrocytes. The culture thus becomes a mixture of differentiated and undifferentiated
cells, with some keeping proliferating. Cell population differentiation was evaluated by counting differen-
tiated cells in a 30 µL sample of the culture using a counting cell and benzidine (SIGMA) staining which
stains haemoglobin in blue. A parallel staining with trypan blue still gives access to the overall numbers
of living cells, as previously described [29, 31–33].

Consequently, the data available from this experiment are the absolute numbers of differentiated
cells, as well as the total number of living cells (which comprises both self-renewing and differentiated
cells) each 24h after the initial sowing of 25000 cells in the culture. The data presented on Figure 1 are
the total number of living cells in the culture, and the fraction of differentiated cells in 7 independent
replicates of the experiment.

2.1 Modelling framework

A Mixed Effects Model (MEM) is defined as the combination of three components. The structural
model describes the dynamic process at play in each individual. The parameter model, or individual
model, describes how the parameters of the structural model vary from individual to individual. Finally,
the observation model, or error model, describes how the predicted outcome of the model for each
individual differs from the observation.
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Figure 2: Diagram of the dynamic model. S: self-renewing cells. C: committed cells. B: Benzidine-
positive (i.e. differentiated) cells. ρi denotes the proliferation rate of compartment i and δij is the
differentiation rate of compartment i into compartment j .

2.1.1 Dynamic model

The SCB model, that we previously described [29], faithfully reproduces the dynamics of T2EC prolifera-
tion and differentiation by accounting for 3 cellular states (Figure 2). The self-renewing state S describes
the state of cells in the LM1 medium, where they can only proliferate or die. The differentiated state B
(which stands for Benzidine-positive) describes mature erythrocytes in the DM17 medium. Lastly, in the
committed state C, cells have not finished differentiating, but cannot go back to self-renewal anymore,
so that they are committed to differentiation. The dynamics of these three compartments are given by
the equations: 

dS

dt
= ρSS(t)− δSCS(t),

dC

dt
= ρCC (t) + δSCS(t)− δCBC (t),

dB

dt
= ρBB(t) + δCBC (t).

(1)

It is characterized by the set (ρS , δSC , ρC , δCB , ρB) of five dynamic (or kinetic) parameters, where
ρi is the net growth rate of compartment i , which might be positive or negative depending on the net
balance between cell proliferation and cell death, and δij is the differentiation rate of compartment i into
compartment j , which must be positive.

Moreover, it should be noted that differential system (1) is fully linear, and that its matrix is lower-
triangular, which makes it easily solvable analytically. Its simulation is thus very fast. The detail of the
analytical solutions to this system is given as supplementary material in [29].

Finally, not all variables in the models can be measured through the experiments that we presented
in Section 2, and we only have access to three observables of the system: the number of living cells in
LM1 (which we denote as S since there are only self-renewing cells in LM1), the number T of living cells
in DM17, and the number B of differentiated cells in DM17 (it is null in LM1). Unless stated otherwise,
we will always consider that the initial condition is fixed by the experimentalist so that the initial state
of the observables is: (S0,T0,B0) = (25000, 25000, 0).

2.1.2 Parameter model

In order to describe inter-individual variability in the parameter values of the SCB model, we consider at
first that the five kinetic parameters can vary between every individual. The two differentiation rates δSC
and δCB must be positive, and the net proliferation rates ρS , ρC and ρB can be positive or negative. In
order to respect these bounds on the individual parameter values, we use a combination of normal and
lognormal distributions across the population:
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

ρS ↪→ N
(
ρpopS ,ωρS

)
,

δSC ↪→ logN
(
δpopSC ,ωδSC

)
,

ρC ↪→ N
(
ρpopC ,ωρC

)
,

δCB ↪→ logN
(
δpopCB ,ωδCB

)
,

ρB ↪→ N
(
ρpopB ,ωρB

)
.

(2)

This parameter model has 5 fixed effects (ρpopS , δpopSC , ρpopC , δpopCB and ρpopB ), which quantify the
average behaviour of the population, and 5 random effects (associated with the standard deviations ωρS ,
ωδSC , ωρC , ωδCB and ωρB ).

2.1.3 Error model

In order to account for experimental errors in the measurement of the observables, MEM include an error
model, or observational model, which describes the statistical fluctuation of the model prediction around
the observation. We previously demonstrated that the proportional error model is the best to describe
the prediction error of the SCB model [29]. It is defined by:

yi ,j ,k = fi (tj , y0, θk) + bi .fi (tj , y0, θk).εi ,j ,k , εi ,j ,k ↪→ N (0, 1),

where yi ,j ,k marks the measurement of the i th observable, at the j th timepoint, on the kth individual,
and fi marks the model prediction for the i th observable from System (1), which depends on time t,
the initial condition y0, and the individual parameters θk . Finally, bi denotes the proportional error
parameter for the i th observable, which quantifies the standard deviation of the prediction error, and
εi ,j ,k is the individual weighted residual of the model for individual k , at time tj , for observable i . The
proportional error model introduces one additional parameter bi for each observable, resulting in three
error parameters for our SCB model.

Together with the dynamic model of System (1) and the parameter model of Equation (2), this error
model defines our first version of a MEM for the in vitro erythropoiesis. Since all other MEM in this
manuscript will have the same dynamic and error components, we will omit them from now on, and will
define each MEM by its parameter equation only, such as Equation (2).

2.2 Parameter estimation

We used the Stochastic Approximation version of the Expectation-Maximization (SAEM) algorithm [34]
implemented in Monolix [30] to estimate the parameters of our MEM (Table S2). To avoid potential
local likelihood optima and ensure the convergence of the algorithm to the global optimum, we performed
the estimation 50 times using the Monolix Convergence Assessment tool, with independent uniformly
sampled initial guesses for the parameter values (Table S3). For the fixed effects, we sample the initial
guess in an arbitrarily large interval (Table S3). Thus most initial guesses will be wrong, and potentially
far from the true value. To ensure convergence in these conditions, we set a high initial variance and
error parameter values (Table S3). This ensures that the first step of SAEM can sample individuals
across all the parameter space, which will allow for a subsequent improvement of the estimates both for
the population averages and variances. This is a multistart approach that we refer to as Initial Guess
Sampling.

2.3 Model selection

In order to select which SAEM runs converged to the global optimum, we used Akaike’s weights [35]:

wi =
exp(− (AICi −min(AIC))/2)∑R
j=1 exp(− (AICi −min(AIC))/2)

, (3)

where wi is the Akaike’s weight of the i-th run, AICi is its Akaike’s Information Criterion and R is the
number of competing models. The Akaike’s weight of a given model in a given set of models can be seen
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as the probability that it is the best one among the set [35]. In this setting, selecting the best models
of a set of models means computing their Akaike’s weights, sorting them, and keeping only the models
whose weights add up to a significance probability (in this manuscript, 95%).

In MEM, one might either choose to use the marginal or the conditional AIC depending on the
context [36]. They differ by the corrective term that they introduce in the likelihood. However, we
will essentially use the AIC and the corresponding Akaike’s weights for selecting models with the same
structure and different likelihoods, such as the 50 runs of SAEM that we perform on the same model to
assess its convergence. For this reason, the choice of mAIC or cAIC is not relevant to our study, and we
will use the marginal AIC (AIC = −2 log(L̂) + 2K , where L̂ is the maximum likelihood and K is the
number of population parameters), that is computed by Monolix by default [10].

In order to select models with different structures, i.e. models that would differ by the definition of
their fixed or random effects, we use the BIC that has been derived for MEM [37, 38].

2.4 Identifiability analysis

2.4.1 Population parameters

We use an approach based on repeated parameter estimations, starting from different initial guesses,
to empirically assess the identifiability of our MEM. In this case, convergence to different parameter
values with the same likelihood indicates unidentifiability [13]. This approach has also been termed
the multistart approach, for instance by [20]. We will refer to the multistart approach as Initial Guess
Sampling (IGS) in this manuscript.

Our approach to IGS is the following:

1. We perform a random sampling of the initial parameter guesses and run SAEM for each of the
initial guesses, using the Monolix Convergence Assessment tool. This provides us with a sample
of optimal parameter values.

2. We test the convergence of the SAEM runs: we only want to consider the runs which reached
the global optimum. To this end, we use a selection criterion (wAIC ) to keep only the runs that
converged to the lowest likelihood values.

3. We compare the parameter values of these convergent runs. If they are different, then the model
is unidentifiable, as several different parameter values give the same likelihood.

It should be noted that since multistart approaches do not provide any information on the parameters
estimation error or confidence intervals [20], this approach do not allow for any statistical testing of pa-
rameter identifiability. The distribution of estimated values can rather be used to design a diagnostic plot
of population parameter identifiability, showing which parameters vary the most between the convergent
runs, and are thus the most poorly estimated. We propose to visualize the distributions of estimated
values as a boxplot normalized by their median in order to display this information.

2.4.2 Individual parameters

Individual parameters are estimated using an empirical bayesian approach, where the population distri-
bution of the parameters serves as a prior balanced by the individual data. In the case of unidentifiable
individual parameters, the experimental data do not provide enough information to determine them pre-
cisely. Then, the posterior distribution is very close to the prior, resulting in individual parameters being
estimated as their population mean.

More precisely, this principle that the posterior matches the prior for unidentifiable parameters holds
under two conditions [39]: first, the prior distributions must be independent, second, the parameter space
must be a product space. When one of these two conditions is not met, it is possible that the posterior
distribution will differ significantly from the prior even for unidentifiable parameters [39].

In the case of our model, the prior distributions of the individual parameters, which are the popu-
lation distributions defined in System (2), are independent, since the variance-covariance matrix of the
random effects is diagonal. Moreover, each individual parameter is either real (net self-renewal rates)
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or positive (differentiation rates), and thus the individual parameter space is a product space, namely
(ρS , ρC , ρB , δSC , δCB) ∈ R3 × R2

+

Consequently, we can assess the identifiability of the individual parameters by measuring the overlap
between the prior and posterior distributions. This phenomenon is summarized by a scalar criterion called
the η-shrinkage [12, 40]:

sη = 1− std(ηk)

ωθ
, (4)

where std(ηk) is the standard deviation of the estimated individual random effects in the population, and
ωθ is their theoretical standard deviation. In the case where information about a parameter is insufficient,
the random effects on this parameter shrink toward 0 in the population, and thus sη increases. Equa-
tion (4) also implies that shrinkage values vary from parameter to parameter, and that some parameter
might be more poorly characterized than the others.

Simulation studies have shown that shrinkage has a variety of effects on the model diagnostics,
starting from 30% shrinkage [12]. High shrinkage values affect the correlations between random effects
and covariates, as well as the correlations between the random effects themselves. It can also affect the
detection of structural model specification.

In this paper, we will use the 30% limit introduced in [12] as a rule of thumb to consider that the
individual parameters are well estimated.

3 Results

3.1 The model is unidentifiable

We estimated the parameter values of Model (2) by using our multistart approach. The distribution of
estimated likelihood values over the 50 runs of SAEM is displayed on Figure 3A, showing small variations
between the estimated log-likelihood values. Among these 50 runs of SAEM, the 45 associated to the
lowest −2 log(L̂) add up to 95 % of Akaike’s weights (Figure 3B). We thus focus on the outcome of
these 45 runs in the following.

The distributions of estimated population parameter values are represented in Figure 3C. The fixed
effect ρpopS , the corresponding variance ωρS and the three error parameters b1, b2 and b3 are estimated
with the smallest variance. For any of the other 8 parameters, the estimated values display more or
less variability. For these parameters, the estimation is less reliable. Thus, we conclude that the fixed
effects δpopSC , ρpopC , δpopCB and ρpopB are unidentifiable, as well as the corresponding variances (a total of 8
unidentifiable population parameters).

The shrinkage of the individual random effects is displayed on Figure 3D. The values of shrinkage for
δSC ρC , δCB and ρB range from 20 to 90% depending on the run, which indicates a clear discordance
between the population distribution of the parameters and the actual distribution of the individual pa-
rameters. We thus conclude that the individual data are not informative enough to estimate all random
effects for each individual.

As a consequence, it appears that Model (2) is unidentifiable at the population level as well as at the
individual level.

3.2 A reduction approach for MEM

3.2.1 Fixed effects: parameter correlations

Figure 4A displays the value of Spearman’s ρ2, which measures the nonlinear correlation between two
variables, for each pair of the 8 unidentifiable population parameters of Model (2). There is a high
correlation between δpopSC , ρpopC and δpopCB across the runs, which is represented in Figure 4B-C.

These results show that the optimal values of δpopSC , ρpopC and δpopCB are strongly correlated in the range
of values of Figure 4. This range corresponds to the range of estimated values in the 50 SAEM runs. The
correlations suggest that if we would replace two of these parameters by their expression as a function
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Figure 3: Model (2) is unidentifiable. A: Likelihood distribution over 50 SAEM runs on the Model (2).
B: Cumulated AIC weights over the 50 runs of SAEM. The 45 runs associated to the lowest likelihood
values (i.e. those that add up to 95% of the total weight of the 50 runs) are coloured in red. C:
Normalized parameter values in the 45 convergents runs of SAEM. Displayed are the distributions of
estimated parameter values, normalized by their median. D: Distribution of the η-shrinkage values for
the individual parameters in the 45 convergent runs of SAEM.

of the third one, we would also reduce the number of population parameters to estimate, and still allow
them to reach their optimal value.

We found the following expressions for the correlations:

δpopSC = 0.14 +
1.1(

ρpopC

)1.2 , (5)

and

δpopCB = 1.3ρpopC − 0.5. (6)

We thus conclude that if we replace δpopSC and δpopCB by their expression as a function of ρpopC in
Model (2), it might help the estimation. Yet, such a reduction might affect the convergence of SAEM
because the correlation might not hold outside of the parameter range of Figure 4.

Replacing δpopSC and δpopCB in Model (2) by their expression as a function of ρpopC , we obtain the following
reduced model:
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Figure 4: Correlations between the population parameters in Model (2) allow for a reduction of its
fixed effects. A: Correlation heatmap (Spearman’s ρ2) of the 8 unidentifiable population parameters in
the 50 runs of SAEM for the initial model. For each pair of unidentifiable population parameters, the
heatmap displays the color-coded value of ρ2. B: Nonlinear correlation between δpopSC and ρpopC . C: Linear
correlation between δpopCB and ρpopC . (B-C: Displayed are the estimated population parameter values over
the 50 runs of SAEM, color-coded by likelihood.) D: Estimated parameter values in the 36 convergent
runs of SAEM for Model (7), with reduced δpopSC and δpopCB . Displayed are the distributions of estimated
parameter values, normalized by their median.
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

ρS ↪→ N
(
ρpopS ,ωρS

)
,

δSC ↪→ logN
(
0.14 + 1.1

(ρpopC )
1.2 ,ωδSC

)
,

ρC ↪→ N
(
ρpopC ,ωρC

)
,

δCB ↪→ logN
(
1.3ρpopC − 0.5,ωδCB

)
,

ρB ↪→ N
(
ρpopB ,ωρB

)
.

(7)

Following the same approach as for Model (2), we ran the SAEM algorithm on this model 50 times
using uniformly sampled initial guesses for the population parameters. The resulting optimal likelihood
distribution is displayed on Figure S1A. Most of the runs reached the same likelihood optimum as with
Model (2) (Figure 3A), but 10 of them found higher likelihood values. In the case of Model (7), Akaike’s
weights select only 36 runs as the best ones (Figure S1B), that we will consider as the runs that reached
the global likelihood optimum.

The parameter values estimated in these 36 runs are displayed on Figure 4D. First, it shows that the
reduction of the model did not affect the accuracy of the estimation for the five parameters that were
identifiable in Model (2). Then, the population parameters ρpopC and ρpopB are estimated more precisely
in the reduced model (7) than in Model (2). However the three standard deviations ωρC , ωδCB and ωρB

are still estimated with some variability.
Since ωρC , ωδCB and ωρB define the distributions of three random effects, their unidenfiability might

indicate an overparameterization of the random effects. We investigate this using the η-shrinkage of the
individual random effects in the next section.

3.2.2 Random effects: shrinkage

We measured the η−shrinkage in the convergent runs of Model (7). The average shrinkage values for
each parameter are displayed in Table 1, which confirms that the individual parameters of Model (7) are
unidentifiable

These results indicate the individual data that we presented in Figure 1 are insufficient to estimate
five parameters per individual precisely. Indeed, our dataset only comprises 7 individuals. In order
to obtain an identifiable model based on Model (7), one might remove the random effect on one or
several individual parameters. Fixing their values across the population might allow for a more precise
estimation of the other, still variable, individual parameters, while keeping the same quantitative fit as
with Models (2) and (7). However, all parameters are not necessarily equivalent in this regard, since
different parameter sensitivities would make the model output more flexible under some combinations
of fixed parameters. This would allow for these combinations to better fit the data, depending on the
sensitivies of the model output to the parameter values. This sensitivity is imposed by the analytical
solution to the structural equations of the model that we defined in System (1), but for most models
there is no closed-form expression for the parameter sensitivities. As a consequence, and in order to keep
our approach as general as possible, we will not attempt any analytical expression of the model output
sensitivities to the individual parameters herein.

In order to choose which random effect to remove from our model, we consider that the parameter
with the highest shrinkage is the most poorly estimated across the population. Since ρC and ρB display
similar amounts of shrinkage in Model (7), we might remove either of their random effects in order
to reduce our model. Removing the random effect on ρC defines a new model with reduced δpopSC and
δpopCB , and with no variability on ρC , which is described in System (S1) in the Supplementary Materials.
Conversely, removing the random effect on ρB defines a new model with reduced δpopSC and δpopCB , and
with no variability on ρB , which is described in System (S2) in the Supplementary Materials.

In both Model (S1) and Model (S2), the population parameters (Figures S4 and S7) and the individual
parameters (Table 1, Figures S5 and S8) are still unidentifiable. We conclude that removing one random
effect from Model (7) is not sufficient to make it identifiable. Thus, we propose to further reduce it
by removing both the random effects on ρC and on ρB , resulting in a reduced model with 3 remaining
random effects:
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Model −2 log(L̂) Convergent Fixed Random η−shrinkage
runs effects effects sρS sδSC sρC sδCB sρB

(2) 1761 45 5 5 3 31 77 63 39
(7) 1761 36 3 5 3 28 66 40 62
(S1) 1761 36 3 4 3 28 - 49 44
(S2) 1761 22 3 4 3 29 63 32 -
(8) 1761 25 3 3 3 28 - 21 -

Table 1: A comparison of our models along reduction. The table displays the optimal likelihood, the
number of convergent runs (as selected by Akaike’s weights over 50 SAEM runs), the number of fixed
and random effects, as well as the average η–shrinkage for each parameter (expressed as a percentage of
the population variance) over the convergent runs for our models. For each model, we give the reference
of the equation where it is defined.



ρS ↪→ N
(
ρpopS ,ωρS

)
,

δSC ↪→ logN
(
0.14 + 1.1

(ρpopC )
1.2 ,ωδSC

)
,

ρC = ρpopC ,

δCB ↪→ logN
(
1.3ρpopC − 0.5,ωδCB

)
,

ρB = ρpopB .

(8)

In this model, every population parameters –including the remaining variances ωρS , ωδSC and ωδCB–
are reliably estimated (Figure S10) and the average shrinkage is lower than 30% for every parameter
(Table 1, Figure S11). In other words, our reduction approach allowed us to define a fully identifiable
MEM, i.e. a model which is able to quantitatively reproduce the individual trajectories of Figure 1, while
explaining experimental heterogeneity in terms of precise parameter variations between individuals.

In the next section, we test another hypothesis, under which experimental heterogeneity does not
come from inter-individual variations of the parameters of the dynamic model, but rather from variations
in the initial condition of the experiment. Finally, we discuss the biological significance of the parameter
values of Model 8 in Section 3.4.

3.3 Variability of the initial condition

In the previous section, we have considered that experimental heterogeneity originates from individual
differences in the parameters of proliferation and differentiation kinetics. On the other hand, experimental
heterogeneity might also be caused by an error in the sampling of the inital 25000 cells in the culture. In
this section, we assess whether a variability of the initial condition could better account for experimental
heterogeneity than variability on the model dynamic parameters. This can be tested by defining Mixed
Effect Models accounting for the heterogeneity of the initial population size. First, we define three
alternative versions of Model (8), which differ by their definition of the initial condition. We then
calibrate these models and study their identifiability in order to select the best model at reproducing our
data that is also identifiable.

The first model that we are considering is our reduced model (8), in which the kinetic parameters
ρS , δSC and δCB can vary between individuals, while ρC and ρB are kept constant between individuals.
In this model, the initial condition is fixed for all individuals: (S0,T0,B0) = (25000, 25000, 0).

In the second model that we consider, all kinetic parameters are fixed to their population average,
and we allow the initial condition to vary between individuals:

12

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 13, 2021. ; https://doi.org/10.1101/2021.03.01.433388doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433388
http://creativecommons.org/licenses/by-nc/4.0/


Model 2ln(L̂) #θF #θR BIC
(8) 1761 2a/1b 4a/5b 1778a/1775b

(9) 1801 3 4 1822
(10) 1759 2a/1b 8a/9b 1784a/1782b

Table 2: Bayesian Information Criterion (BIC) computed for Models (8-10). Since the definition of
the BIC depends on the decomposition of individual parameters between fixed parameters and random
parameters [37, 38], the computation of the BIC is ambiguous for Models (8) and (10). In these models,
ρpopC determines jointly the population values of ρC (which is fixed), δSC and δCB (which are random).
Consequently, we can compute two different values of the BIC, depending on whether we consider ρpopC
as the fixed effect of a fixed parameter (a), or as the fixed effect of two random parameters (b). In
practice, this consideration does not seem to affect the outcome of the selection.



ρS = ρpopS ,

δSC = 0.14 + 1.1

(ρpopC )
1.2 ,

ρC = ρpopC ,

δCB = 1.3ρpopC − 0.5,

ρB = ρpopB ,

S0 ↪→ logN
(
Spop
0 ,ωS0

)
,

T0 ↪→ logN
(
T pop
0 ,ωT0

)
.

(9)

In this model, parameters Spop
0 and T pop

0 are the average of the initial number of cells in the LM1
and DM17 experiment. They represent a systematic error in the sampling of the initial 25000 cells.
Parameters ωS0 and ωT0 are the standard deviations of the initial number of cells in each experiment.
For the third observable B , which is the number of differentiated cells, we consider the fixed initial
condition B0 = 0 for all individuals, as the differentiation is initiated at time t = 0.

Finally, the last model that we consider allows for interindividual variations of both the kinetic
parameters, as in Model (8), and the initial condition, as in Model (9):

ρS ↪→ N
(
ρpopS ,ωρS

)
,

δSC ↪→ logN
(
0.14 + 1.1

(ρpopC )
1.2 ,ωδSC

)
,

ρC = ρpopC ,

δCB ↪→ logN
(
1.3ρpopC − 0.5,ωδCB

)
,

ρB = ρpopB ,

S0 ↪→ logN
(
Spop
0 ,ωS0

)
,

T0 ↪→ logN
(
T pop
0 ,ωT0

)
.

(10)

We present the convergence data and the distributions of the population parameters and shrinkage
values for Models (9) and (10) in Sections S4.1 and S4.2 respectively of the Supplementary Materials.

We display the optimal log-likelihood −2 log(L̂) and the corresponding BIC for Models (8-10) in
Table 2. Model (8) appears as the best one, closely followed by Model (10). On the other hand, Model (9)
performs much worse than its competitors. Since Model (10) is unidentifiable (Figures S16 and S17), we
conclude that Model (8) is the best one both in terms of quality of the fit and of parameter identifiability.
This means that individual variations in the parameter values are more important in accounting for
experimental heterogeneity than variations in the initial condition.

3.4 The final model

In Model (8), the population parameters are identifiable (Figure 5). It is the same for the individual
parameters (Figure S11). This means that every parameter of the model can be reliably estimated
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Figure 5: The estimated parameter values of Model (8) are identifiable. Displayed are the distributions of
estimated population parameter values in the 25 convergent runs of SAEM for Model (8). The population
means and standard deviations are expressed in d−1. The error parameters are dimensionless.

Parameter Lower bound Population average Upper bound
ρS 0.38 0.61 0.85
δSC 0.22 0.37 0.59
ρC - 3.8 -
δCB 3.8 4.5 5.3
ρB - 0.26 -

Table 3: Parameter values in the optimal-likelihood run of Model (8). The table displays, for each
parameter, the average value across the population in the SAEM run with the lowest −2 log(L̂). For the
three parameters that vary across the population, we also give the bounds of the confidence intervals at
level 0.95 for the individual parameter values. All values expressed in d−1

from our data, and that the estimated values reflect an actual optimum in the description of in vitro
erythropoiesis.

The population average of the parameter values are displayed in Table 3. The fixed effects ρpopS ,
ρpopC and ρpopB determine the average behavior of the experiment. The average proliferation rate ρpopS

is estimated at 0.61 d−1 (Table 3). The doubling time of the self-renewing cells (i.e. the time it would
take to double their population in the absence of differentiation) is thus 27 h in the average experiment,
which is longer than the originally reported 18 h [33]. Proliferation in the committed compartment is
much faster (ρpopC = 3.8 d−1, Table 3), which gives the committed cells an approximate doubling time
of 4 h. Even though T2EC cells are known to proliferate faster in the differentiation medium than in the
self-renewal medium [33], such a difference in proliferation times is rather intriguing.

Moreover, ρpopB is estimated at 0.26 d−1, giving the differentiated cells a doubling time of 65 h. This
means that their proliferation is almost invisible at the timescale of the experiments, as might be expected
from differentiated cells.

From Equation (5), the value of ρpopC sets δSC to an average 0.37 d−1. The half-life of the self-
renewing cells (i.e. the time it would take to differentiate half of the population in the absence of
proliferation) is thus approximately 45 h. Respectively, from Equation (6), the average value of δCB in
the population is estimated at 4.5 d−1, which gives the committed cells a half-life of approximately 3 h
in the average experiment.

Apart from this average behaviour, three parameters of the final model can vary across the population,
and are estimated at different values for each individual experiment. The first one is ρS , which has the
estimated variance ωρS = 0.12 d−1. This translates into the individual values of ρS being estimated
between 0.38 d−1 and 0.85 d−1 (Table 3), which corresponds to doubling times between 20 h and 44 h.
Then, ωδSC is estimated at 0.25 d−1 with the individual parameter values of δSC estimated from 0.22 d−1
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to 0.59 d−1, which means that the corresponding half-life ranges from 28 h to 76 h approximately. Finally,
ωδCB is estimated at 0.086 d−1, with individual parameter values for δCB ranging from 3.8 d−1 to 5.3 d−1

and the corresponding half-life approximately ranging from 3 h to 4h30.

4 Discussion and prospects

4.1 Generalizing our approach

Most approaches for identifiability analysis in MEM rely upon the FIM [10, 13, 14, 21–23], even though
its parabolic approximation of the likelihood surface might mask complex practical unidentifiabilities [6].
We rather propose a multistart approach [13], that we refer to as Initial Guess Sampling. Multistart
approaches do not provide any information regarding the confidence intervals of the model parameters
[20], but they indicate parameter unidentifiabilities when the estimated values differ. For this reason, our
samples of estimated values cannot be used in statistical analyses. On the contrary, they only allow for
a visual check of the estimated values (for instance on Figure 5), thus adding a new kind of diagnostic
plot to the visual tools already available to the modeller using mixed effect models.

This approach allowed us to design an identifiable MEM of in vitro erythropoiesis which accounts
well for experimental heterogeneity as inter-individual variations of the proliferation and differentiation
parameters. Then, a question that naturally arises is whether or not our approach could be applied, or
generalized, onto other MEM? We identified two features of our approach, that might be of importance
for such a generalization.

First, it seems that iteratively reducing our model affects the convergence of SAEM. Indeed, while
all 50 runs of SAEM reached the same likelihood optimum for Model (2) (Figure 3A), only 36 runs
reached it for Model (7) (Figure S1B). Convergence was further affected by removing random effects
from our model (Figures S3B & S6B), to the point where only 25 runs of SAEM reached the likelihood
optimum for Model (8) (Figure S9B). However, the number of convergent SAEM runs is critical to the
assessment of population parameters identifiability. Depending on the complexity of the model and the
dataset, 50 SAEM runs might not be sufficient to assess parameter identifiability and allow for model
reduction, and the number of runs to be performed should thus be finely tuned in order to avoid issues
with computational time.

Morevover, we used the correlations between population parameters to define Model (7), with con-
straints on the fixed effects. The exact shape of the likelihood landscape and the resulting unidentifiability
is related to the structure of the model, and the quality of the data. This means that we were able to
explore the parameter space near the likelihood optimum using pairwise correlations (Figure 4). Yet, in
more complex nonlinear MEM, it is possible that the correlations would involve more than two parame-
ters at a time. In the end, detecting these complex correlations would require some kind of multivariate
correlation analysis [41].

4.2 About the source of experimental heterogeneity

In this paper, we consider that experimental heterogeneity might either originate in variations of the
kinetic parameters between replicates of the experiment, or by experimental errors in the initial number
of cells. Using model selection and identifiability analysis, we conclude that variations in the kinetic
parameters of proliferation and differentiation best explain experimental heterogeneity.

Considering that every replicate of the experiment was obtained with the exact same protocol (Sec-
tion 2), it seems that only two features of our experiment could change from replicate to replicate.

The first one is the group of 25000 cells used to initiate the culture. In the haematopoietic system,
in vivo stem cells and progenitors display substancial variations in terms of self-renewal and potency
[42]. Since our T2EC cells are erythropoietic progenitors, our results suggest that the self-renewal and
differentiation abilitites vary between the cell populations that we used to initiate every experiment.

On the other hand, there has also been discussion around the fact that the external temperature
of the incubators (i.e. the temperature of the room where the T2EC are incubated, which is not their
incubation temperature) might affect the variability of gene expression [43]. This in turn, could affect
their self-renewal or differentiation potency.
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4.3 Conclusion

In this paper, we proposed a MEM for in vitro erythropoiesis, that accounts for experimental heterogene-
ity. We developped a multistart approach for assessing its identifiability, and we successfully reduced it to
make it identifiable. We showed that experimental heterogeneity is faithfully accounted for by variations
of the kinetic parameters of proliferation and differentiation in our system, and we relate these parameter
variations to actual biological features of our cells. This work establishes a MEM framework to study
variability in the outcome of biological experiments. Furthermore, it proposes a novel approach for the
analysis of parameter identifiability in MEM, and for reducing unidentifiable MEM.
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