
The sum of two halves may be different from the whole.
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Abstract

The advances in high throughput sequencing (HTS) enabled the characterisation of biological processes at an
unprecedented level of detail; the majority of hypotheses in molecular biology rely on analyses of HTS data. How-
ever, achieving increased robustness and reproducibility of results remains one of the main challenges. Although
variability in results may be introduced at various stages, e.g. alignment, summarisation or detection of differ-
ences in expression, one source of variability was systematically omitted: the sequencing design which propagates
through analyses and may introduce an additional layer of technical variation.
We illustrate qualitative and quantitative differences arising from splitting samples across lanes, on bulk and
single-cell sequencing. For bulk mRNAseq data, we focus on differential expression and enrichment analyses;
for bulk ChIPseq data, we investigate the effect on peak calling, and peaks’ properties. At single-cell level, we
concentrate on identifying cell subpopulations. We rely on markers used for assigning cell identities; both smartSeq
and 10x data are presented.
The observed reduction in the number of unique sequenced fragments reduces the level of detail on which the
different prediction approaches depend. Further, the sequencing stochasticity adds in a weighting bias corroborated
with variable sequencing depths and (yet unexplained) sequencing bias.

Keywords: mRNAseq, ChIPseq, smartSeq, 10x, sample splitting, differential expression, enrichment analysis, cell
type calling
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Introduction

The recent developments and improvements in high-throughput sequencing (HTS) technologies facilitated increas-

ingly complex transcriptome/genome-wide analyses [1], enhancing both the qualitative annotation of genomes [2, 3, 4]

and their quantitative, functional characterization through differential expression studies [5, 6]. The diversification

of methods specialised to a wide range of perspectives on DNA/RNA biology [7] was complemented by studies at

single cell level [8]. Advances were observed across all aspects of the sequencing workflow [9], complemented by an

increasing amount of resulting data. This created another challenge: producing robust and reproducible results and

simultaneously keeping up with the increasing intricacy of experiments [10].

The variability of sequencing output, which propagates through to quantification and other downstream exploration,

poses one of the main challenges in bioinformatics analyses, since it implies the disentangling of relevant from ir-

relevant sources of variation. While the biologically relevant quantities are context dependent [11], an essential

distinction exists between variability due to biological processes and variability due to measurement error or inaccu-

racy [12, 13]. The former is generally specific and well defined in relation to a condition; even when it is perturbed

by noise, an underlying pattern of expression may emerge [14]. Technical variability encompasses measurement error

[15], sequencing bias [16, 17], and variability due to missing data [18]. For the latter the assessment of technical

variation can be hindered by the lack of a ground truth.

Several studies proposed approaches to identify and characterise the sources of variability in HTS experiments,

focusing on several aspects of signal distribution, which can affect the accuracy of the downstream analyses and

interpretations, and jeopardise the reproducibility of results [11, 19]. These included both the analysis of noise

[14, 20] and the downstream components of the analyses such as batch/background effect [21], alignment approaches

[22], processing pipelines [5], normalisation methods [23] and differential expression thresholds [24, 25]. To model

the intrinsic biological variability, the number of replicates in the context of experimental design was optimised using

power calculations [11, 26], designed to provide a robust estimation of differences in expression. These approaches

rely on simulations on the number of expressed genes, on mean-dispersion estimates and dropouts after applying

frequency and outlier filtering; traditional approaches do not take into account elements of sequencing design including

across-lane sample splitting. In general, the impact of library construction and flow cell and lane characteristics on

downstream analysis has not been studied in detail.

Sources of technical variability for RNAseq experiments span from the combinatorial numbers of highly variable

isoforms to the handling of ambiguous or multi-mapped reads [1]. For ChIP datasets, the ability to address specific

biological questions can be significantly impacted by antibody efficiency and specificity [27] as peak distributions

are a direct consequence of affinity, over-crosslinking, DNA fragmentation and PCR amplification; for such samples,

users are faced with a trade-off between number of usable reads (sensitivity of peak detection) and proportion of

false positives derived from multi-mapped reads [28]. Low quality replicates can also generate bottlenecks when

used in conjunction with good samples, as true peaks missing from poor quality replicates may be marked as non-
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reproducible, thus creating false negatives [27]. Single-cell experiments share some of the drawbacks of bulk ones; in

addition, the exponential increase in the number of cells profiled per study, coupled with the shallower sequencing

depth, redefined some of the known difficulties, such as the characterisation of noise [29, 20].

Here we investigate the effect of across-lane sample splitting, at the sequencing stage, on downstream analyses for

bulk and single cell data; the sampling approach is modelled on observed sequencing outputs (bulk mRNAseq data).

To infer the effect on other types of sequencing data, we study the differences between ground truth and split-samples

(simulating across-lane splitting), with various parameters controlling the number of splits and proportion of reads

produced on each lane. We focus on standard analyses i.e. identification of differentially expressed (DE) genes or

ChIP peaks for bulk analyses; for single cell analyses, we concentrate on the allocation of cells to clusters (viewed as

proxies for cell types), and comment on the observed variability in biological interpretations.

Methods and Materials

Materials

The motivation for the subsampling strategy used throughout the manuscript is derived from a D. melanogaster

mRNAseq dataset (GSE85806) for which 3 samples were sequenced split across 2 lanes (GSM2284703, GSM2284704

(2RA3), GSM2284705, GSM2284706 (2RH2), GSM2284707, GSM2284708 (26RH3)). To highlight the consequences

of this choice in sequencing design we compared the resulting expression levels to the corresponding full-samples,

GSE55839 (GSM1346985 (2RH2), GSM1346996 (2RA3), GSM1347001 (26RH3)) [30].

To illustrate the split effects and their link to the biological interpretation we use bulk and single-cell mRNA data,

and bulk ChIPseq data. For the former (bulk mRNAseq) we used the Yang et al 2019 dataset [31], focusing on the 0h

and 12h samples (GSE117896, comprising SRR7624365, SRR7624366 (biological replicates for 0h), SRR7624371 and

SRR7624372 (biological replicates for 12h)). The bulk ChIPseq analysis was performed on H3K4me3 and H3K27ac

samples, using 0h and 12h samples for each (SRR7624381, SRR7624384, SRR7624389, SRR7624392).

To exemplify the effect on plate-based scRNA-seq platforms (smartSeq) we use the Cuomo et al 2020 dataset [32]. We

selected data from 6 donors, on 4 time points. On this input six experimental study cases (Table 1) were designed to

illustrate the effect of the different covariates i.e. the donor, the specific time-point and cell types (resulting clusters)

identities. To investigate the effects of lane-splitting on 10x Genomics scRNA-seq data, we used an in-vivo dataset

of human hematopoietic stem and progenitor cells from spleen, bone marrow, and peripheral blood [33]; the data is

available via BioStudies accession S-SUBS4 (donor SAMEA6646089).

Methods

[splitting strategy - sequenced samples] For the 3 D. melanogaster samples (2RA3, 2RH2, 26RH3) for which

whole-lane and split-lane sequencing was available, we followed the standard mRNAseq quantification procedure;
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Study case N cells Donor
N cells

Time point
N cells

Cluster
N cells

(donor) (time point) (cluster)

1 Case 1 105 hayt 105 day2 105 0 105

2 Case 2 106 pahc 106 day3 106
1 66
4 40

3 Case 3 168
melw 94

day0 168 3 168
qunz 74

4 Case 5 168 hayt 168
day1 61 9 61
day3 107 1 107

5 Case 6 95
melw 47

day1 95
5 45

vils 48 6 50

6 Case 8 217
melw 95 day0 95 3 95
naah 122 day3 122 2 122

Table 1: Overview of the study cases built on a scRNA-seq Smart-seq data (Cuomo et al 2020), illustrating the combinations
of the different covariates. Study case 4 (same donor, different time-point and same cluster) and case 7 (different donor,
different time-point, and same cluster) could not be generated due to the data structure.

the split samples were merged, without any additional pre-processing (merged-samples). Whole, split and merged

samples were aligned to the D. melanogaster r6.41 genome [34] using STAR 2.7.0a [35], with default parameters.

Next, the expression was quantified using featureCounts 2.0.0 [36], and summarised into count matrices. For each

BAM, a bigwig was produced using bamCoverage and individual transcript coverage was identified using pyBigWig

from deeptools [37]. In addition, for all settings, we determined the number of non-redundant (unique) and redundant

(all) reads and evaluated the number of fragments present exclusively in the one setting. We also calculated the ratio

between the abundance of a read (its redundancy) in the whole vs split sample, with an expected value equal to the

ratio of sequencing depths.

[splitting strategy - simulated data] The splitting strategy for the simulation study is consistent across all

datasets. The splitting is performed per sample. For each dataset, on the ground truth (GT), i.e. the original

sample, and on the simulated, split (S) samples, the same pipelines (for alignment, quantification and identification

of differentially expressed entries), with identical, default parameters are applied, to ensure an unbiased comparison

between results obtained on the GT and S samples, respectively.

Let k be the number of splits for a sample, and n the number of iterations (each split sample is generated from

the original GT sample). The steps for generating an S sample are: [1] subsampling reads without replacement

from the GT sample to 100
k % of GT in n iterations; [2] subsequently the k subsamples are concatenated. For bulk

mRNAseq and ChIPseq samples, we assessed k = 2 and k = 3, n = 10. In Discussion, we present simulated samples

for k = 2, 3, 4, 5 for one GT sample (bulk mRNAseq, 0h rep 1), n = 10; we also analysed simulated samples for k = 2

with variable split proportions from 55 - 45 to 90 - 10. For the bulk ChIPseq data we assessed k = 2 and k = 3,

n = 10. For the smartSeq data and 10x data we generated n = 3 S samples for k = 2, for each of the study cases

(i.e. each subset of samples), respectively, using the seqtk toolkit (https://github.com/lh3/seqtk). We note that

due to the stochasticity of sequencing we cannot simulate fragments that are present exclusively in the whole or

split samples. This limitation of the simulation study is compensated by the analysis of true split samples (the D.
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melanogaster dataset).

[bulk mRNAseq, Yang et al dataset] The raw samples (no QC-based filters applied) were aligned to the M.

musculus genome [Ensembl 98.38] [38] using STAR 2.7.0a (paired-end mode) [35]. Next, the expression was quantified

using featureCounts 2.0.0 [36]. To assess the stability between S and GT samples, abundance density plots and MA

plots were produced. We used noisyR [14] to perform noise analysis on the GT and S samples, and further analysed

the PCC distribution for binned abundances. For each dataset, expression levels were normalised using quantile

normalisation [39] and DE genes between 0h and 12h were identified using edgeR [40]. The DE call was based on

|log2FC| > 0.5 and adjusted p-value < 0.05 (using Benjamini-Hochberg multiple testing correction). Enrichment

analysis on the resulting DE genes was performed using the gprofiler2 package [41] on GO, KEGG, reactome and

transcription factor terms, with the background set as the set of expressed genes with abundance > 0 in at least one

sample.

[bulk ChIPseq] The GT and S samples were aligned to the M. musculus genome using STAR 2.7.0a (single-end

mode using default parameters) [35]. Narrow peaks were called using macs2 2.2.7.1 [42]. Peaks were matched between

samples if the midpoint of the peak in sample 1 is within the boundaries of the peak in sample 2 and vice versa.

Across sets of samples, amplitudes were normalised using quantile normalisation [39] and differentially methylated

peaks between 0h and 12h were identified using edgeR [40]. Peaks were called DE if |log2FC| > 0.5 and adjusted

p-value < 0.05 (using Benjamini-Hochberg multiple testing correction).

[sc smartSeq] Six experimental study cases were designed based on the Cuomo dataset [32], considering the donor,

time-point and cluster cell identities (Table 1). The corresponding samples were standardised in read length using

Trim Galore (0.4.1) by: trimming 10bp from the 5’ end (to reduce the effect of sequencing bias) and 40 bp from the 3’

end (to address high adapter sequence content); the length of the resulting reads was 75 nts. The GT and S samples

were aligned to the H. sapiens genome (GRCh38.p13) [38] using STAR (2.7.0a) [35] in paired-end mode. The gene

counts were summarised in a matrix using featureCounts 2.0.0 [36]. We applied fastQC [43] to obtain read quality

metrics and multiQC [44] to aggregate QC results from the reads, alignment and quantification. Seurat objects

[45] were created considering features expressed in > 3 cells, and cells with > 50 features. The analysis pipeline

comprises: i) normalization of expression levels (SCTransform [46]), ii) computation of PCA and UMAP embeddings

(RunPCA, RunUMAP), iii) Neighborhood graph computation (FindNeighbors), iv) Clustering (FindClusters), v)

Differential Expression (FindAllMarkers). We considered as DE features those with log2 FC > 0.5 (i.e. the positive

markers) and an adjusted p-value < 0.05 (using Bonferroni multiple testing correction). To assess the similarity of

the partitioning in the GT and S samples, we calculated Jaccard similarity indices (JSI, [47]) on the cluster-specific

sets of DE features (Fig 2D); restricting the JSI to the smaller set of markers.

[sc 10x Genomics] The GT and S fastq files were aligned to the 10x H. sapiens GRCh38 v3 reference transcriptome;

the protein-coding genes were quantified using 10x Cellranger v3.1.0 [48]. The processing and analysis was performed

individually for each donor, for the GT and S samples: after inspection of distributions of UMIs, number of detected
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genes, proportion of UMIs from mitochondrial genes (MT) and ribosomal protein-coding genes (RP), only cells with

> 1, 000 unique genes, < 10% MT and > 20% RP were retained for downstream analysis; the MT and RP genes

were subsequently discarded from the count matrix. Following normalization using SCTransform [46], the 3,000

most abundant genes, accounting for 60% − 85% of UMIs in cells across the data, were identified and used for the

calculation of PCA. A UMAP dimensionality reduction was calculated using the 30 first PCs (after inspection of

an elbow plot of PC variance); the UMAP was subsequently used to assess the extent of potential batch effects

originating from the tissue origin of cells, raw and normalized sequencing depths, MT% and RP%.

A 20-nearest neighbour graph was computed on the first 30 PCs of the data; the cells were clustered using SLM

community detection [49] on the NN graph. To assess the clustering similarity, element centric clustering comparison

[50] was employed on the set of common barcodes between GT and S using the ClustAssess R package [51]. Cluster

markers were identified using the ROC test in Seurat v3.1.4 [45]; only genes with |FC| > 2 were considered. The top

25 markers per cluster, ranked by discriminative power, were subsequently used to calculate the per-cell JSI between

cluster markers; the JSI when at least one of the sets is empty was set, by default, to 0.

All analyses were performed in R (3.6.3). The code for generating these results is available on github https:

//github.com/Core-Bioinformatics/split-manuscript. All tests were performed on a Linux server (16 cores,

755G RAM).

Results

Across-lane split leads to differences in bulk mRNAseq data

To determine (and justify) the appropriate parameters for the simulation study, we analysed the properties of 3

D. melanogaster bulk mRNAseq samples for which both the whole-sample per lane [30] and a quantification-based

50/50 split output were available. We note that the sequencing depths for the halves-samples (2RH2: 36M/26M

(58%/42%), 2RA3: 21M/31M (41%/59%), 26RH3: 33M/36M (47%/53%)) diverged from the expected 50/50. To

assess the consistency in properties for split-samples vs whole-samples, we first evaluated the nucleotide composition;

we see no significant (BH-adjusted p-value < 0.05) differences when comparing, per base, nucleotide distributions or

GC content (assessed using χ2 tests on A/C/G/T frequencies per position, Supplementary table 1). Next, we looked

into the number and abundance of non-redundant (unique) fragments; we illustrate the distributions of abundances

for the specific fragments, across the 3 available samples.

Although we see an increase in sequencing depth for the merged-samples vs the whole-samples, we do not consistently

observe a similar proportional increase in the number of unique reads; for 2RA3 the ratio of unique reads in the

merged-samples compared to the whole is ∼ 1.16 (compared to ∼ 1.36 ratio on sequencing depths), we observe a

similar proportion for 2RH2 (∼ 1.17 compared to ∼ 1.18) and for 26RH3 (∼ 1.20 compared to ∼ 1.23). Next,

we assessed the ratio between the abundances of individual reads in the whole-samples vs the merged-samples, the
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analysis was performed on non-zero counts for both compared samples; the ratio is expected to mirror the proportions

of sequencing depths. In Supplementary fig. 1 A-C, we show the distribution of log2 ratios of abundances between

merged- and whole-samples, binned on abundances; the guide line indicates the expected sequencing-depth-based

ratio. The ratio distributions are located below the guide line for low-medium abundances (1-6 on the log2 scale);

the ratio distributions increase to the expected level for medium range abundances, and rise above the guide line for

high abundances, underlining an “over-amplification” of signal and a sensitivity of signal quantification to the lane

splitting strategy. Most specific fragments (to either the concatenated samples, or the whole ones) are low abundance;

however, we note a few high abundance fragments which may be affected by sequencing bias (the distributions of

abundances are summarised in Supp Fig 1, D-F).

The change in ratio between split- and whole- samples is also reinforced when we consider the differences between

the average abundances, calculated using all incident reads, on sliding windows (100nts) for the whole- and merged-

samples (Supp Fig 1 G-I). The ratios are scaled per overall window abundance. Positive differences (red) correspond

to higher amplitudes in the whole-sample; negative differences (blue) correspond to higher amplitudes in the merged-

samples). For each sample, we show both the distribution for all differences (top subplot) and for differences above

0.2 (bottom subplot); the number of windows in each abundance bin are shown above the corresponding boxplots.

We see wider variation between whole and merged-samples at low-medium abundances (0-7 on the log2 scale) with

larger differences when the merged-sample abundance is higher than one in the whole sample. This trend suggests a

systematic, consistent stochastic over-amplification in the merged-samples; conversely, for abundances higher in the

whole sample, the differences in the merged-samples are more subtle. For medium-high abundances (> 7, log2 scale),

we see a higher number of small differences for windows with abundances higher in the merged-sample; the range

of differences is wider for for windows with higher abundance in the whole-samples, but their count is lower. The

pre-alignment analysis, at read level (Supp Fig. 1 A-C) hinted to these more subtle downstream effects, underlying

the importance of studying the impact of splitting across lanes on real data and simulated case studies.

To illustrate some differences observed on individual transcripts, we present three examples (from sample 2RH2) of

expression profiles, quantified using the all reads from the whole, the split and the merged samples, for transcripts at

high, medium and low abundances; these examples were selected based on the differences in signal distributions. The

two split samples behave as technical replicates, as expected; however for the merged sample, we observe significant

variation in distribution of signal compared to the whole sample (panel L), or in the localisation of expression

features such as peaks (panels J, K)). These differences may have knock-on effects on the downstream analyses and

interpretation results (e.g. for the quantification of noise [14]).

These remarks on sequenced output generate the hypothesis that conclusions drawn from standard comparisons

between samples may be altered by variations in splitting strategies; this effect is also entirely technical and stems

from the stochasticity of sequencing. While the simulation approach proposed in this study cannot capture fragments

found exclusively in split samples, the subsampling/concatenating process mirrors the under-representation of low-
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medium fragments and over-amplification of high abundance fragments, as well as loss of read diversity.

Consequences of across-lane splitting on bulk data

To systematically investigate the consequences of the observed differences resulting from splitting samples across

lanes, we simulated the splitting of sequencing samples on several datasets and assesses the downstream effects.

[bulk mRNAseq] For the bulk mRNAseq study case [31], we focus on the effect of across-lane sample splitting

on expression quantification, DE calling and enrichment analysis (summarised in Fig 1A-F). First, we assess the

differences in quantification corresponding to the same time-point/biological replicate, 0h (rep 1), on GT vs k = 2

S sample S2 (1A) and k = 2 vs k = 3 samples S2 and S3 (1B). We observe standard MA funneling shapes, with a

variation in excess of 1.5FC for low abundances for both comparisons. In addition, for low to medium abundances, the

S2−S3 comparison yields a wider distribution of log2 FCs underlining the technical variation (noise) that is introduced

(Fig 1B). Also noted is a slight shift of FCs (Fig 1A) driven by the stochastic redistribution of reads i.e. lack of

signal for some low abundance genes, and over-expression of medium-high abundance genes. Similar conclusions are

presented in Supplementary Fig 2A and 2B illustrating GT vs k = 3 samples S13 and two simulations of k = 2 S12

and S23, respectively.

Next, we focus on the DE call between the 0h vs 12h replicates, determined using standard pipelines and parameters.

We illustrate the properties of the DE sets called on GT vs k = 2 (Fig 1C) and k = 2 vs k = 3 (Fig 1D), respectively;

overall the results converge i.e. all genes are located in the proximity of the diagonal, however the variation is larger

for the k = 2 vs k = 3 simulation S12 vs S13 (1D). Specifically, we see 10,810 genes (31.2% of expressed genes) with

> 0.5 log2FC absolute difference for S12 vs S13, compared to 7737 (22.3%) between GT and S12. The colour gradient

is proportional to the average abundance of genes and underlines that medium abundance genes are mostly affected

by the variability in fold-change amplitude and identity. We also assessed the stability of DE signal, for the GT and

two sets of simulations for k = 2 and k = 3, summarised as an upset plot (the x/5 intersections are represented, with

x ∈ {5, 4, 3, 2, 1}). While the majority of genes are detected across all comparisons (746 out of 920 for DE in GT and

1318 called DE in any GT or S sample), we notice comparison-specific genes (up to 81 out of 1012 called DE for S23).

In particular, this analysis revealed only few “false negatives” (4 genes DE only in GT samples) in contrast to a larger

number of “false positives” (between 48 and 81 from each S sample). 1 gene (out of 1318 called DE in any GT or S

sample) was identified across all S samples but not in the GT. To link back the variability of signal to the biological

interpretation of the results, we compare the sets of enriched terms, corresponding to the various DE predictions (Fig

1F). Similarly to the DE summary (Fig 1E), we observe a 68.3% consistency in results i.e. significant terms shared

between all comparisons (out of 101 identified in total for GT, 141 identified for at least one comparison). However,

“false positive” entries are present (24 in total, between 2 and 11 from each S sample) identified only for one set of S

samples. These corroborated results underline a mixture of consistent patterns (on S samples) and random variation,
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difficult to predict or mitigate. This suggests lane-splitting introduces non biologically-robust results.

[bulk ChIPseq] The effects of across-lane sample splitting are also observed on ChIPseq data; for this case-study,

we will focus on the changes in peak amplitude and length; H3K4me3 (Fig 1G-K and Supplementary Fig 2E-J) and

H3K27ac (Supplementary Fig 2K-Q) data will be exemplified [31]. The variability on peak calling for H3K4me3

data is assessed using MA (Fig 1G,H) and cross plots (Fig 1I,J). Similarly as for the mRNAseq data, we observe

a funneling behaviour when GT and S samples are compared (Fig 1G and H), a wider variation in FC for S12 vs

S13 (Fig 1H), and a over-amplification of peak abundances in the simulated samples (Fig 1G); additional supporting

results are presented in Supplementary Fig 2E,F. These fluctuations propagate on DE calls (performed using standard

pipelines, on the 0h and 12h replicates), and are summarised in Fig 1I and 1J. Despite the overall convergence, for

the H3K4me3 data we notice a wider variability than for the mRNAseq data, with clear “false negative” peaks in

the simulated data i.e. medium abundance peaks identified as DE in the GT comparison, with a log2 FC > 2, and

not detected as DE in the S samples (borderline vanishing peaks); this behaviour observed also for H3K27ac data

(Supplementary Fig 2M,N).

To further investigate the reduced robustness for the DE call, we focused on other peak properties such as peak length

(defined as stop - start coordinates from the macs2 narrowPeak output); in Fig 1K we illustrate the distribution of

ratios of peak lengths when GT and S samples are compared. We notice a global, systematic shift towards shorter

peaks in simulated samples, the effect is more pronounced for k = 3, and a stability of behaviour across simulations

(blue and purple distributions). The decrease in peak length can only be observed for common peaks. The reduction

in number of called peaks is illustrated in Supplementary Fig 2I,J. For the 0h sample (SRR7624381), we see 10846

fewer peaks called for S12 samples (mean across 10 iterations) compared to GT and 14885 fewer for S13 samples

compared to GT, yielding percentage decreases averaging 12.7% and 18.4% respectively.

Simulated across-lane sampling splitting has multiple effects on the peaks called in ChIPseq data, from the number

of peaks to their amplitude and length; this technical, stochastic variation may have an impact on the interpretation

of results.
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Figure 1: Comparison of bulk mRNAseq analysis results for GT and S samples
A-B. Scatter (MA) and box plot summary on GT sample (0h, rep1) and a corresponding k = 2 S sample S12 (subplot A) and k = 2 and k = 3 S samples S12 and S13

(subplot B).
C-D. Scatter (cross) plots comparing the DE amplitude (log2 FC) calculated on 0h vs 12 h samples for the GT vs k = 2 S samples S12 (subplot C), and k = 2 and k = 3
S samples S12 and S13 (subplot D); the colour gradient is log2-proportional to the average abundance across all 8 corresponding samples.
E. Upset plot showing intersections between sets of DE genes (0h vs 12h) in GT samples (GT), 2 sets of k = 2 S samples (S12 and S22) and 2 sets of k = 3 S samples (S13

and S23).
F. Upset plot showing intersections between sets of significant terms (adj p-val ≤ 0.05, BH correction) predicted using gprofiler2 on the corresponding DE genes (see E).
Comparison of H3K4me3 ChIPseq analysis results for GT and S samples.
G-H. Scatter (MA) and box plots showing log2 abundance against log2 FC within G) GT sample (0h) and a k = 2 S sample S12 and H) k = 2 and k = 3 S samples S12

and S13 for the same sample (0h)
I-J. Scatter (cross) plot showing log2FC when comparing I) 0h and 12h for GT samples and k = 2 S samples S12, and J) 0h and 12h for k = 2 and k = 3 S samples S12

and S13, coloured by the average amplitude across all 4 corresponding samples.
K) Violin and box plots showing distribution of ratio of peak lengths between 2 samples ( sample 1 peak length

sample 2 peak length
), comparing ground truth (GT), k = 2 S sample (S12 and S22)

and k = 3 S samples (S13).
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Effects of across-lane splitting on single-cell data

[sc smartSeq] We exemplify the effect of across-lane sample splitting, on single-cell data, first on a smartSeq2

dataset. The diversity of conditions (donors and time-points, illustrated in Fig 2A) of the Cuomo et al 2020 dataset

[32] enables us to incrementally examine the consequences across 6 study cases (Table 1), covering a wide range of

experimental situations.

At the sequencing read level, the sample splitting significantly reduces the number of unique reads (Fig 2B, Supp

Table 2A) i.e. the read diversity decreases due to the expansion (over-representation) of duplicated reads. On an

invariant total number of reads, this decrease propagates through to the subsequent alignment and quantification

steps without influencing the fraction of mapped reads and the count distribution of samples, respectively (Supp

Fig 3B,C); nonetheless, this results in a reduction of the number features detected in S samples (Fig 2C). This is a

consequence of the loss of low-abundant features, while mid-abundance and high abundance features slightly increase

their expression due to the higher read duplication. Significant differences in the number of features (< 0.01 type I

error) between simulations and ground truth are detected only for study Case 3; the abundance distributions are not

significantly different (in localisation or shape) across the other study cases (Supp Tables 2A,B). Despite this, the

reduction in the number of observed features has an impact on downstream analyses such as partitioning into clusters

and cell visualization or identification of cell type markers. For the former, the UMAP topology of cells/ clusters

is altered (Supplementary Fig 3A); for the latter, in Fig 2D we observe a generalised reduction in the similarity

of marker genes for S samples when compared to marker genes determined on the ground truth sample (overall,

0.55-0.94 of the markers are shared between homologous clusters in GT and S samples). In addition, to assess the

variability across simulations, we display summary upset plots of marker genes across clusters and simulations (Fig

2E, Supplementary Fig 3E). Although the majority of the DE entries are shared between simulations, unique features

are present in most cases; these sum up to 12.3% of total features, on average, across clusters, simulations and study

cases.

Overall these results suggest that sample splitting reduces read diversity, which is propagated to downstream analyses,

altering the number of features expressed in samples, and potentially altering the biological interpretation of results.

Moreover, we highlight the variability across simulations which may introduce an additional degree of irreproducibility

across replicates.
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Figure 2: Sample splitting across sequencing lanes introduces variability that is propagated to downstream
analysis in Smart-seq2 scRNA-seq data. A) UMAP representation of the Cuomo dataset. Cells are coloured according
to their donor (left), time-point (central) and cluster (right). For the different study cases considered we show: B) Number
of Unique Reads distribution for the ground truth and simulations. C) Number of features distribution for the GT and S
samples. D) Cluster similarity for each study case as evaluated using the JSI calculated on the set of DE features obtained per
cluster. The values across the 3 simulations were averaged using the geometric mean. E) Variability of differentially expressed
feature set and number of unique DE features across simulations for cluster 0 (upper), 1 (central) and 2 (lower) for Study
Case 1.
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[sc 10x Genomics] The second single-cell case study focuses on a 10x dataset [33]; a similar strategy for generating

split samples was applied. Following the alignment and protein-coding gene quantification of the GT and S samples,

we observe a high overlap of called cells (i.e. barcodes) resulting from the Cellranger cell calling algorithm (19,453

common barcodes, 166 barcodes unique to ground truth, 13 barcodes unique to simulated). After filtering the low-

quality cells, the vast majority of barcodes were still common to both versions of the analysis (17,095 barcodes in

common, 155 barcodes unique to GT, 5 barcodes unique to simulated). We observe a greater diversity of UMIs and

genes in GT compared to simulated samples (Supplementary Fig 5F-G).

Following SLM clustering [49] on the nearest-neighbor graph, 19 clusters were found on GT and 18 on the simulation

of P1 (Fig 3A,B). Element-centric clustering comparison [50] was used to evaluate the per-cell clustering similarity

on the set of barcodes common to GT and simulated samples (Fig 3C), revealing high similarity (ECS > 0.6) for 91%

of cells (the top of the GT UMAP) and especially the for the island on the upper right (cluster 4 in both clusterings);

low similarity (ECS < 0.2) was observed for 9.0% of cells (mainly bottom of the UMAP); no cells had intermediate

ECS (0.2 ≤ ECS ≤ 0.6). Notably, an island of cells at the lower right of the GT UMAP, corresponding to cluster 15

in GT, disappeared in the split lane simulation (S samples).

To investigate whether the disappearing island was a reproducible effect of the lane splitting simulations, n = 3

S samples were generated. The S samples were consistent in terms of UMAP topography and SLM clustering

results (Supplementary Fig 4A-F). Across all S samples the “island cells” were scattered in the larger body of cells

(Supplementary Fig 4H). Conversely, in UMAPs generated on GT across 4 random seeds, the island of cells was

consistently detached from the larger body of cells (Supplementary Fig 4G). Furthermore, the fraction of within-

island nearest neighbors for the island cells was quantified in the GT and S samples (Fig 3E); while the island

cells had each other as neighbors in GT, this is no longer observed in the simulations, suggesting the loss of some

transcriptional heterogeneity during the lane splitting.

The marker genes that distinguish the vanishing island (Supplementary fig 5A) from the rest of the cells are SPP1,

SRGN, SOCS2, ALDH1A1, AREG and HIST1H1C (Supplementary Fig 5B); in particular SPP1 appears highly

specific to the island. Upon recalculating the PCA, and subsequently the UMAP, on the set of abundant genes with

SPP1 excluded, the island is absorbed into the wider body of cells (Supplementary fig 5C), and so is SPP1 expression

(Supplementary fig 5D). SPP1 is identified as the 5th most variable gene in GT by SCTransform. In S samples,

marked differences in gene variance can be observed when compared to GT (Supplementary fig 5E), leading to the

downstream consequences on dimensionality reductions and clustering results.

To further investigate the consequences of lane splitting clustering variability on cluster markers, typically used to

infer the identity of cells, the per-cell Jaccard similarity index (JSI) was calculated (Fig 3D). Certain regions of cells,

such as the middle right of the UMAP, displayed high JSI, indicating they would be interpreted similarly in the GT

and S analyses. Other regions exhibited lower JSI; the vanishing island (cluster 15) had lower JSI than the retained

island (cluster 4). These results suggest that the former could be interpreted inconsistently, depending on whether
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the library was split across lanes or not.

Discussion

Effects of splitting on read diversity and levels of noise

The main consequence of across-lane sample splitting is the variation in read diversity; this propagates onto transcript

coverage and quantification. To assess the variation, we focused on the transcript complexity (defined as the ratio of

unique to total reads [52], calculated per transcript), exemplified on the SRR7624365 sample (bulk mRNAseq, 0h rep

1). We compared the complexities, per transcript, of the GT and S samples (Fig 4A); each point corresponds to a

gene, the colour gradient is proportional to the log2 (abn). We observe a consistent trend for medium-high abundant

genes, across a wide complexity range [0, 0.75], highlighting the higher complexity (i.e. more diverse reads) of the

GT sample. Also noticeable is the high variability in complexity for the low abundance genes, presented on the MA

plots in the bulk section of the Results, and the localisation of the low abundance cloud under the equal complexity

diagonal, enforcing the previous conclusion across all abundances.

Yet another side effect of the variation in reads diversity is the quantification of noise across the samples [14]; we

focused on the transcript-based approach in noisyR since it is directly influenced by the robustness of transcript

coverage. In Fig 4B, we illustrate the variation of point-to-point PCC vs the variation in abundance for the GT and

2 iterations of k = 2 (S12,S22) and k = 3 (S13,S23). The wide and low PCC distributions correspond to higher levels

of noise; the distributions become higher and tighter for medium to high abundance genes. For medium abundance

genes, the GT distributions are systematically higher than k = 2 and k = 3, suggesting that the splitting increases

the level of noise and thus interferes with the detection of DE genes or other downstream analyses, as illustrated in

the Results section. The level of noise in the simulated samples is also variable and generally higher in k = 3 samples

than k = 2, although the distribution of PCC is wider and lower for all S samples than GT.

Effects of varying the number and proportions of splits

In the Results section, we exemplified the concatenation of k = 2 and k = 3 equal subsamples. However, in a

real-world scenario, we rarely observe an equal number of reads across split samples; in addition, split-designs are

occasionally mixed. To further understand the knock-on effects on downstream analyses, we illustrate the effect

of variable number and proportions of reads allocated to splits. We used the bulk mRNAseq sample SRR7624365

(0h rep 1) as the starting point and, based on the consistency in conclusions across different inputs, we expect a

convergence of results for other bulk or single-cell data. We subsampled the fastq files to 50%, 33%, 25%, 20%

and 10% of the total sequencing depth and created S samples by concatenating the 2, 3, 4, 5 and 10 subsamples,

respectively. For each case study, the distributions were generated on 10 iterations. We also assessed the sequencing
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Figure 3: Lane splitting induces variability in clustering of P1 10x scRNA-seq data.
A-B: UMAP representations of GT (A) and S (B) samples with colors indicating SLM clusters calculated on nearest-neighbor
graphs; 19 clusters are found in GT and 18 in the S samples.
C. Element-centric clustering similarity, highlighted using the colour gradient, reveals differences between clusterings at the
bottom of the UMAP, especially for the lower right island of cells (vanishing island). D. Jaccard similarity of cluster markers
across GT and S clusterings suggests differences in cell types inferred from the data. E. Fraction of within-island nearest
neighbours for cells in the vanishing island in GT and 3 S samples. The island cells are no longer discrete from the larger
body of cells in S samples.
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Figure 4: Summary of split-effects on the number of unique reads and noise. A) Scatter plot illustrating the
complexity ratio (non-redundant to redundant counts) for the GT (x-axis) vs an S (y-axis) sample for SRR7624365 (bulk
mRNAseq, 0h rep 1). Each point represents a gene and and the colour gradient is proportional to the log2 abundance.
B) Box plot of the PCC binned by abundance for the transcript-based noise removal (noisyR applied to BAM files) corre-
sponding to GT, k = 2 and k = 3 S samples for 0h rep 1.
C) Boxplot showing distributions of ratios of recovered unique reads in the S samples with respect to the k hyper-parameter
(k = 2, 3, 4, 5, 10); the effect of GT sample sequencing depth is also assessed. The distributions are built on 10 iterations.
D) Boxplot showing distribution of ratios of recovered unique reads in the S samples when the proportions of concatenated
subsamples are varied (from 55-45 to 90-10). The distributions are built on 10 iterations.
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depth co-variate; the results on the full sequencing depth (75.4M) and for samples subsampled to 50M, 25M and

10M reads respectively (without replacement) are presented. The ratios of recovered unique reads (i.e. number of

unique reads in the S sample divided by the number of unique reads for the GT sample) across the simulated case

studies are presented in Fig 4C. We observe a decrease in recovered ratios proportional to the number of splits and

initial sequencing depth. The decrease in ratios is uniform across sequencing depths, but the recovered ratios also

have lower y-intercepts (lower absolute ratios), highlighting that the effect of across lane-splitting is more extreme at

low sequencing depths i.e. while the decrease-rate is lower for higher k-values, as number of splits (k) increases, we

see a consistent reduction in the number of unique reads. This underlines that splitting across lanes has an adverse

effect on the diversity of reads.

Additionally, we assessed the effect of uneven splits across lanes; focusing on k = 2 S samples, we varied the split

proportions from 55-45 to 90-10. The resulting recovery ratios are shown in Fig 4D. The minimum for the recovery

ratios is achieved for the 50-50 proportions; the recovery ratios gradually increases as the larger subsample approaches

100%. The observed increase is small for first few increments and increases more rapidly as proportions approach

100-0. This illustrates, from yet another angle, the variation in reads diversity.

On various sequencing datasets, bulk and single cell, we observed that the splitting of samples across lanes reduces

the diversity of reads, which in turn triggers side effects on quantification (e.g. gene expression for mRNAseq,

peak expression for ChIPseq) and auxiliary properties (such as the length of ChIP peaks). The splitting in itself

introduces an additional level of variability in terms of robustness and reproducibility; it may pose added difficulties

stemming from variable observed number of reads derived from the stochasticity of the sequencing itself. The potential

batch effects derived from loading full samples on sequencing lanes can be mitigated through randomisation. We

acknowledge that technical circumstances may make splitting unavoidable; our recommendation is a consistency in

sequencing setup across all samples in an experiment.
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