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Abstract

The advances in high throughput sequencing (HTS) enabled the characterisation of biological processes at an
unprecedented level of detail; the majority of hypotheses in molecular biology rely on analyses of HT'S data. How-
ever, achieving increased robustness and reproducibility of results remains one of the main challenges. Although
variability in results may be introduced at various stages, e.g. alignment, summarisation or detection of differ-
ences in expression, one source of variability was systematically omitted: the sequencing design which propagates
through analyses and may introduce an additional layer of technical variation.

We illustrate qualitative and quantitative differences arising from splitting samples across lanes, on bulk and
single-cell sequencing. For bulk mRNAseq data, we focus on differential expression and enrichment analyses;
for bulk ChIPseq data, we investigate the effect on peak calling, and peaks’ properties. At single-cell level, we
concentrate on identifying cell subpopulations. We rely on markers used for assigning cell identities; both smartSeq
and 10x data are presented.

The observed reduction in the number of unique sequenced fragments reduces the level of detail on which the
different prediction approaches depend. Further, the sequencing stochasticity adds in a weighting bias corroborated
with variable sequencing depths and (yet unexplained) sequencing bias.

Keywords: mRNAseq, ChIPseq, smartSeq, 10x, sample splitting, differential expression, enrichment analysis, cell
type calling
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Introduction

The recent developments and improvements in high-throughput sequencing (HTS) technologies facilitated increas-
ingly complex transcriptome/genome-wide analyses [I], enhancing both the qualitative annotation of genomes [2] [3] [4]
and their quantitative, functional characterization through differential expression studies [3] [6]. The diversification
of methods specialised to a wide range of perspectives on DNA/RNA biology [7] was complemented by studies at
single cell level [§]. Advances were observed across all aspects of the sequencing workflow [9], complemented by an
increasing amount of resulting data. This created another challenge: producing robust and reproducible results and
simultaneously keeping up with the increasing intricacy of experiments [10].

The variability of sequencing output, which propagates through to quantification and other downstream exploration,
poses one of the main challenges in bioinformatics analyses, since it implies the disentangling of relevant from ir-
relevant sources of variation. While the biologically relevant quantities are context dependent [I1I], an essential
distinction exists between variability due to biological processes and variability due to measurement error or inaccu-
racy [12, [13]. The former is generally specific and well defined in relation to a condition; even when it is perturbed
by noise, an underlying pattern of expression may emerge [I4]. Technical variability encompasses measurement error
[15], sequencing bias [16] [I7], and variability due to missing data [I8]. For the latter the assessment of technical
variation can be hindered by the lack of a ground truth.

Several studies proposed approaches to identify and characterise the sources of variability in HTS experiments,
focusing on several aspects of signal distribution, which can affect the accuracy of the downstream analyses and
interpretations, and jeopardise the reproducibility of results [I1], 19]. These included both the analysis of noise
[14, 20] and the downstream components of the analyses such as batch/background effect [21], alignment approaches
[22], processing pipelines [5], normalisation methods [23] and differential expression thresholds [24] 25]. To model
the intrinsic biological variability, the number of replicates in the context of experimental design was optimised using
power calculations [11], [26], designed to provide a robust estimation of differences in expression. These approaches
rely on simulations on the number of expressed genes, on mean-dispersion estimates and dropouts after applying
frequency and outlier filtering; traditional approaches do not take into account elements of sequencing design including
across-lane sample splitting. In general, the impact of library construction and flow cell and lane characteristics on
downstream analysis has not been studied in detail.

Sources of technical variability for RNAseq experiments span from the combinatorial numbers of highly variable
isoforms to the handling of ambiguous or multi-mapped reads [I]. For ChIP datasets, the ability to address specific
biological questions can be significantly impacted by antibody efficiency and specificity [27] as peak distributions
are a direct consequence of affinity, over-crosslinking, DNA fragmentation and PCR amplification; for such samples,
users are faced with a trade-off between number of usable reads (sensitivity of peak detection) and proportion of
false positives derived from multi-mapped reads [28]. Low quality replicates can also generate bottlenecks when

used in conjunction with good samples, as true peaks missing from poor quality replicates may be marked as non-
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reproducible, thus creating false negatives [27]. Single-cell experiments share some of the drawbacks of bulk ones; in
addition, the exponential increase in the number of cells profiled per study, coupled with the shallower sequencing
depth, redefined some of the known difficulties, such as the characterisation of noise [29, [20].

Here we investigate the effect of across-lane sample splitting, at the sequencing stage, on downstream analyses for
bulk and single cell data; the sampling approach is modelled on observed sequencing outputs (bulk mRNAseq data).
To infer the effect on other types of sequencing data, we study the differences between ground truth and split-samples
(simulating across-lane splitting), with various parameters controlling the number of splits and proportion of reads
produced on each lane. We focus on standard analyses i.e. identification of differentially expressed (DE) genes or
ChIP peaks for bulk analyses; for single cell analyses, we concentrate on the allocation of cells to clusters (viewed as

proxies for cell types), and comment on the observed variability in biological interpretations.

Methods and Materials

Materials

The motivation for the subsampling strategy used throughout the manuscript is derived from a D. melanogaster
mRNAseq dataset (GSE85806) for which 3 samples were sequenced split across 2 lanes (GSM2284703, GSM2284704
(2RA3), GSM2284705, GSM2284706 (2RH2), GSM2284707, GSM2284708 (26RH3)). To highlight the consequences
of this choice in sequencing design we compared the resulting expression levels to the corresponding full-samples,
GSE55839 (GSM1346985 (2RH2), GSM1346996 (2RA3), GSM1347001 (26RH3)) [30].

To illustrate the split effects and their link to the biological interpretation we use bulk and single-cell mRNA data,
and bulk ChIPseq data. For the former (bulk mRNAseq) we used the Yang et al 2019 dataset [31]], focusing on the Oh
and 12h samples (GSE117896, comprising SRR7624365, SRR7624366 (biological replicates for Oh), SRR7624371 and
SRR7624372 (biological replicates for 12h)). The bulk ChIPseq analysis was performed on H3K4me3 and H3K27ac
samples, using Oh and 12h samples for each (SRR7624381, SRR7624384, SRR7624389, SRR7624392).

To exemplify the effect on plate-based scRNA-seq platforms (smartSeq) we use the Cuomo et al 2020 dataset [32]. We
selected data from 6 donors, on 4 time points. On this input six experimental study cases (Table 1) were designed to
illustrate the effect of the different covariates i.e. the donor, the specific time-point and cell types (resulting clusters)
identities. To investigate the effects of lane-splitting on 10x Genomics scRNA-seq data, we used an in-vivo dataset
of human hematopoietic stem and progenitor cells from spleen, bone marrow, and peripheral blood [33]; the data is

available via BioStudies accession S-SUBS4 (donor SAMEAG6646089).

Methods

[splitting strategy - sequenced samples] For the 3 D. melanogaster samples (2RA3, 2RH2, 26RH3) for which

whole-lane and split-lane sequencing was available, we followed the standard mRNAseq quantification procedure;
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N cells . . N cells N cells
Study case | N cells | Donor (donor) Time point (time point) Cluster (cluster)
1 Case 1 105 hayt 105 day2 105 0 105
1 66
2 Case 2 106 pahc 106 day3 106 1 10
melw 94
3 Case 3 168 day0 168 3 168
qunz 74
dayl 61 9 61
4 Case 5 168 hayt 168 day3 107 T 107
melw 47 5 45
5 Case 6 95 s 8 dayl 95 5 50
melw 95 day0 95 3 95
6 Case 8 27 naah 122 day3 122 2 122

Table 1: Overview of the study cases built on a scRNA-seq Smart-seq data (Cuomo et al 2020), illustrating the combinations
of the different covariates. Study case 4 (same donor, different time-point and same cluster) and case 7 (different donor,
different time-point, and same cluster) could not be generated due to the data structure.

the split samples were merged, without any additional pre-processing (merged-samples). Whole, split and merged
samples were aligned to the D. melanogaster r6.41 genome [34] using STAR 2.7.0a [35], with default parameters.
Next, the expression was quantified using featureCounts 2.0.0 [36], and summarised into count matrices. For each
BAM, a bigwig was produced using bamCoverage and individual transcript coverage was identified using pyBigWig
from deeptools [37]. In addition, for all settings, we determined the number of non-redundant (unique) and redundant
(all) reads and evaluated the number of fragments present exclusively in the one setting. We also calculated the ratio
between the abundance of a read (its redundancy) in the whole vs split sample, with an expected value equal to the
ratio of sequencing depths.

[splitting strategy - simulated data] The splitting strategy for the simulation study is consistent across all
datasets. The splitting is performed per sample. For each dataset, on the ground truth (GT), i.e. the original
sample, and on the simulated, split (S) samples, the same pipelines (for alignment, quantification and identification
of differentially expressed entries), with identical, default parameters are applied, to ensure an unbiased comparison
between results obtained on the GT and S samples, respectively.

Let k be the number of splits for a sample, and n the number of iterations (each split sample is generated from
the original GT sample). The steps for generating an S sample are: [1] subsampling reads without replacement
from the GT sample to %% of GT in n iterations; [2] subsequently the k subsamples are concatenated. For bulk
mRNAseq and ChIPseq samples, we assessed k =2 and k = 3, n = 10. In we present simulated samples
for k =2,3,4,5 for one GT sample (bulk mRNAseq, Oh rep 1), n = 10; we also analysed simulated samples for k = 2
with variable split proportions from 55 - 45 to 90 - 10. For the bulk ChIPseq data we assessed k = 2 and k = 3,
n = 10. For the smartSeq data and 10x data we generated n = 3 S samples for k£ = 2, for each of the study cases
(i.e. each subset of samples), respectively, using the seqtk toolkit (https://github.com/1h3/seqtk). We note that
due to the stochasticity of sequencing we cannot simulate fragments that are present exclusively in the whole or

split samples. This limitation of the simulation study is compensated by the analysis of true split samples (the D.
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melanogaster dataset).

[bulk mRNAseq, Yang et al dataset] The raw samples (no QC-based filters applied) were aligned to the M.
musculus genome [Ensembl 98.38] [38] using STAR 2.7.0a (paired-end mode) [35]. Next, the expression was quantified
using featureCounts 2.0.0 [36]. To assess the stability between S and GT samples, abundance density plots and MA
plots were produced. We used noisyR [I4] to perform noise analysis on the GT and S samples, and further analysed
the PCC distribution for binned abundances. For each dataset, expression levels were normalised using quantile
normalisation [39] and DE genes between Oh and 12h were identified using edgeR [40]. The DE call was based on
[logosFC| > 0.5 and adjusted p-value < 0.05 (using Benjamini-Hochberg multiple testing correction). Enrichment
analysis on the resulting DE genes was performed using the gprofiler2 package [41] on GO, KEGG, reactome and
transcription factor terms, with the background set as the set of expressed genes with abundance > 0 in at least one
sample.

[bulk ChIPseq] The GT and S samples were aligned to the M. musculus genome using STAR 2.7.0a (single-end
mode using default parameters) [35]. Narrow peaks were called using macs2 2.2.7.1 [42]. Peaks were matched between
samples if the midpoint of the peak in sample 1 is within the boundaries of the peak in sample 2 and vice versa.
Across sets of samples, amplitudes were normalised using quantile normalisation [39] and differentially methylated
peaks between Oh and 12h were identified using edgeR [40]. Peaks were called DE if |logoFC| > 0.5 and adjusted
p-value < 0.05 (using Benjamini-Hochberg multiple testing correction).

[sc smartSeq] Six experimental study cases were designed based on the Cuomo dataset [32], considering the donor,
time-point and cluster cell identities (Table 1). The corresponding samples were standardised in read length using
Trim Galore (0.4.1) by: trimming 10bp from the 5’ end (to reduce the effect of sequencing bias) and 40 bp from the 3’
end (to address high adapter sequence content); the length of the resulting reads was 75 nts. The GT and S samples
were aligned to the H. sapiens genome (GRCh38.p13) [38] using STAR (2.7.0a) [35] in paired-end mode. The gene
counts were summarised in a matrix using featureCounts 2.0.0 [36]. We applied fastQC [43] to obtain read quality
metrics and multiQC [44] to aggregate QC results from the reads, alignment and quantification. Seurat objects
[45] were created considering features expressed in > 3 cells, and cells with > 50 features. The analysis pipeline
comprises: 1) normalization of expression levels (SCTransform [46]), ii) computation of PCA and UMAP embeddings
(RunPCA, RunUMAP), iii) Neighborhood graph computation (FindNeighbors), iv) Clustering (FindClusters), v)
Differential Expression (FindAllMarkers). We considered as DE features those with log, FC > 0.5 (i.e. the positive
markers) and an adjusted p-value < 0.05 (using Bonferroni multiple testing correction). To assess the similarity of
the partitioning in the GT and S samples, we calculated Jaccard similarity indices (JSI, [47]) on the cluster-specific
sets of DE features (Fig 2D); restricting the JSI to the smaller set of markers.

[sc 10x Genomics] The GT and S fastq files were aligned to the 10x H. sapiens GRCh38 v3 reference transcriptome;
the protein-coding genes were quantified using 10x Cellranger v3.1.0 [48]. The processing and analysis was performed

individually for each donor, for the GT and S samples: after inspection of distributions of UMIs, number of detected
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genes, proportion of UMIs from mitochondrial genes (MT) and ribosomal protein-coding genes (RP), only cells with
> 1,000 unique genes, < 10% MT and > 20% RP were retained for downstream analysis; the MT and RP genes
were subsequently discarded from the count matrix. Following normalization using SCTransform [46], the 3,000
most abundant genes, accounting for 60% — 85% of UMIs in cells across the data, were identified and used for the
calculation of PCA. A UMAP dimensionality reduction was calculated using the 30 first PCs (after inspection of
an elbow plot of PC variance); the UMAP was subsequently used to assess the extent of potential batch effects
originating from the tissue origin of cells, raw and normalized sequencing depths, MT% and RP%.

A 20-nearest neighbour graph was computed on the first 30 PCs of the data; the cells were clustered using SLM
community detection [49] on the NN graph. To assess the clustering similarity, element centric clustering comparison
[50] was employed on the set of common barcodes between GT and S using the ClustAssess R package [51]. Cluster
markers were identified using the ROC test in Seurat v3.1.4 [45]; only genes with |[FC| > 2 were considered. The top
25 markers per cluster, ranked by discriminative power, were subsequently used to calculate the per-cell JSI between
cluster markers; the JSI when at least one of the sets is empty was set, by default, to 0.

All analyses were performed in R (3.6.3). The code for generating these results is available on github https:
//github.com/Core-Bioinformatics/split-manuscript. All tests were performed on a Linux server (16 cores,

755G RAM).

Results

Across-lane split leads to differences in bulk mRNAseq data

To determine (and justify) the appropriate parameters for the simulation study, we analysed the properties of 3
D. melanogaster bulk mRNAseq samples for which both the whole-sample per lane [30] and a quantification-based
50/50 split output were available. We note that the sequencing depths for the halves-samples (2RH2: 36M/26M
(58%/42%), 2RA3: 21M/31M (41%/59%), 26RH3: 33M/36M (47%/53%)) diverged from the expected 50/50. To
assess the consistency in properties for split-samples vs whole-samples, we first evaluated the nucleotide composition;
we see no significant (BH-adjusted p-value < 0.05) differences when comparing, per base, nucleotide distributions or
GC content (assessed using x? tests on A/C/G/T frequencies per position, Supplementary table 1). Next, we looked
into the number and abundance of non-redundant (unique) fragments; we illustrate the distributions of abundances
for the specific fragments, across the 3 available samples.

Although we see an increase in sequencing depth for the merged-samples vs the whole-samples, we do not consistently
observe a similar proportional increase in the number of unique reads; for 2RA3 the ratio of unique reads in the
merged-samples compared to the whole is ~ 1.16 (compared to ~ 1.36 ratio on sequencing depths), we observe a
similar proportion for 2RH2 (~ 1.17 compared to ~ 1.18) and for 26RH3 (~ 1.20 compared to ~ 1.23). Next,

we assessed the ratio between the abundances of individual reads in the whole-samples vs the merged-samples, the
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analysis was performed on non-zero counts for both compared samples; the ratio is expected to mirror the proportions
of sequencing depths. In Supplementary fig. 1 A-C, we show the distribution of log, ratios of abundances between
merged- and whole-samples, binned on abundances; the guide line indicates the expected sequencing-depth-based
ratio. The ratio distributions are located below the guide line for low-medium abundances (1-6 on the log, scale);
the ratio distributions increase to the expected level for medium range abundances, and rise above the guide line for
high abundances, underlining an “over-amplification” of signal and a sensitivity of signal quantification to the lane
splitting strategy. Most specific fragments (to either the concatenated samples, or the whole ones) are low abundance;
however, we note a few high abundance fragments which may be affected by sequencing bias (the distributions of
abundances are summarised in Supp Fig 1, D-F).

The change in ratio between split- and whole- samples is also reinforced when we consider the differences between
the average abundances, calculated using all incident reads, on sliding windows (100nts) for the whole- and merged-
samples (Supp Fig 1 G-I). The ratios are scaled per overall window abundance. Positive differences (red) correspond
to higher amplitudes in the whole-sample; negative differences (blue) correspond to higher amplitudes in the merged-
samples). For each sample, we show both the distribution for all differences (top subplot) and for differences above
0.2 (bottom subplot); the number of windows in each abundance bin are shown above the corresponding boxplots.
We see wider variation between whole and merged-samples at low-medium abundances (0-7 on the logs scale) with
larger differences when the merged-sample abundance is higher than one in the whole sample. This trend suggests a
systematic, consistent stochastic over-amplification in the merged-samples; conversely, for abundances higher in the
whole sample, the differences in the merged-samples are more subtle. For medium-high abundances (> 7, log, scale),
we see a higher number of small differences for windows with abundances higher in the merged-sample; the range
of differences is wider for for windows with higher abundance in the whole-samples, but their count is lower. The
pre-alignment analysis, at read level (Supp Fig. 1 A-C) hinted to these more subtle downstream effects, underlying
the importance of studying the impact of splitting across lanes on real data and simulated case studies.

To illustrate some differences observed on individual transcripts, we present three examples (from sample 2RH2) of
expression profiles, quantified using the all reads from the whole, the split and the merged samples, for transcripts at
high, medium and low abundances; these examples were selected based on the differences in signal distributions. The
two split samples behave as technical replicates, as expected; however for the merged sample, we observe significant
variation in distribution of signal compared to the whole sample (panel L), or in the localisation of expression
features such as peaks (panels J, K)). These differences may have knock-on effects on the downstream analyses and
interpretation results (e.g. for the quantification of noise [14]).

These remarks on sequenced output generate the hypothesis that conclusions drawn from standard comparisons
between samples may be altered by variations in splitting strategies; this effect is also entirely technical and stems
from the stochasticity of sequencing. While the simulation approach proposed in this study cannot capture fragments

found exclusively in split samples, the subsampling/concatenating process mirrors the under-representation of low-
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medium fragments and over-amplification of high abundance fragments, as well as loss of read diversity.

Consequences of across-lane splitting on bulk data

To systematically investigate the consequences of the observed differences resulting from splitting samples across

lanes, we simulated the splitting of sequencing samples on several datasets and assesses the downstream effects.

[bulk mRNAseq] For the bulk mRNAseq study case [31], we focus on the effect of across-lane sample splitting
on expression quantification, DE calling and enrichment analysis (summarised in Fig 1A-F). First, we assess the
differences in quantification corresponding to the same time-point/biological replicate, Oh (rep 1), on GT vs k = 2
S sample Sy (1A) and k = 2 vs k = 3 samples Sy and S3 (1B). We observe standard MA funneling shapes, with a
variation in excess of 1.5FC for low abundances for both comparisons. In addition, for low to medium abundances, the
Sa— S5 comparison yields a wider distribution of log, FCs underlining the technical variation (noise) that is introduced
(Fig 1B). Also noted is a slight shift of FCs (Fig 1A) driven by the stochastic redistribution of reads i.e. lack of
signal for some low abundance genes, and over-expression of medium-high abundance genes. Similar conclusions are
presented in Supplementary Fig 2A and 2B illustrating GT vs k = 3 samples S13 and two simulations of &k = 2 S1s
and S23, respectively.

Next, we focus on the DE call between the Oh vs 12h replicates, determined using standard pipelines and parameters.
We illustrate the properties of the DE sets called on GT vs k = 2 (Fig 1C) and k = 2 vs k = 3 (Fig 1D), respectively;
overall the results converge i.e. all genes are located in the proximity of the diagonal, however the variation is larger
for the k = 2 vs k = 3 simulation S1y vs S13 (1D). Specifically, we see 10,810 genes (31.2% of expressed genes) with
> 0.5 log,FC absolute difference for S1y vs S13, compared to 7737 (22.3%) between GT and S1,. The colour gradient
is proportional to the average abundance of genes and underlines that medium abundance genes are mostly affected
by the variability in fold-change amplitude and identity. We also assessed the stability of DE signal, for the GT and
two sets of simulations for k£ = 2 and k = 3, summarised as an upset plot (the /5 intersections are represented, with
x € {5,4,3,2,1}). While the majority of genes are detected across all comparisons (746 out of 920 for DE in GT and
1318 called DE in any GT or S sample), we notice comparison-specific genes (up to 81 out of 1012 called DE for S23).
In particular, this analysis revealed only few “false negatives” (4 genes DE only in GT samples) in contrast to a larger
number of “false positives” (between 48 and 81 from each S sample). 1 gene (out of 1318 called DE in any GT or S
sample) was identified across all S samples but not in the GT. To link back the variability of signal to the biological
interpretation of the results, we compare the sets of enriched terms, corresponding to the various DE predictions (Fig
1F). Similarly to the DE summary (Fig 1E), we observe a 68.3% consistency in results i.e. significant terms shared
between all comparisons (out of 101 identified in total for GT, 141 identified for at least one comparison). However,
“false positive” entries are present (24 in total, between 2 and 11 from each S sample) identified only for one set of S

samples. These corroborated results underline a mixture of consistent patterns (on S samples) and random variation,
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difficult to predict or mitigate. This suggests lane-splitting introduces non biologically-robust results.

[bulk ChIPseq] The effects of across-lane sample splitting are also observed on ChIPseq data; for this case-study,
we will focus on the changes in peak amplitude and length; H3K4me3 (Fig 1G-K and Supplementary Fig 2E-J) and
H3K27ac (Supplementary Fig 2K-Q) data will be exemplified [31]. The variability on peak calling for H3K4me3
data is assessed using MA (Fig 1G,H) and cross plots (Fig 11,J). Similarly as for the mRNAseq data, we observe
a funneling behaviour when GT and S samples are compared (Fig 1G and H), a wider variation in FC for Sls vs
S1s (Fig 1H), and a over-amplification of peak abundances in the simulated samples (Fig 1G); additional supporting
results are presented in Supplementary Fig 2E,F. These fluctuations propagate on DE calls (performed using standard
pipelines; on the Oh and 12h replicates), and are summarised in Fig 1I and 1J. Despite the overall convergence, for
the H3K4me3 data we notice a wider variability than for the mRNAseq data, with clear “false negative” peaks in
the simulated data i.e. medium abundance peaks identified as DE in the GT comparison, with a log, FC > 2, and
not detected as DE in the S samples (borderline vanishing peaks); this behaviour observed also for H3K27ac data
(Supplementary Fig 2M,N).
To further investigate the reduced robustness for the DE call, we focused on other peak properties such as peak length
(defined as stop - start coordinates from the macs2 narrowPeak output); in Fig 1K we illustrate the distribution of
ratios of peak lengths when GT and S samples are compared. We notice a global, systematic shift towards shorter
peaks in simulated samples, the effect is more pronounced for & = 3, and a stability of behaviour across simulations
(blue and purple distributions). The decrease in peak length can only be observed for common peaks. The reduction
in number of called peaks is illustrated in Supplementary Fig 2I,J. For the Oh sample (SRR7624381), we see 10846
fewer peaks called for S1s samples (mean across 10 iterations) compared to GT and 14885 fewer for S13 samples
compared to GT, yielding percentage decreases averaging 12.7% and 18.4% respectively.

Simulated across-lane sampling splitting has multiple effects on the peaks called in ChIPseq data, from the number
of peaks to their amplitude and length; this technical, stochastic variation may have an impact on the interpretation

of results.
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Figure 1: Comparison of bulk mRNAseq analysis results for GT and S samples

A-B. Scatter (MA) and box plot summary on GT sample (Oh, repl) and a corresponding k = 2 S sample S1s (subplot A) and k = 2 and k = 3 S samples S1, and Sls
(subplot B).

C-D. Scatter (cross) plots comparing the DE amplitude (log, FC) calculated on Oh vs 12 h samples for the GT vs k = 2 S samples S1, (subplot C), and k =2 and k = 3
S samples S1, and S1s (subplot D); the colour gradient is log,-proportional to the average abundance across all 8 corresponding samples.

E. Upset plot showing intersections between sets of DE genes (Oh vs 12h) in GT samples (GT), 2 sets of k = 2 S samples (S12 and S22) and 2 sets of k = 3 S samples (S1s3
and 823)

F. Upset plot showing intersections between sets of significant terms (adj p-val < 0.05, BH correction) predicted using gprofiler2 on the corresponding DE genes (see E).
Comparison of H3K4me3 ChIPseq analysis results for GT and S samples.

G-H. Scatter (MA) and box plots showing log, abundance against log, FC within G) GT sample (0h) and a kK = 2 S sample Sl and H) &k = 2 and k = 3 S samples S1,
and S1s for the same sample (Oh)

I-J. Scatter (cross) plot showing log,FC when comparing I) Oh and 12h for GT samples and k = 2 S samples Slz, and J) Oh and 12h for £ = 2 and k£ = 3 S samples Sl»
and Sls, coloured by the average amplitude across all 4 corresponding samples.

K) Violin and box plots showing distribution of ratio of peak lengths between 2 samples (%), comparing ground truth (GT), kK = 2 S sample (S12 and S23)
and k = 3 S samples (S13).
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Effects of across-lane splitting on single-cell data

[sc smartSeq] We exemplify the effect of across-lane sample splitting, on single-cell data, first on a smartSeq2
dataset. The diversity of conditions (donors and time-points, illustrated in Fig 2A) of the Cuomo et al 2020 dataset
[32] enables us to incrementally examine the consequences across 6 study cases (Table 1), covering a wide range of
experimental situations.

At the sequencing read level, the sample splitting significantly reduces the number of unique reads (Fig 2B, Supp
Table 2A) i.e. the read diversity decreases due to the expansion (over-representation) of duplicated reads. On an
invariant total number of reads, this decrease propagates through to the subsequent alignment and quantification
steps without influencing the fraction of mapped reads and the count distribution of samples, respectively (Supp
Fig 3B,C); nonetheless, this results in a reduction of the number features detected in S samples (Fig 2C). This is a
consequence of the loss of low-abundant features, while mid-abundance and high abundance features slightly increase
their expression due to the higher read duplication. Significant differences in the number of features (< 0.01 type I
error) between simulations and ground truth are detected only for study Case 3; the abundance distributions are not
significantly different (in localisation or shape) across the other study cases (Supp Tables 2A,B). Despite this, the
reduction in the number of observed features has an impact on downstream analyses such as partitioning into clusters
and cell visualization or identification of cell type markers. For the former, the UMAP topology of cells/ clusters
is altered (Supplementary Fig 3A); for the latter, in Fig 2D we observe a generalised reduction in the similarity
of marker genes for S samples when compared to marker genes determined on the ground truth sample (overall,
0.55-0.94 of the markers are shared between homologous clusters in GT and S samples). In addition, to assess the
variability across simulations, we display summary upset plots of marker genes across clusters and simulations (Fig
2E, Supplementary Fig 3E). Although the majority of the DE entries are shared between simulations, unique features
are present in most cases; these sum up to 12.3% of total features, on average, across clusters, simulations and study
cases.

Overall these results suggest that sample splitting reduces read diversity, which is propagated to downstream analyses,
altering the number of features expressed in samples, and potentially altering the biological interpretation of results.
Moreover, we highlight the variability across simulations which may introduce an additional degree of irreproducibility

across replicates.
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Figure 2: Sample splitting across sequencing lanes introduces variability that is propagated to downstream
analysis in Smart-seq2 scRNA-seq data. A) UMAP representation of the Cuomo dataset. Cells are coloured according
to their donor (left), time-point (central) and cluster (right). For the different study cases considered we show: B) Number
of Unique Reads distribution for the ground truth and simulations. C) Number of features distribution for the GT and S
samples. D) Cluster similarity for each study case as evaluated using the JSI calculated on the set of DE features obtained per
cluster. The values across the 3 simulations were averaged using the geometric mean. E) Variability of differentially expressed
feature set and number of unique DE features across simulations for cluster 0 (upper), 1 (central) and 2 (lower) for Study
Case 1.
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[sc 10x Genomics| The second single-cell case study focuses on a 10x dataset [33]; a similar strategy for generating
split samples was applied. Following the alignment and protein-coding gene quantification of the GT and S samples,
we observe a high overlap of called cells (i.e. barcodes) resulting from the Cellranger cell calling algorithm (19,453
common barcodes, 166 barcodes unique to ground truth, 13 barcodes unique to simulated). After filtering the low-
quality cells, the vast majority of barcodes were still common to both versions of the analysis (17,095 barcodes in
common, 155 barcodes unique to GT, 5 barcodes unique to simulated). We observe a greater diversity of UMIs and
genes in GT compared to simulated samples (Supplementary Fig 5F-G).

Following SLM clustering [49] on the nearest-neighbor graph, 19 clusters were found on GT and 18 on the simulation
of P1 (Fig 3A,B). Element-centric clustering comparison [50] was used to evaluate the per-cell clustering similarity
on the set of barcodes common to GT and simulated samples (Fig 3C), revealing high similarity (ECS > 0.6) for 91%
of cells (the top of the GT UMAP) and especially the for the island on the upper right (cluster 4 in both clusterings);
low similarity (ECS < 0.2) was observed for 9.0% of cells (mainly bottom of the UMAP); no cells had intermediate
ECS (0.2 < ECS < 0.6). Notably, an island of cells at the lower right of the GT UMAP, corresponding to cluster 15
in GT, disappeared in the split lane simulation (S samples).

To investigate whether the disappearing island was a reproducible effect of the lane splitting simulations, n = 3
S samples were generated. The S samples were consistent in terms of UMAP topography and SLM clustering
results (Supplementary Fig 4A-F). Across all S samples the “island cells” were scattered in the larger body of cells
(Supplementary Fig 4H). Conversely, in UMAPs generated on GT across 4 random seeds, the island of cells was
consistently detached from the larger body of cells (Supplementary Fig 4G). Furthermore, the fraction of within-
island nearest neighbors for the island cells was quantified in the GT and S samples (Fig 3E); while the island
cells had each other as neighbors in GT, this is no longer observed in the simulations, suggesting the loss of some
transcriptional heterogeneity during the lane splitting.

The marker genes that distinguish the vanishing island (Supplementary fig 5A) from the rest of the cells are SPP1,
SRGN, SOCS2, ALDH1A1, AREG and HIST1H1C (Supplementary Fig 5B); in particular SPP1 appears highly
specific to the island. Upon recalculating the PCA, and subsequently the UMAP, on the set of abundant genes with
SPP1 excluded, the island is absorbed into the wider body of cells (Supplementary fig 5C), and so is SPP1 expression
(Supplementary fig 5D). SPP1 is identified as the 5th most variable gene in GT by SCTransform. In S samples,
marked differences in gene variance can be observed when compared to GT (Supplementary fig 5E), leading to the
downstream consequences on dimensionality reductions and clustering results.

To further investigate the consequences of lane splitting clustering variability on cluster markers, typically used to
infer the identity of cells, the per-cell Jaccard similarity index (JSI) was calculated (Fig 3D). Certain regions of cells,
such as the middle right of the UMAP, displayed high JSI, indicating they would be interpreted similarly in the GT
and S analyses. Other regions exhibited lower JSI; the vanishing island (cluster 15) had lower JSI than the retained

island (cluster 4). These results suggest that the former could be interpreted inconsistently, depending on whether

13


https://doi.org/10.1101/2021.05.10.443429
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.10.443429; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

the library was split across lanes or not.

Discussion

Effects of splitting on read diversity and levels of noise

The main consequence of across-lane sample splitting is the variation in read diversity; this propagates onto transcript
coverage and quantification. To assess the variation, we focused on the transcript complexity (defined as the ratio of
unique to total reads [52], calculated per transcript), exemplified on the SRR7624365 sample (bulk mRNAseq, Oh rep
1). We compared the complexities, per transcript, of the GT and S samples (Fig 4A); each point corresponds to a
gene, the colour gradient is proportional to the log, (abn). We observe a consistent trend for medium-high abundant
genes, across a wide complexity range [0,0.75], highlighting the higher complexity (i.e. more diverse reads) of the
GT sample. Also noticeable is the high variability in complexity for the low abundance genes, presented on the MA
plots in the bulk section of the Results, and the localisation of the low abundance cloud under the equal complexity
diagonal, enforcing the previous conclusion across all abundances.

Yet another side effect of the variation in reads diversity is the quantification of noise across the samples [14]; we
focused on the transcript-based approach in noisyR since it is directly influenced by the robustness of transcript
coverage. In Fig 4B, we illustrate the variation of point-to-point PCC vs the variation in abundance for the GT and
2 iterations of k = 2 (S13,522) and k = 3 (S13,523). The wide and low PCC distributions correspond to higher levels
of noise; the distributions become higher and tighter for medium to high abundance genes. For medium abundance
genes, the GT distributions are systematically higher than k£ = 2 and k = 3, suggesting that the splitting increases
the level of noise and thus interferes with the detection of DE genes or other downstream analyses, as illustrated in
the Results section. The level of noise in the simulated samples is also variable and generally higher in k£ = 3 samples

than k& = 2, although the distribution of PCC is wider and lower for all S samples than GT.

Effects of varying the number and proportions of splits

In the Results section, we exemplified the concatenation of k = 2 and & = 3 equal subsamples. However, in a
real-world scenario, we rarely observe an equal number of reads across split samples; in addition, split-designs are
occasionally mixed. To further understand the knock-on effects on downstream analyses, we illustrate the effect
of variable number and proportions of reads allocated to splits. We used the bulk mRNAseq sample SRR7624365
(Oh rep 1) as the starting point and, based on the consistency in conclusions across different inputs, we expect a
convergence of results for other bulk or single-cell data. We subsampled the fastq files to 50%, 33%, 25%, 20%
and 10% of the total sequencing depth and created S samples by concatenating the 2, 3, 4, 5 and 10 subsamples,

respectively. For each case study, the distributions were generated on 10 iterations. We also assessed the sequencing
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Figure 4: Summary of split-effects on the number of unique reads and noise. A) Scatter plot illustrating the
complexity ratio (non-redundant to redundant counts) for the GT (x-axis) vs an S (y-axis) sample for SRR7624365 (bulk
mRNAseq, Oh rep 1). Each point represents a gene and and the colour gradient is proportional to the log, abundance.

B) Box plot of the PCC binned by abundance for the transcript-based noise removal (noisyR applied to BAM files) corre-
sponding to GT, k = 2 and k = 3 S samples for Oh rep 1.

C) Boxplot showing distributions of ratios of recovered unique reads in the S samples with respect to the k hyper-parameter
(k =2,3,4,5,10); the effect of GT sample sequencing depth is also assessed. The distributions are built on 10 iterations.

D) Boxplot showing distribution of ratios of recovered unique reads in the S samples when the proportions of concatenated
subsamples are varied (from 55-45 to 90-10). The distributions are built on 10 iterations.
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depth co-variate; the results on the full sequencing depth (75.4M) and for samples subsampled to 50M, 25M and
10M reads respectively (without replacement) are presented. The ratios of recovered unique reads (i.e. number of
unique reads in the S sample divided by the number of unique reads for the GT sample) across the simulated case
studies are presented in Fig 4C. We observe a decrease in recovered ratios proportional to the number of splits and
initial sequencing depth. The decrease in ratios is uniform across sequencing depths, but the recovered ratios also
have lower y-intercepts (lower absolute ratios), highlighting that the effect of across lane-splitting is more extreme at
low sequencing depths i.e. while the decrease-rate is lower for higher k-values, as number of splits (k) increases, we
see a consistent reduction in the number of unique reads. This underlines that splitting across lanes has an adverse
effect on the diversity of reads.

Additionally, we assessed the effect of uneven splits across lanes; focusing on k = 2 S samples, we varied the split
proportions from 55-45 to 90-10. The resulting recovery ratios are shown in Fig 4D. The minimum for the recovery
ratios is achieved for the 50-50 proportions; the recovery ratios gradually increases as the larger subsample approaches
100%. The observed increase is small for first few increments and increases more rapidly as proportions approach
100-0. This illustrates, from yet another angle, the variation in reads diversity.

On various sequencing datasets, bulk and single cell, we observed that the splitting of samples across lanes reduces
the diversity of reads, which in turn triggers side effects on quantification (e.g. gene expression for mRNAseq,
peak expression for ChIPseq) and auxiliary properties (such as the length of ChIP peaks). The splitting in itself
introduces an additional level of variability in terms of robustness and reproducibility; it may pose added difficulties
stemming from variable observed number of reads derived from the stochasticity of the sequencing itself. The potential
batch effects derived from loading full samples on sequencing lanes can be mitigated through randomisation. We
acknowledge that technical circumstances may make splitting unavoidable; our recommendation is a consistency in

sequencing setup across all samples in an experiment.
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