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ABSTRACT

Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival
motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons,
leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-
induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential
to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like
weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor inducible
14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle
atrophy as well as muscle proliferation, differentiation and metabolism in adults. However, it is not clear
whether this pathway would be important in highly dynamic and developing muscle. We thus investigated
the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn
l-:SMN2 and the less severe Smn?®- SMA mice, which undergo a progressive neuromuscular decline in the
first three post-natal weeks. Here, we report significantly dysregulated expression of the TWEAK/Fnl14
pathway during disease progression in skeletal muscle of the two SMA mouse models. In addition, SIRNA-
mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the
TWEAK/Fn14 pathway. Further analyses of SMA, Tweak”’ and Fnl14” mice revealed dysregulated
myopathy, myogenesis and glucose metabolism pathways as a common skeletal muscle feature, and
providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn.
Finally, a pharmacological intervention (Fc-TWEAK) to upregulate the activity of the TWEAK/Fn14
pathway improved disease phenotypes in the two SMA mouse models. Our study provides novel mechanistic
insights into the molecular players that contribute to muscle pathology in SMA and into the role of the
TWEAKI/Fn14 pathway in developing muscle.

Keywords: spinal muscular atrophy, survival motor neuron, Smn, Tweak, Fnl4, glucose metabolism,

skeletal muscle, atrophy, denervation
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BACKGROUND

The neuromuscular disease spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality
[1]. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene [2]. The major pathological
components of SMA pathogenesis are the selective loss of spinal cord alpha motor neurons and muscle
wasting [3]. Skeletal muscle pathology is a clear contributor to SMA disease manifestation and progression
and is caused by both denervation-induced muscle atrophy [4,5] and intrinsic defects [6-8]. As skeletal
muscle is the largest insulin-sensitive tissue in the body and is involved in glucose utilization [9], it is not
surprising that muscle metabolism is also affected in SMA. Impaired metabolism has indeed been reported
in SMA Type 1, 2 and 3 patients [10-14]. A better understanding of the specific molecular effectors that
contribute to SMA muscle physiopathology could provide mechanistic insights in SMA muscle pathology

and help therapeutic endeavors aimed at improving muscle health in patients [15].

One pathway that plays a crucial role in chronic injury and muscle diseases is the tumor necrosis factor-like
weak inducer of apoptosis (TWEAK) and its main signaling receptor, the TNF receptor superfamily member
fibroblast growth factor inducible 14 (Fn14) [16-18]. TWEAK is ubiquitously expressed and synthesized as
a Type Il transmembrane protein but can also be cleaved by proteolytic processing and secreted as a soluble
cytokine [19]. The role of the TWEAK/Fn14 pathway in skeletal muscle is conflicting as it has been
demonstrated to have both beneficial and detrimental effects on muscle health and function [20,21]. Indeed,
pathologically high levels of TWEAK activate the canonical nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-xB) pathway, which promotes myoblast proliferation and thus inhibits myogenesis and
the early phases of muscle repair and regeneration [22,23]. Conversely, lower physiological concentrations
of TWEAK activate the non-canonical NF-kB pathway that promotes myoblast fusion and myogenesis [24].
The transmembrane protein Fnl14 is typically dormant or present in low levels in normal healthy muscle
[25]. Atrophic inducing conditions (e.g. casting and surgical denervation) stimulate the expression of Fn14,

leading to the chronic activation of the TWEAK/Fn14 pathway and sustained skeletal muscle atrophy [26].
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We have also demonstrated an increased activity of the Tweak/Fn14 pathway in skeletal muscle of a mouse
model of the neurodegenerative adult disorder amyotrophic lateral sclerosis (ALS), which is characterized
by a progressive and chronic denervation-induced muscle atrophy [27]. In addition, various downstream
effectors of the TWEAK/Fn14 pathway play critical roles in the regulation of muscle metabolism such as
peroxisome proliferator-activated receptor-gamma coactivator 1a. (PGC-1a), glucose transporter 4 (Glut-4),

myogenic transcription factor 2d (Mef2d), hexokinase Il (HKII) and Kriippel-like factor 15 (KIf15) [28-34].

Although the TWEAK/Fn14 pathway has been ascribed roles in both skeletal muscle health regulation and
metabolism, both of which are impacted in SMA [35,36], this pathway has yet to be investigated in the
context of SMA. Furthermore, all research on this pathway has been performed in adult mice and therefore
has never been explored in early phases of muscle development. We thus investigated the potential role of
TWEAK/Fn14 signaling in SMA and in early phases of post-natal skeletal muscle development. We report
significantly decreased levels of both Tweak and Fnl4 during disease progression in two distinct SMA
mouse models (Smn”-;SMN2 and Smn?8-) [37,38]. We also observed dysregulated expression of PGC-1¢,
Glut-4, Mef2d and HKII, the metabolic downstream effectors of TWEAK/Fn14 signaling [29,30], in skeletal
muscle of these SMA mice. In addition, more in-depth analyses revealed an overlap of aberrantly expressed
genes that regulate myopathy, myogenesis and glucose metabolism pathways in skeletal muscle of SMA,
Tweak”’- and Fn14” mice, further supporting shared functions between the TWEAK/Fn14 pathway and SMN
in developing muscle. Finally, upregulation of the activity of the TWEAK/Fnl14 pathway, through a
pharmacological intervention (Fc-TWEAK administration), improved disease phenotypes in the two SMA
mouse models. Our study uncovers novel mechanistic insights into the molecular effectors that contribute to
skeletal muscle pathology in SMA and demonstrates a role for the TWEAK/Fn14 pathway in the early stages

of post-natal muscle development.
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METHODS

Animals and animal procedures

Wild-type mice FVB/N [39] and C57BL/6J [40] and the severe Smn’;SMN2 mouse model (FVB.Cg-
Smnltm1Hung Tg(SMN2)2Hung/J) [41] were obtained from Jackson Laboratories. The Smn2®- mouse
model [38,42] was kindly provided by Dr. Lyndsay M Murray (University of Edinburgh). Tweak” [43] and
Fn14’-mouse models [44] were generously obtained from Linda C. Burkly (Biogen).

Most experiments with live animals were performed at the Biomedical Services Building, University of
Oxford. Experimental procedures were authorized and approved by the University of Oxford ethics
committee and UK Home Office (current project license PDFEDC6FO0, previous project license 30/2907) in
accordance with the Animals (Scientific Procedures) Act 1986. Experiments with the Smn?®" mice in Figure
1 were performed at the University of Ottawa Animal Facility according to procedures authorized by the
Canadian Council on Animal Care.

Fc-TWEAK was administered by subcutaneous injections using a sterile 0.1 cc insulin syringe at various
doses (7.9 ug, 15.8 pg or 31.6 pg) and at a volume of 20 pl either daily, every other day or every four days.
Mouse Fc-TWEAK, a fusion protein with the murine IgG2a Fc region, and Ig isotope control were kindly
provided by Linda C. Burkly (Biogen) [43].

For survival studies, mice were weighed and monitored daily and culled upon reaching their defined humane
endpoint.

For all experiments, litters were randomly assigned at birth and whole litters composed of both sexes were
used. Sample sizes were determined based on similar studies with SMA mice.

To reduce the total number of mice used, the fast-twitch tibialis anterior (TA) and triceps muscles from the

same mice were used interchangeably for respective molecular and histological analyses.
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Sciatic nerve crush

For nerve crush experiments, post-natal day (P) 7 wild-type (WT) FVB/N mice [39] were anesthetized with
2% isoflurane/oxygen before one of their lateral thighs was shaved and a 1 cm incision in the skin was made
over the lateral femur. The muscle layers were split with blunt scissors, the sciatic nerve localized and
crushed with tweezers for 15 seconds. The skin incision was closed with surgical glue and animals allowed
to recover on a warming blanket. Ipsilateral and contralateral TA muscles were harvested at P14 and either
fixed in 4% paraformaldehyde (PFA) for 24 hours for histological analyses or snap frozen for molecular

analyses.

Cardiotoxin injections

Cardiotoxin y (Cytotoxin I, Latoxan, L8102, Portes les Valence) was dissolved in 0.9% saline and injected
4 ul/g per total mouse weight of a 10 uM solution into the left TA muscle of WT FVB/N mice [39] at post-
natal day (P) 10. The right TA was injected with equal volumes of 0.9% saline. During the injection, mice
were anesthetized with 2% isoflurane/oxygen and all injections were done using a sterile 0.3 cc insulin
syringe. TA muscles were harvested 6 days later and either fixed in 4% PFA for 24 hours for histological

analyses or snap frozen for molecular analyses.

Laminin staining of skeletal muscle

TA muscles were fixed in PFA overnight. Tissues were sectioned (13 um) and incubated in blocking buffer
for 2 hours (0.3% Triton-X, 20% fetal bovine serum (FBS) and 20% normal goat serum in PBS). After
blocking, tissues were stained overnight at 4°C with rat anti-laminin (1:1000, Sigma L0663) in blocking
buffer. The next day, tissues were washed in PBS and probed using a goat-anti-rat 1gG 488 secondary
antibody (1:500, Invitrogen A-11006) for one hour. PBS-washed tissues were mounted in Fluoromount-G
(Southern Biotech). Images were taken with a DM IRB microscope (Leica) with a 20X objective.

Quantitative assays were performed blinded on 3-5 mice for each group and five sections per mouse. The

6
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area of muscle fiber within designated regions of the TA muscle sections was measured using Fiji (ImageJ)

[45].

Hematoxylin and eosin staining of skeletal muscle

TA muscles were fixated in 4% PFA and imbedded into paraffin blocks. For staining, muscles were sectioned
(13 um) and deparaffinized in xylene and then fixed in 100% ethanol. Following a rinse in water, samples
were stained in hematoxylin (Fisher) for 3 minutes, rinsed in water, dipped 40 times in a solution of 0.02%
HCl in 70% ethanol and rinsed in water again. The sections were next stained in a 1% eosin solution (BDH)
for 1 minute, dehydrated in ethanol, cleared in xylene, and mounted with Fluoromount-G (Southern Biotech).
Images were taken with a DM IRB microscope (Leica) with a 20X objective. Quantitative assays were
performed blinded on 3-5 mice for each group and five sections per mouse. The area of muscle fibre within

designated regions of the TA muscle sections was measured using Fiji (ImageJ) [45].

Cell culture

Both C2C12 myoblasts [46] and NSC-34 neuronal-like cells [47] were maintained in growth media
consisting of Dulbecco’s Modified Eagle’s Media (DMEM) supplemented with 10% FBS and 1%
Penicillin/Streptomycin (all Life Technologies). Cells were cultured at 37°C with 5% CO2. C2C12 myaoblasts
were differentiated in DMEM containing 2% horse serum for 7 days to form multinucleated myotubes.

Cells were regularly tested for mycoplasma and remained mycoplasma-free.

In vitro siRNA knockdown

For small interfering RNA (siRNA) transfections, C2C12 myoblasts were seeded onto 12-well plates at a
50% confluency and cultured overnight in 2 mL of DMEM. Cells were washed with PBS prior to siRNA
transfection, whereby 100 pmol of each siRNA (Tweak, Fnl4, Smn) (Invitrogen, assay IDs s233937,

$203164, s74017, respectively) in a complex with 10 ul of Lipofectamine RNAI/MAX (Invitrogen) dissolved

7
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in OptiMEM solution (Gibco) was added to the cells for three hours. The transfection mix was then
substituted either for DMEM without the siRNAs for 1 day or with a differentiation medium mix without

the sSiRNAs for 7 days.

gPCR

RNA was extracted from tissues and cells either by a RNeasy kit from Qiagen or by guanidinium
thiocyantate-acid-phenol-chloroform extraction using TRIzol Reagent (Life Technologies) as per
manufacturer’s instructions. The same RNA extraction method was employed for similar experiments and
equal RNA amounts were used between samples within the same experiments. cDNA was prepared with the
High Capacity cDNA Kit (Life Technologies) according to the manufacturer’s instructions. The cDNA
template was amplified on a StepOnePlus Real-Time PCR Thermocycler (Life Technologies) with SYBR
Green Mastermix from Applied Biosystems. gPCR data was analyzed using the StepOne Software v2.3
(Applied Biosystems). Primers used for gPCR were obtained from IDT and sequences for primers were
either self-designed or ready-made (Supplementary Table 1). Relative gene expression was quantified using
the Pfaffl method [48] and primer efficiencies were calculated with the LinRegPCR software. We
normalized relative expression level of all tested genes in mouse tissue and cells to RNA polymerase 1l

polypeptide J (PolJ) [49].

PCR array

RNA was extracted using the RNeasy® Microarray Tissue Kit (Qiagen). cDNA was generated with the RT?
First Strand Kit (Qiagen). gPCRs were performed using RT? Profiler™ PCR Array Mouse Skeletal Muscle:
Myogenesis & Myopathy Mouse (PAMM-099Z, SABiosciences) and RT? Profiler™ PCR Array Mouse
Glucose Metabolism (PAMM-006Z SABiosciences). The data were analyzed with RT Profiler PCR Array
Data Analysis (version 3.5) and mRNA expression was normalized to the two most stably expressed genes

between all samples. We used the publicly available database STRING (version 10.5) for network and

8
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enrichment analysis of differently expressed genes [50]. The minimum required interaction score was set at

0.4, medium confidence.

Western blot

Freshly prepared radioimmunoprecipitation (RIPA) buffer was used to homogenize tissue and cells,
consisting of 50 mM Tris pH 8.8, 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS and
complete mini-proteinase inhibitors (Roche). Equal amounts of total protein were loaded, as measured by
Bradford Assay. Protein samples were first diluted 1:1 with Laemmli sample buffer (Bio-Rad, Hemel
Hempstead, UK) containing 5% [-mercaptoethanol (Sigma) and heated at 100°C for 10 minutes. Next,
samples were loaded on freshly made 1.5 mm 12% polyacrylamide separating and 5% stacking gel and
electrophoresis was performed at 120 V for ~1.5 hours in running buffer. Subsequently, proteins were
transferred from the gel onto to a polyvinylidene fluoride membrane (Merck Millipore) via electroblotting
at 120 V for 60 minutes in transfer buffer containing 20% methanol. Membranes were then incubated for 2
hours in Odyssey Blocking Buffer (Licor). The membrane was then probed overnight at 4°C with primary
antibodies (P105/p50, 1:1000, Abcam ab32360; Actin, 1:1000, Abcam ab3280) in Odyssey Blocking Buffer
and 0.1% Tween-20. The next day, after three 10-minute washing steps with PBS, the membrane was
incubated for 1 hour at room temperature with secondary antibodies (goat anti-rabbit 1gG 680RD, 1:1000,
LI-COR 926-68071; goat anti-mouse 1gG 800CW, 1:1000 LI-COR, 926-32210). Lastly, the membrane was
washed three times for 10 minutes in PBS and visualized by scanning 700 nm and 800 nm channels on the
LI-COR Odyssey CLx infrared imaging system (LI-COR) for 2.5 minutes per channel. The background was

subtracted and signal of protein of interest was divided by signal of the housekeeping protein.

Statistical Analysis

All statistical analyses were done with the most up to date GraphPad Prism software. When appropriate, a

Student’s unpaired two-tail t-test, a one-way ANOVA or a two-way ANOVA was used. Post-hoc analyses

9
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used are specified in Figure Legends. Outliers were identified via the Grubbs' test. For the Kaplan-Meier

survival analysis, the log-rank test was used and survival curves were considered significantly different at

p<0.05.
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RESULTS

The TWEAK/Fn14 pathway is dysregulated in two SMA mouse models

We firstly investigated the expression of the TWEAK/Fn14 pathway in skeletal muscle of the severe
Taiwanese Smn”;SMN2 mouse model [37], using muscles with reported differential vulnerability to
neuromuscular junction (NMJ) denervation (vulnerability: triceps brachii > gastrocnemius > TA >
quadriceps femoris) [51]. Muscles were harvested from Smn”;SMN2 and WT mice at several time points
during disease progression: birth (post-natal day (P) 0, pre-symptomatic (P2), early symptomatic (P5), late-

symptomatic (P7) and end stage (P10)).

We assessed the expression of parvalbumin, a high affinity Ca?*-binding protein, which is downregulated in
denervated muscle [52,53] and a marker of muscle atrophy in skeletal muscle of SMA patients and
Smn~";SMN2 mice [54]. We observed a significant decreased expression of parvalbumin mRNA during
disease progression (Fig. 1a) in SMA mice compared to WT animals, further confirming parvalbumin as a
bona fide marker of muscle atrophy in SMA [54]. Furthermore, we noted that parvalbumin expression was
downregulated at earlier time points in the two most vulnerable muscles (triceps and gastrocnemius) [51] of

SMA mice compared to WT animals (Fig. 1a).

We next evaluated the expression of Tweak and Fnl4 and observed significant decreased levels of Tweak
mRNA in muscles of Smn”-;SMN2 mice during disease progression, except in the quadriceps (Fig. 1b), in
accordance with it being a relatively invulnerable SMA muscle [51]. Similarly, we found significantly lower
levels of Fn14 mRNA in all muscles of Smn”;SMN2 mice during disease progression (Fig. 1c) compared to
WT animals. Interestingly, the decreased expression of Fnl4 in denervated and atrophied muscles of
neonatal animals is different to previous reports in adults where denervation-induced atrophy stimulates its

expression [26,27].
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As mentioned above, the TWEAK/Fn14 pathway has been reported to negatively regulate the expression of
metabolic effectors KIf15, Pgc-1a, Mef2d, Glut-4 and HKII [29]. Given that we have previously published
a concordant increased expression of KIf15 in skeletal muscle of SMA mice during disease progression [55],
we next evaluated if the additional downstream metabolic targets were similarly dysregulated in the
predicted directions. We indeed observed that the mMRNA expression of Pgc-/a, Mef2d, Glut-4 and HKII
was significantly upregulated in muscles of Smn’;SMN2 mice at symptomatic time-points (P5-P10)
compared to WT animals (Fig. 1d-g), showing an expected opposite pattern to both Tweak and Fn14 (Fig.
1b-c) [29]. Notably, we also found that in most muscles, mRNA levels of Pgc-/a, Mef2d, Glut4 and HKII
were significantly decreased in pre-symptomatic Smn”-;SMN2 mice (P0-P5) compared to WT animals (Fig.

1d-g), independently of Tweak and Fn14 (Fig. 1b-c).

TWEAKI/Fn14 pathway also regulates the canonical and non-canonical NF-kB pathways in skeletal muscle
[56,57]. In pre-symptomatic (P2) TA muscle, we observed no significant difference in the expression of NF-
kB1 (p50), a component of the canonical NF-xB pathway, between Smn”;SMN2 mice and WT animals (Fig.
1h), consistent with normal Tweak and Fn14 levels (Fig. 1b-c). Conversely, there was a significant decreased
expression of NF-kB1 (p50) in TA muscle of symptomatic Smn”;SMN2 mice compared to WT animals at
P7 (Fig. 1i), in line with reduced levels of Tweak and Fn14 (Fig. 1b). We also investigated the expression of
NF-kB-inducing kinase (NIK), involved in the non-canonical NF-kB activation pathway [58]. We observed
that mMRNA levels of NIK were significantly increased in TA muscle of P7 Smn”;SMN2 mice compared to
WT animals (Fig. 1j), suggesting that dysregulated activity of the Tweak/Fn14 in skeletal muscle of SMA
mice impacts both the canonical and non-canonical NF-xB pathways, which play key regulatory roles in

muscle health and metabolism [20,21].

Finally, we evaluated the expression of the TWEAK/Fn14 signaling cascade in skeletal muscle of the less

severe Smn?®"- mouse model of SMA [38]. TA muscles were harvested from Smn?®" mice and age-matched

12
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WT animals at PO (birth), P2 (early pre-symptomatic), P4 (late pre-symptomatic), P11 (early symptomatic)
and P19 (end stage). We found a significant decreased expression of parvalbumin (Fig. 1k), Tweak (Fig. 1I)
and Fn14 (Fig. 1m) in muscle from Smn?®~ mice during disease progression compared to WT animals,
similar to that observed in the more severe Smn”-;SMN2 SMA mouse model (Fig. 1a-c). We have previously
reported the aberrant increased expression of KIf15 in the TA muscle of Smn?®- mice during disease
progression [55]. However, we did not observe an increase in expression of Pgc-/a (Fig. 1n), Mef2d (Fig
10), Glut-4 (Fig 1p) and HKII (Fig. 1q), suggesting that the negative regulation of these downstream

metabolic effectors may be dependent on disease severity, age and/or genetic strain.

We have thus demonstrated that the TWEAK/Fn14 pathway is dysregulated during progressive muscle

atrophy in two SMA mouse models.

Denervation does not affect the Tweak/Fn14 pathway during the early stages of muscle development
As SMA muscle pathology is defined by both intrinsic defects and denervation-induced events, we set out
to determine which of these may influence the dysregulation of the Tweak/Fn14 pathway in SMA muscle.
We firstly addressed the denervation component by performing nerve crush experiments in which the sciatic
nerves of P7 WT mice were crushed and the muscle harvested at P14 [59]. Of note, the sciatic nerve was
crushed in only one hindlimb, leaving the other control hindlimb intact. Quantification of myofiber area in
TA muscles showed a significant decrease in myofiber size in the nerve crush muscle compared to the control

hindlimb (Fig. 2a-c).

Expression analyses further revealed that there were no significant changes in mRNA levels of parvalbumin,
Tweak, Fnl4, PGC-1q, Mefd2, Glut-4 and HKII in the denervated muscle compared to the control TA
muscle (Fig. 2d). Interestingly, while denervation in adult muscle induces a dramatic surge in Fnl4

expression [26,27], this did not occur in the denervated muscles of our pre-weaned mice, suggesting an age
13


https://doi.org/10.1101/2021.09.13.460053
http://creativecommons.org/licenses/by/4.0/

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.460053; this version posted September 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

and/or development regulatory element to this response. We also investigated the expression of KIf15 and
Smn and similarly observed no significant differences between the nerve crush and control muscles (Fig.

2d).

Overall, these results suggest that the dysregulation of parvalbumin and the Tweak/Fn14 pathway in SMA

muscle during disease progression is most likely not denervation-dependent.

Intrinsic muscle injury affects the Tweak/Fnl4 pathway during the early stages of muscle
development

We next investigated what impact impairing intrinsic muscle integrity would have on the Tweak/Fnl14
pathway. To do so, we used cardiotoxin to induce myofiber necrosis. Cardiotoxin was injected in P10 WT
mice into the left TA while the right TA was injected with equal volumes of 0.9% saline and used as a control
[60]. TAs were harvested after 6 days, a time-point where muscles are still in an immature and regenerating
mode [61]. Indeed, analysis of centrally located nuclei showed a significantly increased percentage of

regenerating myofibers in cardiotoxin-treated muscles compared to saline-treated TAs (Fig. 3a-b).

We then proceeded with molecular analyses and observed that the atrophy marker parvalbumin was
significantly downregulated in cardiotoxin-treated TA muscles compared to saline-treated TA muscles (Fig.
3c). Fn14 mRNA expression was significantly increased after cardiotoxin injury, in accordance with
previous research showing that muscle damage conditions activate Fnl14 [26]. Conversely, Pgc-/a, Glut-4,
HKII and KIf15 mRNA levels were significantly downregulated (Fig. 3c), supporting their reported negative
regulation by the Tweak/Fn14 pathway [29]. Interestingly, Tweak mMRNA expression remained unchanged,
contrary to reports of upregulation following cardiotoxin injury in adult muscle [62], suggesting a differential

response in early developmental stages of skeletal muscle. Notably, Smn expression was significantly
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increased in the regenerating muscles compared to saline-treated TA muscles (Fig. 3c), perhaps due to

SMN’s role during muscle fiber regeneration [63].

Together, these results demonstrate that intrinsic muscle injury in pre-weaned mice induces a dysregulation
of the Tweak/Fn14 signaling cascade. However, the changes were in the opposite direction than that
observed in SMA muscles (Fig. 1b), perhaps due to the necrosis and regeneration events that occur following

cardiotoxin injury [64], which are not typically found in muscles of SMA mice.

Genetic interactions between Smn, Tweak and Fn14 in muscle

We next wanted to further understand the potential relationship between dysregulated expression of Tweak,
Fnl4 and Smn in skeletal muscle of SMA mice. To do so, we evaluated the impact of Tweak and Fn14
depletion in the early stages of muscle development by performing molecular analyses on P7 triceps from
Fn147- [44], Tweak”’ [43] and WT mice. In Tweak - mice, we observed a significant increased expression
of Fn14 with a concomitant significantly decreased expression of KIf15 compared to WT animals (Fig. 4a).
Notably, we found a significant decreased expression of Smn in Tweak 7~ triceps compared to WT mice (Fig.
4a), suggesting a direct or indirect positive interaction between Tweak and Smn levels. For their part,
Fn14”mice displayed a significant downregulation of parvalbumin and a significant upregulation of Pgc-
1o (Fig. 4b). These analyses further validate the reported negative regulation of Pgc-1a and KIf15 by Fnl4

and support the absence of overt pathological muscle phenotypes in young Tweak” and Fn14”- mice [26,65].

To further dissect the relationship between Smn and the Tweak/Fnl4 pathway during myogenic
differentiation, we performed siRNA-mediated knockdown of Smn, Tweak and Fn14 in C2C12 myoblasts
and evaluated the effect on the Tweak/Fn14 signaling in undifferentiated (Day 0) and differentiated (Day 7)
cells. Reduced levels of Smn, Tweak and Fnl4 were significantly maintained in both proliferating and

differentiated cells following transfection with siSmn, siTweak and siFnl4, respectively (Fig. 4c-e). We
15
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observed an interaction between Smn, Tweak and Fn14 specifically in differentiated C2C12s, whereby Smn
expression was significantly upregulated in Fnl4-depleted D7 cells (Fig. 4c), Tweak expression was
significantly reduced in Smn-depleted D7 cells (Fig. 4d), and Fn14 levels were significantly decreased in
Tweak- and Smn-depleted D7 cells (Fig. 4e). Similarly, the effects of sSiRNA-mediated knockdown of Smn,
Tweak and Fn14 on downstream metabolic effectors were only apparent in differentiated C2C12s (Fig. 4f-
J). Indeed, both knockdown of Tweak and Fn14 resulted in a significant upregulation of Pgc-/a (Fig. 4f) and
Mef2d (Fig. 4g). While Glut-4 expression was neither affected by depletion of Smn, Tweak or Fnl4 (Fig.
4h), HKII mRNA levels were significantly decreased following knockdown of all three (Fig. 4i). Finally,
KIf15 expression was significantly increased in siRNA-mediated knockdown of Fnl14 only (Fig. 4j). The
upregulation of Pgc-/a, Mef2d, and KIf15 in Tweak- and/or Fnl4-depleted differentiated C2C12 cells is in
accordance with the previously reported negative regulation of these genes by the Tweak/Fnl4 pathway

while the unchanged Glut-4 and downregulated HKII levels were not [18].

Thus, using both in vivo and in vitro models, we have thus provided evidence for a potential interaction
between Smn, Tweak and Fn14 and subsequent impact on the Tweak/Fn14 signaling cascade (Fig. 4k). Our
results suggest that the aberrant expression of the Tweak/Fn14 pathway in SMA muscle during disease
progression may be due to a dynamic interplay between atrophic conditions and the molecular impact,
individual and combined, of reduced expression of Smn, Tweak and Fn14 in the early developmental stages

of skeletal muscle.

Overlap of dysregulated myopathy and myogenesis genes and glucose metabolism genes in SMA,
Fnl14” and Tweak’ mice

To further decipher the potential contribution(s) of Smn, Tweak and Fnl4 depletion to SMA muscle
pathology, we used commercially available mouse myopathy and myogenesis gPCR arrays

(SABIosciences), which measure expression levels of a subset of 84 genes known to display and/or regulate
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myopathy and myogenesis. We used triceps (vulnerable) and quadriceps (resistant) from P7 Smn-/-;SMN2,
Tweak”, Fn14 - mice. WT FVB/N mice were compared to SMA animals and WT C57BL/6 mice were
compared to Tweak”’" and Fn14” mice to account for differences due to genetic strains. Unsurprisingly, we
observed a larger number of significantly dysregulated myopathy and myogenesis genes in triceps of
Smn~-;SMN2 mice than in the more resistant quadriceps, some of which overlapped with the subset of genes
aberrantly expressed in Fn14”- mice and Tweak” mice (Fig. 5a, Table 1, Supplementary File 1). We also
used the publicly available database STRING [50] to perform network and enrichment analysis of the shared
differently expressed genes in both triceps and quadriceps (Table 1), which revealed that there were no
known protein-protein interactions between any of the dysregulated genes and Smn, Fnl14 or Tweak (Fig.
5b). Interestingly, the central connectors Myod1 and Myf6 were upregulated and Pax7 was downregulated
in the triceps of all three experimental groups (Table 1). Myodl and Myf6 are key myogenic regulatory
factors (MRFs) and are normally upregulated after skeletal muscle injury [66]. Pax7 is a canonical marker
for satellite cells, the resident skeletal muscle stem cells [66], and reduced activity of Pax7 leads to cell-
cycle arrest of satellite cells and dysregulation of MRFs in skeletal muscle [67]. Furthermore, Titin (Ttn)
was downregulated in the quadriceps muscles of all three mouse models and plays major roles in muscle
contraction and force production, highlighted by titin mutations leading to a range of skeletal muscle diseases

and phenotypes [68].

Next, as both SMA and the Tweak/Fnl4 pathway have both been associated with glucose metabolism
abnormalities [29,69], we performed similar gene expression analyses with commercially available g°PCR
arrays (SABiosciences) containing a subset of 84 genes known to display and/or regulate glucose
metabolism. We found a similar large number of genes that were dysregulated in both triceps and quadriceps
muscles of Smn”-;SMN2 mice, some of which overlapped with those differentially expressed in Fn14” and
Tweak - mice (Fig. 5¢c, Table 2, Supplementary File 2). STRING network and enrichment analysis [50]

revealed that there are no known protein-protein interactions between any of the dysregulated genes and
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Smn, Fnl14 or Tweak. Further analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
composed of the glucose metabolism genes significantly dysregulated in the same direction in triceps and
quadriceps muscles of P7 Smn”;SMN2, Fn14” and Tweak”’ mice as well as the downstream effectors of the
TWEAK/Fn14 pathway studied in this project (Pgc-1a, Mef2d, Glut4, KIf15, and HKII) reveals that many
aspects of glucose metabolism, such as insulin signaling, glycolysis are dysregulated in Smn-, Tweak- and

Fnl4-depleted mice (Table 3).

We thus show a shared pattern of aberrantly expressed genes that modulate myogenesis, myopathy and
glucose metabolism in SMA, Tweak-depleted and Fn14-depleted skeletal muscle, suggesting that Smn and
the Tweak/Fn14 pathway may act synergistically on muscle pathology and metabolism defects in SMA

muscle.

Increasing Tweak activity improves a subset of disease phenotypes in two SMA mouse models

Finally, we evaluated the impact of activating the Tweak/Fn14 pathway on disease progression and muscle
pathology in SMA mice. To do so, Smn”-;SMN2 mice and healthy littermates received a daily subcutaneous
injection of Fc-TWEAK (15.8 ug), a fusion protein with the murine IgG2a Fc region [43], starting at birth.
We found that Fc-TWEAK did not significantly impact weight or survival of Smn”-;SMN2 mice compared
to untreated and 1gG-treated controls (Fig. 6a-b). Additional lower (7.9 ug) and higher doses (23 and 31.6

Hg) were also administered but proved to negatively impact weight and survival (Supplementary Fig. 1).

Triceps from P7 untreated and Fc-TWEAK-treated (15.8 pg) Smn”;SMN2 SMA mice and Smn*"-;SMN2
healthy littermates were further processed for molecular analyses of the Tweak/Fn14 pathway. We observed
that Fc-TWEAK administration did not influence the expression of Tweak (Fig. 6¢) or Fnl14 (Fig. 6d) in
neither Smn*~;SMN2 nor Smn”-;SMN2 mice compared to untreated animals. Accordingly, Fc-TWEAK did

not induce changes in Pgc-1a expression (Fig. 6e). We did observe a significant downregulation of Mef2d
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in Fc-TWEAK -treated muscles of Smn”-;SMN2 SMA mice compared to untreated animals (Fig. 6f). Glut-4
mRNA expression remained unchanged in both Smn*;SMN2 and Smn”;SMN2 Fc-TWEAK-treated mice
(Fig. 6g). HKII was significantly upregulated in muscle of Fc-TWEAK-treated Smn*~;SMN2 healthy
littermates while it was significantly downregulated in Fc-TWEAK-treated Smn”;SMN2 SMA mice
compared to untreated groups (Fig. 6h). KIf15 was significantly downregulated in Fc-treated Smn”-;SMN2
SMA only compared to untreated SMA animals (Fig. 6i). The absence of overt changes in the expression of
Tweak, Fn14 and downstream metabolic effectors may be due to the 24 hour time-lapse between the last Fc-
Tweak injection and harvest of tissues, which could have led to missing key time-points at which

transcriptional profiles were significantly impacted.

Whilst we did not capture the short-term molecular effects of Fc-TWEAK administration, quantification of
myofiber area in TA muscles showed that daily Fc-TWEAK treatment significantly increased myofiber area
in skeletal muscle of P7 Smn”-;SMN2 mice compared to untreated SMA animals (Fig. 6j-1). Furthermore, the
expression of atrophy markers parvalbumin, MuRF-1 and atrogin-1 [70] was also restored towards normal
levels, whereby parvalbumin expression was significantly increased (Fig. 6m) whilst MuRF-1 and atrogin-
1 expression was significantly downregulated (Fig. 6n-0) in triceps of Fc-TWEAK-treated Smn’;SMN2
SMA mice compared to untreated SMA animals, further supporting an improvement in muscle health. We

did not however detect changes in MRFs Myod1 and myogenin [66] (Fig. 6p-r).

We next assessed the effect of Fc-TWEAK in Smn?®" mice, which are typically more responsive to Smn-
independent treatment strategies [55,71-73]. Due to the longer treatment period in these mice (20 days) and
the observed toxicity in daily injected mice (> 10 days), the Smn?®- and Smn?8"* mice received subcutaneous
injections of Fc-TWEAK and IgG control (15.8 pg) every 4 days, starting at birth. Both 1gG and Fc-TWEAK
did not significantly impact the weight of Smn?®- mice compared to untreated SMA animals (Fig. 6s).

However, Fc-TWEAK significantly increased the lifespan of Smn?®’~ mice compared to both 1gG-treated
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and untreated animals (Fig. 6t). Molecular analyses of triceps from P15 animals only showed a significant
effect of Fc-TWEAK on the expression of Glut-4, whereby it was downregulated in Fc-TWEAK-treated
Smn?®- mice compared to untreated animals (Fig. 6u). Similarly to above, the limited impact of Fc-TWEAK
on the expression of the Tweak/Fn14 signaling cascade is most likely due to the 72-hour time-lapse between

the last injection of Fc-Tweak and tissue harvest.

Taken together, our results demonstrate that increasing Tweak activity in SMA mice has the potential to

improve weight, survival, and muscle pathology, suggesting that restoring the Tweak/Fn14 pathway in SMA

muscle may lead to sustainable therapeutic benefits.
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DISCUSSION

Motor neuron death and muscle pathology bi-directionally impact on each other in SMA. Indeed, while loss
of motor neurons significantly contributes to muscle atrophy, there is also evidence for muscle-intrinsic
abnormalities in SMA skeletal muscle, which could be directly or indirectly caused by SMN deficiency [6—
8,74,75]. In this study, we addressed the underlying mechanisms of muscle-intrinsic abnormalities leading
to muscle pathology in SMA by investigating the role of the TWEAK/Fn14 pathway in muscle atrophy in
SMA. To the best of our knowledge, this is the first study to evaluate the TWEAK/Fn14 pathway in SMA

and in early stages of muscle development.

Notably, we showed decreased expression of Tweak and Fn14 in skeletal muscle of two distinct SMA mouse
models during disease progression, which is contrary to previous reports of increased TWEAK/Fn14 activity
in experimental models of atrophy in adult muscle [18,76,77], suggesting that the TWEAK/Fn14 pathway
may have distinct roles in skeletal muscle during development and adulthood. Indeed, Tweak mMRNA
expression is significantly lower in skeletal muscle of 30-day-old WT mice compared to 90-day-old animals,
suggesting an age-dependent regulation [78]. Moreover, we observed that the dysregulation of the
TWEAK/Fn14 pathway in skeletal muscle of pre-weaned mice appears to be influenced by intrinsic
myopathy and not denervation, which is in contrast to what has been reported in experimental models of
adult muscle denervation [26,27], further suggesting distinct developmental roles for the Tweak/Fn14
pathway in skeletal muscle. Given that muscles from younger mice are more resistant to surgically-induced
denervation than in older mice [79], the TWEAK/Fn14 pathway may contribute to this age-dependent
differential vulnerability of muscle to pathological insults. Thus, the role of TWEAK/Fn14 signaling in
muscle pathology may be more nuanced and be influenced by a combination of factors such as absolute
levels, downstream signaling cascades activated (e.g. canonical vs non-canonical NF-kB signaling
pathways), developmental stage of the muscle, state of muscle atrophy (e.g. chronic vs acute) and primary

origin of muscle pathology (e.g. denervation vs intrinsic insult) [20,21].
21


https://doi.org/10.1101/2021.09.13.460053
http://creativecommons.org/licenses/by/4.0/

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.13.460053; this version posted September 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Another key observation from our study is a potential interaction and/or overlap between Tweak, Fnl14 and
Smn and their downstream signaling cascades in muscle. It has previously been demonstrated that once
Tweak binds to Fn14, the complex will activate several NF-xB molecular effectors, including TRAF6 and
IKK [80]. Interestingly, SMN has been reported to prevent the activation of TRAF6 and IKK, thereby
negatively regulating the muscle atrophy-inducing canonical NF-xB pathway [81]. These studies thus
suggest converging roles for TWEAK, Fn14 and Smn in muscle, which is further supported by our findings.
Indeed, we found that independent Tweak, Fn14 and Smn depletion had an impact on each other’s expression
in differentiated C2C12 cells and murine muscle. Furthermore, there was an overlap of dysregulated
myogenesis, myopathy and glucose metabolism genes in SMA, Fn14” and Tweak”- mice. Thus, these results
suggest that aberrant expression of the TWEAK/Fn14 pathway in SMA muscle may be a consequence of

combined events resulting from muscle atrophy events and reduced SMN expression.

In addition, our results in developing mice do support the previously reported negative regulation of the
metabolic factors Pgc-1a, Mef2d, Glut4, K1f15, and HKII in adult muscle [29]. Further analyses of a subset
of specific glucose metabolism genes showed that about 20% of these genes were dysregulated in the same
direction in Fn14”-, TWEAK- and SMA mice. Our KEGG analysis of these shared dysregulated metabolic
genes further support the potential relationships and roles of TWEAK, Fnl14 and SMN involved in the
regulation of glucose metabolism. Indeed, the AMPK signaling pathway, found to be aberrantly regulated
in Fn14”-, TWEAK" and SMA, is as a master regulator of skeletal muscle function and metabolism [82].
Interestingly, a previous study in SMNA7 SMA mice further showed that chronic treatment with the AMPK
agonist AICAR prevented skeletal muscle pathology [83]. In addition, AMPK directly phosphorylates PGC-
lo [84], which is also dysregulated in Smn-, Tweak- and Fn14-depleted models [85,86]. We also found that
glycolysis and pyruvate metabolic pathways, which culminate in the generation of ATP, are also
dysregulated in SMA, Fn14” and Tweak’ mice. Interestingly, siRNA-mediated Smn knockdown in NSC-

34 cells showed a significant decrease in ATP production [87]. ATP was also decreased in Smn”-;SMN2 mice
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and in Smn morphant zebrafish [88]. These results could explain mitochondrial dysfunction in SMA patients
[7]. Thus, our study strengthens the notion of metabolic dysfunctions contributing to SMA muscle pathology

and suggests a potential mechanistic link with the TWEAK/Fn14 pathway.

Our findings also confirm that not all skeletal muscles are equally affected in SMA. Indeed, we observed
that the SMA skeletal muscle atrophy marker parvalbumin was significantly decreased from an earlier
timepoint in the vulnerable triceps and gastrocnemius muscles than in the more resistant TA and quadriceps
muscles. Notably, we also found that 20% more myogenesis- and myopathy-related genes were dysregulated
in the more vulnerable triceps muscles of Smn~";SMN2 mice compared to the resistant quadriceps muscles.
Conversely, the number of glucose metabolism genes dysregulated in SMA triceps and quadriceps muscles
was not significantly different. Previous studies have reported that muscle vulnerability is more closely
associated with NMJ denervation than with location or fibre type composition [51]. Our results further
suggest that denervation events in vulnerable SMA muscles have a more prominent effect on myogenesis

and myopathy than on glucose metabolism.

Finally, modulating Tweak activity via Fc-TWEAK in two SMA mouse models led to interesting
observations. Firstly, Fc-TWEAK administration specifically increased lifespan in the milder Smn?®- mouse
model while it did not impact disease progression in the severe Smn”;SMN2 mice. This is consistent with
previous studies, including ours, demonstrating that the Smn?8"- mice are more responsive to non-SMN
treatments, perhaps due to their longer asymptomatic, and therefore adaptable period [55,71-73,89]. At a
molecular level, we found that Fc-Tweak differentially impacted the expression of the Tweak, Fn14 and their
metabolic effectors in SMA mice and healthy littermates, perhaps reflecting disease-state dependent
regulatory mechanisms of the pathway. Importantly, the expression of Mef2d, HKII and KIfl5 was
significantly downregulated in Fc-TWEAK-treated SMA mice, supporting an increased activity of Tweak

in the mice and a subsequent restoration towards normal levels of aberrantly regulated Tweak/Fn14 effectors.
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As mentioned above, the timing between Fc-Tweak administration and tissue collection may have limited
our analysis of the effect of Fc-Tweak on the Tweak/Fn14 signaling cascade. Nevertheless, administration
of Fc-Tweak did improve muscle pathology in SMA mice as demonstrated by the partial restoration of
molecular markers of muscle health and myofiber size. These results support a role for the TWEAK/Fn14
pathway in maintaining skeletal muscle health and homeostasis [21]. However, it is important to note that
the TWEAK/Fn14 pathway is involved in many other tissues and pathologies such as tumor development
and metastasis, heart-related diseases [90], kidney injury, cerebral ischemia [91,92] and autoimmune
diseases [93,94], which could have influenced the overall impact of systemically administered Fc-Tweak on

muscle health and disease progression in SMA mice.
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591 CONCLUSION

592

593 In summary, our results demonstrate a potential role and contribution of the TWEAK/Fn14 pathway to
594  myopathy and glucose metabolism perturbations in SMA muscle. Furthermore, our study, combined with
595  previous work in adult models [20,21], suggests that dysregulation of the TWEAK/Fn14 signaling in muscle
596 appears to be dependent on the origin of the muscle pathology (e.g. denervation vs intrinsic) and
597  developmental stage of skeletal muscle (e.g. newborn, juvenile, adult, aged), further highlighting the
598 differential and conflicting activities of the pathway. Future investigations should be aimed at both furthering
599  our understanding of the relevance of the Tweak/Fn14 pathway in SMA muscle and defining its role in
600 general in maintaining muscle homeostasis throughout the life course.
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FIGURE LEGENDS

Figure 1. Aberrant expression of the TWEAK/Fn14 signaling pathway in skeletal muscle of SMA mice.
a-g. qPCR analysis of parvalbumin (a), Tweak (b), Fn14 (c), Pgc-/a (d), Mef2d (e), Glut-4 (f) and HKII (g)
in triceps, gastrocnemius, TA and quadriceps muscles from post-natal day (P) O (birth), P2 (pre-
symptomatic), P5 (early-symptomatic), P7 (late symptomatic) and P19 (end-stage) Smn”-;SMN2 and wild
type (WT) mice. Data are mean + SEM, n = 3-4 animals per experimental group, two-way ANOVA, Sidak’s
multiple comparison test, * p < 0.05, ** p <0.01, *** p <0.001, **** p < 0.0001. h-i. Quantification of NF-
kB p50/actin protein levels in the TA of pre-symptomatic (P2) (h) and late-symptomatic (P7) (i) Smn™-
;SMN2 mice and age-matched WT animals. Images are representative immunoblots. Data are mean + SEM,
n = 3-4 animals per experimental group, unpaired t test, ns = not significant (h), p = 0.0215 (i). j. gPCR
analysis NF-xB inducing kinase (NIK) in TA muscle of late-symptomatic P7 Smn”-;SMN2 and age-matched
WT animals. Data are mean + SEM, n = 3-4 animals per experimental group, unpaired t test, p = 0.0094. k-
g. qPCR analysis of parvalbumin (k), Tweak (I), Fn14 (m), Pgc-/a (n), Mef2d (0), Glut-4 (p) and HKII (q)
in TA muscles from PO (birth), P2 (pre-symptomatic), P4 (pre-symptomatic), P11 (early symptomatic) and
P19 (end-stage) Smn?8"- and WT mice. Data are mean + SEM, n = 3-4 animals per experimental group, two-

way ANOVA, Sidak’s multiple comparison test, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Figure 2. The TWEAKI/Fn14 signaling pathway is not dysregulated in denervated muscles of pre-
weaned mice. A sciatic nerve crush was performed on post-natal day (P) 7 WT FVB/N mice and both
ipsilateral (nerve crush) and contralateral (control) TA muscles were harvested at P14. a. Representative
images of hematoxylin and eosin-stained cross-sections of control and nerve crush TA muscles. Scale bars
= 100 pum. b. Myofiber area in control and nerve crush TA muscles. Data are mean + SEM, n = 3-6 animals
per experimental group, unpaired t test, p = 0.0020. c¢. Myofiber size distribution in control and nerve crush

TA muscles. d. gPCR analysis of parvalbumin, Tweak, Fnl4, Pgc-/a, Mef2d, Glut-4, HKII, KIf15 and Smn
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in control and nerve crush TA muscles. Data are mean + SEM, n = 4-6 animals per experimental group, two-

way ANOVA, uncorrected Fisher’s LSD, ns = not significant.

Figure 3. The TWEAK/Fn14 signaling pathway is dysregulated in cardiotoxin-induced muscle
necrosis in pre-weaned mice. Cardiotoxin was injected in the left TA muscle of post-natal day (P) 10. The
right TA muscle was injected with equal volumes of 0.9% saline. TA muscles were harvested 6 days later.
a. Representative images of hematoxylin and eosin-stained cross-sections of saline- and cardiotoxin-injected
TA muscles. Scale bars = 100 um. b. Percentage of muscle fibers with centrally-located nuclei in saline- and
cardiotoxin-injected TA muscles. Data are mean = SEM, n = 3 animals per experimental group, unpaired t
test, p = 0.0020. c. gPCR analysis of parvalbumin, Tweak, Fn14, Pgc-/a, Mef2d, Glut-4, HKII, KIf15 and
Smn in saline- and cardiotoxin-injected TA muscles. Data are mean + SEM, n = 3 animals per experimental
group, two-way ANOVA, uncorrected Fisher’s LSD, ns = not significant, * p < 0.05, *** p < 0.001, **** p

< 0.0001.

Figure 4. Smn, Tweak and Fn14 depletion impact each other’s expression and that of the Tweak/Fn14
signaling pathway. a-b. gPCR analysis of parvalbumin, Tweak, Fnl14, Pgc-/a, Mef2d, Glut-4, HKII, KIf15
and Smn in triceps muscle from post-natal day (P) 7 Tweak’ (a) and Fn14" (b) mice. Data are mean + SEM,
n = 4 animals per experimental group, two-way ANOVA, uncorrected Fisher’s LSD, ns = not significant, *
p <0.05, *** p < 0.001, **** p < 0.0001. c-j. g°PCR analysis of Smn (c), Tweak (d), Fnl14 (e), Pgc-/a (f),
Mef2d (g), Glut-4 (h), HKII (i) and KIf15 (j) in siRNA-mediated Tweak-, Fn14- and Smn-depleted and
control proliferating (Day 0) and differentiated (Day 7) C2C12 cells. Data are mean+ SEM, n = 3 per
experimental group, two-way ANOVA, Dunnett’s multiple comparisons test, * p < 0.05, ** p < 0.01, *** p
<0.001, **** p < 0.0001. k. Proposed model of the relationship between Smn and the Tweak/Fn14 signaling

pathway. Red lines represent inhibition and blue lines represent activation.
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Figure 5. Overlap between dysregulated genes involved in myopathy, myogenesis and glucose
metabolism in skeletal muscle of Smn”;SMN2, Fn14’ and Tweak’” mice. a. Venn diagram showing
overlap of genes involved in myopathy and myogenesis that are significantly dysregulated in the same
direction (either up or downregulated, p < 0.05) in triceps and quadriceps muscle from post-natal day (P) 7
compared to Smn”;SMN2, Fn14’ and Tweak’ mice to age- and genetic strain-matched wild type (WT)
mice. b. Network and enrichment analysis of the overlap of significantly dysregulated myopathy and
myogenesis genes in triceps and/or quadriceps of P7 Smn”-;SMN2, Fn14" and Tweak”’- mice using STRING
software. Smn (Smnl), TWEAK (Tnfsf12) and Fn14 (Tnfrsf12a) are included in the analysis. Corresponding
protein nodes in the network are highlighted in color. The connection color and shape between proteins
represent protein-protein associations (Action types) and if the association is positive, negative or
unspecified (Action effects). c. Venn diagram showing overlap of genes involved in glucose metabolism that
are significantly dysregulated in the same direction (either up or downregulated, p < 0.05) in triceps and
quadriceps muscle from P7 compared to Smn”-;SMN2, Fn14-- and Tweak’ mice to age- and genetic strain-
matched WT mice. d. Network and enrichment analysis of the overlap of significantly dysregulated
myopathy and myogenesis genes in triceps and/or quadriceps of P7 Smn”-;SMN2, Fn14-- and Tweak”’- mice
using STRING software. Smn (Smnl), TWEAK (Tnfsf12), Fn14 (Tnfrsf12a), HKII (Hk2), Glut4 (Slc2a4),
Pgc-1a (Ppargcla), Kif15 and Mef2d are included in the analysis. Corresponding protein KEGG pathways
with the six lowest FDRs highlighted in color (see Table 3). The connection color and shape between proteins
represent protein-protein associations (Action types) and if the association is positive, negative or

unspecified (Action effects).

Figure 6. Increasing Tweak activity via Fc-TWEAK improves disease phenotypes in two SMA mouse
models. a. Daily weights of untreated Smn”-;SMN2 SMA mice and Smn”-;SMN2 mice that received daily
subcutaneous injections (starting at P0) of Fc-TWEAK or 1gG control (15.8 pg). Data are mean + SEM, n =

7-10 animals per experimental group, two-way ANOVA, Sidak’s multiple comparison test. b. Survival
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curves of untreated Smn”’;SMN2 SMA mice and Smn”-;SMN2 that received daily subcutaneous injections of
Fc-TWEAK or IgG control (15.8 pg). Data are represented as Kaplan-Meier survival curves, n = 7-10
animals per experimental group, Log-rank (Mantel-Cox). c-i. qPCR analysis of Tweak (c), Fn14 (d), Pgc-
la (e), Mef2d (f), Glut-4 (g), HKII (h) and KIf15 (i) in triceps of post-natal day (P) 7 untreated and Fc-
TWEAK-treated (15.8 pg) Smn”;SMN2 SMA and Smn*"-;SMN2 health littermates. Data are mean + SEM,
n = 3-4 animals per experimental group, two-way ANOVA, uncorrected Fisher’s LSD, * p < 0.05, *** p
<0.001. j. Representative images of laminin-stained cross-sections of TA muscles from P7 untreated and Fc-
TWEAK-treated (15.8 pg) Smn”;SMN2 SMA and Smn*~;SMN2 health littermates. Scale bars = 100 pm. k.
Quantification of myofiber area in the TAs of P7 untreated and Fc-TWEAK-treated (15.8 pug) Smn’;SMN2
SMA and Smn*~;SMN2 health littermates. Data are mean = SEM, n = 3-4 animals per experimental group
(>550 myofibers per experimental group), two-way ANOVA, Tukey’s multiple comparison test, * p < 0.05,
**** p < 0.0001. I. Relative frequency distribution of myofiber size in TA muscles of of P7 untreated and
Fc-TWEAK-treated (15.8 pg) Smn”-;SMN2 SMA and Smn*";SMN2 health littermates. m-r. gPCR analysis
of parvalbumin (m), MuRF-1 (n), atrogin-1 (0), Myod1 (p), and myogenin (r) in triceps of P7 untreated and
Fc-TWEAK-treated (15.8 pg) Smn”;SMN2 SMA and Smn*~;SMN2 health littermates. Data are mean +
SEM, n = 3-4 animals per experimental group, two-way ANOVA, uncorrected Fisher’s LSD, * p < 0.05, **
p <0.01. s. Daily weights of untreated Smn?®~ SMA mice and Smn?®" mice that received subcutaneous
injections of Fc-TWEAK or 1gG control (15.8 pg) every 4 days (starting at P0O). Data are mean + SEM, n =
9-12 animals per experimental group, two-way ANOVA, Sidak’s multiple comparison test. t. Survival
curves of untreated Smn?®- SMA mice and Smn?®- mice that received subcutaneous injections of Fc-TWEAK
or 1gG control (15.8 pg) every 4 days (starting at P0). Data are Kaplan-Meier survival curves, n = 9-12
animals per experimental group, Log-rank (Mantel-Cox), p = 0.0162. u. qPCR analysis of Glut-4 in P15

Smn?8- SMA mice and Smn?8" mice that received subcutaneous injections of Fc-TWEAK or IgG control
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1004  (15.8 ug) every 4 days (starting at P0). Data are mean + SEM, n = 3-4 animals per experimental group, two-
1005 way ANOVA, uncorrected Fisher’s LSD, * p < 0.05.
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1008 Table 1. Myogenesis and myopathy genes significantly dysregulated in the same direction in triceps and
1009  quadriceps of P7 Smn”;SMN2, Fn14"- and Tweak”’- mice when compared to P7 WT mice.

1010

1011 Table 2. Glucose metabolism genes significantly dysregulated in the same direction in triceps and
1012  quadriceps of P7 Smn”-;SMN2, Fn14~- and Tweak”’- mice when compared to P7 WT mice.
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1014  Table 3. KEGG pathways generated from glucose metabolism genes that were are significantly dysregulated
1015  inthe same direction in triceps and quadriceps of P7 Smn’;SMN2, Fn14” and Tweak’- mice when compared
1016  to P7 WT mice.
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SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Effect of varying Fc-TWEAK on disease progression in Smn”;SMN2 SMA
mice. Smn”";SMN2 mice received daily subcutaneous injections of increasing doses of Fc-TWEAK (7.9, 15.,
23.7 and 31.6 pg), starting at birth. a. Daily weights of untreated Smn”-;SMN2 SMA mice and Smn”-;SMN2
mice that received daily subcutaneous injections (starting at PO) of Fc-TWEAK (7.9, 15.8, 23.7 and 31.6
ug). Data are mean = SEM, n = 5-10 animals per experimental group, two-way ANOVA, Sidak’s multiple
comparison test. b. Survival curves of untreated Smn”;SMN2 SMA mice and Smn’;SMN2 mice that
received daily subcutaneous injections (starting at PO) of Fc-TWEAK (7.9, 15.8, 23.7 and 31.6 nug). Data are
presented as Kaplan-Meier survival curves, n = 5-10 animals per experimental group, Log-rank (Mantel-

Cox).
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Supplementary Table 1. Mouse primers used for quantitative real-time PCR.
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SUPPLEMENTARY FILES
Supplementary File 1. Myopathy and myogenesis gene expression changes in triceps and quadriceps
of post-natal day 7 Smn”;SMN2 (SMA), Tweak” (Tweak KO) and Fn14"; (Fn14 KO) compared to

age- and genetic strain-matched wild type animals.

Supplementary File 2. Glucose metabolism gene expression changes in triceps and quadriceps

of post-natal day 7 Smn”-;SMN2 (SMA), Tweak” (Tweak KO) and Fn14”; (Fn14 KO) compared to age-

and genetic strain-matched wild type animals.
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Table 1. Myogenesis and myopathy genes significantly dysregulated in the same direction
in triceps and quadriceps of P7 Smn”;SMN2, Fn14” and Tweak’ mice when compared to
P7 WT mice.

Gene Triceps Quadriceps
Calpain3 (Capn3) Up Up
Crystallin Alpha B (Cryab) Up —
Dystroglycan 1 (Dagl) Down Down
Insulin Like Growth Factor Binding Protein 5 (I1gfbp5) Down —
Myogenic Factor 6 (Myf6) Up —
Myogenic Differentiation 1 (Myod1) Up —
Paired Box 7 (Pax7) Down —
Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 3 (Prkag3) Down Down
Pyruvate Dehydrogenase Kinase 4 (Pdk4) Up —
Ribosomal Protein S6 Kinase B1 (Rps6kbl) Down Down

Titin (Ttn) — Down
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Table 2. Glucose metabolism genes significantly dysregulated in the same direction in

triceps and quadriceps of P7 Smn”;SMN2, Fn14”- and Tweak”’ mice when compared to P7

WT mice.

Gene Triceps Quadriceps
Aldolase, Fructose-Bisphosphate B (Aldob) Down —
1,4-Alpha-Glucan Branching Enzyme 1 (Gbel) — Down
Dihydrolipoamide S-Succinyltransferase (Dlst) Down Down
Enolase 1 (Enol) Down Down
Filamin B (Fh1) Down —
Fructose-Bisphosphatase 2 (Fbp2) Up —
Glucose-6-Phosphatase Catalytic Subunit (G6pc) Down —
Glycogen Phosphorylase Muscle Associated (Pygm) — Down
Isocitrate Dehydrogenase (NADP(+)) 1, Cytosolic (Idhl) Down —
Isocitrate Dehydrogenase 3 (NAD(+)) Alpha (Idh3a) Down Down
Isocitrate Dehydrogenase 3 (NAD(+)) Beta (1dh3b) — Down
Oxoglutarate Dehydrogenase (Ogdh) Down Down
Phosphofructokinase, Liver Type (Pfkl) — Down
Pyruvate Dehydrogenase E1 Alpha 1 Subunit (Pdhal) — Down
Pyruvate Dehydrogenase Kinase 4 (Pdk4) Up Up
Phosphoglycerate Kinase 1 (Pgk1) Down —
Triosephosphate Isomerase 1 (Tpil) — Down
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Table 3. KEGG pathways generated from glucose metabolism genes that were are
significantly dysregulated in the same direction in triceps and quadriceps of P7

Smn”’;SMN2, Fn147 and Tweak’ mice when compared to P7 WT mice.

Pathway Countin False discovery
ID Pathway description gene set rate (FDR)
01200 @ cCarbon metabolism 13 7.62e-22
01120 Q Microbial metabolism in diverse environments 13 1.87e-19
00010 €9  Glycolysis/Gluconeogenesis 8 2.09e-13
00020 - Citrate cycle (TCA cycle) 7 2.09e-13
01100 ® Metabolic pathways 16 7.65e-13
01230 @  Biosynthesis of amino acids 7 8.75e-11
00051 ¢ Fructose and mannose metabolism 5 1.7e-08
04910 £ Insulin signaling pathway 6 3.09e-07
00500 @  Starch and sucrose metabolism 4 8.58e-06
04152 AMPK signaling pathway 5 8.58e-06
01210 2-Oxocarboxylic acid metabolism 3 2.79e-05
00030 Pentose phosphate pathway 3 0.000126
04066 HIF-1 signaling pathway 4 0.000141
00052 Galactose metabolism 3 0.000145
04920 Adipocytokine signaling pathway 3 0.00138
00620 Pyruvate metabolism 2 0.0177
04973 Carbohydrate digestion and absorption 2 0.0177
04930 Type 1l diabetes mellitus 2 0.0227

00310 Lysine degradation 2 0.0233
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