

1 **WIN 55,212-2 shows anti-inflammatory and survival properties in human iPSC-
2 derived cardiomyocytes infected with SARS-CoV-2**

3 Luiz Guilherme H. S. Aragão^{1¶}, Júlia T. Oliveira^{1¶}, Jairo R. Temerozo^{2,3}, Mayara A. Mendes¹, José
4 Alexandre Salerno^{1,10}, Carolina da S. G. Pedrosa¹, Teresa Puig-Pijuan^{1,8}, Carla P. Veríssimo¹⁰, Isis
5 M. Ornelas¹, Thayana Torquato¹, Gabriela Vitória¹, Carolina Q. Sacramento^{4,5}, Natalia Fintelman-
6 Rodrigues^{4,5}, Suelen da Silva Gomes Dias⁴, Vinicius Cardoso Soares^{4,6}, Letícia R. Q. Souza¹, Karina
7 Karmirian^{1,10}, Lívia Goto-Silva¹, Diogo Biagi⁷, Estela M. Cruvinel⁷, Rafael Dariolli^{7,9}, Daniel R.
8 Furtado¹, Patrícia T. Bozza⁴, Helena L. Borges¹⁰, Thiago Moreno L. Souza^{4,5}, Marília Zaluar P.
9 Guimarães^{1,10,&*} & Stevens Rehen^{1,11,&*}

10 ¹ D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil.

11 ² National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo
12 Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.

13 ³ Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz),
14 Rio de Janeiro, RJ, Brazil.

15 ⁴ Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation
16 (Fiocruz), Rio de Janeiro, RJ, Brazil.

17 ⁵ National Institute for Science and Technology on Innovation in Diseases of Neglected Populations
18 (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation
19 (Fiocruz), Rio de Janeiro, RJ, Brazil.

20 ⁶ Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de
21 Janeiro, RJ, Brazil.

22 ⁷ Pluricell Biotech, São Paulo, SP, Brazil.

23 ⁸ Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de
24 Janeiro, RJ, Brazil.

25 ⁹ Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY,
26 United States.

27 ¹⁰ Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ,
28 Brazil.

29 ¹¹ Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de
30 Janeiro, RJ, Brazil.

31

32

33 ¶ These authors contributed equally to this work

34 & These authors contributed equally to this work.

35 *Corresponding author: srehen@lance-ufrj.org, UFRJ and D'Or Institute for Research and Education

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 **Abstract**

54 Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory
55 syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially
56 impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-
57 19 is myocardial injury, which is associated with a high risk of mortality. Myocardial
58 injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by
59 inflammatory processes that cause damage to the heart tissue. Since one of the
60 hallmarks of severe COVID-19 is the “cytokine storm”, strategies to control
61 inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids
62 are known to have anti-inflammatory properties by negatively modulating the release
63 of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid
64 agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs)
65 infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II
66 protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other
67 hand, WIN reduced the levels of interleukins 6, 8, 18 and tumor necrosis factor-alpha
68 (TNF- α) released by infected cells, and attenuated cytotoxic damage measured by the
69 release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids
70 should be further explored as a complementary therapeutic tool for reducing
71 inflammation in COVID-19 patients.

72

73

74

75

76

77

78

79

80

81

82 **Introduction**

83 The causative agent of Coronavirus disease 2019 (COVID-19), SARS-CoV-2, can
84 affect multiple organs, including lungs, nervous system (Carod-Artal, 2020), digestive
85 system (Chen et al., 2020b), urinary system (Puelles et al., 2020), skin (Mahé et al.,
86 2020; Diaz-Guimaraens et al., 2020) and heart (Maisch, 2020; Varga et al., 2020;
87 Zheng et al., 2020).

88 A *post-mortem* study of a child with COVID-19 revealed diffuse myocardial interstitial
89 inflammation with immune cells infiltration and necrosis (Dolhnikoff, 2020). Recently,
90 we showed cardiac damage, namely microthrombi in small arteries and focal mild
91 lymphocytic infiltrate in the ventricles, of an infant who died of COVID-19 (Gomes et
92 al., 2020). Another study detected SARS-CoV-2 in myocardial tissue, which expressed
93 inflammatory mediators, such as tumor necrosis factor-alpha (TNF- α), interferon-
94 gamma (IFN- γ), chemokine ligand 5, as well as interleukin (IL) -6, -8, and -18 (Lindner
95 et al., 2020). Additionally, patients with COVID-19 presented elevated levels of
96 creatine kinase and lactate dehydrogenase (LDH) activity, which are biomarkers of
97 heart injury (Chen et al., 2020b; Zhou et al., 2020).

98 High expression of Angiotensin-Converting Enzyme II (ACE2) in the heart has been
99 correlated with severe COVID-19 and susceptibility of patients with pre-existing
100 cardiac conditions (Chen et al., 2020a; Thum, 2020; Sharma et al., 2020; Dariolli et
101 al., 2021). *In vitro* studies have shown that SARS-CoV-2 infects iPSC-derived
102 cardiomyocytes (hiPSC-CMs) through ACE2 (Sharma et al., 2020; Dariolli et al.,
103 2021), leading to upregulation of inflammation-related genes, including IL-6, IL-8, and
104 TNF- α (Wong et al., 2020; Kwon et al., 2020). The increase in proinflammatory
105 cytokines can cause several adverse effects in cardiomyocytes including arrhythmia

106 (Keck et al., 2019), cellular hypertrophy (Smeets et al., 2008), cell death (Wang et al.,
107 2016), conversion of fibroblasts into myofibroblasts (Wang et al., 2016) and alteration
108 of action potentials' duration (Aromolaran et al., 2018). The correlation between
109 inflammation and heart damage in *post-mortem* and in *in vitro* studies points to the
110 need for finding strategies that mitigate direct SARS-CoV-2 cardiac outcomes.

111 For many centuries *Cannabis sp.* has been used for medicinal purposes and, more
112 recently, it has been investigated as a therapeutic agent for cardiovascular diseases
113 (Mendizábal & Adler-Graschinsky, 2007; Pacher et al., 2018). *Cannabis* has several
114 known compounds, named phytocannabinoids, including delta-9-
115 tetrahydrocannabinol (THC), which is the most abundant and the main psychoactive
116 ingredient, followed in amount by cannabidiol (CBD). Besides phytocannabinoids,
117 there is intensive research on endocannabinoids, such as anandamide and 2-
118 arachidonoylglycerol, and synthetic cannabinoids, such as WIN 55,212-2 (WIN).
119 Nguyen et al., (2021) showed the potential of cannabinoids to decrease SARS-CoV-2
120 infection, viral replication, and inflammation that are directly related to COVID-19
121 severity. Treatment with *Cannabis* extracts decreased ACE2 expression in oral,
122 intestinal, and airway epithelia *in vitro* (Wang et al., 2020). It is noteworthy that
123 cannabinoids have anti-inflammatory properties and exert their biological effect mainly
124 by interaction with the cannabinoid receptors type 1 (CB1) and/or type 2 (CB2), to both
125 of which WIN has high affinity and efficacy (Devane et al., 1988; Munro, Thomas &
126 Abu-Shaar, 1993; Felder et al., 1995; Soethoudt et al. 2017; Sachdev et al., 2019).
127 For instance, WIN was shown to reduce the number of lipopolysaccharide-activated
128 microglia in the brain of an animal model of chronic inflammation (Marchalant, Rosi &
129 Wenk, 2007). Another work showed that WIN decreased TNF- α and IL-6 plasma levels
130 and myeloperoxidase activity in mice with experimental colitis (Feng et al., 2016). An

131 extract fraction from *Cannabis sativa* Arbel strain enriched in CBD, cannabigerol and
132 tetrahydrocannabivarin presented anti-inflammatory activity in lung epithelial cells
133 treated with TNF- α but another fraction with high CBD containing terpenes in addition
134 to phytocannabinoids enhanced proinflammatory parameters of macrophages (Anil et
135 al., 2021). Additionally, high-CBD *Cannabis sativa* extracts presented anti-
136 inflammatory properties in the epithelia pretreated with TNF- α and IFN- γ (Lei et al.,
137 2020). Smith et al. (2000) showed that treatment with WIN decreased serum TNF- α
138 and IL-12 and increased IL-10 through the CB1 receptor in mice treated with
139 lipopolysaccharide (Smith, Terminelli & Denhardt, 2000). Investigating the anti-
140 inflammatory potential of *Cannabis sativa* in cardiomyocytes is important because the
141 “cytokine storm” is a hallmark of COVID-19 and the cardiovascular system is mostly
142 affected in severe cases (Unudurthi et al., 2020). To date, the effects of cannabinoids
143 in human cardiomyocytes infected with SARS-CoV-2 has not been addressed.

144 In this work, we aimed to investigate the effects of a synthetic cannabinoid, that acts
145 as a mixed CB1/CB2 receptors agonist, in hiPSC-CMs infected by SARS-CoV-2. WIN
146 presented anti-inflammatory and protective properties by reducing the levels of
147 proinflammatory cytokines and cell death in hiPSC-CM but did neither modulate ACE2
148 nor reduced SARS-CoV-2 infection and replication. Our data suggest that the anti-
149 inflammatory and protective properties of WIN may be used to control inflammation
150 and tissue damage during SARS-CoV-2 infection of heart cells.

151

152

153

154 **Materials & Methods**

155 Chemical

156 WIN 55,212-2 mesylate was purchased from TargetMol (T4458). Stock solutions were
157 prepared using 100% dimethyl sulfoxide (DMSO; D2650 - Sigma-Aldrich) and sterile-
158 filtered. The final concentration of DMSO in work solution was 0.01%.

159 iPS-Cardiomyocyte differentiation and purification

160 hiPSC-CMs were purchased from Pluricell (São Paulo, Brazil) and used between day
161 25 and day 35 of differentiation. The hiPSC-CMs used here were generated and
162 previously characterized *in vitro* by Cruvinel et al. (2020). Briefly, the enrichment of
163 the cardiomyocyte population was assessed by flow cytometry and
164 immunofluorescence of TNNT2, a specific marker, which revealed that, on average,
165 88.4% (+/- 8.4%) cells were positive cells (Fig S3). hiPSC-CMs were handled in four
166 different groups: MOCK and SARS-CoV-2 (SARS-CoV-2 infection without WIN),
167 which were also analyzed as controls in Salerno et al. (2021), MOCK WIN (no SARS-
168 CoV-2 infection + WIN), and SARS-CoV-2 WIN (SARS-CoV-2 infection + WIN). All
169 WIN-treated hiPSC-CMs were pretreated for 24 hours with 1 μ M WIN. Fresh culture
170 medium with (or without) 1 μ M WIN, combined or not with SARS-CoV-2, was added
171 for 24 hours to each experimental group, respectively.

172 SARS-CoV-2 propagation

173 SARS-CoV-2 was expanded in Vero E6 cells from an isolate of a nasopharyngeal
174 swab obtained from a confirmed case in Rio de Janeiro, Brazil (GenBank accession
175 no. MT710714). Viral isolation was performed after a single passage in 150 cm^2 flasks
176 cultured with high glucose DMEM plus 2% FBS. Observations for cytopathic effects

177 were performed daily and peaked 4 to 5 days after infection. All procedures related to
178 virus culture were handled in biosafety level 3 (BSL3) multi-user facilities according to
179 WHO guidelines. Virus titers were determined as plaque-forming units (PFU/mL) as
180 explained below, and virus stocks were kept at -80°C.

181 **SARS-CoV-2 titration**

182 For virus titration, monolayers of Vero E6 cells (2×10^4 cell/well) in 96-well plates were
183 infected with serial dilutions of supernatants containing SARS-CoV-2 for 1 hour at
184 37°C. A semi-solid high glucose DMEM medium containing 2% FSB and 2.4%
185 carboxymethylcellulose was added and cultures were incubated for 3 days at 37 °C.
186 Then, the cells were fixed with 10% formalin for 2 hours at room temperature. The cell
187 monolayer was stained with 0.04% solution of crystal violet in 20% ethanol for 1 hour.
188 Plaque numbers were scored in at least 3 replicates per dilution by independent
189 readers blinded to the experimental group and the virus titers were determined by
190 plaque-forming units (PFU) per milliliter.

191 **SARS-CoV-2 infection**

192 hiPSC-CMs were infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.1
193 in high glucose DMEM without serum. After 1 hour, cells were washed and incubated
194 with Complete Medium with or without treatments for 48-72h. Next, the supernatant
195 was collected, and cells were fixed with 4% paraformaldehyde (PFA) solution for
196 posterior analysis.

197 **Measurement of cytokines mediators and LDH cytotoxicity**

198 Cytokines (IL-6, IL-7, IL-8, and TNF- α) were quantified in the supernatants from
199 hiPSC-CMs samples by ELISA (R&D Systems) following manufacturer's instructions.

200 The analysis of data was performed using software provided by the manufacturer (Bio-
201 Rad Laboratories, USA). A range of 0.51–8,000 pg/mL recombinant cytokines was
202 used to establish standard curves and the sensitivity of the assay. Cell death was
203 determined according to the activity of lactate dehydrogenase (LDH) in the culture
204 supernatants using a CytoTox® Kit (Promega, USA) according to the manufacturer's
205 instructions.

206 Gene expression analysis

207 Qualitative endpoint PCR reactions were executed with the following primer
208 sequences: CB1 (forward 5'-ATGTGGACCATAGCCATTGTG-3'; reverse: 5'-
209 CCGATCCAGAACATCAGGTAGG-3') and CB2 (forward 5'-
210 GCTATCCACCTTCCTACAAAGC-3'; reverse: 5'- CTCAGCAGGTAGTCATTGGGG-
211 3'). Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH; forward: 5'-
212 TTGACAGTCAGCCGCATC-3'; reverse: 5'-GACTCCACGACGTACTCAGC-3') was
213 used as the endogenous housekeeping control gene. Each PCR reaction was
214 performed in a 10 µL mixture containing 0.25 U GoTaq G2 Hot Start Polymerase
215 (Promega), 1x GoTaq G2 Buffer, 1.5 mM MgCl₂ (Invitrogen), 200 nM of each primer
216 (forward and reverse), 200 µM dNTP mixture containing the four deoxyribonucleotides
217 (dATP, dCTP, dTTP, and dGTP), and 10 ng of cDNA template. Appropriate negative
218 controls and genomic DNA positive controls were incorporated into each experiment.
219 Amplification thermal program included an initial denaturation step of 95°C for 3
220 minutes and 40 cycles of 95°C for 15 seconds, 60°C for 15 seconds and 72°C for 15
221 seconds using the ProFlex™ PCR System Thermal Cycler (Applied Biosystems).
222 Subsequently, the total amount of PCR product was separated by electrophoresis at

223 110 V for 40 minutes in 1.8% agarose gel diluted in 1x Tris-acetate EDTA buffer (w/v)
224 and stained with 0.01% of SYBR Safe (Thermo Fisher).

225 For real-time quantitative PCR, the reactions were carried out in triplicates in a reaction
226 mixture containing 1x GoTaq qPCR MasterMix (Promega Corporation), 300 nM CXR
227 Reference Dye, a final concentration of 200 nM of each (forward and reverse) SYBR
228 green-designed primers (Thermo Fisher Scientific), and 10 ng of cDNA template per
229 reaction. Appropriate negative controls were added in each run. The relative
230 expression of the genes of interest: ACE2 (forward: 5'-
231 CGAAGCCGAAGACCTGTTCTA-3'; reverse: 5'-GGGCAAGTGTGGACTGTTCC-3'),
232 MYH6 (forward: 5'- GCCCTTGACATTGCACTG-3'; reverse: 5'-
233 GGTTTCAGCAATGACCTTGCC-3'), MYH7 (forward: 5'-
234 TCACCAACAACCCCTACGATT-3'; reverse: 5'-CTCCTCAGCGTCATCAATGGA-3')
235 was normalized by human reference genes: Glyceraldehyde-3-phosphate
236 Dehydrogenase (GAPDH; forward: 5'-GCCCTAACGACCACTTG-3'; reverse: 5'-
237 CCACCACCCCTGTTGCTGTAG-3') and Hypoxanthine Phosphoribosyltransferase 1
238 (HPRT-1; forward 5'-CGTCGTGATTAGTGATGATGAACC-3'; reverse: 5'-
239 AGAGGGCTACAATGTGATGGC-3'). The reactions were performed on a
240 StepOnePlusTM Real-Time PCR System thermocycler (Applied Biosystems).
241 Thermal cycling program comprised of a denaturing step at 95°C for 3 minutes,
242 followed by 40 cycling stages at 95°C for 15 seconds, 57°C for 15 seconds, 72°C for
243 15 seconds and melt curve stage 95 °C, 15 seconds; 60 °C, 1 minutes; 95 °C, 15
244 seconds. Data analysis was performed with LinRegPCR quantitative PCR data
245 analysis program v. 2020.0, as previously described.

246

247 Immunofluorescence staining

248 SARS-CoV-2-infected and mock-treated hiPSC-CMs were fixed using 4%
249 paraformaldehyde solution (Sigma-Aldrich, EUA) for 1 hour and stored at 4°C. Next,
250 cells were washed with PBS and then incubated with permeabilization/blocking
251 solution (0.3% Triton X-100 / 1% bovine serum albumin + 3% normal goat serum) for
252 1 hour. Cardiomyocytes were incubated with primary antibodies diluted in a blocking
253 buffer solution at 4° overnight: anti-SARS-CoV-2 convalescent serum from a positive
254 COVID-19 patient (1:1000) and anti-cardiac troponin T (TNNT2) (1:500, MA5-12960 -
255 Invitrogen). Afterwards, cardiomyocytes were incubated with the secondary antibody
256 diluted in a blocking buffer solution: goat anti-Human Alexa Fluor 647 (1:400; A-21445
257 - Invitrogen) and goat anti-Mouse 594 (1:400; A-11032 - Invitrogen) for 1 hour. Actin
258 filaments were stained with Alexa Fluor 568 phalloidin (1:10; A-12380 - Life
259 Technologies) for 1 hour. Nuclei were stained with 300 nM 4'-6-diamino-2-
260 phenylindole (DAPI) for 5 minutes and each well was mounted with two drops of 50%
261 PBS-Glycerol. Images (at least 10 fields per well) of hiPSC-CMs were acquired using
262 Operetta® High-Content Imaging System (Perkin Elmer) with a 20x long working
263 distance (WD) objective lens. A Leica TCS-SP8 confocal microscope was used to
264 acquire images of hiPSC-CMs immunostained for TNNT2 and F-actin with the 63x
265 objective (Fig S3).

266 Neutral red uptake cell viability assay

267 Briefly, hiPSC-CMs were seeded in 96-well plates. After reaching 80–90% confluence,
268 cells were exposed to concentrations of WIN ranging between 10 nM-10 µM for 72
269 hours. Next, the medium was replaced, cells were washed with PBS 1x and 200 µL of
270 neutral red dye diluted in the hiPSC-CMs medium was added to each well at a final

271 concentration of 0.05 mg/mL. After 3 hours of incubation at 37°C, neutral red dye
272 was removed, and the cells were washed again. Then, 100 µL of the neutral red
273 desorb solution was added (1% acetic acid-49% ethanol) to the wells, followed by 20
274 minutes in orbital shaking. Absorbance at 540 nm was measured with a Tecan Infinite®
275 200 PRO (Life Sciences, Switzerland) spectrophotometer.

276 Western Blotting

277 Twenty-four hours after treatment with WIN of hiPSC-CMs in 24-well plates, 100 µL of
278 sample buffer without bromophenol blue (62.5 mM Tris-HCl, pH 6.8, containing 10%
279 glycerol, 2% SDS, and 5% 2-mercaptoethanol) was added in each well, and a cell
280 scraper was used to help lyse the cells. Cell extracts were transferred to an Eppendorf
281 tube, boiled at 95°C for 5 minutes, and centrifuged at 4°C 16,000 xg for 15 minutes to
282 collect the supernatant. Protein content was estimated using the Bio-Rad Protein
283 Assay (# 5000006, Biorad). Next, bromophenol blue (0.02%) was added, and
284 extracted samples (40 µg/lane) were separated by an 8% SDS polyacrylamide gel
285 electrophoresis and transferred to polyvinylidene difluoride (PVDF) membranes. The
286 membranes were blocked in 5% non-fat milk in Tris Buffered Saline with 0.1% Tween-
287 20 (TBS-T) for 1 hour at room temperature. Then, membranes were incubated
288 overnight at 4°C with primary antibodies anti-ACE2 (1: 1000; MA5-32307 - Thermo
289 Fisher), anti-CB1 (1:300, CSB-PA007048, Cusabio), and anti-ACTIN (1:2000;
290 MAB1501, Millipore), diluted in TBS-T with 5% non-fat milk. Membranes were washed
291 and incubated with peroxidase-conjugated antibodies IgG (H + L), HRP-conjugate:
292 goat anti-mouse (1: 10.000, G21040, Molecular Probes), goat anti-rabbit (1: 10.000,
293 G21234, Molecular Probes), and rabbit anti-goat (1: 2.000, 61-1620, Invitrogen) for 2
294 hours at room temperature. The signals were developed using an ECL Prime Western
295 Blotting System (# GERPN2232, Sigma) for 5 minutes, and chemiluminescence was

296 detected with an Odyssey-FC Imaging System[®] (LI-COR Biosciences, EUA). After
297 CB1 or CB2 detection a stripping protocol was used on the membranes for further
298 detection of actin. Membranes were incubated with a stripping buffer (pH 2.2, 200 mM
299 glycine, 0.1% SDS, and 1% Tween-20) for three cycles of 10 minutes. Next, the buffer
300 was discarded, and the membranes were washed three times with PBS and three
301 times for 5 minutes with 0.1% TBS-T. Then, membranes were blocked again and
302 proceeded with the above-described steps.

303 **Statistics**

304 Statistical analyses were performed using GraphPadPrism software version 8.0
305 (GraphPad, EUA). Results were expressed as the mean and standard error of the
306 mean (SEM). For comparisons between two experimental groups, unpaired two-tailed
307 Student's t-test or Mann-Whitney U test was used, whereas two-way analysis of
308 variance (ANOVA) or Kruskal-Wallis test followed by Tukey's test was used for
309 comparisons between three or more groups. A p-value smaller than 0.05 was
310 accepted as statistically significant.

311 **Ethics Statement**

312 Approved by the Research Ethics Committee of D'Or Institute of Research and
313 Education (IDOR) 39474020.8.0000.5249.

314

315

316

317

318 **Results**

319 **1. Human cardiomyocytes express cannabinoid receptor 1 but WIN does not**
320 **modulate ACE2 expression**

321 As a first step to investigate the influence of cannabinoid receptors in SARS-CoV-2
322 infection of human cardiomyocytes, we checked whether hiPSC-CMs expressed CB1
323 and CB2 receptors. We found that hiPSC-CMs express only CB1 receptor mRNA (Fig
324 S1A), which was confirmed by CB1 protein expression (Fig S1B). The banding pattern
325 observed in the hiPSC-CMs was similar to the mouse hippocampus sample (positive
326 control) and consistent with what was observed in samples from other CNS regions
327 (Medina-Vera et al., 2020).

328 WIN is an agonist at the CB1 and CB2 receptors with a higher affinity to them than
329 other cannabinoids (Acheson et al., 2011; Sachdev., 2019), including THC (Felder et
330 al. 1995) and therefore it is an useful pharmacological tool to study cannabinoid
331 receptor activation. Beforehand, we tested multiple WIN concentrations in readouts of
332 cellular toxicity and permanent cardiac hypertrophy. We found that WIN did not reduce
333 cell viability in concentrations up to 1 μ M (Fig S3A). Also, compared with control, 1 μ M
334 WIN did not increase MYH6 and MYH7 mRNA levels (Fig S3B), genes that, when
335 upregulated, may indicate cardiac hypertrophy *in vitro* (Wenzel, 1967; Rahmatollahi et
336 al., 2016; Albakri, 2019). Therefore, we chose 1 μ M WIN as the usage concentration
337 for further assays since it caused neither cell death nor changes in gene expression
338 related to hypertrophy.

339 After confirming that hiPSC-CMs express CB1 and ACE2 (Salerno et al., 2021), we
340 asked whether WIN modulates ACE2 expression and, subsequently, influences
341 SARS-CoV-2 infection within hiPSC-CMs. hiPSC-CMs were pretreated with 1 μ M WIN

342 for 24 hours and analyzed for both mRNA and protein levels of ACE2. We observed
343 that WIN-treated (1.15 ± 0.07 A.U.) and untreated (0.98 ± 0.11 A.U.) hiPSC-CMs had
344 comparable levels of ACE2 mRNA whereas ACE2 protein levels in WIN treated cells
345 whereas ACE2 protein levels in WIN treated cells was 1.16 ± 0.39 , normalized to
346 control (Fig 1A, B and C, and Fig S2).

347 **2. WIN does not influence SARS-CoV-2 infection and replication in hiPSC-CMs**

348 Next, we asked whether WIN could reduce hiPSC-CMs SARS-CoV-2 infection by
349 mechanisms other than ACE2 modulation. For this, cells were pretreated with 1 μ M
350 WIN for 24 hours and infected with SARS-CoV-2 at a multiplicity of infection (MOI) of
351 0.1 for 1 hour, and the PFU analyzed 48 hours later. In this study, we defined the use
352 of MOI 0.1 for all experiments because this MOI had already been successfully used
353 to infect hiPSC-CMs with SARS-CoV-2 (Sharma et al., 2020). Additionally, MOIs
354 above 0.1 may not be a clinically plausible viral load found *in vivo*. Forty-eight hours
355 after infection, we quantified convalescent serum (CS)-immunostaining and, as
356 expected, we found that cells in the MOCK group had no CS immunoreactivity. Among
357 the SARS-CoV-2-infected cells, those pretreated with WIN had a comparable
358 percentage of infected cells (WIN SARS-CoV-2; $30 \pm 15\%$) to those untreated (SARS-
359 CoV-2; $26 \pm 12\%$) (Fig 2A and B).

360 Since viral infection and replication are correlated but orchestrated by different
361 mechanisms, we asked whether WIN could decrease SARS-CoV-2 replication in
362 hiPSC-CMs. We observed that despite a decrease in average viral titer when
363 comparing SARS-CoV-2 WIN ($6.99 \times 10^5 \pm 4.39 \times 10^5$ PFU/mL) with SARS-CoV-2
364 ($2.18 \times 10^6 \pm 9.96 \times 10^5$ PFU/mL), the difference was not statistically significant (Fig
365 2C).

366 **3. WIN reduces the secretion of inflammatory cytokines in SARS-CoV-2-infected**
367 **hiPSC-CMs**

368 The “cytokine storm” is a hallmark of severe COVID-19 cases and cannabinoids have
369 well-known anti-inflammatory properties. We asked whether WIN could reduce the
370 release of the inflammatory cytokines IL-6, IL-8, TNF- α by hiPSC-CMs *in vitro*. Cells
371 were pretreated with 1 μ M WIN for 24 hours, infected for 1 hour, and incubated further
372 for 24, 48, and 72 hours. Then, the media were harvested at each time point for
373 analysis. We found that cells infected with SARS-CoV-2 released higher levels of
374 cytokines when compared with MOCK, with the exception of IL-8 at 24 and IL-6 at 72
375 hours post-infection (Fig 3A, B, and C). Most importantly, in all conditions that
376 significantly augmented the release of these pro-inflammatory cytokines, WIN was
377 able to prevent this increase (Fig 3A, B, and C). Of note, whereas the basal amount
378 of cytokines tended to increase during culture time as they accumulated without media
379 changes, WIN did not significantly affect this basal release by comparing MOCK and
380 MOCK WIN groups.

381 **4. WIN reduces cell death in SARS-CoV-2- infected hiPSC-CMs**

382 It has been previously reported that SARS-CoV-2 infection causes apoptosis in
383 hiPSC-CMs (Perez-Bermejo et al., 2021, p.). As cannabinoids can be protective in
384 some tissues, we investigated whether WIN would protect hiPSC-CMs from cell death.
385 Cells were pretreated with 1 μ M WIN for 24 hours, infected for 1 hour, and cultivated
386 for additional 24, 48, and 72 hours and LDH was measured in the media at these
387 different time points. Forty-eight and 72 hours after the infection with SARS-CoV-2
388 without WIN, the release of LDH increased 463% and 174%, respectively, in hiPSC-

389 CMs. On the other hand, hiPSC-CMs infected with SARS-CoV-2 and exposed to WIN
390 had significantly lower increments of 72% and 40%, respectively (Figure 3D).

391 **Discussion**

392 Cannabinoids have been proposed as potential treatment and prevention of COVID-
393 19, due to their antiviral, cytoprotective and anti-inflammatory properties (Marchalant,
394 Rosi & Wenk, 2007; Rossi et al., 2020; Anil et al., 2021). In this study, we showed that
395 the synthetic CB1/CB2 agonist WIN reduced cell damage in SARS-CoV-2-infected
396 hiPSC-CMs. Additionally, even though cardiomyocytes are not known for evoking
397 robust inflammatory responses, WIN reduced the release of cytokines by these cells
398 following SARS-CoV-2 infection. To our knowledge, this is the first study showing anti-
399 inflammatory and protective properties of a cannabinoid agonist in hiPSC-CMs
400 infected with SARS-CoV-2.

401 We hypothesized that WIN reduces the levels of ACE2 in hiPSC-CMs, consequently
402 abrogating SARS-CoV-2 infection and viral load in these cells. However, despite
403 hiPSC-CMs expressing ACE2, it only presented a tendency towards an increase
404 which was not modulated by WIN in the conditions studied here. ACE2 is
405 downregulated in SARS-CoV-2 infected tissues (Yan et al., 2020; Gheblawi et al.,
406 2020), which is harmful to the heart since ACE2 has a protective role in the
407 cardiovascular system (Huentelman et al., 2005; Zhong et al., 2010). Studies have
408 shown that agonists of cannabinoid receptors, including WIN, cause vasodilation
409 through the activation of CB1 receptors, and are capable of modulating vasoactive
410 ligands (Sainz-Cort & Heeroma, 2020; Miklós et al., 2021). One possibility for the
411 tendency towards an increase in the levels of ACE2 in WIN-treated hiPSC-CMs is that
412 this cannabinoid agonist could exert a protective role by preventing receptor

413 downregulation. Although it has been previously shown (Wang et al., 2020) that CBD-
414 rich extracts reduced ACE2 mRNA and protein levels in some epithelia *in vitro*
415 following TNF- α insult, this modulation had not been investigated in SARS-CoV-2
416 infected cardiomyocytes until now.

417 Despite evidence of cannabinoid receptors expression in murine embryonic stem cells
418 (Jiang et al., 2007) and human cardiomyocytes (Mukhopadhyay et al., 2010), to our
419 knowledge, this is the first description of the expression of CB1 receptor in hiPSC-
420 CMs. The modulation of cannabinoid receptors in cardiomyocytes has also not been
421 explored yet. Our results showed that WIN did not reduce the infection rate or the viral
422 titer in hiPSC-CMs in the conditions studied here. Several studies have examined the
423 effect of cannabinoids on viral infections, especially regarding the role of CB1 and CB2
424 receptor activation (Reiss, 2010). The CB2 receptor agonist JWH-133 reduced
425 CXCR4-tropic HIV-1 infection of primary CD4+ T cells, whereas the CB1 receptor
426 agonist arachidonoyl-29-chloroethylamide had no effect. In another study with HIV-1-
427 infected primary human monocytes, agonists of CB2 receptors limited viral replication
428 (Ramirez et al., 2013). There is still no consensus on the antiviral mechanisms of
429 cannabinoids, however, it is well-known that the selective activation of the CB2
430 receptor plays a crucial role in the course of viral infection (Rossi et al., 2020). The
431 fact that hiPSC-CMs do not express the CB2 receptor may explain WIN's
432 ineffectiveness in reducing SARS-CoV-2 infection and replication in these cells.
433 Additionally, to date, cannabinoid treatment along with SARS-CoV-2 infection had not
434 been investigated in this cellular model. It is likely that viral infection mechanisms
435 through CB1 and CB2 receptors might vary depending on virus and cell type (Reiss,
436 2010; Tahamtan et al., 2016).

437 Although immune cells and cardiac fibroblasts are typically the major players in
438 cytokine production under stressed cardiac conditions (Zhong et al., 2010),
439 cardiomyocytes are also a local source of proinflammatory cytokines (Yamauchi-
440 Takihara et al., 1995; Ancey et al., 2002; Kleinbongard, Schulz & Heusch, 2011; Atefi
441 et al., 2011; Bozzi et al., 2019). In this work, hiPSC-CMs released IL-6, IL-8, and TNF-
442 α at baseline levels and SARS-CoV-2 infection increased all cytokines levels. It has
443 been shown that infection of hiPSC-CMs by *Trypanosoma cruzi*, the Chagas' disease
444 pathogen, prompted these cells to produce proinflammatory cytokines that
445 caused autocrine cardiomyocyte dysfunction (Bozzi et al., 2019). Cardiac damage in
446 COVID-19 patients can be attributable to hypoxemia due to respiratory dysfunction
447 (Guo et al., 2020) but also to the “cytokine storm”, which is the uncontrolled systemic
448 inflammatory response likely caused by an imbalance between regulatory and
449 cytotoxic T cells (Meckiff et al., 2020). Even though the “cytokine storm” is one of the
450 hallmarks of SARS-CoV-2 infection (Coperchini et al., 2020), one cannot rule out that
451 cytokines locally released contribute to tissue damage, as seen, for example, in
452 *Trypanosoma cruzi* cardiac infection (Bozzi et al., 2019). Here we found that WIN
453 decreased the levels of IL-6, IL-8, and TNF- α released by SARS-CoV-2-infected
454 hiPSC-CMs. An *in vitro* study of cortical astrocytes treated with Amyloid- β ₁₋₄₂, which
455 is a neurotoxic protein, showed that WIN reduced TNF- α and IL-1 β levels, while
456 preventing cell death (Aguirre-Rueda et al., 2015). In another study, WIN decreased
457 the activity of peroxisome proliferator-activated receptor alpha and TNF- α levels in the
458 heart tissue of mice with cardiac dysfunction (Rahmatollahi et al., 2016), reinforcing
459 its anti-inflammatory and protective properties in cardiac tissue.

460 THC and WIN are structurally different and accordingly have different efficacies
461 towards activation of cannabinoid signaling pathways (Soethoudt et al., 2017).

462 However, they are both mutual CB1 and CB2 receptor agonists (Compton et al., 1992)
463 and can produce similar pharmacological effects, depending on the assay (Fan et al.,
464 1994). THC presented a protective role against hypoxia in neonatal murine
465 cardiomyocytes by reducing the levels of LDH (Shmist et al., 2006). Since neonatal
466 murine cardiomyocytes expressed CB2, but not CB1, the authors suggest that
467 cardioprotection provided by THC occurs via the CB2 receptor. Herein, we were able
468 to show that hiPSC-CMs expressed only CB1 but not CB2. In human cardiomyocytes,
469 WIN decreased the release of LDH release and this effect could be mediated by CB1,
470 to which WIN has high affinity. Other receptor candidates, such as transient receptor
471 potential vanilloid (TRPV) channels (Freichel et al., 2017) can not be discarded.
472 Nonetheless, the modulation of TRPV channels by WIN occurs at 10 μ M or higher
473 (Jeske et al., 2006; Koch et al., 2011), which are, at least, 10 times above the
474 concentration used in our study.

475 **Conclusion**

476 This study showed that pretreatment with a cannabinoid receptor agonist reduced
477 cytotoxicity and proinflammatory cytokines released by human cardiomyocytes
478 infected with SARS-CoV-2. These results suggest that the therapeutic potential of
479 cannabinoids in protecting the heart against SARS-CoV-2 infection should be further
480 explored, in particular regarding selective action on the CB1 receptor.

481 **References**

482 Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Mauricio MD, Vila JM,
483 Marchio P, Valles SL. 2015. WIN 55,212-2, Agonist of Cannabinoid Receptors, Prevents
484 Amyloid β 1-42 Effects on Astrocytes in Primary Culture. *PLOS ONE* 10:e0122843. DOI:
485 10.1371/journal.pone.0122843.

486 Albakri A. 2019. Drugs-related cardiomyopathy: A systematic review and pooled analysis of
487 pathophysiology, diagnosis and clinical management. *Internal Medicine and Care* 3. DOI:
488 10.15761/IMC.1000129.

489 Ancey C, Corbi P, Froger J, Delwail A, Wijdenes J, Gascan H, Potreau D, Lecron J-C. 2002.
490 Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture. *Cytokine*
491 18:199–205. DOI: 10.1006/cyto.2002.1033.

492 Anil SM, Shalev N, Vinayaka AC, Nadarajan S, Namdar D, Belausov E, Shoval I, Mani KA,
493 Mechrez G, Koltai H. 2021. Cannabis compounds exhibit anti-inflammatory activity in vitro
494 in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in
495 macrophages. *Scientific Reports* 11:1462. DOI: 10.1038/s41598-021-81049-2.

496 Aromolaran AS, Srivastava U, Alí A, Chahine M, Lazaro D, El-Sherif N, Capecchi PL, Laghi-
497 Pasini F, Lazzerini PE, Boutjdir M. 2018. Interleukin-6 inhibition of hERG underlies risk for
498 acquired long QT in cardiac and systemic inflammation. *PLoS One* 13:e0208321. DOI:
499 10.1371/journal.pone.0208321.

500 Atefi G, Zetoune FS, Herron TJ, Jalife J, Bosmann M, Al-Aref R, Sarma JV, Ward PA. 2011.
501 Complement dependency of cardiomyocyte release of mediators during sepsis. *The*
502 *FASEB Journal* 25:2500–2508. DOI: 10.1096/fj.11-183236.

503 Bozzi A, Sayed N, Matsa E, Sass G, Neofytou E, Clemons KV, Correa-Oliveira R, Stevens
504 DA, Wu JC. 2019. Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
505 as a Model to Study Trypanosoma cruzi Infection. *Stem Cell Reports* 12:1232–1241. DOI:
506 10.1016/j.stemcr.2019.04.017.

507 Carod-Artal FJ. 2020. Neurological complications of coronavirus and COVID-19. *Revista De*
508 *Neurologia* 70:311–322. DOI: 10.33588/rn.7009.2020179.

509 Chen L, Li X, Chen M, Feng Y, Xiong C. 2020a. The ACE2 expression in human heart
510 indicates new potential mechanism of heart injury among patients infected with SARS-
511 CoV-2. *Cardiovascular Research* 116:1097–1100. DOI: 10.1093/cvr/cvaa078.

512 Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T,
513 Zhang X, Zhang L. 2020b. Epidemiological and clinical characteristics of 99 cases of 2019

514 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *The Lancet* 395:507–
515 513. DOI: 10.1016/S0140-6736(20)30211-7.

516 Compton DR, Gold LH, Ward SJ, Balster RL, Martin BR. 1992. Aminoalkylindole analogs:
517 cannabimimetic activity of a class of compounds structurally distinct from delta 9-
518 tetrahydrocannabinol. *The Journal of Pharmacology and Experimental Therapeutics*
519 263:1118–1126.

520 Dariolli R, Campana C, Gutierrez A, Sobie EA. 2021. In vitro and in silico models to study
521 SARS-CoV-2 infection: integrating experimental and computational tools to mimic
522 "COVID-19 cardiomyocyte" *Frontiers in Physiology* 12. DOI:
523 10.3389/fphys.2021.624185.

524 Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. 1988. Determination and
525 characterization of a cannabinoid receptor in rat brain. *Molecular Pharmacology* 34:605–
526 613.

527 Diaz-Guimaraens B, Dominguez-Santas M, Suarez-Valle A, Pindado-Ortega C, Seld-
528 Enriquez G, Bea-Ardebol S, Fernandez-Nieto D. 2020. Petechial Skin Rash Associated
529 With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. *JAMA Dermatology*
530 156:820. DOI: 10.1001/jamadermatol.2020.1741.

531 Dolhnikoff M. 2020. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related
532 multisystem inflammatory syndrome. 4:5.

533 Fan F, Compton DR, Ward S, Melvin L, Martin BR. 1994. Development of cross-tolerance
534 between delta 9-tetrahydrocannabinol, CP 55,940 and WIN 55,212. *The Journal of*
535 *Pharmacology and Experimental Therapeutics* 271:1383–1390.

536 Felder CC, Joyce KE, Briley EM, Mansouri J, Mackie K, Blond O, Lai Y, Ma AL, Mitchell RL.
537 1995. Comparison of the pharmacology and signal transduction of the human cannabinoid
538 CB1 and CB2 receptors. *Molecular Pharmacology* 48:443–450.

539 Feng Y-J, Li Y-Y, Lin X-H, Li K, Cao M-H. 2016. Anti-inflammatory effect of cannabinoid
540 agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK.
541 *World Journal of Gastroenterology* 22:9515–9524. DOI: 10.3748/wjg.v22.i43.9515.

542 Freichel M, Berlin M, Schürger A, Mathar I, Bacmeister L, Medert R, Frede W, Marx A, Segin
543 S, Londoño JEC. 2017. TRP Channels in the Heart. In: Emir TLR ed. *Neurobiology of TRP*
544 *Channels*. Frontiers in Neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis.,

545 Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-C, Turner AJ, Raizada MK, Grant MB,
546 Oudit GY. 2020. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and
547 Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the
548 Discovery of ACE2. *Circulation Research* 126:1456–1474. DOI:
549 10.1161/CIRCRESAHA.120.317015.

550 Gomes IC, Karmirian K, Oliveira J, Pedrosa C, Rosman FC, Chimelli L, Rehen S. 2020. SARS-
551 CoV-2 Infection in the Central Nervous System of a 1-Year-Old Infant Submitted to
552 Complete Autopsy. DOI: 10.20944/preprints202009.0297.v1.

553 Guo J, Huang Z, Lin L, Lv J. 2020. Coronavirus Disease 2019 (COVID-19) and Cardiovascular
554 Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme
555 Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute
556 Respiratory Syndrome Coronavirus 2 Infection. *Journal of the American Heart Association*
557 9:e016219. DOI: 10.1161/JAHA.120.016219.

558 Huentelman MJ, Grobe JL, Vazquez J, Stewart JM, Mecca AP, Katovich MJ, Ferrario CM,
559 Raizada MK. 2005. Protection from angiotensin II-induced cardiac hypertrophy and
560 fibrosis by systemic lentiviral delivery of ACE2 in rats. *Experimental Physiology* 90:783–
561 790. DOI: 10.1113/expphysiol.2005.031096.

562 Jeske NA, Patwardhan AM, Gamper N, Price TJ, Akopian AN, Hargreaves KM. 2006.
563 Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. *The*
564 *Journal of Biological Chemistry* 281:32879–32890. DOI: 10.1074/jbc.M603220200.

565 Jiang S, Fu Y, Williams J, Wood J, Pandarinathan L, Avraham S, Makriyannis A, Avraham S,
566 Avraham HK. 2007. Expression and Function of Cannabinoid Receptors CB1 and CB2
567 and Their Cognate Cannabinoid Ligands in Murine Embryonic Stem Cells. *PLOS ONE*
568 2:e641. DOI: 10.1371/journal.pone.0000641.

569 Keck M, Flamant M, Mougenot N, Favier S, Atassi F, Barbier C, Nadaud S, Lompré A-M, Hulot
570 J-S, Pavoine C. 2019. Cardiac inflammatory CD11b/c cells exert a protective role in
571 hypertrophied cardiomyocyte by promoting TNFR 2 - and Orai3- dependent signaling.
572 *Scientific Reports* 9:6047. DOI: 10.1038/s41598-019-42452-y.

573 Kleinbongard P, Schulz R, Heusch G. 2011. TNF α in myocardial ischemia/reperfusion,
574 remodeling and heart failure. *Heart Failure Reviews* 16:49–69. DOI: 10.1007/s10741-010-
575 9180-8.

576 Koch M, Kreutz S, Böttger C, Grabiec U, Ghadban C, Korf H-W, Dehghani F. 2011. The
577 cannabinoid WIN 55,212-2-mediated protection of dentate gyrus granule cells is driven by
578 CB1 receptors and modulated by TRPA1 and Cav 2.2 channels. *Hippocampus* 21:554–
579 564. DOI: 10.1002/hipo.20772.

580 Kwon Y, Nukala SB, Srivastava S, Miyamoto H, Ismail NI, Jousma J, Rehman J, Ong S-B,
581 Lee WH, Ong S-G. 2020. Detection of viral RNA fragments in human iPSC
582 cardiomyocytes following treatment with extracellular vesicles from SARS-CoV-2 coding
583 sequence overexpressing lung epithelial cells. *Stem Cell Research & Therapy* 11:514.
584 DOI: 10.1186/s13287-020-02033-7.

585 Lei X, Dong X, Ma R, Wang W, Xiao X, Tian Z, Wang C, Wang Y, Li L, Ren L, Guo F, Zhao
586 Z, Zhou Z, Xiang Z, Wang J. 2020. Activation and evasion of type I interferon responses
587 by SARS-CoV-2. *Nature Communications* 11. DOI: 10.1038/s41467-020-17665-9.

588 Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof
589 P, Escher F, Schultheiss H-P, Blankenberg S, Püschel K, Westermann D. 2020.
590 Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy
591 Cases. *JAMA Cardiology* 5:1281. DOI: 10.1001/jamacardio.2020.3551.

592 Mahé A, Birckel E, Krieger S, Merklen C, Bottlaender L. 2020. A distinctive skin rash
593 associated with coronavirus disease 2019? *Journal of the European Academy of*
594 *Dermatology and Venereology: JEADV* 34:e246–e247. DOI: 10.1111/jdv.16471.

595 Maisch B. 2020. SARS-CoV-2 as potential cause of cardiac inflammation and heart failure. Is
596 it the virus, hyperinflammation, or MODS? *Herz*:1–2. DOI: 10.1007/s00059-020-04925-z.

597 Marchalant Y, Rosi S, Wenk GL. 2007. Anti-inflammatory property of the cannabinoid agonist
598 WIN-55212-2 in a rodent model of chronic brain inflammation. *Neuroscience* 144:1516–
599 1522. DOI: 10.1016/j.neuroscience.2006.11.016.

600 Meckiff BJ, Ramírez-Suástegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, Eschweiler S,
601 Grifoni A, Pelosi E, Weiskopf D, Sette A, Ay F, Seumois G, Ottensmeier CH, Vijayanand
602 P. 2020. Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in
603 COVID-19. *Cell* 183:1340-1353.e16. DOI: 10.1016/j.cell.2020.10.001.

604 Medina-Vera D, Rosell-Valle C, López-Gambero AJ, Navarro JA, Zambrana-Infantes EN,
605 Rivera P, Santín LJ, Suarez J, Rodríguez de Fonseca F. 2020. Imbalance of
606 Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer's
607 Disease in a Preclinical Model: A Therapeutic Opportunity. *Biology* 9:377. DOI:
608 10.3390/biology9110377.

609 Mendizábal VE, Adler-Graschinsky E. 2007. Cannabinoids as therapeutic agents in
610 cardiovascular disease: a tale of passions and illusions. *British Journal of Pharmacology*
611 151:427–440. DOI: 10.1038/sj.bjp.0707261.

612 Miklós Z, Wafa D, Nádasy GL, Tóth ZE, Besztercei B, Dörnyei G, Laska Z, Benyó Z, Ivanics
613 T, Hunyady L, Szekeres M. 2021. Angiotensin II-Induced Cardiac Effects Are Modulated
614 by Endocannabinoid-Mediated CB1 Receptor Activation. *Cells* 10:724. DOI:
615 10.3390/cells10040724.

616 Mukhopadhyay P, Rajesh M, Bátkai S, Patel V, Kashiwaya Y, Liaudet L, Evgenov OV, Mackie
617 K, Haskó G, Pacher P. 2010. CB1 cannabinoid receptors promote oxidative stress and
618 cell death in murine models of doxorubicin-induced cardiomyopathy and in human
619 cardiomyocytes. *Cardiovascular Research* 85:773–784. DOI: 10.1093/cvr/cvp369.

620 Munro S, Thomas KL, Abu-Shaar M. 1993. Molecular characterization of a peripheral receptor
621 for cannabinoids. *Nature* 365:61–65. DOI: 10.1038/365061a0.

622 Nguyen LC, Yang D, Nicolaescu V, Best TJ, Ohtsuki T, Chen S-N, Friesen JB, Drayman N,
623 Mohamed A, Dann C, Silva D, Gula H, Jones KA, Millis JM, Dickinson BC, Tay S, Oakes
624 SA, Pauli GF, Meltzer DO, Randall G, Rosner MR. 2021. Cannabidiol Inhibits SARS-CoV-

625 2 Replication and Promotes the Host Innate Immune Response.

626 *bioRxiv*:2021.03.10.432967. DOI: 10.1101/2021.03.10.432967.

627 Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. 2018. Cardiovascular effects of

628 marijuana and synthetic cannabinoids: the good, the bad, and the ugly. *Nature Reviews*

629 *Cardiology* 15:151–166. DOI: 10.1038/nrcardio.2017.130.

630 Perez-Bermejo JA, Kang S, Rockwood SJ, Simoneau CR, Joy DA, Silva AC, Ramadoss GN,

631 Flanigan WR, Fozouni P, Li H, Chen P-Y, Nakamura K, Whitman JD, Hanson PJ,

632 McManus BM, Ott M, Conklin BR, McDevitt TC. 2021. SARS-CoV-2 infection of human

633 iPSC–derived cardiac cells reflects cytopathic features in hearts of patients with COVID-

634 19. *Science Translational Medicine* 13. DOI: 10.1126/scitranslmed.abf7872.

635 Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, Chilla

636 S, Heinemann A, Wanner N, Liu S, Braun F, Lu S, Pfefferle S, Schröder AS, Edler C,

637 Gross O, Glatzel M, Wichmann D, Wiech T, Kluge S, Pueschel K, Aepfelbacher M, Huber

638 TB. 2020. Multiorgan and Renal Tropism of SARS-CoV-2. *New England Journal of*

639 *Medicine* 383:590–592. DOI: 10.1056/NEJMc2011400.

640 Rahmatollahi M, Baram SM, Rahimian R, Saeedi Saravi SS, Dehpour AR. 2016. Peroxisome

641 Proliferator-Activated Receptor- α Inhibition Protects Against Doxorubicin-Induced

642 Cardiotoxicity in Mice. *Cardiovascular Toxicology* 16:244–250. DOI: 10.1007/s12012-015-

643 9332-0.

644 Ramirez SH, Reichenbach NL, Fan S, Rom S, Merkel SF, Wang X, Ho W-Z, Persidsky Y.

645 2013. Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2

646 agonists. *Journal of Leukocyte Biology* 93:801–810. DOI: 10.1189/jlb.1012523.

647 Reiss CS. 2010. Cannabinoids and Viral Infections. *Pharmaceuticals* 3:1873–1886. DOI:

648 10.3390/ph3061873.

649 Rossi F, Tortora C, Argenziano M, Di Paola A, Punzo F. 2020. Cannabinoid Receptor Type 2:

650 A Possible Target in SARS-CoV-2 (CoV-19) Infection? *International Journal of Molecular*

651 *Sciences* 21. DOI: 10.3390/ijms21113809.

652 Sachdev S, Vemuri K, Banister SD, Longworth M, Kassiou M, Santiago M, Makriyannis A,
653 Connor M. 2019. In vitro determination of the efficacy of illicit synthetic cannabinoids at
654 CB1 receptors. *British Journal of Pharmacology* 176:4653–4665. DOI:
655 10.1111/bph.14829.

656 Sainz-Cort A, Heeroma JH. 2020. The interaction between the endocannabinoid system and
657 the renin angiotensin system and its potential implication for COVID-19 infection. *Journal*
658 *of Cannabis Research* 2:23. DOI: 10.1186/s42238-020-00030-4.

659 Salerno JA, Torquato T, Temerozo JR, Goto-Silva L, Mendes M, Sacramento CQ, Fintelman-
660 Rodrigues N, Vitoria G, Souza L, Ornelas I, Veríssimo C, Karmirian K, Pedrosa C, Dias S
661 da SG, Soares VC, Aragão LGH, Puig-Pijuan T, Salazar VW, Dariolli R, Biagi D, Furtado
662 DR, Borges HL, Bozza P, Guimarães MZ, Souza TML, Rehen SK. 2021. Inhibition of
663 SARS-CoV-2 infection in human cardiomyocytes by targeting the Sigma-1 receptor
664 disrupts cytoskeleton architecture and contractility. *bioRxiv*:2021.02.20.432092. DOI:
665 10.1101/2021.02.20.432092.

666 Sharma A, Garcia G, Wang Y, Plummer JT, Morizono K, Arumugaswami V, Svendsen CN.
667 2020. Human iPSC-Derived Cardiomyocytes Are Susceptible to SARS-CoV-2 Infection.
668 *Cell Reports Medicine* 1:100052. DOI: 10.1016/j.xcrm.2020.100052.

669 Shmist YA, Goncharov I, Eichler M, Shneyvays V, Isaac A, Vogel Z, Shainberg A. 2006. Delta-
670 9-tetrahydrocannabinol protects cardiac cells from hypoxia via CB2 receptor activation
671 and nitric oxide production. *Molecular and Cellular Biochemistry* 283:75–83. DOI:
672 10.1007/s11010-006-2346-y.

673 Smeets PJH, Teunissen BEJ, Planavila A, de Vogel-van den Bosch H, Willemsen PHM, van
674 der Vusse GJ, van Bilsen M. 2008. Inflammatory Pathways Are Activated during
675 Cardiomyocyte Hypertrophy and Attenuated by Peroxisome Proliferator-activated
676 Receptors PPAR α and PPAR δ . *The Journal of Biological Chemistry* 283:29109–29118.
677 DOI: 10.1074/jbc.M802143200.

678 Smith SR, Terminelli C, Denhardt G. 2000. Effects of cannabinoid receptor agonist and
679 antagonist ligands on production of inflammatory cytokines and anti-inflammatory

680 interleukin-10 in endotoxemic mice. *The Journal of Pharmacology and Experimental Therapeutics* 293:136–150.

682 Soethoudt M, Grether U, Fingerle J, Grim TW, Fezza F, de Petrocellis L, Ullmer C,
683 Rothenhäusler B, Perret C, van Gils N, Finlay D, MacDonald C, Chicca A, Gens MD,
684 Stuart J, de Vries H, Mastrangelo N, Xia L, Alachouzos G, Baggelaar MP, Martella A,
685 Mock ED, Deng H, Heitman LH, Connor M, Di Marzo V, Gertsch J, Lichtman AH,
686 Maccarrone M, Pacher P, Glass M, van der Stelt M. 2017. Cannabinoid CB 2 receptor
687 ligand profiling reveals biased signalling and off-target activity. *Nature Communications*
688 8:13958. DOI: 10.1038/ncomms13958.

689 Tahamtan A, Tavakoli-Yaraki M, Rygiel TP, Mokhtari-Azad T, Salimi V. 2016. Effects of
690 cannabinoids and their receptors on viral infections. *Journal of Medical Virology* 88:1–12.
691 DOI: 10.1002/jmv.24292.

692 Thum T. 2020. SARS-CoV-2 receptor ACE2 expression in the human heart: cause of a post-
693 pandemic wave of heart failure? *European Heart Journal* 41:1807–1809. DOI:
694 10.1093/eurheartj/ehaa410.

695 Unudurthi SD, Luthra P, Bose RJC, McCarthy JR, Kontaridis MI. 2020. Cardiac inflammation
696 in COVID-19: Lessons from heart failure. *Life Sciences* 260:118482. DOI:
697 10.1016/j.lfs.2020.118482.

698 Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR,
699 Schuepbach RA, Ruschitzka F, Moch H. 2020. Endothelial cell infection and endotheliitis
700 in COVID-19. *The Lancet* 395:1417–1418. DOI: 10.1016/S0140-6736(20)30937-5.

701 Wang B, Kovalchuk A, Li D, Rodriguez-Juarez R, Ilnytskyy Y, Kovalchuk I, Kovalchuk O. 2020.
702 In search of preventive strategies: novel high-CBD Cannabis sativa extracts modulate
703 ACE2 expression in COVID-19 gateway tissues. *Aging* 12:22425–22444. DOI:
704 10.18632/aging.202225.

705 Wang J-H, Zhao L, Pan X, Chen N-N, Chen J, Gong Q-L, Su F, Yan J, Zhang Y, Zhang S-H.
706 2016. Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial

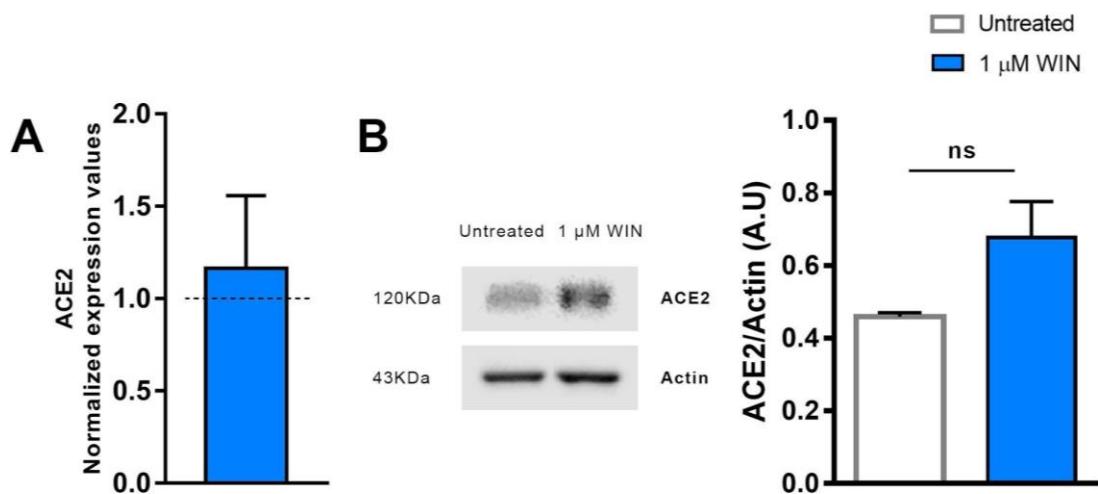
707 fibrosis via the TGF- β 1 signaling pathway. *Laboratory Investigation* 96:839–852. DOI:
708 10.1038/labinvest.2016.65.

709 Wenzel DG. 1967. Drug-induced cardiomyopathies. *Journal of Pharmaceutical Sciences*
710 56:1209–1224. DOI: 10.1002/jps.2600561002.

711 Wong C-K, Luk HK-H, Lai W-H, Lau Y-M, Zhang RR, Wong AC-P, Lo GC-S, Chan K-H, Hung
712 IF-N, Tse H-F, Woo PC-Y, Lau SK-P, Siu C-W. 2020. Human-Induced Pluripotent Stem
713 Cell-Derived Cardiomyocytes Platform to Study SARS-CoV-2 Related Myocardial Injury.
714 *Circulation Journal: Official Journal of the Japanese Circulation Society* 84:2027–2031.
715 DOI: 10.1253/circj.CJ-20-0881.

716 Yamauchi-Takahara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T. 1995. Hypoxic
717 stress induces cardiac myocyte-derived interleukin-6. *Circulation* 91:1520–1524. DOI:
718 10.1161/01.cir.91.5.1520.

719 Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. 2020. Structural basis for the recognition of
720 SARS-CoV-2 by full-length human ACE2. *Science* 367:1444–1448. DOI:
721 10.1126/science.abb2762.


722 Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. 2020. COVID-19 and the cardiovascular system.
723 *Nature Reviews Cardiology* 17:259–260. DOI: 10.1038/s41569-020-0360-5.

724 Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang X, Penninger JM,
725 Kassiri Z, Oudit GY. 2010. Angiotensin-converting enzyme 2 suppresses pathological
726 hypertrophy, myocardial fibrosis, and cardiac dysfunction. *Circulation* 122:717–728, 18 p
727 following 728. DOI: 10.1161/CIRCULATIONAHA.110.955369.

728 Zhou B, She J, Wang Y, Ma X. 2020. The clinical characteristics of myocardial injury in severe
729 and very severe patients with 2019 novel coronavirus disease. *The Journal of Infection*
730 81:147–178. DOI: 10.1016/j.jinf.2020.03.021.

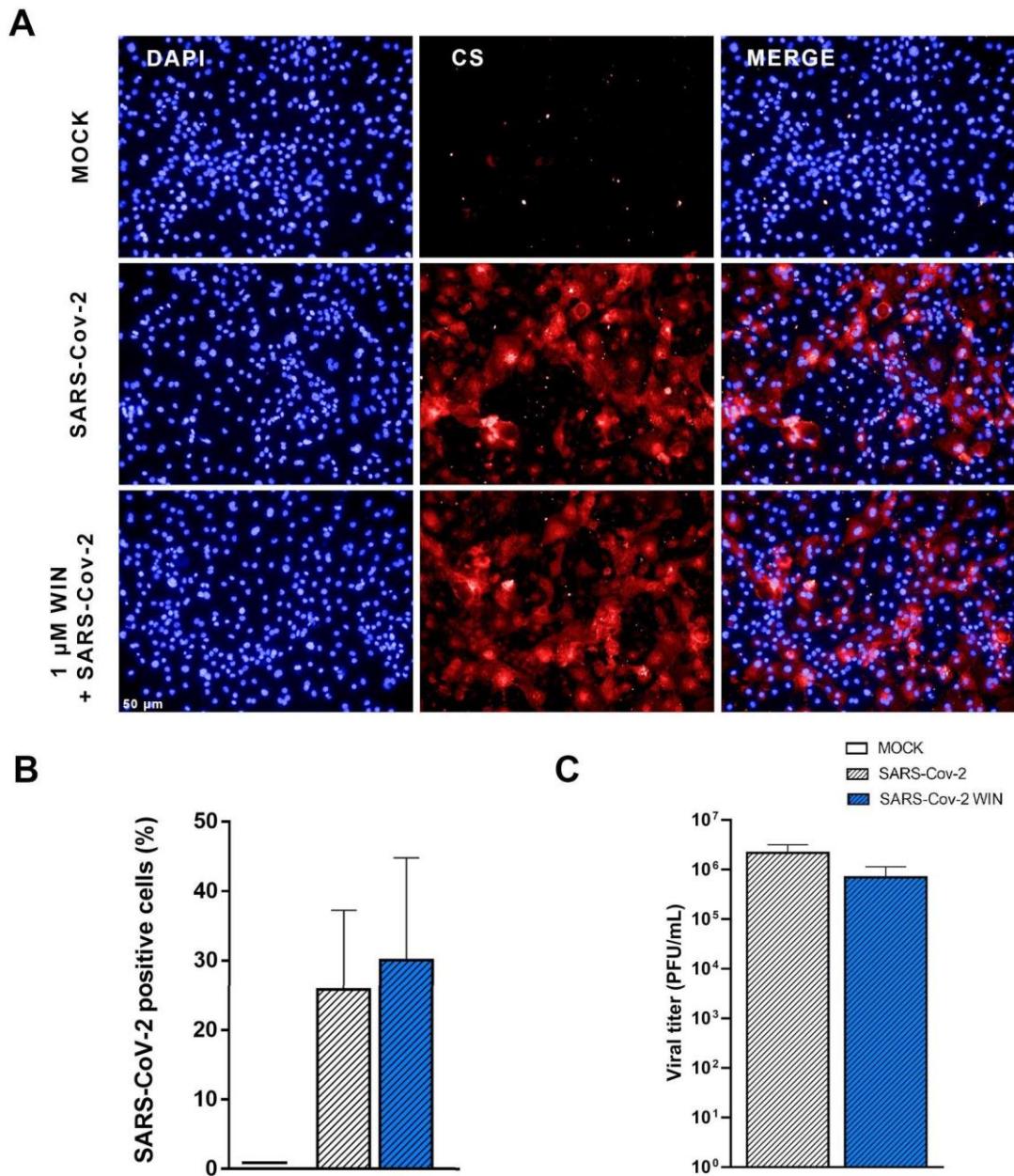
731

732

733

734 **Figure 1.** WIN does not modulate ACE2 in hiPSC-CMs. (A) Relative mRNA expression levels
735 of ACE2 in WIN-treated hiPSC-CMs expressed as fold change relative to untreated condition.
736 (B) Quantification of western blots by densitometry normalized by actin expression. ACE2
737 mRNA and protein levels were comparable between WIN-treated and untreated hiPSC-CMs.
738 Error bars represent standard errors of the means (SEMs) from three (A) and four (B)
739 independent experiments (3 or 4 cellular differentiation) from one cell line.

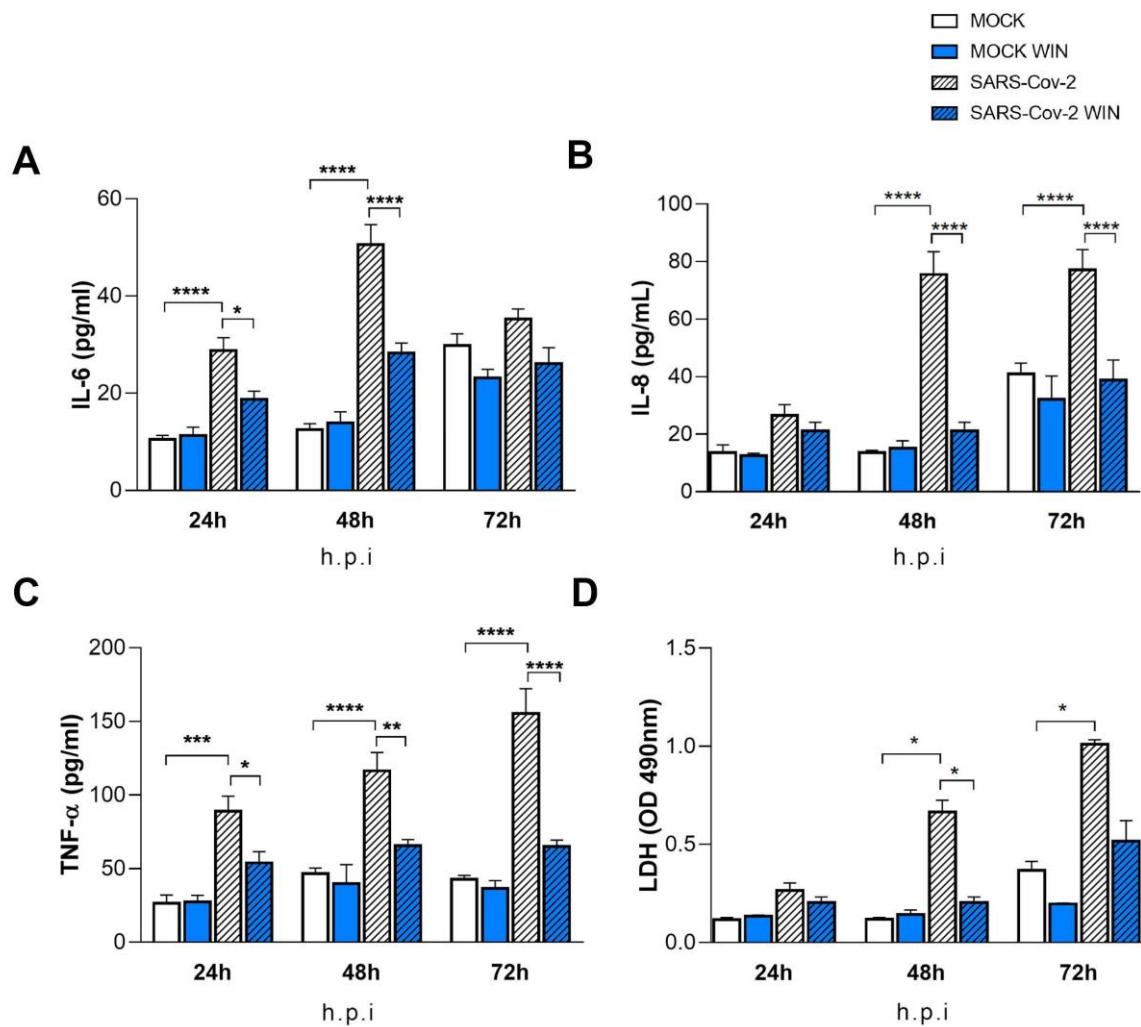
740


741

742

743

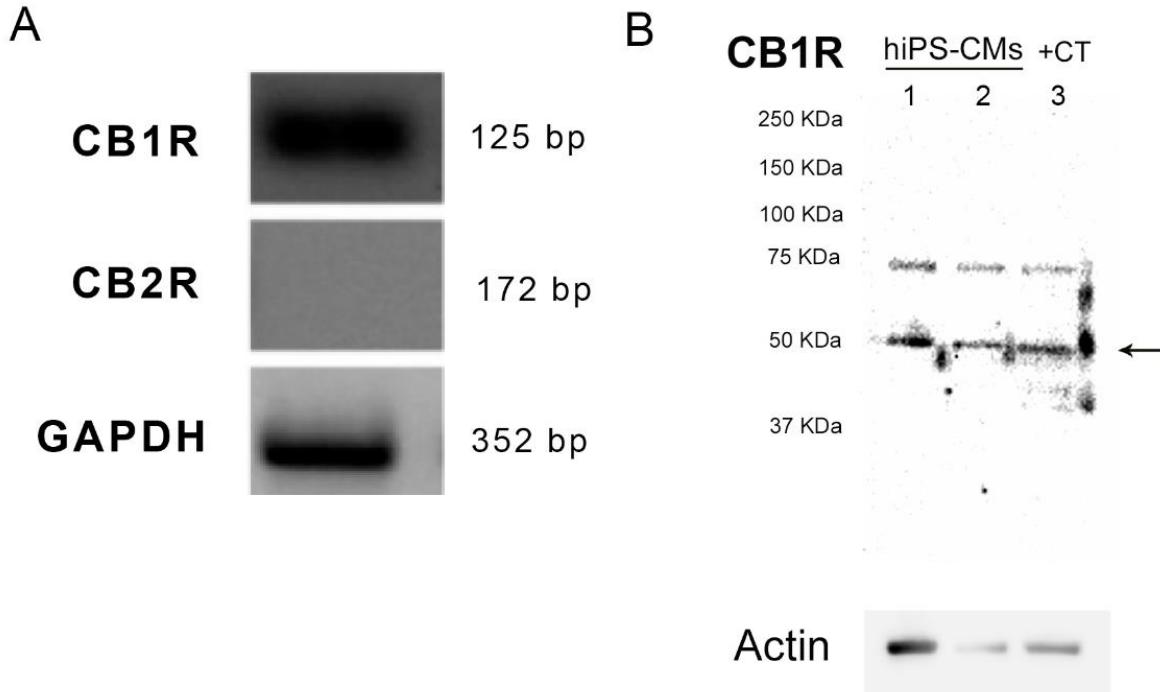
744


745

746

747 **Figure 2.** WIN does not reduce SARS-CoV-2 infection and replication in hiPSC-CMs. (A)
748 Representative micrographs of MOCK and SARS-CoV-2-infected hiPSC-CM pre-treated or
749 not with 1 μ M WIN for 24 hours. hiPSC-CM were immunostained with SARS-CoV-2
750 convalescent serum (CS) (red) and counterstained with DAPI (blue) at 48h post-infection.
751 Scale bar: 50 μ m. (B) Percentage of CS positive cells. CS immunoreactivity was comparable
752 between treated and untreated hiPSC-CM. (C) Viral titer quantification by plaque forming units
753 assay using the supernatants of the SARS-CoV-2 infected hiPSC-CMs. Viral titer was
754 comparable between treated and untreated hiPSC-CM. Error bars represent standard errors
755 of the means (SEM) from three independent experiments (3 cellular differentiations and 3
756 independent infections) from one iPSC line.

757


758 **Figure 3.** WIN reduces inflammatory markers and viral toxicity in hiPSC-CMs. Levels of IL-6
759 (A), IL-8 (B), TNF- α (C), and (D) release of lactate dehydrogenase (LDH) from MOCK and
760 SARS-CoV-2-infected hiPSC-CM, treated or not with 1 μ M WIN for 24 hours, were analyzed
761 at 24-, 48- and 72-hours post-infection (h.p.i.). Cytokine levels were higher in SARS-CoV-2
762 compared with control (MOCK), and lower in SARS-CoV-2 WIN when compared with SARS-
763 CoV-2. LDH release-absorbance levels relative to MOCK was higher in SARS-CoV-2
764 compared with SARS-CoV-2 WIN. Data represent means and standard errors of the means
765 (SEM) from three independent experiments from one cell line. *p < 0.05, **p < 0.01,
766 ***p < 0.001, ****p < 0.0001.

767

768

769

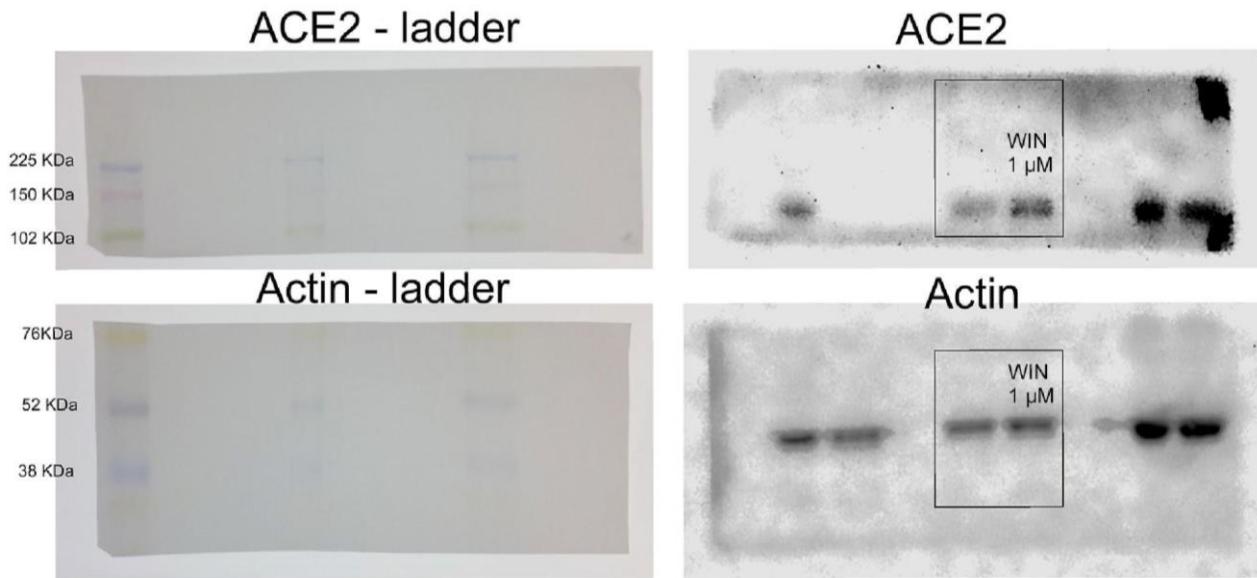
770

771

772 **Fig S1.** CB1 and CB2 receptors expression. (A) The figure shows agarose gel of end-point
773 PCR products for cDNA from hiPSC-CMs. One single specific band was detected for CB1
774 receptor (125bp), while no such band was detected for CB2 receptor (172 bp). GAPDH (352
775 bp) was used as an endogenous control to confirm efficiency of the amplification reaction and
776 quality of cDNA template. Data from two independent experiments. (B) Western blot detection
777 of CB1 receptor protein levels in hiPSC-CMs. The arrows indicate the specific bands,
778 corresponding to the molecular weight predicted to CB1 receptor. hiPSC-CMs samples were
779 taken from different passages and the positive control (CT) was from tissue homogenates of
780 adult Black C57/BL6 mouse hippocampus.

781

782


783

784

785

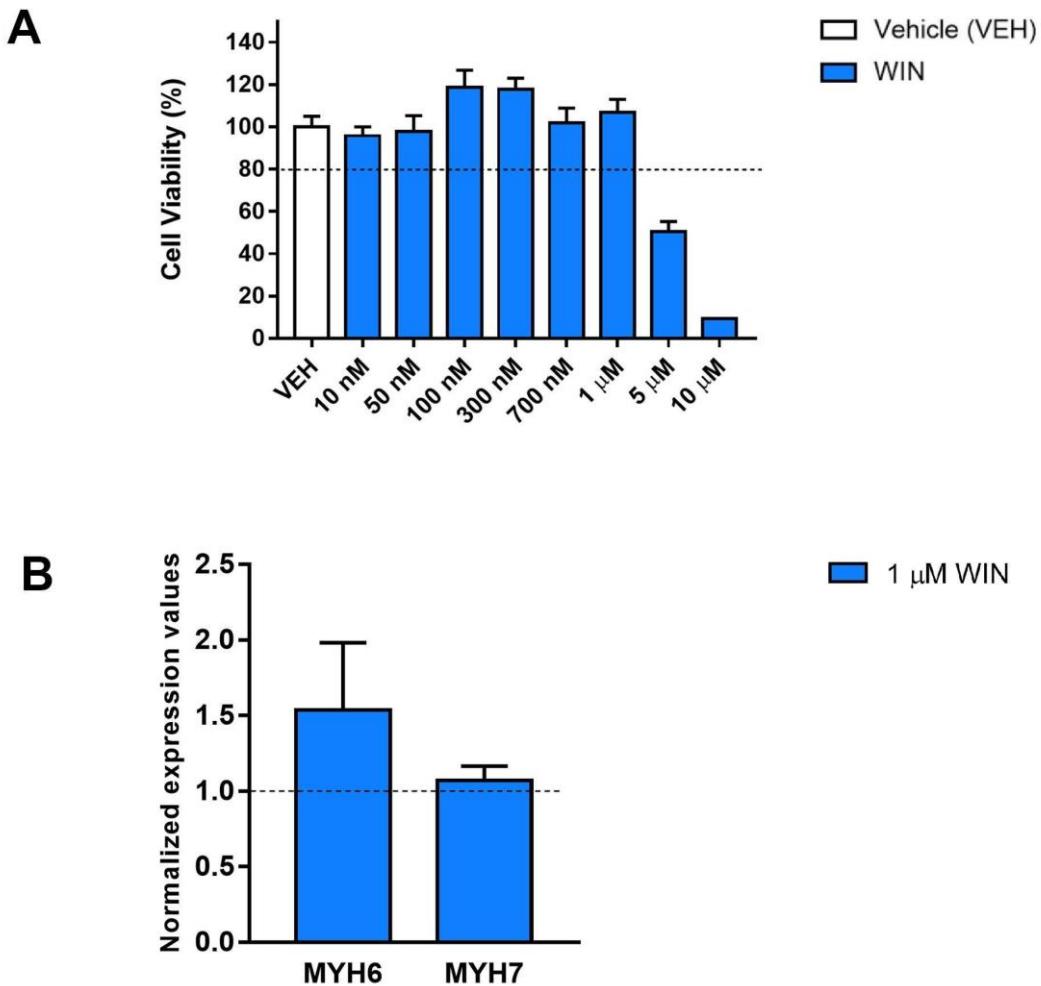
786

787

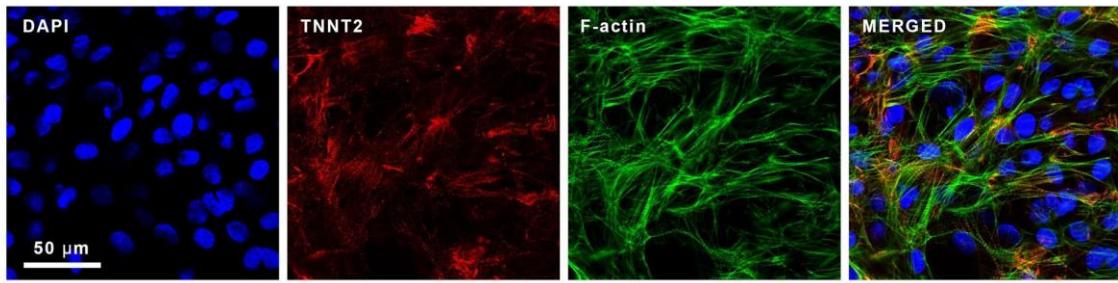
788 **Fig S2.** Full-length gels for western blot detection of ACE2 in untreated and WIN treated
789 hiPSC-CMs. After transference the membrane was cut, the upper half used for ACE2
790 detection, and the bottom half used for actin detection. Images of the membranes used for
791 detection with the ladder (Amersham ECL Rainbow Marker - Full range) are shown on the left.
792 Full-length gels for ACE2 and actin with contrast adjusted to allow visualization of the
793 membrane are shown on the right. Although the whole gel is shown here the lanes used for
794 representative image in Fig 1 are highlighted in a box. Other lanes have samples that are not
795 related to the experiment in this manuscript.

796

797


798

799


800

801

802

803 **Fig S3.** Cell viability assay and quantitative real-time PCR for genes correlated to
804 hypertrophy. (A) Neutral red uptake assay from hiPSC-CMs treated with increasing
805 concentrations of WIN for 72 hours. The highest non-cytotoxic concentration was 1
806 μ M. (B). qPCR for MYH6 and MYH7 genes from hiPSC-CMs treated with 1 μ M WIN
807 for 24 hours. The MYH6 and MYH7 levels showed no significant differences between
808 WIN-treated and untreated cells.

809

810 **Fig S4.** Micrographs of hiPSC-CMs immunostained for cTnT. hiPSC-CMs were
811 immunostained for TNNT2 (red), filamentous actin (F-actin) (green) by phalloidin
812 staining and counterstained with DAPI (blue); 63x magnification; Scale bar: 50 μm.

813

814

815