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Resting-state functional connectivity is typically modeled as the correlation structure of whole-
brain regional activity. It is studied widely, both to gain insight into the brain’s intrinsic organization
but also to develop markers sensitive to changes in an individual’s cognitive, clinical, and develop-
mental state. Despite this, the origins and drivers of functional connectivity, especially at the level
of densely sampled individuals, remain elusive. Here, we leverage novel methodology to decompose
functional connectivity into its precise framewise contributions. Using two dense sampling datasets,
we investigate the origins of individualized functional connectivity, focusing specifically on the role
of brain network “events” – short-lived and peaked patterns of high-amplitude cofluctuations. Here,
we develop a statistical test to identify events in empirical recordings. We show that the patterns of
cofluctuation expressed during events are repeated across multiple scans of the same individual and
represent idiosyncratic variants of template patterns that are expressed at the group level. Lastly,
we propose a simple model of functional connectivity based on event cofluctuations, demonstrating
that group-averaged cofluctuations are suboptimal for explaining participant-specific connectivity.
Our work complements recent studies implicating brief instants of high-amplitude cofluctuations as
the primary drivers of static, whole-brain functional connectivity. Our work also extends those stud-
ies, demonstrating that cofluctuations during events are individualized, positing a dynamic basis for
functional connectivity.

INTRODUCTION

Functional connectivity (FC) measures the temporal
correlation of regional BOLD activity, often in the ab-
sence of explicit task instructions, i.e. in the “resting
state” [1, 2]. Although usually estimated over an ex-
tended period of time and using all available data, a
growing number of studies have shown that FC can be
well approximated using relatively few observations, sug-
gesting that FC may be driven by a temporally sparse
process [3–7].

In parallel, a growing body of work has demonstrated
that, like fingerprints, FC is unique to each individual
and expresses features that reliably distinguish one brain
from another [8–12]. These observations hold tremen-
dous translational promise, and open up the possibility
of designing personalized interventions [13] and develop-
ing increasingly potent connectivity-based biomarkers for
cognition, development, and disease [14–16].

However, there remains a key open question: how does
FC become individualized in the first place? One possi-
bility is that, like FC itself, personalized information is
encoded through time-varying connectivity patterns and
distributed dynamically and sparsely throughout a scan
session. Indeed, recent findings broadly support this hy-
pothesis [17, 18]. In [19], for instance, we demonstrated
that using a small subset of frames classified as “events”
– brief and infrequent periods of high-amplitude cofluc-
tuation – we could produce accurate reconstructions of
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FC while simultaneously rendering participants identifi-
able, amplifying their connectional fingerprints. In con-
trast, low-amplitude frames yielded poorer estimates of
FC and contained little personalized information.

Although these observations support the hypothesis
that personalized information is expressed selectively
during high-amplitude frames, they also raise additional
theoretical questions (Fig. 1). For instance, do cofluc-
tuation patterns during events repeat from one scan to
another (Fig. 1b)? If so, do they reflect a single repeating
pattern or a repertoire of different patterns? Are these
patterns shared across individuals but expressed in differ-
ent proportions, thereby giving rise to individualized FC
(Fig. 1c)? Or does the individualization of FC arise from
equally idiosyncratic patterns of high-amplitude cofluc-
tuations (Fig. 1d)? Addressing these questions is critical
for linking patterns of brain connectivity with individual
differences in behavior [20], and would help clarify the
role of brain dynamics in shaping the individualization
of FC [21], complementing other approaches that have
focused on the collective influence of cortical expansion
rates, post-natal experience, and genetics [22].

Here, we address these questions directly. Our ap-
proach leverages a recently-proposed method for decom-
posing FC into its framewise contributions, detecting
events, and assessing the impact of events on time-
averaged FC [19, 23–30]. We apply this framework to
two independently acquired datasets: the Midnight Scan
Club [11, 12] and the MyConnectome project [10, 31]. In
agreement with our previous studies, we show that FC
is accurately reconstructed from event data alone. Next,
we focus on the properties of individual events, revealing
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that they repeat within and between scans of the same
individual. We also show that event cofluctuations can be
clustered across participants, revealing broad archetypes
that are subtly yet systematically modified at the level of
individuals. Finally, we construct a simple model of FC,
demonstrating that FC can be predicted with a high level
of accuracy using individualized event data, exclusively.

RESULTS

Edge time series as a mathematical precise link
between brain dynamics and FC

In this paper, we analyze data from eight participants
in the Midnight Scan Club, each scanned ten times (par-
ticipants MSC08 and MSC09 were dropped due to data
quality issues). We analyzed two versions of these data;
one in which participants’ brains were parcellated into
N = 333 group-level parcels [32] and another in which
parcels were defined on an individual basis, resulting in a
different set parcels for each participant (N = 612± 28)
[33]. The primary analyses were carried out using the
group-level parcels. We also analyzed data from the My-
Connectome project, a study in which a single individual
was scanned > 100 times [10, 31].

For each dataset, we transformed regional fMRI BOLD
time series into cofluctuation or edge time series (ETS).
Briefly, ETS are calculated as the element-wise prod-
uct between pairs of z-scored regional (nodal) time se-
ries (Fig. 2a; see Materials and Methods for details).
This operation results in a new time series – one for ev-
ery node pair (edge) – whose elements index the direction
and magnitude of instantaneous cofluctuations between
the corresponding pair of brain regions. For instance, if
the activity of region i and j deflect above (or below)
their time-averaged means at the same instant, the value
of the edge time series will be positive. On the other
hand, if they deflect in opposite directions, then the edge
time series returns a negative value. If one deflects and
the other does not, then the value will be close to zero.
The temporal mean of an edge time series is equal to
the Pearson sample correlation coefficient, and therefore
ETS is an exact decomposition of FC into its framewise
contributions.

If we calculate edge time series for all pairs of regions,
we obtain an edge×time matrix (Fig. 2b) whose temporal
average yields a vector (Fig. 2c) that, when reshaped into
the upper triangle elements of a node×node matrix, is
exactly the FC matrix (Fig. 2d). The edge×time matrix
can also be “sliced” temporally and the corresponding
vector once again reshaped into the upper triangle ele-
ments of a node×node matrix, yielding an instantaneous
estimate of whole-brain cofluctuations. These matrices
vary in terms of their mean cofluctuations, which we sum-
marize with a root sum of squares measure (Fig. 2e).

In our previous study, we showed that RSS values
followed a heavy-tailed distribution, such that a small

number of frames exhibited exceptionally high-amplitude
RSS [19]. We also demonstrated that FC reconstructed
using only these high-amplitude frames accurately reca-
pitulated time-averaged FC, suggesting that FC weights
are not driven equally by all frames, but by a select set of
frames. We also demonstrated that these high-amplitude
frames were underpinned by a principal mode of brain
activity, emphasizing oppositional activation of default
mode and control networks with sensorimotor and atten-
tional networks. In this paper, however, high-amplitude
frames were selected heuristically as the top P% by RSS
value and, beyond the first mode of activity, we did
not investigate other activity patterns that occur during
events.

A statistical test for high-amplitude cofluctuation
events

In previous work, we identified putative cofluctuation
events as the top P% frames in terms of root sum squared
(RSS) amplitude of cofluctuation weights. Although this
heuristic is pragmatic – it is easy to implement and in-
terpret – it has some unwanted characteristics. Notably,
the parameter P% lacks statistical justification and, due
to slow temporal fluctuations and serial correlations in
the fMRI BOLD signal, can result in event samples that
disproportionately represent only a small number of RSS
peaks. Here, we present a simple statistical test to iden-
tify events that addresses both of these issues.

In essence, we identify high-amplitude frames by com-
paring the RSS time series estimated using real data
with an ensemble of RSS time series generated under a
null model. Here, as a null model we apply the circular
shift operator independently, randomly, and bidirection-
ally to each region’s time series, which exactly preserves
its mean and variance (and its autocorrelation approxi-
mately). We then transform the shifted data into edge
time series and estimate their RSS. This step is repeated
100 times yielding 100 sets of surrogate RSS time series,
against which we compare the observed RSS data and
identify sequences of frames whose RSS exceeds the null
distribution (non-parametric permutation test at each
frame; accepted false discovery rate fixed at q = 0.05;
Figure. 3a). This entire procedure is repeated for every
participant and every scan.

This procedure allows us to segment the time series
into three categories: contiguous frames whose RSS is
greater than expected, less than expected, or consistent
with that of the null distribution. Rather than con-
sider all frames, we select representative frames from each
block for subsequent analysis. For segments whose RSS
is greater than that of the null distribution or not signif-
icant, we extract peak cofluctuation pattern correspond-
ing to the maximum RSS frame; for segments whose RSS
is less than that of the null, we extract the pattern cor-
responding to the minimum RSS frame (trough).

To demonstrate that these categories of frames cap-
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FIG. 1. Competing hypotheses for how co-fluctuations contribute to the individualization of FC. (a) Edge time
series decompose FC into its framewise contributions. (b) FC can be well-approximated from co-fluctuations expressed during
high-amplitude “events”. Recurrences of event co-fluctuation patterns can be grouped into clusters or “states”. FC can then
be approximated from state centroids and the relative frequency with which each state is visited. Why does FC differ between
individuals? (c) One hypothesis (H1) is that the same states are shared across individuals and inter-individual differences are
driven by differences in the frequency with which those shared states are visited. (d) Another hypothesis (H2) is that the
states, themselves, are subject-specific. In this case, inter-individual differences in FC are driven by differences in the state
centroids across subjects. (e) To adjudicate between these hypotheses, we can try to approximate FC matrices with centroids
estimated from that same subject’s data (different scans) or from group-averaged data.

ture distinct features of cofluctuations, we compare them
along several different dimensions (ANOVA; for all com-
parisons p < 10−15). First, we show that, as expected,
high-amplitude frames express greater RSS values than
low-amplitude and non-significant frames (Fig. 3b). On
the other hand, the number of high-amplitude frames in a
scan is smaller than the number of low-amplitude frames
(Fig. 3c). Additionally, high-amplitude frames form
fewer contiguous segments than low-amplitude frames
(Fig. 3d), and, when they do, those segments tend to
be of shorter duration then contiguous segments of low-
amplitude frames (Fig. 3e). Consistent with our previ-
ous study, reconstructing FC using only high-amplitude
frames results in a pattern of FC strongly correlated with

the FC estimated using all frames, and greater in magni-
tude than that of the non-significant and low-amplitude
frames (Fig. 3f). We note, however, that here the gap
in correlation between the high- and low-amplitude is
narrower than in previous studies [19]. This is due to
differences in the total number of frames used to recon-
struct FC and how those frames were selected (see Fig. S1
for more details). Lastly, we find that high-amplitude
frames are almost never among those censored for exces-
sive in-scanner motion (Fig. 3g); low-amplitude frames,
on the other hand, were more likely to be associated with
censored frames, but were also more variable, a result
that can be attributed, at least in part, to stable inter-
individual differences in motion (Fig. S2). This observa-
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FIG. 2. Edge time series. (a) An edge time series is constructed for pairs of brain regions, i and j, by computing the
elementwise product of their z-scored activities, zi and zj , respectively. The result is a new time series, zij , which indexes the
framewise cofluctuations between i and j. (b) This procedure can be repeated for all pairs of regions, generating a matrix of
edge time series. At each instant in time, a “slice” through this matrix yields a region-by-region cofluctuation matrix that
can be modeled as a network. (c) At every moment in time we can calculate the root sum of squares (RSS) over all edge
time series. The RSS time series is bursty, such that it takes on low values most of the time, but is punctuated by short,
intermittent, high-amplitude bursts. (d) The temporal average over all edge time series yields a vector that corresponds to the
upper triangle elements of a correlation matrix, i.e. functional connectivity (e). In this way, edge time series offer a means
of tracking moment-to-moment fluctuations in network topology and links them to functional connectivity through an exact
decomposition. In f we show examples of cofluctuations during a trough and peak (when RSS is small versus large).

tion is consistent with our previous study, in which we
reported a weak but consistent negative correlation be-
tween RSS and framewise displacement [19]. These find-
ings, in general, replicate using individualized parcels for
participants in the Midnight Scan Club (Fig. S3) and
with MyConnectome data (Fig. S4).

Taken together, these results suggest that the pro-
posed statistical test segments frames into classes with
distinct features. This test addresses two concerns asso-
ciated with previous estimates of high-amplitude “event”
frames. First, it defines high-amplitude frames according
to a statistical criterion, rather than heuristically. Sec-
ond, by extracting representative frames from each con-
tiguous segment, we obtain a more heterogeneous sam-
ple of high-amplitude frames and avoid selecting multiple
frames from around a single peak.

Peak cofluctuation patterns are repeated across scan
sessions – troughs are not

In the previous section we presented a simple
method for estimating statistically significant cofluctu-
ation events and demonstrated that the peak and trough
frames of these segments exhibit distinct spatiotemporal
properties. Here, we investigate representative cofluctu-
ation patterns extracted from blocks of high- and low-
amplitude frames. We first compare the similarity of
these cofluctuation patterns, first within-individuals and
later between. Then, we present evidence that cofluc-

tuation patterns expressed during the peaks of high-
amplitude events recur across scans of the same individ-
ual and that these patterns exhibit subject-specificity.

First, we applied the statistical test to MSC scans (ex-
cluding MSC08 and MSC09 due to data quality issues;
see Materials and Methods for more details). We
found that each scan included 65.9± 9.2 and 72.2± 17.1
high- and low-amplitude segments, respectively (paired
sample t-test; p = 0.0017; t(79) = 3.24). After ad-
ditional quality control in which we excluded segments
that included any motion-censored frames, the number
of segments whose RSS was significantly greater than the
null changed little (61.26 ± 14.7). However, the number
of segments with lower-than-expected RSS was reduced
dramatically (52.5 ± 23.9), reflecting the fact that those
frames often coincide with periods of excessive in-scanner
motion.

Next, we calculated the spatial similarity of motion-
free cofluctuation patterns extracted during RSS peaks
and troughs (periods when the RSS was significantly
greater or less than the null model; labeled G.T. and L.T.
in Fig. 3). We performed this analysis separately for each
subject, resulting in eight similarity (correlation) matri-
ces. We grouped these values based on whether similarity
was measured between two peaks, two troughs, or a peak
and trough co-fluctuation pattern. We found peak-peak
similarity was significantly greater than trough-trough
and peak-trough (t-test; p < 10−15) (Fig. 4a,b). We see
an identical effect in the MyConnectome data (Fig. S5a-
c) and when parcels are individualized (Fig. S5d). These
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observations suggest that high-amplitude events encode
subject-specific patterns of cofluctuations.

Based on these observations, along with the fact that
high-amplitude events are less likely to be impacted
by motion, we calculated the spatial similarity of peak
cofluctuation patterns for all pairs of detected events,
for all scans, and for all subjects (Fig. 4c). We then
compared these similarity values based on whether they
came from the same or different participants (Fig. 4d).
We found that within-individual similarity exceeded
between-individual similarity (non-parametric permuta-
tion test, p < 10−15; Fig. 4f).

Collectively, these results are in line with our previous
study and suggest that low-amplitude cofluctuations con-
tains little participant-specific information [19]. Rather,
our findings support the hypothesis that high-amplitude
cofluctuations contribute significantly more information
about an individual than low-amplitude cofluctuations.

High-amplitude events can be divided into distinct
communities based on their cofluctuation patterns

In the previous section we found that co-fluctuation
patterns expressed during peaks of high-amplitude event
segments are not related to motion and that they are
repeatable across scans. This is in contrast to co-
fluctuation patterns expressed during low-amplitude seg-
ments, which tend to coincide with excessive in-scanner
motion and are dissimilar across scans and individuals,
even within the same scan session. These observations
motivated us to focus on high-amplitude events in yet
greater detail. In this section, we test whether the cofluc-
tuation patterns expressed during high-amplitude events
are entirely subject-specific and not shared across indi-
viduals or whether they belong to a general archetype
that is fine-tuned to single participants.

To test whether this is the case, we aggregated across
participants all cofluctuation patterns that occurred dur-
ing event peaks, calculated the similarity matrix of those
patterns, and clustered this matrix using a variant of
multi-resolution consensus clustering (modularity max-
imization with a uniform null model [34, 35]; see Ma-
terials and Methods for details). The results of this
analysis yielded two large communities (clusters) along
with many very small communities. We found that every
participant was represented in the two large communities
(labeled 1 and 2 in Fig. 5a) and that instances of those
communities appeared in every scan session, account-
ing for 54.1% and 19.0% of all event peaks, respectively
(see Fig. S6). Every participant was also represented
in the two next-largest communities, although they ap-
peared infrequently across scan sessions and collectively
accounted for only 8.6% of all event peaks. Accordingly,
we aggregated the smaller communities to form a third
larger community (labeled 3 in Fig. 5a). Most subsequent
analyses will focus on communities 1 and 2 unless other-
wise noted. For completeness, we analyze community 3

in greater detail in the Supplementary Material (see
Fig. S7 and Fig. S8). Note that we also repeated this
clustering analysis for each participant individually and
found that subject-level partitions of events were highly
similar to partitions estimated with the group-aggregated
data (mean±standard deviation adjusted Rand index
across subjects of 0.81 ± 0.10; p < 10−4, permutation
test in which each subject’s community labels were ran-
domly shuffled).

To better understand why certain cofluctuation pat-
terns were grouped together, we examined group-
representative centroids for each community by calculat-
ing the mean cofluctuation pattern of all frames assigned
to that community (Fig. 5b,c). We found that commu-
nity 1 reflected a topology that expressed strong and
anticorrelated cofluctuations mostly between cingulo-
opercular and default mode networks (Fig. 5b). Com-
munity 2, on the other hand, expressed strong anticorre-
lations between the default mode with dorsal attention
and fronto-parietal networks (Fig. 5b). See Fig. S9 for
topographic depiction of systems on cortical surface.

We next wanted to better understand how brain ac-
tivity drives the cofluctuation patterns described above.
To do this, we extracted activity profiles (regional BOLD
activity, rather than cofluctuations) during event peaks,
grouped them by community, and performed principal
components analysis (PCA). The first principal compo-
nent for each community represents the mode of fMRI
BOLD activity that tended to occur during frames as-
signed to that community. We found the first principal
components of communities 1 and 2 (accounting for 25%
and 26% of variance, respectively, with a sharp drop-off
for increasing component numbers, Fig. S10) to be un-
correlated (r = −0.025; p = 0.65; Fig. 5d). The first
principal component for community 1 (Fig. 5e) exhib-
ited significant activation of the default mode and inac-
tivation of cingulo-opercular, visual, and somatomotor
networks (distance-preserving permutation test of node
order, i.e. spin test [36–38]; false discovery rate fixed
at 5%; padj = 5.3 × 10−4; Fig. 5f). The first principal
component for community 2 (Fig. 5h) exhibited signif-
icant activation of dorsal attention and fronto-parietal
networks and inactivation of default mode, ventral atten-
tion, and visual networks (spin test; false discovery rate
fixed at 5%; padj = 0.02; Fig. 5f). We show individual-
level principal components in the Supplementary Ma-
terial (Fig. S11) and derive similar modes of activity
using an alternative procedure (Fig. S12). Note that the
PCA analysis results in modes of activity; in all cases,
the sign of PCs can be flipped and result in the same
pattern of co-activity.

In the Supplementary Material we perform a simi-
lar analysis of Midnight Scan Club data parcels fit to each
participant individually. We show that the first princi-
pal component of brain activity during high-amplitude
co-fluctuations is similar irrespective of whether we use
group-level or individualized parcels (Fig. S13). Even
when we perform event detection separately using the
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FIG. 3. A statistical test for network-wide events. (a) We generated edge time series and computed the RSS time series.
We compared this time series to a null RSS time series estimated from edge time series that had been generated after circularly
shifting the original fMRI BOLD time series. At each point in time, we calculated the probability that the observed RSS
value exceeded the null distribution, controlled for multiple comparisons, and identified sequences of frames that exceeded the
null distribution. This allowed us to categorize time points into three classes: those whose RSS was greater than null (GT),
those whose RSS was significantly less than the null (LT), and those that were in between (n.s.). For subsequent analysis, we
extracted a single representative cofluctuation pattern for every contiguous sequence of frames that was greater/less than the
null distribution. This pattern corresponded to the frame with the maximum/minimum RSS. In panels b-g, we separate the
frames of each scan into these three classes and compare their features to one another. Each point represents the mean value
over all frames assigned to a given class. The features that are compared are: b mean RSS, c, the number of frames assigned
to a given class, d the number of contiguous sequences of each class, e the mean duration of sequences (log10 transformed), f
the similarity of time-average FC with FC reconstructed using only frames assigned to each class, and g the fraction of frames
censored for high levels of in-scanner motion.

individualized parcels, we find similar modes of activity
(mean similarity of r = 0.89; p < 10−11; Fig. S14). Note
that because the number of parcels differ across individ-
uals, this comparison was carried out at a system level.

Again, we use MyConnectome data as a replication
dataset, finding analogous communities (Fig. S15). We
also take advantage of the fact that MyConnectome data
includes many more samples from an individual than the
Midnight Scan Club (84 scans versus 10), to identify sev-
eral communities not evident in the group analysis of the
Might Scan Club data. We also find evidence of interdig-
itated communities with similar system-level profiles but
drawing on different regions from within those systems
(Fig. S16).

These observations build on our previous study, which
focused on a single pattern of cofluctuation during high-
amplitude frames. Here, we use data-driven methods to
show that high-amplitude cofluctuation is not monolithic
and can be divided into meaningful sub-patterns, each
driven by a distinct mode of brain activity.

Event communities are individualized

In the previous section, we showed that cofluctuation
patterns expressed at the peaks of high-amplitude events
could be grouped into meaningful communities. Within
each community, are these patterns individualized or are
they shared across participants? Which node pairs are
most variable between individuals and, therefore, more
likely to be useful for subject fingerprinting and identifi-
ability?

To address this question, we analyzed communities 1
and 2 separately and in greater detail. Although collec-
tively each community is cohesive (similarity is greater
among cofluctuation patterns assigned to the same com-
munity than to other communities; see Fig. S17 and
Fig. S18), we also found evidence that the similarity be-
tween cofluctuation patterns is stronger still when they
come from the same participant (t-test comparing within-
and between-individual similarity; p < 10−15; Fig. 6a-d).
Further, we identified the pairs of brain regions whose
cofluctuations were most variable across individuals by
computing the standard deviation of edge weights across
participant centroids (Fig. 6e-f). Our rationale for doing
so was that pairs of regions whose cofluctuation ampli-
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FIG. 4. Intra-/Inter-individual similarity of cofluctuation patterns. (a) For each individual separately, we aggregated
all low-motion cofluctuation patterns during peaks and troughs. We then computed the similarity between cofluctuation
patterns (data from participant MSC06 is shown here as an example). (b) Boxplot showing similarity values broken down by
trough versus trough, peak versus trough, and peak versus peak. Because only cofluctuation at peaks exhibited similarity across
scans, we focused on these patterns only, discarding cofluctuation that occurs during troughs and focusing on comparisons of
participants to one another . We found that cofluctuation at peaks tended to be more similar within participants than between.
We show the raw similarity matrix in c and the averaged values in d. (e) Boxplot of similarity values broken down according
to whether they fell within or between participants.

tude was variable are also among those most likely to
drive individualization [39]. For the cofluctuation pat-
tern expressed by community 1, we found that the most
variable edges linked the cingulo-opercular network to
the dorsal attention, fronto-parietal, and ventral atten-
tion networks (Fig. 6e). In the case of community 2, the
most variable edges were linked to default mode, dorsal
attention, and fronto-parietal.

Note that in Fig. S19 and Fig. S20, we further ex-
plore the individualization of high-amplitude cofluctu-
ation patterns. Briefly, we follow [40] and compute
the similarity (correlation) of regional cofluctuation pat-
terns estimated at the group and subject levels for both
communities 1 and 2 (Fig. S19a,b). This procedure
yields a similarity map for each subject and community
(Fig. S19c-f), which we analyzed further. Specifically, we
calculate the mean similarity of regions in each putative
brain system [32] and demonstrated that, for community
1 regions in the ventral attention system was more dissim-
ilar from the group than expected (space-preserving per-
mutation test, 10000 repetitions, p < 10−4; Fig. S19f).
For community 2, regions in the somatomotor-hand sys-
tem, along with those that lack a clear system assign-
ment, were more dissimilar. Interestingly, regions in the
default mode and cingulo-opercular systems (community
1) and default mode, fronto-parietal, and dorsal atten-
tion systems (community 2) were more similar than ex-
pected. These systems all participate in the strongest
co-fluctuations and largely typify each cluster. Finally,
we investigate whether subject deviations from the group
are evident in individual scan sessions. To test this, we
repeat the above procedure but using scan-resolved esti-
mates of communities (see Fig. S20 for an example from

MSC06 and community 1). In general, we find that sim-
ilarity maps for any given subject are highly repeatable
across scan sessions and dissimilar between individuals
(t-test of mean within- and between-subject similarity;
p < 10−15; Fig. S19g).

These observations suggest that high-amplitude cofluc-
tuation patterns reflect a topology that is broadly shared
across individuals but is systematically and individually
altered.

Functional connectivity is modeled accurately only
when using individual-specific co-fluctuation

patterns

Previous studies have shown that time-averaged FC is
individualized and can serve as a fingerprint of an indi-
vidual [8, 12, 41]. Here and in [19], we show that time-
averaged FC can also be approximated using only a small
number of high-amplitude frames (events) and that the
cofluctuation patterns expressed during those events can
be grouped into a small number of clusters or commu-
nities. How do these different communities produce in-
dividualized patterns of FC? Are the cofluctuation pat-
terns fixed at the group level but expressed in different
proportions from one individual to the next? Or are the
proportions fixed while the cofluctuation patterns vary
idiosyncratically? Here, we present a model to adjudi-
cate between these and related hypotheses.

Motivated by previous studies showing that FC can be
described using only high-amplitude frames [3, 4, 6, 7,
19], our model assumes that FC depends exclusively on
the cofluctuation patterns expressed during events and
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FIG. 5. Clustering peak cofluctuation. (a) We clustered the cofluctuation similarity matrix using a multi-scale consensus
clustering algorithm, resulting in two large communities (1 and 2) and a third set of much smaller communities, grouped
together here to form community 3. Here, black lines divide communities from one another and, internally, participants from
one another. The mean cofluctuation pattern for communities 1 and 2 are shown in b and c. To understand activity that
underpins each community, we pooled together corresponding activity time series separately for communities 1 and 2 and
performed principal component analysis on each set, returning the primary mode of activity (PC1). (d) Scatterplot of PC1 for
community 1 and community 2. Colors denote brain systems. (e) Topographic depiction of PC1 for community 1. (f ) PC1
grouped according to brain system. Asterisks indicate p < padj (FDR fixed at q = 0.05). Panels g and h show corresponding
plots for community 2. Analogous information about community 3 can be found in Fig. S7.

that low- and middle-amplitude frames make no contri-
bution (Fig. 7a). Specifically, we model static FC as a
linear combination of the centroids for communities 1,
2, and 3, weighted by how frequently those communities
appear in the data. To fit this model, we must estimate
centroids and frequencies. These estimates can be carried
out separately for each subject, yielding subject-specific
centroids and frequencies. However, estimates can also
be made at the group level, yielding a set of centroids
and frequencies that are shared across individuals. In
both cases, we define model fit as the correlation of edge
weights in the observed and predicted FC matrices.

Here, we test five model variants that combine subject-
and group-level information in different configurations.
The first two models make predictions of FC using
subject-specific estimates of centroids and frequency esti-
mates made at either the subject (model 1) or group level
(model 2). Similarly, the next two models pair group-
level estimates of centroids with either subject- or group-
level estimates of frequencies (models 3 and 4). Finally,
we test a fifth model that makes predictions of subject s’s
FC using subject-specific centroids and frequencies esti-
mated for the remaining seven subjects (different from

the subject whose FC we are trying to predict), yielding
seven independent predictions. We define this model’s
fitness as the best prediction out of the seven.

Importantly, these models allow us to directly test the
competing hypotheses that individualized FC is driven
by subject-specific co-fluctuation patterns or subject-
specific frequencies (labeled H1 and H2 in Fig. 1). Here,
we found that model performance under H1 was signif-
icantly greater than performance for H2 (rH1

= 0.85 ±
0.06, rH2

= 0.70±0.05; paired sample t-test, p < 10−15).
Additionally, combining subject-specific centroids and
frequencies yielded a small but statistically significant
improvement in performance, largely by reducing the
number of outlying points (r = 0.86 ± 0.05; paired sam-
ple t-test, p = 0.02). Collectively, these findings suggest
that the subject-specificity of high-amplitude cofluctua-
tion patterns drive the organization of static FC. Finally,
we perform a sensitivity analysis to identify which of the
three communities drive these effects. For all models, we
find that model performance suffers the most by remov-
ing community 1, which alone accounts for 54.1% of all
events (Fig. 7d).

Additionally, we replicated these findings using: MSC
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data processed using an alternative processing pipeline
and parcellation [42, 43] (Fig. S21), at different spatial
scales (100-node parcellation) [43] (Fig. S22), and with-
out including global signal regression in the processing
pipeline (Fig. S23). One notable discrepancy, however,
was that in the absence of global signal regression, high-
amplitude co-fluctuation patterns did not exhibit anti-
correlations. This is in line with previous observations
concerning the effect of the global signal on FC [44, 45].
Rather, the groups of brain regions that had previously
engaged in anticorrelated behavior now formed their own
distinct community, yielding four communities instead of
two (along with a much smaller fifth community). As a
consequence, we modeled FC as a linear combination of
five states.

These results suggest that the cofluctuation patterns
expressed at the peaks of high-amplitude events can, on
their own, explain a significant fraction of participant-
specific variance in time-averaged FC. More importantly,
our results reaffirm that cofluctuation patterns during
event peaks are participant specific; even when predict-
ing a held-out scan, when centroids are estimated using
participant-specific data, we find marked improvement in
model performance.

DISCUSSION

Here, we extended our recent analyses of edge time
series and putative high-amplitude cofluctuation events
[19, 26]. We proposed a simple null model that allowed
us to identify frames whose amplitude was significantly
greater or less than chance. We then analyzed the cofluc-
tuation patterns expressed during these frames, discover-
ing that across scans of the same individual, the cofluc-
tuation patterns expressed during frames with lower-
than-expected amplitude were dissimilar. In contrast,
we found that the cofluctuation during high-amplitude
frames was repeatable within an individual and dissim-
ilar between individuals. We then clustered patterns
of cofluctuation expressed during high-amplitude frames,
identifying a small number of cofluctuation patterns that
were shared across individuals. These patterns, however,
were altered subtly yet systematically, so that they could
be used to reliably distinguish participants from one an-
other. Finally, we tested the hypothesis that FC could
be predicted exclusively from the co-fluctuation patterns
expressed during events, and constructed a model that
generated estimates of FC given a set of cofluctuation
community centroids and the frequency that those cen-
troids are expressed by that individual. We found that
the model performed well only when the centroids were
estimated using data from the participants whose FC we
were aiming to predict.

High-amplitude cofluctuations can be partitioned
into different communities based on their topology

Intrinsic or resting-state functional connectivity re-
flects the coupling of spontaneous activity between dis-
tant brain regions [1, 46]. It is often used to construct a
graphical representation of the brain to be analyzed us-
ing tools from network science [47, 48]. Although inter-
individual differences in FC have been linked to an in-
dividual’s clinical [16], cognitive [49], and developmental
state [15], the dynamic origins of individualized FC re-
main unknown.

Recently, we presented a method for decomposing FC
into its framewise (instantaneous) contributions [19, 23].
Our work, in agreement with other recent studies [3, 4,
6, 7], demonstrated that all frames do not contribute
equally to FC – rather only a small number of high-
amplitude frames – “events” – when averaged together,
are necessary for explaining a high proportion of variance
in FC. In that study, however, we only examined the
mean pattern of high-amplitude cofluctuations and did
not investigate individual events nor did we characterize
variation in the co-fluctuation patterns across events.

Here, we address these issues using two dense pheno-
typing datasets. Leveraging a statistical test for identi-
fying high-amplitude frames, we show that “events” are
not monolithic and comprise distinct patterns of cofluc-
tuations. Using a data-driven clustering method, we find
evidence of two patterns of cofluctuation that are con-
served across all participants and scans. These patterns
emphasize opposed activation of default mode regions
with cingulo-opercular and sensorimotor systems (com-
munity 1) and with dorsal attention and fronto-parietal
systems (community 2). We also find evidence of smaller
communities corresponding to less frequent events involv-
ing only a fraction of participants. In the main text we
grouped these patterns into a single community, but find
that the two largest (accounting for 8.6% of event peaks)
involve cofluctuations of sensorimotor systems, which we
explore in the Supplementary Material.

The two largest communities have interesting proper-
ties. For instance, the default mode is cohesive (densely
interconnected, internally) in both, but is selectively de-
coupled from distinct sets of brain systems associated
with processing sensorimotor information [50] and co-
ordinating flexible, goal-directed behavior [51]. In nei-
ther community does the default mode couple strongly
to other systems. Rather, in these high-amplitude states
it maintains relative autonomy, in agreement with studies
that have examined its “hubness” using the participation
coefficient [52] – a graph-theoretic measure that describes
the extent to which a node’s connections are distributed
across or concentrated within communities [53].

Another interesting feature of these communities is
their possible relationship to network states obtained by
clustering sliding-window estimates of time-varying FC
[54] or co-activation patterns (CAPs) [55]. Indeed, these
approaches all yield estimates of repeating patterns of
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FIG. 6. Personalization of cofluctuation patterns. We separately extracted cofluctuation patterns for communities 1 and
2 and computed the pairwise similarity. Similarity matrices are shown in panels a and c. In both cases, we found that within-
individual similarity was statistically greater than between-individual similarity. Boxplots of similarity scores are depicted in
panels b and d. Asterisks indicate p < padj based on permutation test (FDR fixed at q = 0.05). For each community, we
calculated mean cofluctuation patterns for each participant and, across participants, computed the standard deviation of each
node-pairs cofluctuation magnitude. The patterns of variability for communities 1, 2, and 3 are depicted in panels e, f, and g,
respectively.

co-activity and connectivity. Although recent work sug-
gests a deep mathematical relationship among these ap-
proaches and static FC, the precise nature of this link
remains undisclosed [56]. Here, we analyze edge time
series, a parameter-free method for estimating instanta-
neous cofluctuations between regional activity (localized
to individual frames) and whose sum is precisely time-
averaged FC. In contrast, sliding-window estimates of
time-varying FC require users to specify a window dura-
tion and overlap fraction (the number of frames shared by
successive estimates of FC) and, due to the sliding win-
dow, lead to temporally blurred connectivity estimates
that cannot be precisely localized in time [57, 58]. In
fact, we speculate that brief high-amplitude events may
be present in sliding-window estimates of time-varying
FC, but because they evolve over timescales much shorter
than that of the typical window duration, are effectively
obscured due to blurring. CAPs, on the other hand,
which leverages a similar procedure as ours, identifies
repeated and high-amplitude patterns of activity rather
than cofluctuation matrices (the product of instanta-
neous activity patterns). For this reason, CAPs tradi-
tionally does not offer the mathematical link between
cofluctuations and FC that edge time series does [59].
Critically, then, because edge time series are a decom-

position of FC, events can be viewed as the “atoms” or
“building blocks” of FC.

Collectively, our findings suggest that cofluctuation
patterns expressed during putative network-wide events
are variable but can be described in terms of two princi-
pal patterns. These findings extend our previous study
[19] and open up opportunities for future studies to in-
vestigate inter-individual differences in these patterns as
well as the smaller and less frequent patterns.

High-amplitude cofluctuation patterns are
individualized and drive time-averaged FC

One of the questions we aimed to address was whether
the individualization of FC occurred because: a) high-
amplitude cofluctuation patterns are shared across indi-
viduals but expressed in different subject-specific propor-
tions or b) cofluctuation patterns expressed during high-
amplitude events are inherently subject-specific. The an-
swer to this question is important, as it speaks to the
origins of individual differences in FC [22, 40], has impli-
cations for brain-behavior studies [14], and also informs
our understanding of time-varying FC [60].

Here, we addressed these questions by aggregating and
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FIG. 7. Modeling participant- and scan-specific FC with cofluctuation patterns. (a) We hypothesized that FC is
driven by brief high-amplitude patterns of cofluctuation. A scan session can be abstracted, then, as periods of time where
cofluctuation is close to zero punctuated by periods of time where cofluctuation corresponds to one of the cofluctuation
communities. (b) We modeled FC as a linear combination of cofluctuation patterns corresponding to communities 1, 2, and
3 as well as a blank state where cofluctuation was treated as zeros (low-amplitude frames). We varied whether cofluctuation
patterns and the frequencies with which they appear are estimated at the subject or group level. We also tested a model that
used subject-level estimates of centroids and frequencies from other subjects. (c) Performance of the five models. Overall,
models that included participant-specific information about cluster centroids outperformed other models. (d) We performed a
sensitivity analysis of model 2, which used subject-specific centroids and group-level frequencies to predict FC patterns. In this
analysis, we selectively exclude each of the three communities from the model so that it does not contribute to the prediction.
We find that removing community 1 yields the biggest decrease in model performance, suggesting that it drives the model
performance more so than communities 2 or 3.

clustering high-amplitude cofluctuation patterns from
across all participants. This analysis returned two large
communities in which every participant and scan were
represented, indicating that, to some extent, patterns of
high-amplitude cofluctuations are indeed shared across
individuals. However, when we examined these commu-
nities in greater detail, we found that within communities
there existed more cohesive sub-communities correspond-
ing to individual participants.

To better adjudicate between hypotheses, we con-
structed a simple model to predict an individual’s scan-
specific pattern of FC. Motivated by previous studies
[3, 4, 6, 7], this model assumed that FC is driven ex-
clusively by high-amplitude cofluctuations and that all
other time points made negligible contributions to FC.
We then replaced FC during high-amplitude frames with
the centroid of the community to which those frames were
assigned. We found that, when centroids were generated
using data pooled from across all participants we could
explain only ≈50% of the variance in functional connec-
tion weights. However, when we estimated centroids us-
ing data from the same participant whose FC we were
predicting, the model exhibited a significant increase in
performance, accounting for ≈75% of variance in connec-
tion weights.

These observations suggest that incorrectly ascribing
group-level features to an individual participant dis-
torts our prediction of their FC, favoring the hypothesis
that high-amplitude cofluctuation patterns are individ-

ualized. This endorsement of hypothesis b comes with
some caveats, however. Although FC is the product
of individualized cofluctuation patterns, those patterns
appear to be variants of archetypal patterns, i.e. the
two large communities discussed in the previous section.
These observations align with other studies showing that
the individualization of FC is generally a subtle modu-
lation of features that are evident in group-level data,
from brain systems [61–63] to regional FC fingerprints
[8]. Notably, these findings also corroborate other “edge-
centric” analyses of individualized patterns of brain con-
nectivity. For instance, in [64], the authors demonstrated
that the correlation structure of edge time series – a
construct referred to as “edge functional connectivity”
- outperformed traditional FC in terms of identifiability.
Moreover, reconstructions of eFC using principal compo-
nents further improved its performance. Those results,
paired with those of the present study, suggest that edge-
based approaches may offer a useful framework for inves-
tigating individualization of connectivity and, eventually,
linking it back to behavioral, cognitive, and clinical phe-
notypes.

Our results have implications for studies of brain-
behavior correlations as well as state-based analyses of
time-varying FC. We show that inter-individual differ-
ences in FC are largely shaped by differences in high-
amplitude cofluctuation patterns. However, our sensi-
tivity analysis (Fig. 7d) demonstrated that of the three
communities we considered, one contributed dispropor-
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tionately to the individualization of FC relative to the
other two. This suggests that, rather than linking inter-
individual differences in FC across individuals, it may be
more profitable to directly investigate specific community
centroids, e.g. those that drive individual variation, po-
tentially leading to improvements in brain-behavior cor-
relations.

Our results also have implications for studies of net-
work states in time-varying FC [54, 58]. In general, these
studies cluster time points together based on the similar-
ity of networks to one another. To facilitate ease of com-
parison across individuals, this step is usually performed
using concatenated data from many participants or con-
ditions. Different metrics can be calculated from these
partitions, e.g. cumulative time a participant spends in
any cluster, transition matrices, etc., and linked to be-
havioral and clinical phenotypes. Our results suggest
that, although methodologically convenient, clustering
time points together and treating them as recurrences
of the same “network state” likely obscures meaningful
participant-level variation.

Future directions

The results presented here raise important questions
that should be investigated in future research. First, be-
cause events contribute disproportionately to the organi-
zation of time-averaged FC and because they appear to
be drivers of individualization, they should be the target
of future studies. We investigated events in two dense
sampling studies and in a total of nine brains. Although
these data allowed us to investigate the extent to which
cofluctuation patterns during events are shared versus in-
dividualized, the small number of participants precludes
the possibility of investigating behavioral, cognitive, or
disease correlates of events [65]. Future studies should in-
vestigate communities of high-amplitude events in larger
datasets.

Relatedly, our study examined event structure ex-
clusively during task-free resting-state conditions. We
demonstrated that time-averaged FC could be well-
approximated using only high-amplitude frames and in-
dividualized estimates of cofluctuations during those
frames. What happens to events when participants are
asked to perform tasks in the scanner? Previous studies
have demonstrated that tasks systematically modulates
patterns of FC [49]. Do these changes reflect different
patterns of cofluctuations during events? Are they the
same patterns as rest but in different proportions? And
directly related to the aims of this study, are task events
similarly personalized or can they be used to strengthen
brain-behavior associations [66]?

Here, we focused on the contributions of high-
amplitude “events” to patterns of time-averaged FC. The
simple model we proposed even goes so far as to con-
sider contributions from all other frames as negligible.
Is this really the case? What biases might we reinforce

by focusing on high-amplitude frames? High-amplitude
cofluctuations make proportionally bigger contributions
to time-averaged FC than low-amplitude cofluctuations.
This statement is non-controversial; edge time series are
a mathematically precise “temporal unwrapping” of the
Pearson correlation into its framewise contributions, the
average of which is simply FC [19, 23–26]. For this
reason, it makes sense to focus on frames where many
edges simultaneously make big contributions – those
same frames necessarily will, on average, make bigger
contributions to FC than, say, frames where only a few
edges exhibit high-amplitude edge time series. How-
ever, this does not rule out the possibility that frames
outside of high-RSS events, which are more numerous,
make contributions that outweigh or match those of high-
amplitude frames. Additionally, in focusing on global
high-amplitude events, we may miss out on events involv-
ing small brain systems, which will fail to meet statistical
criteria for significance due to their size.

Edge time series represent only the latest in a se-
ries of methods for tracking and modeling time-varying
changes in networks that include time-frequency analysis
[67], sliding windows [57], instantaneous phase-locking
[68], co-activation patterns [55, 69], multiplication of
temporal derivatives [70], quasi-periodic patterns [71],
and model-based frameworks [72]. Broadly, these dif-
ferent approaches can be classified on the timescales over
which they describe changes in brain activity or connec-
tivity. Some, like CAPs, edge time series, and instan-
taneous phase-locking, characterize changes at a frame-
wise timescale. Others require windowing or smoothing
of data to track time-varying fluctuations. Of particular
interest are quasi-period patterns, (QPPs), which refer to
repeated sequences of brain activity [73–75]. Recently,
[76] developed a method for assessing contributions to
FC by repeating patterns. In essence, they “regress out”
each QPP’s time course from the BOLD signal and calcu-
late FC before and after doing so, allowing the authors to
assess the contribution of the QPP to FC. More recently,
[77] identified three QPPs and demonstrated that, using
only the time courses of those QPPs, could reconstruct
and FC matrix that was correlated with the FC matrix
estimated using the entire BOLD signal. Although these
studies collective suggest that QPPs contribute to the
overall pattern of FC, the precise mathematical link re-
mains inexact. Moreover, every QPP evolves over an
extended period of time and includes multiple frames,
further complicating its relationship with FC. In con-
trast, edge time series are an exact decomposition of
FC into its framewise contributions. That is, the mean
of a given edge time series is mathematically equivalent
to that edge’s weight in the FC matrix. This makes it
possible to assess the collective contribution of individ-
ual frames to the overall FC pattern. In contrast, with
QPPs and co-activation patterns (CAPs), the mathemat-
ical link to FC is not precise. Irrespective of whether
their contributions can be determined precisely, QPPs,
CAPs, iCAPs, “events” and related methods make clear
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that variation in activity and co-activity across time con-
tribute to FC. Future work should focus not only on as-
sessing the relative strengths and weakness of these meth-
ods but identifying underlying structural similarities be-
tween approaches [56].

Here, we analyze two dense-sampling datasets in which
a small number of individuals were scanned many times.
Our work is naturally extended by examining inter-
individual variation of high-amplitude co-fluctuation pat-
terns and community frequency in large, cross-sectional
datasets, e.g. the Human Connectome Project [78].
In addition to imaging data, the HCP dataset in-
cludes rich cognitive, behavioral, and clinical assessments
of participants. Future work should focus on linking
inter-individual variation in those measures with high-
amplitude events.

Finally, a key overarching and open question concerns
the origins of high-amplitude cofluctuations. In our pre-
vious study, we demonstrated that movie-watching leads
to synchronization of events across participants [19], sug-
gesting that their timing can be modulated selectively,
in that case by sensory input. But what about rest?
In that previous study, we found no differences in event
amplitude between rest and movie-watching, suggesting
that spontaneous events are just as large as those driven
by sensory input. A couple recent studies help us spec-
ulate on the origins of events. One possibility is that
events help preserve brain circuit function in the absence
of use. In [79], the authors demonstrated that disuse of
motor circuits by casting participants’ arms leads to in-
creases in high-amplitude pulses and that manually cen-
soring these pulses reduces FC magnitude [80]. Another
possibility is that burst activation of distinct systems, in-
cluding default mode networks, co-occurs with the recall
or previously-observed stimuli [81]. Yet another possi-
bility, and one that is supported by recent results from
electrophysiological studies [82], is that rapid and an-
tagonistic (anti-correlated) relationships between specific
subnetworks, including the default mode, are strongly as-
sociated with sustained attention, suggesting physiolog-
ical origins. In all cases, these activation patterns are
likely constrained by the underlying anatomical connec-
tivity and reflect groups of mutually connected brain re-
gions [30, 83]. A final possibility is that events are truly
stochastic and are mere bi-products of modular corre-
lated time series, where the activation of one element
within a module implies the activation of the others [56].
In any case, future experimental studies – possibly in-
vasive studies that allow for more targeted and tempo-
rally resolved recording – should be directed to investi-
gate their origins.

Limitations

The conclusions of this study are limited in several
ways. Notably, we analyze fMRI data, which affords
whole-brain coverage but at a spatial resolution of mil-

limeters and a temporal resolution of, at best tenths of
a second. Moreover, fMRI BOLD samples a slow sig-
nal slowly, and is only indirectly related to population
activity. However, many studies have demonstrated a
correspondence between BOLD fluctuations and FC es-
timated from fMRI with other modalities, including local
field potentials [84], intracranial EEG [85], and optically
recorded calcium imaging signals [86], positing a neu-
ral basis for functional connectivity estimated from the
fMRI BOLD signal. Future studies could apply methods
similar to those used here to other imaging modalities.

A second limitation concerns data quality, in-scanner
motion, and other artifacts, which are known to impact
estimates of FC and can produce burst-like behavior in
fMRI time series [87, 88]. Here, we adopted a conser-
vative approach and discarded putative events that oc-
curred near censored frames. Notably, this procedure
impacted low-amplitude frames to a greater extent than
high-amplitude frames, suggesting that high-amplitude
frames, in addition to contributing disproportionately to
FC, are also less likely to be contaminated by artifacts.
Nonetheless, how to adequately address motion-related
issues in the analysis of FC remains an ongoing and dis-
puted topic [89–91].

A final limitation concerns the use of PCA to ex-
tract “modes” of activity underlying communities. While
we find that each community’s first component explains
≈25% variance, we do not investigate the remaining com-
ponents, which likely include other meaningful modes of
activity. Future studies should further investigate the
link between brain activity and connectivity. Because
edge time series is a mathematically exact decomposition
of FC into its time-varying contributions, it represents a
useful framework for doing so.

Conclusion

In conclusion, we find that FC can be explained us-
ing a small number of high-amplitude frames. These
frames can be clustered into a small number of commu-
nities corresponding to archetypal patterns of cofluctua-
tion, broadly shared across individuals. However, these
patterns undergo refinement at the level of individual
participants, yielding reliable and individualized cofluc-
tuation patterns. Finally, we show that participants’ FC
is more accurately predicted using participant-specific es-
timates of their high-amplitude cofluctuation patterns
compared to group-level estimates. Our study discloses
high-amplitude, network-wide cofluctuations as dynami-
cal drivers of individualized FC and introduces method-
ology for exploring their role in cognition, development,
and disease in future studies.
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MATERIALS AND METHODS

Datasets

Midnight Scan Club

The description of the Midnight Scan Club dataset ac-
quisition, pre-processing, and network modeling is de-
scribed in detail in [11]. Here, we provide a high-level
overview. Data were collected from ten healthy, right-
handed, young adult participants (5 females; age: 24-34).
Participants were recruited from the Washington Univer-
sity community. Informed consent was obtained from all
participants. The study was approved by the Washing-
ton University School of Medicine Human Studies Com-
mittee and Institutional Review Board. This dataset
was previously reported in [11, 12] and is publicly avail-
able at https://openneuro.org/datasets/ds000224/
versions/00002. Imaging for each participant was per-
formed on a Siemens TRIO 3T MRI scanner over the
course of 12 sessions conducted on separate days, each
beginning at midnight. In total, four T1-weighted im-
ages, four T2-weighted images, and 5 hours of resting-
state BOLD fMRI were collected from each participant.
For further details regarding data acquisition parameters,
see [11].

High-resolution structural MRI data were averaged to-
gether, and the average T1 images were used to generate
hand-edited cortical surfaces using Freesurfer [92]. The
resulting surfaces were registered into fs LR 32k surface
space as described in [93]. Separately, an average native
T1-to-Talaraich [94] volumetric atlas transform was cal-
culated. That transform was applied to the fs LR 32k
surfaces to put them into Talaraich volumetric space.

Volumetric fMRI pre-processing included including
slice-timing correction, frame-to-frame alignment to cor-
rect for motion, intensity normalization to mode 1000,
registration to the T2 image (which was registered to
the high-resolution T1 anatomical image, which in turn
had been previously registered to the template space),
and distortion correction [11]. Registration, atlas trans-
formation, resampling to 3 mm isotropic resolution, and
distortion correction were all combined and applied in a
single transformation step [95]. Subsequent steps were all
completed on the atlas transformed and resampled data.

Several connectivity-specific steps were included (see
[96]): (1) demeaning and de-trending of the data, (2)
nuisance regression of signals from white matter, cere-
brospinal fluid, and the global signal, (3) removal of
high motion frames (with framewise displacement (FD)
> 0.2 mm; see [11]) and their interpolation using power-
spectral matched data, and (4) bandpass filtering (0.009
Hz to 0.08 Hz). Functional data were sampled to the cor-
tical surface and smoothed (Gaussian kernel, σ = 2.55
mm) with 2-D geodesic smoothing.

The following steps were also undertaken to reduce
contributions from non-neuronal sources [96, 97]. First,
motion-contaminated frames were flagged. Two partic-

ipants (MSC03 and MSC10) had high-frequency arti-
facts in the motion estimates calculated in the phase
encode (anterior-posterior) direction. Motion estimate
time courses were filtered in this direction to retain ef-
fects occurring below 0.1 Hz. Motion contaminated vol-
umes were then identified by frame-by-frame displace-
ment (FD, described in [98]), calculated as the sum of ab-
solute values of the differentials of the 3 translational mo-
tion parameters (including one filtered parameter) and 3
rotational motion parameters. Frames with FD > 0.2
mm were flagged as motion-contaminated. Across all
participants, these masks censored 28%±18% (range: 6%
– 67%) of the data; on average, participants retained
5929±1508 volumes (range: 2733 – 7667). Note that in
this paradigm, even the worst participant retained al-
most two hours of data. Nonetheless, we excluded two
subjects from all analyses, both of whom had fewer than
50% usable frames in at least five scan sessions (MSC08
in 7/10 and MSC9 in 5/10). See Fig. S24 for a summary
of usable frames for each subject and scan.

Time courses were extracted from N = 333 cortical
regions using a common (group) functional parcellation
[32]. We also analyze time courses estimated from using
individualized parcellations (see [41] for details). Both
group and individualized time series were used for FC
estimation and edge time series generation.

MyConnectome dataset

All data and cortical surface files are freely available
and were obtained from the MyConnectome Project ’s
data-sharing webpage (http://myconnectome.org/wp/
data-sharing/). Specifically, we studied pre-processed
parcel fMRI time series for scan sessions 14–104. Details
of the pre-processing procedure have been described else-
where [10, 31]. Each session consisted of 518 time points
during which the average fMRI BOLD signal was mea-
sured for N = 630 parcels or regions of interest (ROIs).
With a TR of 1.16 s, the analyzed segment of each session
was approximately 10 minutes long.

Functional connectivity

Functional connectivity (FC) measures the statisti-
cal dependence between the activity of distinct neural
elements. In the modeling of macroscale brain net-
works with fMRI data, this usually means computing
the Pearson correlation of brain regions’ activity time
series. To calculate FC for regions i and j, then, we first
standardize their time series and represent them as z-
scores. We denote the z-scored time series of region i as
zi = [zi(1), . . . , zi(T )], where T is the number of samples.
The Pearson correlation is then calculated as:
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rij =
1

T − 1

T∑
t=1

zi(t) · zj(t). (1)

In other words, the correlation is equal to the temporal
average of two regions’ cofluctuation.

Edge time series

Recently, we proposed a method for decomposing FC
into its framewise contributions. This is accomplished by
simply omitting the averaging step in computing Pear-
son’s correlation. This omission results in a new time
series:

rij(t) = zi(t) · zj(t). (2)

where the value of rij(t) indexes the instantaneous cofluc-
tuation between regions i and j at time t. When regions i
and j both deflect from their mean in the same direction
rij > 0, when they deflect in opposite direction, rij < 0,
and when one (or both) of their activities is near their
mean then rij ≈ 0. Importantly, the mean of this time
series is exactly equal to the FC between regions i and j,
and therefore we can think of rij(t) as the instantaneous
contribution of frame t to the overall FC.

If we consider the set of cofluctuation between all pairs
of regions {ij} at time t, we can arrange those elements
into a node-by-node connectivity matrix and analyze it
as a network. We can also calculate the total amplitude
of cofluctuation between all node pairs as their root sum

square, RSS(t) =
√∑

i,j>i rij(t)
2.

Multiresolution consensus clustering

We used a variation of modularity maximization [99]
to group cofluctuation patterns into clusters or “commu-
nities”. Briefly, modularity maximization is a commu-
nity detection method for partitioning relational data,
e.g. networks, into non-overlapping communities. This
is accomplished by optimizing a modularity quality func-
tion:

Q(γ) =
∑
rs

[Srs − γPrs]δ(zr, zs). (3)

In this expression, Srs is the similarity of cofluctuation
patterns r and s; Prs is the level of similarity expected
by chance; δ(zr, zs) is the Kronecker delta function and is
equal to 1 when the community assignments of patterns
r and s, denoted as zr and zs, are identical, and 0 oth-
erwise. The structural resolution parameter, γ, controls
the importance of Srs relative to Prs and, in effect, can
be tuned to recover smaller or larger communities.

Here, we use modularity maximization to obtain a
representative set of multi-resolution communities [34].
That is, a partition of cofluctuation patterns into commu-
nities that takes into account how strongly coupled pat-
terns are to one another at different scales, from finescale
partitions of patterns into many small communities to
coarse partitions of patterns into a few large commu-
nities. To do this, we sample communities at various
scales by changing the value of γ. Specifically, we sam-
ple 10,000 different values of γ based from the distribu-
tion of Srs values. At each value, we use a generalized
version of the Louvain algorithm to optimize the corre-
sponding Q(γ) [35] (http://netwiki.amath.unc.edu/
GenLouvain/GenLouvain).

This procedure results in 10000 estimates of commu-
nities at a range of scales. We transform these estimates
into a probabilistic co-assignment matrix, whose element
Trs is equal to the fraction of the 10000 partitions in
which nodes r and s were assigned to the same commu-
nity. From this matrix, we construct a new modularity:

Qc =
∑
rs

[Trs − P c
rs]δ(z

c
r, z

c
s). (4)

In this expression, P c
rs is the expected co-assignment of

r and s to the same community and can be estimated
as the mean value of the elements in the empirical co-
assignment matrix. zcr and zcs are the consensus commu-
nity assignment of patterns r and s, respectively.

Optimizing Qc tends to return partitions that are, as a
group, more similar to one another and, possibly, identi-
cal. If this is the case, the algorithm ends and the result-
ing partition is accepted as the representative consensus
partition. However, if there is any variability in the out-
put so that the algorithm does not arrive at the same
solution each run, the a new co-assignment matrix is es-
timated and its modularity optimized. This procedure
repeats until the algorithm converges. We use the same
generalized version of the Louvain algorithm to optimize
the consensus modularity function and detect consensus
communities.

Principal component analysis of communities

The multiresolution consensus clustering procedure
groups a series of vectorized N × N high-amplitude,
cofluctuation matrices into communities. Each clustered
cofluctuation matrix corresponds to the peak frame in a
temporally contiguous series of frames whose RSS was
significantly greater than that of a null model. While
our primary aim was to understand how these matrices
contribute to time-averaged FC, we were also interested
in characterizing what types of activity, i.e. N × 1 pat-
terns of fMRI BOLD data, give rise to high-amplitude
cofluctuations.

Naively, one could address this question by identify-
ing the frames corresponding to peak co-fluctuations and
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average over their corresponding activity patterns. This
approach, however, can yield misleading results. This is
because every co-fluctuation matrix can be generated by
two different patterns of activity that are identical to one
another except for their signs. To illustrate this, consider
the toy case presented below. Suppose we have a four-
node network with the following co-fluctuation matrix:

C =

 +1 +1 −1 −1
+1 +1 −1 −1
−1 −1 +1 +1
−1 −1 +1 +1

. (5)

The elements of this cofluctuation matrix are given by
Cij = zizj , where zi is the z-scored activity of node i.
Accordingly, this matrix could have been generated by
either of the following patterns of activity:

z =

 +1
+1
−1
−1

 (6)

or

z′ =

 −1
−1
+1
+1

 (7)

The simple average of z and z′ is a vector of zeros,
which is unrelated to the co-fluctuation matrix. Averag-
ing peak activity patterns can yield a similarly misleading
result. Fortunately, both patterns are co-linear and sat-
isfy the relationship z = −1 · z′. That is, these patterns
can be described by a single “mode” of activity, which
we can detect by applying principal components analysis
(PCA) to the activity patterns directly.

With this in mind, our strategy for characterizing the
patterns of activity underpinning high-amplitude cofluc-
tuations was as follows. For each of the cofluctuation
matrices assigned to community 1, 2, and 3, we iden-
tified the scan and frame number in which they origi-
nated. Separately for each community, we aggregated
the corresponding patterns of activity into matrices with
dimensions of N × Npeaks. Here, Npeaks is the number
of high-amplitude frames assigned to a given community.
Then, we applied PCA to these matrices, yielding a se-
ries of orthogonal components of dimension N×1 and the
variance explained by each component. Note that these
components are used mostly for visualization and to bet-
ter understand the link between cofluctuation matrices
and brain activity.

In the main text, we also describe a second approach
for uncovering the dominant mode of activity underpin-
ning the centroids of communities. Each centroid repre-
sents the average over many cofluctuation matrices. To

discover the optimal mode of activity, we aimed to de-
termine the elements of z = [z1, . . . , zN ] that minimized
the following cost function:

P =
∑
ij

(Cij − zizj)2. (8)

To optimize P , we used a greedy algorithm which we
repeated 100 times. Briefly, we initialized the algorithm
with a z ∈ RN×1 vector whose elements were drawn in-
dependently from N (0, 1) and calculated the correspond-
ing cost of P . Then we randomly selected a node, i,
replaced its current value with another value randomly
drawn from the same distribution. We denote the re-
sulting vector as z′ and its cost as P ′. If P ′ < P then
we retained z′. We repeated this procedure 25000 times,
gradually reducing P . In practice, we found that the
algorithm converged to highly similar solutions (mean
similarity across 100 runs of r = 0.993.

Predictive model of FC

In the main text we described a procedure for modeling
FC in terms of cofluctuation community centroids. In
this section, we provide more details of how the model
works.

In our previous work [19], we claimed that FC is driven
by high-amplitude frames. One way to test whether
this is the case is to “zero out” all low-amplitude and
non-significant frames and to compute FC as the sum of
whatever cofluctuation patterns are expressed at high-
amplitude frames. Here, we take this claim one step fur-
ther and state that the cofluctuation patterns expressed
during high-amplitude frames are recurrences of one of
three template patterns, which we obtained from the
community detection analysis.

This intuition can be formalized by the following
model:

FCsubject,scan = f1c1 + f2c2 + f3c3 + f00. (9)

In this expression, f1, f2, and f3 are the fractions of
all low-motion frames in which a participant expresses
communities 1, 2, and 3, respectively. The parameter f0
is the fraction of frames in which a participant is in a low-
amplitude or non-significant state. The values of these
parameters come from the results of the multiresolution
consensus clustering analysis. The other parameters c1,
c2, and c3 represent the average pattern of cofluctuation
for of the three communities. The final parameter, 0 is
a node-by-node matrix where all elements are zero.

The first two models make predictions of FC using
subject-specific estimates of centroids and frequency es-
timates made at the subject- and group-level (models 1
and 2). Similarly, the next two models pair group-level
estimates of centroids with subject- and group-level esti-
mates of frequencies (models 3 and 4). Finally, we test a
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fifth model that makes predictions of subject s’s FC us-
ing subject-specific centroids and frequencies estimated
for the remaining seven subjects. For this model, we re-
tain the best fit of the seven.

Note that when predicting FC for a given scan, both
subject- and group-level centroids and frequencies are
estimated while excluding observations from that scan.
Note also that frequency is estimated as the total number
of frames associated with a given community. To obtain
this number, we first map the community assignments
of event cofluctuation patterns back to the segment they
originated (a temporally contiguous set of frames whose
amplitude is significantly greater than that of the null
model). We then assign the same community label to all
frames that make up that segment. Finally, we calculate
the frequency of each community as the total number of
frames assigned to that community divided by the total
possible number of frames.

In general, the model can generate matrices that are
not positive semidefinite (all positive eigenvalues) and
therefore not possible correlation matrices. Accordingly,
we transform each matrix (translation/rotation/scaling)
to match the nearest admissible matrix by minimiz-
ing the Frobenius norm using the MATLAB function
nearcorr.m. In all cases, we measure model fitness as
the correlation of upper triangle elements in the true FC

with those of the predicted FC matrix.
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and Susan Whitfield-Gabrieli, “Anticorrelations in rest-
ing state networks without global signal regression,”
Neuroimage 59, 1420–1428 (2012).

[46] Barry Horwitz, “The elusive concept of brain connec-
tivity,” Neuroimage 19, 466–470 (2003).

[47] Ed Bullmore and Olaf Sporns, “Complex brain net-
works: graph theoretical analysis of structural and func-
tional systems,” Nature reviews neuroscience 10, 186–
198 (2009).

[48] Mikail Rubinov and Olaf Sporns, “Complex network
measures of brain connectivity: uses and interpreta-
tions,” Neuroimage 52, 1059–1069 (2010).

[49] Jessica R Cohen and Mark D’Esposito, “The segrega-
tion and integration of distinct brain networks and their
relationship to cognition,” Journal of Neuroscience 36,
12083–12094 (2016).

[50] Bharat Biswal, F Zerrin Yetkin, Victor M Haughton,
and James S Hyde, “Functional connectivity in the mo-
tor cortex of resting human brain using echo-planar
mri,” Magnetic resonance in medicine 34, 537–541
(1995).

[51] Nico UF Dosenbach, Damien A Fair, Francis M Miezin,
Alexander L Cohen, Kristin K Wenger, Ronny AT
Dosenbach, Michael D Fox, Abraham Z Snyder, Justin L
Vincent, Marcus E Raichle, et al., “Distinct brain net-
works for adaptive and stable task control in humans,”
Proceedings of the National Academy of Sciences 104,
11073–11078 (2007).

[52] Jonathan D Power, Bradley L Schlaggar, Christina N
Lessov-Schlaggar, and Steven E Petersen, “Evidence
for hubs in human functional brain networks,” Neuron
79, 798–813 (2013).

[53] Roger Guimera and Luis A Nunes Amaral, “Functional
cartography of complex metabolic networks,” nature
433, 895–900 (2005).

[54] Elena A Allen, Eswar Damaraju, Sergey M Plis, Erik B
Erhardt, Tom Eichele, and Vince D Calhoun, “Tracking
whole-brain connectivity dynamics in the resting state,”
Cerebral cortex 24, 663–676 (2014).

[55] Xiao Liu and Jeff H Duyn, “Time-varying functional
network information extracted from brief instances of
spontaneous brain activity,” Proceedings of the Na-
tional Academy of Sciences 110, 4392–4397 (2013).

[56] Leonardo Novelli and Adeel Razi, “A mathematical per-
spective on edge-centric functional connectivity,” arXiv
preprint arXiv:2106.10631 (2021).

[57] Rikkert Hindriks, Mohit H Adhikari, Yusuke Mu-
rayama, Marco Ganzetti, Dante Mantini, Nikos K Logo-
thetis, and Gustavo Deco, “Can sliding-window correla-
tions reveal dynamic functional connectivity in resting-
state fmri?” Neuroimage 127, 242–256 (2016).

[58] Sadia Shakil, Chin-Hui Lee, and Shella Dawn Keilholz,
“Evaluation of sliding window correlation performance
for characterizing dynamic functional connectivity and
brain states,” Neuroimage 133, 111–128 (2016).

[59] Xiao Liu, Catie Chang, and Jeff H Duyn, “Decomposi-
tion of spontaneous brain activity into distinct fmri co-
activation patterns,” Frontiers in systems neuroscience
7, 101 (2013).

[60] Maria Giulia Preti, Thomas AW Bolton, and Dim-
itri Van De Ville, “The dynamic functional connec-
tome: State-of-the-art and perspectives,” Neuroimage
160, 41–54 (2017).

[61] Kevin M Anderson, Tian Ge, Ru Kong, Lau-
ren M Patrick, R Nathan Spreng, Mert R Sabuncu,
BT Thomas Yeo, and Avram J Holmes, “Heritability of
individualized cortical network topography,” Proceed-
ings of the National Academy of Sciences 118 (2021).

[62] Ru Kong, Jingwei Li, Csaba Orban, Mert R Sabuncu,
Hesheng Liu, Alexander Schaefer, Nanbo Sun, Xi-Nian
Zuo, Avram J Holmes, Simon B Eickhoff, et al., “Spa-
tial topography of individual-specific cortical networks
predicts human cognition, personality, and emotion,”
Cerebral cortex 29, 2533–2551 (2019).

[63] Brian T Kraus, Diana Perez, Zach Ladwig, Benjamin A
Seitzman, Ally Dworetsky, Steven E Petersen, and
Caterina Gratton, “Network variants are similar be-
tween task and rest states,” NeuroImage , 117743
(2020).

[64] Youngheun Jo, Joshua Faskowitz, Farnaz Zamani Es-
fahlani, Olaf Sporns, and Richard F Betzel, “Subject
identification using edge-centric functional connectiv-
ity,” NeuroImage , 118204 (2021).

[65] Scott Marek, Brenden Tervo-Clemmens, Finnegan J
Calabro, David F Montez, Benjamin P Kay, Alexan-
der S Hatoum, Meghan Rose Donohue, William Foran,
Ryland L Miller, Eric Feczko, et al., “Towards re-
producible brain-wide association studies,” BioRxiv
(2020).

[66] Abigail S Greene, Siyuan Gao, Dustin Scheinost, and
R Todd Constable, “Task-induced brain state manipu-
lation improves prediction of individual traits,” Nature

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2021. ; https://doi.org/10.1101/2021.03.12.435168doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435168
http://creativecommons.org/licenses/by-nc-nd/4.0/


20

communications 9, 1–13 (2018).
[67] Catie Chang and Gary H Glover, “Time–frequency

dynamics of resting-state brain connectivity measured
with fmri,” Neuroimage 50, 81–98 (2010).

[68] Joana Cabral, Diego Vidaurre, Paulo Marques, Ricardo
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[69] Fikret Işik Karahanoğlu and Dimitri Van De Ville,
“Transient brain activity disentangles fmri resting-state
dynamics in terms of spatially and temporally overlap-
ping networks,” Nature communications 6, 1–10 (2015).

[70] James M Shine, Oluwasanmi Koyejo, Peter T Bell,
Krzysztof J Gorgolewski, Moran Gilat, and Russell A
Poldrack, “Estimation of dynamic functional connectiv-
ity using multiplication of temporal derivatives,” Neu-
roImage 122, 399–407 (2015).

[71] Waqas Majeed, Matthew Magnuson, and Shella D Keil-
holz, “Spatiotemporal dynamics of low frequency fluc-
tuations in bold fmri of the rat,” Journal of Magnetic
Resonance Imaging: An Official Journal of the Interna-
tional Society for Magnetic Resonance in Medicine 30,
384–393 (2009).

[72] Martin A Lindquist, Yuting Xu, Mary Beth Nebel, and
Brain S Caffo, “Evaluating dynamic bivariate correla-
tions in resting-state fmri: a comparison study and a
new approach,” NeuroImage 101, 531–546 (2014).

[73] Waqas Majeed, Matthew Magnuson, Wendy
Hasenkamp, Hillary Schwarb, Eric H Schumacher,
Lawrence Barsalou, and Shella D Keilholz, “Spatiotem-
poral dynamics of low frequency bold fluctuations in
rats and humans,” Neuroimage 54, 1140–1150 (2011).

[74] Garth John Thompson, Wen-Ju Pan, Matthew Evan
Magnuson, Dieter Jaeger, and Shella Dawn Keilholz,
“Quasi-periodic patterns (qpp): large-scale dynamics in
resting state fmri that correlate with local infraslow elec-
trical activity,” Neuroimage 84, 1018–1031 (2014).

[75] Behnaz Yousefi, Jaemin Shin, Eric H Schumacher, and
Shella D Keilholz, “Quasi-periodic patterns of intrinsic
brain activity in individuals and their relationship to
global signal,” Neuroimage 167, 297–308 (2018).
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FIG. S1. Controlling for sample size when comparing high-amplitude, non-significant, and low-amplitude frames
with functional connectivity. In the main text, we demonstrated that FC is differentially correlated with reconstructions
made using only high-amplitude, low-amplitude, or non-significant frames. In general, we found that high-amplitude frames
outperformed the other two categories (see panel a). However, the correlation magnitude of FC with the three categories was
greater than what had been previously reported [19]. The discrepancy is likely due to differences in the number and duration
of frames used in reconstructing each matrix. Moreover, the number of frames differed systematically across categories. To
address these concerns, we repeated the analysis reported in the main text using an equal number of randomly-sampled frames
from each category (27 frames ≈ 1 minute; 100 repetitions). We find that the correlation of the reconstructions with FC
decrease across all three categories (panel b) but that the decrease is steepest for the non-significant and low-amplitude frames,
suggesting that their similarity to FC had been inflated due to the largest number of samples (panel c).

FIG. S2. Variability in low-amplitude co-fluctuations reflects stable inter-individual differences in motion. In
the main text, we find that low-amplitude frames pooled across subjects and scans are variable in terms of corresponding
in-scanner motion measures. To better understand the origins of this variability, we separated the motion estimates by subject.
We found that there was a significant difference across individuals in terms of motion (ANOVA, F (8) = 4.7, p = 0.0002). These
findings suggest that some of the variation in the motion estimates for low-amplitude frames is attributable to inter-individual
differences.

FIG. S3. Statistical comparison of high- and low-amplitude frames using individualized parcels and Midnight
Scan Club data. In the main text, we described a statistical procedure for partitioning frames into three categories based on
how their RSS values compared to those of a null model. We applied that model to data from the Midnight Scan Club in which
participants’ brains were parcellated into individualized regions and compared the three categories across multiple features,
including their RSS amplitude, number of frames associated with each category, the number of contiguous frames of the same
category (we call these “sequences”), sequence duration, the similarity of FC reconstructed using frames of each category to
the static FC matrix, and the fraction of frames of a given category that were censored due to motion/data quality issues.
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FIG. S4. Statistical comparison of high- and low-amplitude frames using MyConnectome dataset. In the main
text, we described a statistical procedure for partitioning frames into three categories based on how their RSS values compared to
those of a null model. We applied that model to data from the MyConnectome Project and compared the three categories across
multiple features, including their RSS amplitude, number of frames associated with each category, the number of contiguous
frames of the same category (we call these “sequences”), sequence duration, the similarity of FC reconstructed using frames of
each category to the static FC matrix, and the fraction of frames of a given category that were censored due to motion/data
quality issues.

FIG. S5. Cross-scan similarity of cofluctuation patterns in MyConnectome data and Midnight Scan Club data
with individualized parcels. In the main text we demonstrated that peak cofluctuation patterns were repeated across
scans, while trough cofluctuation were not. Here, we replicate this finding using data from 84 resting-state scans from the
MyConnectome data. (a) Similarity matrix of cofluctuation patterns, including both peaks and troughs. (b) We show a smaller
section of the complete similarity matrix in greater detail to highlight the relationship between peak and trough similarity. (c)
Boxplot of similarity scores, aggregated based on whether the similarity was computed between two trough patterns, a trough
and a peak pattern, or a peak and a peak pattern. We also show that we obtain a similar effect when using individualized
parcellations of participant’s brains in the Midnight Scan Club. As in panel c, panel d depicts similarity scores, aggregated
based on whether the similarity was computed between two trough patterns, a trough and a peak pattern, or a peak and a
peak pattern.
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FIG. S6. Community frequency by subject. Here, we show the frequency with which subjects (rows) visit the first ten
communities (columns).

FIG. S7. Summary of community 3 as an aggregated community. In the main text, we described the two large, cohesive
communities that resulted from clustering peak cofluctuation patterns. The clustering algorithm also generated a large number
of smaller communities. Only a fraction of participants were represented in each of these communities (there were no cases
where all participants were represented). For simplicity, we grouped the smaller communities and treated them as if they had
the same community label (community 3). Here, we summarize some features of that community. (a) cofluctuation pattern.
We applied PCA to the fMRI BOLD time series associated with each peak cofluctuation pattern. In panel b, we show the first
component divided into brain systems. (c) The same component projected onto the cortical surface.
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FIG. S8. Summary of the individual communities that comprise community 3. In the main text, we described the two
large, cohesive communities that resulted from clustering peak cofluctuation patterns. The clustering algorithm also generated
a large number of smaller communities. In the main text we grouped these smaller communities into a single community labeled
‘3’. Here, we examine those smaller communities in greater detail along with communities 1 and 2, for completeness. In panels
a -h, we show cofluctuation patterns for eight communities that included data from multiple participants and accounted for at
least 0.5% of all detected events. Above each matrix, we show the fraction of all events accounted for by that community. In
panels i-p, we show the activity patterns that underpin each community, plotting the first principal component of corresponding
activity on the surface of the brain. In panel q, we show participant composition of each community. Here, different colors
correspond to different participants. The height of each bar indicates the relative number of events assigned to a given
community from a given participant.
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FIG. S9. Brain systems projected onto cortical surface. (left) Gordon atlas. (right) MyConnectome atlas.

FIG. S10. Variance explained by additional components. In the main text we applied PCA to activity patterns
corresponding to peak cofluctuation. We reported variance explained by the first component for communities 1 and 2. Here,
we show explained variance for the next nine components. Note that there is a sharp reduction in variance explained after the
first component.
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FIG. S11. Participant-level PCA analysis of peak activity patterns. In the main text we, applied PCA to activity
patterns corresponding to peak cofluctuation. Those analyses were performed at the group level. Here, we repeat this analysis
at the level of individual participants. Panels a-c show PC1 for each of the three communities. The text below each surface
plot indicates the percent variance explained by that PC.
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FIG. S12. Alternative method for estimating cofluctuation and activity patterns. In the main text we identified three
recurring patterns of cofluctuation and used a PCA-based method to identify their corresponding modes of activity. However,
the cofluctuation between nodes i and j must satisfy for all {i, j} the following relationship: Cij = zizj , where zi is the activity
level of region i. In general, PCA will generate modes of activity that do not satisfy this relationship. To estimate this pattern,
we used a greedy algorithm to identify the vector z = [z1, . . . , zN ] whose cofluctuation matrix C = {Cij} minimizes the distance
(root sum of squares) between the community-representative centroid. In panels a, c, and e, we show the cofluctuation matrices
for communities 1, 2, and 3. Panels b, d, and f depict the activity pattern used to estimate cofluctuation.
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FIG. S13. participant-level PCA analysis of peak activity patterns using individualized parcels. In the main text,
we applied PCA to activity patterns corresponding to peak cofluctuation. Those analyses were performed at the group level
using a common set of N = 333 brain regions. Here, we repeat this analysis at the level of individual participants using parcels
fit individually to each participant. Panels a-c show PC1 for each of the three communities.
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FIG. S14. Similar system-level centroids using both group and individualized parcels. In the main text, we
described three distinct cofluctuation patterns that were broadly shared across participants. Those patterns were estimated
using a common set of N = 333 parcels. We also repeated those analyses using individualized parcels, which differed in number
across participants. This variability made it impossible to compare cofluctuation patterns between participants as well as with
the cofluctuation patterns estimated using the common set of parcels. To circumvent this issue, we estimated centroids at
a system level by averaging the cofluctuation magnitude within and between nine systems that were expressed both at the
group and individual level: Auditory, cingulo-opercular, default mode, dorsal attention, fronto-parietal, somatomotor, salience,
ventral attention, and visual networks. Note, that with the group parcels the somatomotor network contains the somatmotor-
hand and somatomotor-mouth networks. In the case of the individualized parcels, the somatomotor network contains the
somatmotor-hand, somatomotor-foot, and somatomotor-mouth networks. Similarly, the visual network contains both lateral
and primary visual networks for the individualized parcels. In general, we found a high level of correspondence between the
two parcellations. The similarity values (Pearson correlation) of centroids for communities 1, 2, and 3 between datasets were
r = 0.85, r = 0.97, and r = 0.84. In contrast, the similarity between centroids of r = 0.63± 0.07. In a and b we show centroids
estimated using the group and individualized parcels.
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FIG. S15. Results of multi-resolution consensus cluster applied to peak cofluctuation in MyConnectome dataset.
In the main text we extracted peak cofluctuation patterns in the Midnight Scan Club dataset and applied a clustering algorithm
to group patterns into communities. Here, we apply an identical analysis to MyConnectome data. The algorithm identified
four large communities, which we summarize here. In panels a, d, g, and j, we show the mean cofluctuation for each community.
Note that community 1 and community 4 in the MyConnectome data is nearly identical to community 1 in the Midnight Scan
Club. Similarly, communities 2 and 3 bear strong resemblance to community 2 in the Midnight Scan Club analysis. Panels b,
e, h, and k show the first principal component (PC1) of activity during each peak. Panels c, f, i, and l show boxplots of PCs
sorted by system.
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FIG. S16. Interdigitated activity during peaks. We clustered cofluctuation during peaks and found that the four main
communities we reported could be grouped into pairs that involved similar brain systems. Here, we show these pairs for
interdigitated sub-divisions of canonical systems. To do this, we calculated PC1 for each of the four communities. We then
normalized PC1, dividing every element by

√∑
i vi.

2), where vi is the ith element (corresponding to region i) of PC1. This
normalization ensures that the eigenvector has magnitude equal to unity. We then paired communities 1 with 4 and 2 with 3
and, for each region, we calculated which of the two normalized eigenvectors had a larger value. Here, we visualize the winners
of the top quartile (25%) of regions. In a we show communities 1 and 4 and in b we show communities 2 and 3.

FIG. S17. Group- and subject-level centroids. Matrix representations of group- and subject-level centroids for (a)
community 1 and (b) community 2.
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FIG. S18. Within and between community similarity of centroids. In the main text we clustered cofluctuation peaks
into three communities. Here, we calculated each participant’s centroid (mean cofluctuation pattern for each community) using
only those peaks assigned to that community. (a) The similarity (Pearson correlation) of participants’ centroids to one another
for communities 1, 2, and 3. We also show the similarity of centroids from different communities (right). (b) Similarity scores
grouped by community. Note that in the “between” category, some points are solid and others outlined. The outlined points
represent similarity scores from the same participant across different centroids.
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FIG. S19. Identification and stability of subject-level deviations from group co-fluctuation patterns. In the
main text we detected high-amplitude cofluctuations (events) and clustered them into two communities. Although later we
used subject-level estimates of those community centroids in the predictive model, we characterized communities at the group
level. Here, we describe subject-level deviations from the group-averaged centroids. (a) For a given community, we estimated
community centroids for each subject and the group as a whole. (b) Separately for each subject and region, we calculated the
similarity of its cofluctuation pattern with that of the group. (c) Repeating this procedure for each region yielded a whole-
brain similarity map that we could project onto the cortical surface. (d) The map could also be vectorized and studied further.
Panels e and f display group- and subject-level similarity maps for communities 1 and 2, respectively. For community level
maps, we asked whether similarity values were clustered within specific brain systems. (g) We found that for community 1, the
ventral attention network was, on average, more dissimilar than chance while the default mode and cingulo-opercular networks
were more similar to the group than chance. For community 2, the regions lacking a clear system assignment (‘none’) and
the somatomotor-hand system were more dissimilar than expected, while default mode, fronto-parietal, and dorsal attention
networks were more similar. (h) We assessed the extent to which the subject-level similarity maps were stable within and
between individuals by computing the pairwise similarity matrix of maps across all scans and subjects. In general, we found
higher levels of similarity within subjects than between.
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FIG. S20. Example similarity maps for MSC06. Here, we show the regional similarity maps of data from MSC06 the
group-averaged community 1 centroid. In each plot, we highlight patterns of dissimilarity (blue regions) that are consistently
expressed across scan sessions.
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FIG. S21. Replication of main results using alternative processing pipeline. In the main text, we show that events
detected using MSC data are more similar within-subjects than between, can be clustered into two communities, and that
subject-level variants of these communities along with group-level frequencies lead to accurate predictions of FC. Here, we
replicate these findings after reprocessing the MSC data using an alternative pipeline [42] and parcellating the brain into
N = 400 cortical regions [43]. (a) Similarity of high-amplitude co-fluctuations within and between subjects. Within-subject
similarity is significantly greater than between-subject similarity (t-test; p < 10−15). Panels b and c show group-level estimates
of community centroids. Note that here the event and community detection analyses were redone using the newly processed
data. Panels d and e depict the first principal component of event activity projected onto cortical surface while panels f and g
show the same data as a boxplot. (h) Results of predictive model comparing H1 and H2. As in the main text, the model with
subject-specific centroids outperformed the model with subject-specific frequencies (paired sample t-test, p < 10−15).
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FIG. S22. Replication of main results using coarser cortical parcellation. In the main text, we show that events detected
using MSC data are more similar within-subjects than between, can be clustered into two communities, and that subject-level
variants of these communities along with group-level frequencies lead to accurate predictions of FC. In the previous figure,
we replicate these findings after reprocessing the MSC data using an alternative pipeline [42] and parcellating the brain into
N = 400 cortical regions [43]. Here, we further replicate those findings using a coarser parcellation of the brain into N = 100
regions. (a) Similarity of high-amplitude co-fluctuations within and between subjects. Within-subject similarity is significantly
greater than between-subject similarity (t-test; p < 10−15). Panels b and c show group-level estimates of community centroids.
Note that here the event and community detection analyses were redone using the newly processed data. Panels d and e depict
the first principal component of event activity projected onto cortical surface while panels f and g show the same data as a
boxplot. (h) Results of predictive model comparing H1 and H2. As in the main text, the model with subject-specific centroids
outperformed the model with subject-specific frequencies (paired sample t-test, p < 10−15).
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FIG. S23. Replication of main results using alternative processing pipeline with no global signal regression. In
the main text, we show that events detected using MSC data are more similar within-subjects than between, can be clustered
into two communities, and that subject-level variants of these communities along with group-level frequencies lead to accurate
predictions of FC. In the previous two figures, we replicate these findings after reprocessing the MSC data using an alternative
pipeline [42] and parcellating the brain into N = 100 and N = 400 cortical regions [43]. Here, we further replicate those
findings after excluding global signal regression from the processing pipeline by using the anatomical CompCor method [100].
(a) Similarity of high-amplitude co-fluctuations within and between subjects. Within-subject similarity is significantly greater
than between-subject similarity (t-test; p < 10−15). Without global signal regression, the previously described anticorrelations
in high-amplitude co-fluctuation patterns are not as evident. In panels b and d we show those communities for reference,
highlighting the anticorrelated groups of brain regions in c and e and designating the groups with distinct colors. Without
global signal regression, we find that each of these anticorrelated groups of regions forms its own community. In panels f -i we
show the centroids of these communities. The labels above each matrix are colored according to which of the anticorrelated
groups they most closely resemble. Note that these four communities were also the four largest. Panels j -m project onto the
cortical surface the first principal component of the underlying brain activity for each of the four communities. (n) Results
of predictive model comparing H1 and H2. As in the main text, the model with subject-specific centroids outperformed the
model with subject-specific frequencies (paired sample t-test, p < 10−15).
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FIG. S24. Summary of usable data by subject and scan. Here, we report the number of usable frames for each participant
and scan. Note that we exclude MSC08 and MSC09 from analyses given that in more than half of their scans, more than 50%
of the frames were discarded.
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