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Abstract:

Genome instability has been recognized as a key driver for microbial and cancer adaptation and
thus plays a central role in many human pathologies. Even though genome instability
encompasses different types of genomic alterations, most available genome analysis software
are limited to just one kind mutation or analytical step. To overcome this limitation and better
understand the role of genetic changes in enhancing pathogenicity we established GIP, a novel,
powerful bioinformatic pipeline for comparative genome analysis. Here we show its application
to whole genome sequencing datasets of Leishmania, Plasmodium, Candida, and cancer.
Applying GIP on available data sets validated our pipeline and demonstrated the power of our
analysis tool to drive biological discovery. Applied to Plasmodium vivax genomes, our pipeline
allowed us to uncover the convergent amplification of erythrocyte binding proteins and to
identify a nullisomic strain. Re-analyzing genomes of drug adapted Candida albicans strains

revealed correlated copy number variations of functionally related genes, strongly supporting a
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mechanism of epistatic adaptation through interacting gene-dosage changes. Our results
illustrate how GIP can be used for the identification of aneuploidy, gene copy number
variations, changes in nucleic acid sequences, and chromosomal rearrangements. Altogether,
GIP can shed light on the genetic bases of cell adaptation and drive disease biomarker

discovery.

One Sentence Summary:
GIP - a novel pipeline for detecting, comparing and visualizing genome instability.
Keywords:

Genome instability, aneuploidy, copy number variations, single nucleotide variation, structural

variation, genetic adaptation.

Main Text:

In recent years, the field of genomics has rapidly expanded with a fast increase in the number
of newly sequenced genomes (1). This surge is a direct consequence of the development of new
and ever more efficient, high-throughput capable sequencing technologies (2). On the one hand,
the improvement in long reads technology allowed the generation of high-quality genome
assemblies (3,4). On the other hand, the decreasing costs for short-reads sequencing and the
parallel increase in sequencing throughput propelled the exponential increase of available
whole genome sequencing (WGS) data (5). Thanks to these advances one can reasonably expect
WGS to rapidly become a key component of personalized medicine and clinical applications.
In this context several consortia-based projects have been established with the goal to produce
WGS for the study of different biological systems (5), and a number of publicly available

databases have been compiled or updated (6). Parallel to data availability, many bioinformatics
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tools have been developed to perform specific genome analysis tasks (7,8). For instance, tools
such as Freebayes (9), CNVnator (10) and DELLY (11) have been respectively used for the
detection or characterization of DNA single nucleotide variants (SNVs), copy number
variations (CNVs), and structural variations (SVs), but their scope is limited to the analysis of
one genomic feature at the time. A number of integrative WGS pipelines and workflows have
been established combining the execution of multiple bioinformatics algorithms serving
different analysis steps (12). Even though continuous progress has been made, there is no
standardized or unified approach for genomic investigation. For the development of improved
WGS data analysis pipelines, several important requirements need be considered, including
portability, reproducibility, scalability and compatibility with high-performance computing
(HPC) clusters and remote cloud computing. Here we introduce a novel genome instability
pipeline (GIP) that fulfills all these requirements. GIP facilitates the genome-wide detection,
quantification, comparison and visualization of chromosome aneuploidies, gene CNVs, SNVs
and SVs. GIP is implemented in Nextflow (13), a workflow language that allows to execute
GIP seamlessly in local workstation, on an HPC or remotely in the cloud. All required
environment and software dependencies of GIP are fulfilled and provided with a Singularity
container, thus making GIP reproducible, easy-to-install and easy-to-use. GIP allows the use of
giptools, a tool-suit of R-based modules for genome data exploration, enabling the comparison
of sample sub-sets. GIP and giptools generate a summary report with publication-quality figures
and spreadsheet tables. GIP and giptools constitute a single framework for WGS analysis
suitable both for large scale batch analysis of individual genomes and comparison of samples
from different experimental conditions or origins. Lastly, a key strength of GIP and giptools is
the general applicability to different eukaryotic species. We already successfully applied GIP
on the analysis of Leishmania genomes (14-16). In this study, we validate the use of GIP and

giptools using WGS data from published datasets of the three major human pathogens
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Leishmania infantum, Plasmodium vivax and Candida albicans and as well as three human
cancer cell lines. Furthermore, we demonstrate how the extensive and powerful analytical
approach operated by GIP and giptools can be used to find new biological signal that escaped

previous analyses.

Results:

The GIP workflow. GIP is a tool for scientific investigation compatible with Linux systems,
requiring minimal configuration and distributed as a self-contained package. GIP consists of
three files: the Nextflow pipeline code, the configuration and the Singularity container files.
The minimum required input is a paired-end WGS data set and a reference genome assembly
in the standard fastq and FASTA format, respectively. GIP analyses include (i) extracting
genomic features such as assembly gaps or repetitive elements, (ii) mapping the reads, (iii)
evaluating chromosome, gene and genomic bin copy numbers, (iv) identifying and visualizing
copy number variation with respect to the reference genome, (v) identifying and quantifying
gene clusters, (vi) detecting and annotating SNVs, (vii) measuring non-synonymous (N) and
synonymous (S) mutations for all genes, (viii) detecting SVs including tandem duplications,
deletions, inversions and break-ends translocations using split-read and read-pair orientation
information, and (ix) producing a report file providing summary statistics, tables and
visualizations (Fig. 1). GIP allows to customize filtering and visualization options via the
configuration file (see methods). The output of GIP can be used as input for giptools, a tool-
suite to compare sample sub-sets and highlight chromosome copy number, gene copy number

and SNV differences.
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97  Applying giptools on a Leishmania infantum case study. GIP permits the batch analysis of a

98  set of individual samples, where each sample is considered separately and compared only with

99  respect to the provided reference genome assembly. As a consequence, all variants and copy
100  number alterations detected in a sample merely reflect the differences between the sequenced
101  and the reference genomes. While this application may be sufficient in some circumstances,
102  research projects often involve downstream comparison between samples. Examples include
103 the comparison of gene or chromosome copy variation number between for example drug
104  resistant and drug susceptible samples, or the juxtaposition of SNVs detected in isolates from
105  different geographic areas. For this purpose, we developed giptools, a suit of thirteen modules
106  that allows to compare samples processed by GIP (Table 1). All modules in giptools are fully

107  embedded in the Singularity container and they are provided with their own documentation.

108  Table 1: giptools modules

Module name |Purpose

karyotype Compare the chromosome sequencing coverage distributions

binCNV Compare bin sequencing coverage in 2 samples

geCNV Compare gene sequencing coverage in 2 samples

ternary Compare gene sequencing coverage in 3 samples

Compare bin sequencing coverage in 3 samples

Compare SNVs in multiple samples
binDensity Density plot of bin sequencing coverage of many samples
gelnteraction Detect CNV genes in many samples and produce correlation-based networks

EERLIG I ELIE) Compare samples genomic distance

phylogeny Extract the SNVs union and infer the phylogenetic tree

(L1 \V1¢: 10146 \Vll Detect convergent CNV gene amplifications
MOverview of the sequencing coverage of chromosomes, genomic bins and genes

MExtract genomic information of a gene panel

109

110 To illustrate the type of exploratory data analyses and the biological questions that can be
111  addressed, we tested giptools on a previously analyzed dataset of seven clinical Leishmania
112 infantum isolates from Tunisia (14). Leishmania is the etiological agent of leishmaniasis, a life-

113 threatening human and veterinary disease affecting 12 million people worldwide (17). The
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114  parasites were derived from patients affected with visceral leishmaniasis, expanded in cell
115  culture and their genomes were sequenced. The dataset includes four Glucantime drug
116  susceptible isolates and three isolates from relapsed patients, and thus comparison may inform
117  on genetic factors resulting in treatment failure. giptools allowed the detection and visualization
118  of pervasive intra-chromosomal CNVs across the thirty-six Leishmania chromosomes (Fig.
119  2A). Additionally, giptools enables targeted comparison of normalized genomic bin sequencing
120 coverage of sample pairs. We used giptools’ "binCNV" module to compute the ratio between
121  corresponding genomic bins of the strains LIPA83 over ZK43, which correspond to a first-
122 episode and a relapse leishmaniasis isolate, respectively. giptools represents different
123 chromosomes as separate panels (Fig. 2B), as part of single genome-wide overview (Fig. S1A)
124 or as distinct plots (Fig. S1B). This analysis allowed the identification of 2,905 and 2,208 bins
125  that were respectively amplified or depleted in LIPA83 with respect to ZK43. The results are
126  returned by giptools as a Microsoft Excel table (.xIsx format) providing ratio scores at each
127  genomic position (Table S1). Likewise, giptools permits three-way comparisons of normalized
128  genomic bin sequencing coverage with ternary plots (Fig. 2C). We used this representation to
129  display the genomic bin relative abundance in samples ZK43, LIPA83 and ZK28. The analysis
130  shows important strain-specific differences in bin copy number that are visualized by shifts of
131  the signals out of the center. Similar to genomic bin analysis, giptools makes it possible to
132 compare the sequencing depth of annotated genes and thus the copy number in two or three
133 samples (Fig. 2D and Fig. S2). However, the determination of gene copy number might be
134 impeded by (i) short read length or fragment insert size, (ii) the complexity of the target genome,
135  or (ii1) the presence of repetitive elements. The read map quality (MAPQ) score is a measure
136  that reflects how much each gene is supported by unambiguously mapped reads (high MAPQ)
137  in contrast to multimapping reads (low MAPQ). Together with the coverage, GIP also computes

138  the mean read MAPQ score for each gene and allows a different strategy to determine the copy
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139  number of low MAPQ genes (see methods). The evaluation of LIPA83 and ZK43 gene
140  coverage ratio scores revealed 13 gene CNVs with a stringent MAPQ cutoff of 50 (Table S2).
141  The maximum normalized coverage value of 6.5 was observed for a putative amastin surface
142 glycoprotein (LINF_310009800). Other examples of gene CNVs in this set include the putative
143  surface antigen protein 2 (LINF 120013500) and the heat shock protein HSP33
144 (LINF _300021600) (Table S2). Genes falling below a user defined MAPQ score and sharing
145  high level of sequence similarity are assigned to the same gene cluster, and their measured
146  coverage scores are averaged across all members of the group. Low MAPQ scores can also be
147  associated with single genes, e.g. in the case of internal repetitive elements that cause multiple
148  ambiguous alignments inside the gene itself, or if mapping occurs in possibly misannotated
149  intergenic regions. The LIPA83/ZK43 comparison showed 27 CNV gene clusters, including
150  cluster clstr303 (3 genes annotated as ‘amastin-like’) and cluster clstr16 (2 tb-292 membrane-
151  associated protein-like proteins) (Table S2). These results demonstrate the power of GIP and
152 giptools to detect and compare intra-chromosomal CNVs in Leishmania at genomic bin level.
153  Conveniently, analogous two- or three-ways comparisons can be applied to reveal copy number

154  variations at individual gene or gene cluster levels.

155

156  Comparative genomics of a Plasmodium vivax WGS dataset. We next applied GIP and
157  giptools on other biological systems to demonstrate its broad applicability outside the
158  Leishmania field, including the human apicomplexan parasite Plasmodium vivax. Plasmodium
159  vivax is a protist parasite and a human pathogen causing malaria. Plasmodium vivax gives rise
160  every year to 130 million clinical cases (18), and it is estimated that 2.5 billion people are at
161  risk of infection worldwide (19-21). We applied GIP and giptools to investigate genomic
162  variations across a sizeable dataset of 222 Plasmodium vivax genomes isolated from clinical

163  samples of 14 countries worldwide (22,23) (Table S3). The phylogenetic tree reconstruction
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164 and PCA analyses (Fig. 3A and B) showed a high correlation between genotypes and the
165  geographic origin of the samples. However, we detected substantial genomic variability
166  between isolates collected at smaller geographical scale, with 14,555 SNVs (~42% of the total)
167  uniquely characterizing representative samples from five Ethiopian study sites (23) (Fig. 3C
168  and D). This result may reflect diverging evolutionary trajectories radiating from few founder
169  strains. At gene level we profiled the copy number variations of two gene panels. The first panel
170  accounts for 43 previously described genes encoding for potential erythrocyte binding proteins
171  suggested to operate at the interface of the parasite-host invasion process (23). The second panel
172 includes two drug resistance markers comprising the chloroquine resistance transporter
173 PVPO1 0109300 and the multidrug resistance protein 1 PVP0O1 1010900, and four proteins
174  implicated in red blood cell invasion, such as the merozoite surface protein gene MSP7
175 PVPO1 1219700, the reticulocyte binding protein gene 2¢c PVP01 0534300, the serine-repeat
176  antigen 3 PVP0O1 0417000, and the reticulocyte binding protein 2b PVP01_0800700) (24-33).
177  Read depth analysis indicated that four genes in the panel (PVP01 0623800, PVP0O1 1031400,
178  PVPO1 1031200, PVPO1 1031300) show a high degree of variability, with amplifications
179  observed in samples from distinct geographic (Fig. 3E). This convergence is sign of strong
180  natural selection, which further sustains the functional importance of these genes in the
181 infection process. Furthermore, 6 genes positioned on chromosome 14 are absent in the Thai
182  strain PD0689 C as a result of the loss of this chromosome (nullisomy) (Fig. 3E and F). Finally,
183  the comparison of synonymous and non-synonymous SNVs in the panel of genes revealed
184  important differences between sample groups. Our analysis indicates an overall higher number
185  of non-synonymous mutations in Ethiopian compared to Cambodian isolates, therefore
186  suggesting a stronger evolutionary pressure acting on the African strains (Fig. 3G). Taken

187  together these analyses well illustrate how GIP and giptools can be readily applied for bulk
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188  analysis of Plasmodium vivax genomes to assess genome diversity, extract evolutionary

189  information and identify potential disease biomarkers.

190

191  Gene CNYV analysis of Candida albicans evolutionary adapted strains. We next applied GIP
192 and giptools to the human fungal pathogen Candida albicans, an opportunistic yeast exhibiting
193  major genome plasticity (34-43) and causing hundreds of thousands of severe infections each
194  year (44). Candidemia, a bloodstream infection with Candida, are often associated with high
195  rates of morbidity and mortality (15-50%) notwithstanding existing antifungal treatments
196  (45,46). We applied GIP and giptools to a Candida albicans WGS dataset described in a recent
197  study that covers five different progenitor strains (P75063, P75016, P78042, SC5314,
198  AMS3050) and investigates CNVs driving tolerance and resistance to anti-fungal azole drugs
199  (47). We analyzed nineteen samples, including (i) four clinical isolates (P75063, P75016,
200  P78042, SC5314), (ii) seven strains selected in vitro against the anti-fungal drug fluconazole
201  (FLC) (AMS4104, AMS4105, AMS4106, AMS4107, AMS4397, AMS4444, AMS4702), (iii)
202  four isogenic colonies adapted to the drug miconazole (AMS3051, AMS3052, AMS3053 and
203  AMS3054) together with their progenitor (AMS3050), and (iv) three colonies derived from a
204  miconazole-adapted population and isolated on a rich medium (AMS3092, AMS3093 and
205  AMS3094) (47-49). GIP and giptools were able to reproduce previous observations of the
206  amplification of the genes for the drug efflux pumps TACI (orfl19.3188) and ERGI11
207  (orf19.922), for the stress response proteins HSP70 (orf19.4980), CGR1 (orf19.2722), ERO1
208  (orf19.4871), TPKI1 (orf19.4892), ASR1 (orf19.2344), PBS2 (orf19.7388) and CRZI1
209  (orf19.7359), and for proteins involved in membrane and cell wall integrity, including CDR3
210 (orf19.1313), NCP1 (orf19.2672), ECM21 (orf19.4887), MNN23 (orf19.4874), RHBI
211 (0rf19.5994) and KRE6 (orf19.7363) (Table S4). Furthermore, the powerful comparative

212 approach of our pipeline permitted the discovery of 1,505 genes showing correlating or anti-
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213 correlating copy number variations (Fig. 4A and B, Table S4), which could be assigned to nine
214  distinct correlation clusters (CC) (Fig. S3A, Table S5) that escaped previous analyses. We
215  verified the sequencing coverage of genomic regions encompassing gene CNVs, including
216  three regions amplified in fluconazole resistant strains (Fig. 4B, Fig. S3B) (47) and a region
217  whose amplification correlates with the level of miconazole resistance (47) (Fig. S3C), as well
218 as the loss of heterozygosity associated to the depletion of chromosome 3 left arm in sample
219  AMS3051 (Fig. S3D) (47). Eventually, by representing genes and absolute correlation
220  respectively as nodes and edges of a network, we identified 9 highly interconnected network
221  clusters (NC) (Fig. 4C, Table S6). NC7, NC8 and NC9 embody genes from individual
222 chromosomes, respectively chromosomes 1, 3 and 4. The most parsimonious explanation for
223 the high levels of correlation observed in these NCs (Fig. 4C) is the occurrence of sub-
224 chromosomal amplifications affecting several adjacent genes. A different scenario is pictured
225  for each of the remaining NCs (NC1-6) where the genes are located on different chromosomes
226  thus suggesting genetic interactions that causes coordinated changes in gene copy number. The
227  gene ontology (GO) and metabolic pathway analyses revealed a significant functional
228  enrichment of genes expressed on the cell surface and involved in the interaction with the host
229  (NC2), gibberellin biosynthesis (NC3), transmembrane nucleobase transporters (NC4) and
230  gluconeogenesis (NC5) (Table S7). Altogether, GIP and giptools are validated by reproducing
231  previously published results, and beyond that can drive new biological findings as documented
232 by the discovery of a network of epistatic CNV interactions supporting genomic adaptation in
233 Candida albicans populations under drug selection.

234

235  Exploring instability of larger genomes using cancer cell lines as a benchmark. The larger
236  genome size, and the higher number of genes and WGS reads can represent a challenge when
237  working with higher eukaryotes. For the purpose of comparison, the human genome is ~216

238  times larger than the one of Candida albicans we analyse in this study. Therefore, we sought

10
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239  to evaluate the applicability of the GIP and giptools framework to human data and utilized a
240  panel of genomes from cancer cell lines as a test set. In our analyses we considered publicly
241  available WGS data of the cell lines T47D, NCI_H460 and K562 (50), which respectively
242 derive from human breast, lung and blood cancers. The karyotype analysis revealed aneuploidy
243  for all chromosomes except chromosome 4 (Fig. SA). The observed heterogeneity in read depth
244  across chromosomes, illustrated by large interquartile range in the boxplot, suggests sub-
245  chromosomal or episomal copy number variations, or the co-existence of karyotypically
246  different sub-populations. Indeed, the coverage analysis confirmed the pervasive presence of
247  CNVs both at chromosomal and sub-chromosomal levels (Fig. S4) with remarkable instability
248  observed for specific chromosomes, e.g. chromosomes 6, 9, 10 and 16 (Fig. 5B). Overall, we
249  detected 1,647,016 SNVs (Supplementary Data 1) and allele frequency shifts with respect to
250  the reference genome, suggesting haplotype selection and the preferential expression of distinct
251  alleles in different cell lines (Fig. 5C and Fig. S5). Furthermore, we identified repeated loss of
252  heterozygosity events and uneven distribution of SNVs that form “patches” of high frequency
253  correlating with chromosomal and sub-chromosomal CNVs (Fig. 5D, Fig. SE and Fig. S6).
254  These results identify GIP and giptools as a powerful new platform to reveal loci, genes or
255  alleles that are under natural selection in cancer cells, thus allowing important new insight into

256  the genetic basis of tumor development, cancer cell evolution and drug resistance.

257

258 Discussion:

259  Genome instability is a key driver of evolution for microbial pathogens and cancer cells (51)
260 and a major source of human morbidity. Here we introduce GIP and giptools, an integrated
261  framework for the genotype profiling of biological systems exploiting genome instability for
262  adaptation. We document the power and versatility of GIP and giptools by performing genomic

263  screenings of three major pathogenic eukaryotes and human cancer cell lines. While originally

11
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264  deployed for Leishmania genome analysis, in this study we validate the use of our pipeline on
265  other organisms reproducing expected results. For example, in Candida albicans we confirmed
266  the CNVs correlating to drug resistance as well as a loss of heterozygosity event (Fig. S3B-C
267 and D). Parallel to this we also show how GIP and giptools can be used for data mining and
268  scientific discovery. New findings include (i) the discovery of the convergent amplification of
269  erythrocyte binding proteins in Plasmodium vivax strains sampled from distinct geographic
270 areas (Fig. 3E), (ii) the detection of a nullisomic strain (Fig. 3F), (ii1) the identification of
271  correlated copy number variations between genes positioned on separate chromosomes of
272 Candida albicans adapting strains, and (iv) the functional association of such genes, strongly
273  supporting a mechanism of epistatic interactions exerted through gene-dosage changes, and
274  corroborating previous reports on adapting Leishmania populations (52).

275 Importantly, GIP and giptools overcome key limitations of current analysis tools, such
276  as the breadth of analysis that is often limited to individual types of mutations, and the lack of
277  genome-wide, comprehensive reports. To ease genome instability investigations our pipeline
278  offers a single solution to karyotype, gene CNV, SNV and SV batch analyses, providing
279  summary reports and high-quality, genome-wide visualizations. Furthermore, many current
280  tools identify variations with respects to a reference assembly only, which leaves the between
281  samples comparisons to external tools that need installing, may be incompatible in terms of file
282  format, and may rely on different analytical assumptions. To address this limitation giptools
283  enables custom sample comparisons, to explore differences and common features between
284  genomes, and provides a vast choice of analytical tools with compatible features. Likewise,
285  current tools are often restricted to the analysis of data from one or few species only (53-57),
286  but are not generally applicable to different biological systems, which interferes with the
287  investigation of genome variations across multiple species and the exploration potentially

288  conserved genomic adaptation mechanisms. By contrast, our pipeline limits as much as possible

12
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289  the use of hardcoded parametrization, which could limit its use to a specific organism.
290  Therefore, GIP’s flexible design makes it adapted for the genome analysis of both model and
291  non-model organisms, including Leishmania or human.

292 Many current tools are further limited in software portability and reproducibility across
293  different computer environments, which can produce faulty results calling their clinical
294  application into question. Conversely, thanks to the Singularity implementation all required
295  software are embedded and provided within the software container. As a consequence, users
296  can easily recreate the same work environment just by downloading the pipeline container, and
297  reproduce exactly the same publication-quality plots and tables presented in this study. Lastly,
298  one more common limitation is posed by software scalability. In the WGS domain, with the
299  rapid increase new samples made available and the enormous amount of data generated in each
300 sequencing run, the CPU and memory resources of local workstation risk to quickly become
301  inadequate for data analysis. Therefore, it is paramount that WGS tools are implemented to run
302 on high-performance computing (HPC) clusters and feature remote cloud computing solutions.
303  Because of its Nextflow implementation GIP can be executed on a local machine, on cluster
304  resource manager or the cloud. GIP can be applied on individual samples and without additional
305  effort on large WGS data sets for batch computation as shown for the 222 Plasmodium vivax
306  genomes.

307 These results well illustrate how GIP and giptools can be applied to perform extended
308  genomic analyses in different biological systems and drive biomedical discovery. To conclude,
309  we believe that GIP and giptools represent a step forward toward reproducible research in
310  genomics, and provide a robust computational framework to study how microbes and tumor

311  cells harness genome instability for environmental adaptation and fitness gain.

312
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315

316  GIP workflow. The schema on the left recapitulates the GIP inputs, processes and outputs (see
317  methods). Blue, orange, green and purple boxes indicate genome reference, read mapping,
318  quantification and variants computation steps, respectively. The panels on the right demonstrate
319  example plots included in the GIP report computed for individual samples. The “Karyotype”
320  plot shows the coverage distributions for each chromosome (y-axis). The “Genomic bins” plot
321  shows the genomic position (x-axis) and the normalized genomic bin sequencing coverage (y-
322 axis). The “Gene CNVs” plot shows the normalized gene sequencing coverage. The “Structural
323  variants” panel shows a Circos plot representing break-end translocations (black links in the
324  inmost part of the plot), and other possible structural variations in the outer tracks, including
325  insertions, duplications, deletions and inversions. The outmost track shows the normalized
326  sequencing coverage. The “Single nucleotide variants” plot shows on the x and y axes

327  respectively the genomic position and variant allele frequency of detected SNVs.
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329

330  Comparing Leishmania infantum genomes with giptools. (A) Density plot representing the
331 genomic coverage of the seven Leishmania infantum isolates. The x-axis shows the log 10
332 normalized coverage of genomic bins. The y-axis reflects the genomic position. The thirty-six
333  different chromosomes are materialized as separate panels. The blue shading indicates the (2D)

334  kernel density estimates of genomic bins. The two red vertical lines mark the 1.5 and 0.5
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335  coverage values. A selection of 50 000 bins with coverage > 1.5 or < 0.5 is shown as black dots.
336  (B) Scatterplot of the genomic bin normalized sequencing coverage ratio of samples LIPA83
337  over ZK43. The x any y axes show the ratio score and the genomic position respectively. Ratio
338  scores > 1.25 are labelled in orange and indicate genomic bin amplification. Ratio scores <0.75
339  are labelled in blue and indicate genomic bin depletion. (C) Ternary comparison showing the
340  relative abundance of the genomic in samples LIPA83, ZK43 and ZK28. The axes report the
341  fraction of the bins normalized sequencing coverage in the three strains. The blue contour
342  indicates the log10 bin density. A subset of 5,000 bins is shown as black dots. Each given point
343 in the plot is adding up to 100. The density area at the center of the plot indicates bins with
344  equal copy number and thus a ~33 distribution across the three axes. (D) Scatterplot showing
345  the logl0 normalized sequencing coverage of annotated genes in ZK43 (x-axis) and LIPA&3
346  (y-axis). The red line indicates the bisector. Dots represent individual genes. (E) Sequencing
347  coverage ratio of gene clusters in samples LIPA83 and ZK43. Dots represent gene clusters. For

348  plots D and E, the ratio scores > 1.5 or < 0.5 are labelled in orange and blue respectively.
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351  Plasmodium vivax genomic diversity. (A) Predicted maximum likelihood phylogenetic tree
352 reconstruction. (B) PCA analysis of the phylogenetic distances estimated from the tree in (A).
353  Each dot indicates a sample. The colour code reflects the geographic origin of the samples and
354  matches with the colours of the legend in (A). (C) Venn diagram comparing the SNVs of five
355  representative Ethiopian strains. (D) Pairwise scatterplot comparing the variant allele frequency
356  of all detected SNVs in the five Ethiopian strains. (E) Gene panel analysis. The x-axis reports
357  asetof genes of interest. The y-axis indicates the normalized mean gene coverage. The boxplots
358  demonstrate the coverage values distributions for each gene across all samples. Each dot
359  represents the coverage of the indicated gene in a given sample. Dot colours reflect the sample
360  geographic origin as in (A). (F) Reads per kilo base per million mapped reads (RPKM)
361 normalized sequencing coverage density track of sample PD0689 C. The boundaries of the 14
362  chromosomes are shown on the bottom. (G) Comparison of non-synonymous (N) and
363  synonymous (S) mutations between Ethiopia and Cambodia sample groups. Dots represent
364  genes. The x-axis represents the difference between the mean non-synonymous mutation count
365  in the two sample groups. The y-axis represents the difference between the mean synonymous
366  mutation count in the two sample groups. The dot size demonstrates the ratio of the mean
367 normalized sequencing coverage between the two sample groups for each gene. Red and blue
368  dot colors indicate genes belonging to the 43 genes panel (23) and the custom 6 genes panel

369  respectively.
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376  colours the chromosome and the correlation cluster of each gene. (B) Gene CNV heatmap. The
377  columns and the rows report respectively the samples and the detected gene CNVs. The colour
378  scale indicates the normalized sequencing coverage of the genes. To ease visualization,
379  coverage values greater than 3 are reported as 3 (red). Black boxes highlight the genomic
380  regions shown in Fig. S3B (panels 1, 2 and 3) and Fig. S3C. The ribbons on the left indicate
381  the chromosome and the correlation cluster of each gene. Top ribbons indicate the genotype
382  and the strains resulting from the different evolutionary experiments. (C) Gene interaction
383  network. Nodes indicate gene CNVs. Edges reflect the absolute Pearson correlation value. The
384  closer the nodes are, the higher is the correlation. Only significant interactions (Benjamini-
385  Hochberg adjusted p-value < 0.01) are shown. The colour of the edges indicates in red and blue
386  respectively positive and negative correlations. The colour of the nodes denotes the predicted

387  network cluster for each gene.
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390  Cancer cell lines genome instability. Green, brown, and grey colours indicate respectively
391  samples K562, NCI_H460 and T47D. (A) Chromosome coverage analysis. The x-axis reports
392 the chromosomes. The y-axis reports the estimated somy score. The boxes show the somy score
393  distributions. (B) Sub-chromosomal copy number variation. Dots indicate genomic bins.
394  Different panels indicate different chromosomes. The panel columns indicate from left to right
395  four selected chromosomes: 6, 9, 10 and 16. The panel rows show top to bottom the samples
396 K562, NCI_H460 and T47D. The x-axis indicates the genomic position. The y-axis indicates
397  the normalized genomic bin sequencing coverage values. Coverage values greater than 5 are
398 reported as 5. (C) SNV frequency density plots. The four different panels represent different
399  selected chromosomes: 6, 9, 10 and 16. The x-axis reports the variant allele frequency. The y-
400  axis the estimated kernel density between 0 and 3. (D) SNV frequency scatter plots. The four
401  different panels represent different selected chromosomes: 6, 9, 10 and 16. The x-axis indicates
402  the genomic position. The y-axis indicates the variant allele frequency. (E) Chromosome 11
403  combined SNV and bin coverage plot. To ease visualization, giptools allows the simultaneous
404  displaying of variant allele frequencies (y-axis, left) and sequencing coverage (y-axis, right).
405  Dots represent SNVs. The lines represent the normalized bin sequencing coverage. The x-axis
406  indicates the genomic position. Coverage values greater than 5 are shown as 5.

407
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411  Bin coverage ratio visualizations. The figure shows alternative representations produced for the

412  genomic bin normalized sequencing coverage ratio of samples ZK43 and LIPAS83. Same layout
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413  as Fig. 2B. (A) Whole genome overview. (B) All the individual chromosomes separately. The

414  plot shows the example of chromosome 33.
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Two-ways and three-ways gene coverage comparisons. (A) Logl0O normalized sequencing
coverage comparison of genes in ZK43 (x-axis) and LIPA83 (y-axis). Same layout a Fig. 2D
but representing the different chromosomes in individual panels. (B) Ternary plot showing the

relative abundance of genes (green dots) and gene clusters (red dots) in samples LIPA83, ZK43
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and ZK28. The axes report the fraction of the genes and genes clusters normalized sequencing
coverage in the three strains. Each given point in the plot adding up to 100. Genes with equal
copy number are shown in the center of the ternary plot, while copy number variations are
visualized by shifts of the dots out of the center. The dots size reflects the fold change variation

between the maximum and the minimum observed normalized coverage value.
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426  Fig. S3:
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427

428  Copy number variations of evolutionary adapted Candida albicans strains. (A) Gene CNV
429  correlation clusters. The x and y axes indicate respectively the samples and the scaled
430 normalized sequencing coverage of the genes in each cluster. Different panels indicate different

431  correlation clusters. (B) Scatterplots showing the bin normalized sequencing coverage (y-axis)
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of three genomic regions (chr4:400,000-1,000,000; chr3:1,250,000-1,500,000; chr1:2,000,000-
2,500,000) in three different samples AMS4702, AMS4104 and AMS4107. The x-axis shows
the genomic position. Dots represent genomic bins. (C) Scatterplot showing the bin normalized
sequencing coverage of a genomic region (chr3:500,000-1,000,000) in five different samples
represented as separate panels. From top to bottom the samples are: AMS3050, AMS3053,
AMS3054, AMS3052 and AMS3051. The x and y axes show respectively the genomic position
and the normalized sequencing coverage. Dots represent bins. (D) Comparative analysis of
chromosome 3 SNVs. AMS3050 SNVs are shown in green, while AMS3051 SNVs are shown
in grey. The x and the y axes show respectively the genomic position and the variant allele

frequency.
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442 Fig. S4:

genomic bin sequencing coverage

443 chromosome

444  Genomic coverage analysis of three cancer cell lines. The x-axis indicates the genomic position.
445  The y-axis indicates the normalized genomic bin sequencing coverage values. Dots demonstrate
446  the genomic bins. To ease visualization, coverage values greater than 5 are reported as 5.
447  Different panels show different chromosomes. The three panel rows indicate top to bottom the

448  following samples: K562, NCI_H460 and T47D.
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451 SNV frequency density plot. The x-axis shows the variant allele frequency. The y-axis the
452  estimated kernel density between 0 and 3. Green, brown, and grey slopes indicate respectively
453  samples K562, NCI_H460 and T47D.
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455  Fig. S6:
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457 SNV heterogeneity of cancer cell lines. The x-axis indicates the genomic position. The y-axis
458 indicates the variant allele frequency. The dots indicate SNVs and they are coloured according
459  to the sample. K562, green; NCI_H460, brown; T47D, grey. Different panels show different
460  chromosomes.
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462 Methods:

463  GIP and giptools. All results presented in this study were generated using GIP and giptools

464  version 1.0.9. GIP code is maintained and freely distributed at the github page:

465  https://github.com/giovannibussotti/GIP. giptools container is accessible from the Singularity

466 cloud at  https://cloud.sylabs.io/library/giovannibussotti/default/eiptools. The  GIP

467  configuration files (Supplementary Data 2) and the giptools command options used to
468  generate all results (Supplementary Data 3) are provided. The full documentation of GIP and
469  giptools including a  description of all options is  available from

470  https://eip.readthedocs.io/en/latest/.

471  Read alignment. WGS reads were downloaded from the Sequence Read Archive (SRA) (58)
472  and the European Nucleotide Archive (ENA) (59) repositories and the Encyclopedia of DNA
473  Elements (ENCODE) dashboard (60) (Table S3). For Leishmania infantum the
474  GCA 900500625 genome reference and gene annotations available from the ENSEMBL
475  protists (61) server (release-48) were used. For Candida albicans the assembly 21 of the
476  SC5314 strain genome reference and gene annotations available from the Candida Genome
477  Database (CGD) (62) were used. For Plasmodium vivax the POl reference genome and gene
478  annotations available from PlasmoDB (63) (release-50) were used. For the cancer cell lines the
479  human genome GRCh38 primary assembly and gene annotations available from ENSEMBL
480  (release-102) were used. The repetitive elements of reference genomes were soft-masked by
481  GIP using Red (64). WGS reads were mapped by GIP using BWA-mem (version 0.7.17)
482  (65,66) run with option -M to label shorter split hits as secondary. Then the alignment files
483  were sorted, indexed and reformatted by GIP using Samtools (version 1.8) (67). Finally, read
484  duplicates were removed by GIP using Picard MarkDuplicates

485  (http://broadinstitute.github.io/picard) (version 2.18.9) with the option
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486  “VALIDATION_ STRINGENCY=LENIENT.” In the four considered datasets, WGS reads
487  were aligned against full assemblies, including unsorted contigs if present. However just the
488  canonical assembled chromosomes were considered for all downstream analyses ("chrs’ option,
489  Supplementary Data 2). A minimum read alignment MAPQ score was adopted to select genes
490  for cluster analysis, and to call for SNVs and SVs (MAPQ" option, Supplementary Data 2).
491  Altogether a total of 6,306,951,266 reads were aligned to the respective reference genomes.
492  The “giptools overview' module was run to gather the alignment statistics as estimated by

493  Picard CollectAlignmentSummaryMetrics (Table S8).

494  Genomic bins and genes quantification. GIP was used to evaluate the mean sequencing
495  coverage and the mean read MAPQ of genomic bins and genes. For genomic bins, GIP
496  partitioned the input genomes into adjacent windows of user defined lengths ("binSize" option,
497  Supplementary Data 2). The coverage GC-content score bias was corrected ("CGceorrect’
498  option, Supplementary Data 2) fitting a LOESS regression with a 5-fold cross validation to
499  optimize the model span parameter. A larger window length was utilized to bin the reference
500  genomes for Circos plot representations (‘binSizeCircos™ option, Supplementary Data 2). In
501  Fig. 1 (“Genomic bins” and “Gene CNVs” plots), Fig. 2, Fig. S1, Fig. S2 and Fig. 4 bins and
502  genes coverage scores were normalized by median chromosome coverage to highlight
503  amplifications or depletions with respect to the chromosome copy number. In Fig. 1
504  (“Structural variants” plot), Fig. S3B-C, Fig. 3E-G, and Fig. S4A bins and genes coverage
505  scores were normalized by median genome coverage to account for sequencing library size
506  differences. GIP evaluated statistically significant copy number variant bins and genes (Fig. 1
507  “Genomic bins” and “Gene CNVs” plots) using a p-value threshold of 0.001
508  (‘covPerBinSigOPT" and ‘covPerGeSigOPT" options, Supplementary Data 2). Estimated p-
509  values for bins and genes CNVs were corrected for multiple testing using the Benjamini —

510  Yekutieli ("--padjust BY ) and the Benjamini — Hochberg (*--padjust BH") methods. The somy
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511  scores shown in Fig. 1 (karyotype plot) and Fig. S4B were computed multiplying the median
512 genome coverage normalized bin coverage by 2. GIP enabled the CNV analysis of genes
513  sharing high sequence identity by clustering the nucleotide sequences of the genes with low
514  mean MAPQ score into groups with cd-hit-est (version 4.8.1) (68) with options *-s 0.9 -c 0.9 -
515 r0-d0-g1'. Then for each gene cluster GIP computed the mean gene coverage normalized by

516  median chromosome coverage (Fig. 2E, Fig S2B).

517  Gene ontology and metabolic pathway enrichment. The FungiDB online tool (Release 52,
518 20 May 2021) (69) was used to evaluate the functional enrichment of network clusters genes.
519  For the gene ontology analysis, the biological process (BP), molecular function (MF) and
520  cellular compartment (CC) terms enrichments were tested, considering both computed and
521  curated evidences and a p-value cutoff of 0.05. For the metabolic pathway enrichment, both
522  KEGG (70) and MetaCyc (71) pathway sources were considered with a p-value cutoff of 0.05.
523  Terms and pathways with Benjamini — Hochberg adjusted p-values < 0.05 were considered

524  statistically significant.

525  Sequencing coverage density estimates. GIP was used to convert the read alignment files
526  (.bam format) in binary data files reflecting sequencing coverage (.bigWig format). The
527  coverage file were produced using bamCoverage from the deepTools2 suite (72) (version 3.5.1)

528  with options "--normalizeUsing RPKM --ignoreDuplicates --binSize 10 --smoothLength 30"
529  (CbigWigOPT" option, Supplementary Data 2). The coverage track of sample PD0689 C was

530  visualized with IGV using the 'Bar Chart’, “Autoscale’ and windowing function "Mean’

531  options.

532  Single-nucleotide variant analysis. GIP was used to call SNVs using Freebayes (version
533  1.3.2) (freebayesOPT" option, Supplementary Data 2) and filter its output

534  (“filterFreebayesOPT" option, Supplementary Data 2). Filters included the minimum allele
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535  frequency (*--minFreq’), the minimum number of reads supporting the alternative alleles ("--
536  minAQO") and minimum mean mapping quality of for the reads supporting the reference ("--
537  minMQMR") or the alternative allele ("--minMQM"). A higher number of reads supporting the
538  variants was requested for predictions positioned inside simple repeats of the same nucleotide
539  (homopolymers) (*--minAOhomopolymer’). The homopolymers were defined as the DNA
540  region spanning £5 bases from the SNV (*--contextSpan 5%), with over 40% of identical
541 nucleotides (--homopolymerFreq 0.4 *). Further, GIP discarded SNVs with sequencing
542  coverage above or below 4 median absolute deviations (MADs) from the median chromosome
543  coverage (‘--MADrange’). snpEff (version 4.3t) (73) was used to predict the impact of SNVs
544 on coding sequence. The predicted effects that GIP considered synonymous mutations are:
545  “synonymous_variant", "stop retained variant" and "start retained". The predicted effects that
546  GIP considered non-synonymous mutations are: '"missense variant", '"start lost",
547  "stop gained", "stop lost" and "coding sequence variant". The phylogenetic tree was
548 computed by the giptools module ‘phylogeny’ using 1Qtree2 (version 2.1.2) (74,75) with
549  options "--seqtype DNA --alrt 1000 -B 1000°. The Venn-diagram comparison considered the
550  strains QS0044 C, QS0001 C, QS0037 _C, QS0016 C and SGH_358 that were sampled from
551  different locations in Ethiopia, respectively Habala, Badowacho, Arbaminch, Hawassa and
552 Jimma. The strains were selected to have comparable average genome coverage (23). To infer
553  the tree GIP considered the set of filtered SNV and adopted the [IUPAC ambiguous notation for
554  the positions with allele frequency below 70%. The tree was visualized by giptools using the

555  ggtree R-package (76).

556  Analysis of structural variants. GIP was used to detect structural variants including insertions,
557  tandem duplications, deletions, inversions and break-end translocations with DELLY (version
558 0.8.7) (11). To reduce incorrect predictions the DELLY output was additionally filtered

559  (‘filterDellyOPT" option, Supplementary Data 2). GIP discarded poor predictions with
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560 DELLY label “LowQual” ("--rmLowQual") and low median MAPQ score of mapping reads (-
561 -minMAPQ"). SVs positioned in proximity of chromosome ends were removed (--
562  chrEndFilter) to limit false predictions caused by potential misassembled regions close to the
563  telomeric ends. To ease visualization and limit the analysis only to best supported SVs GIP
564  limited the output only to the top predictions ("--topHqPercentlns’, *--topHqPercentDel, *--
565  topHgPercentDup® and "--topHqPercentInv') based on the SV support score as in Formula 1,
566  where DV, DR, RV, and RR are respectively the number of high-quality variant pairs, reference

567  pairs, variant junction reads, and reference junction reads.

DV + RV

568 DV+RV+DR+RR

100

569 Formula 1: SV support score.

570  The predicted structural variants were represented with Circos (version 0.69-9) (77).

571 Data and materials availability. All data is available in the main text or the supplementary

572  materials.
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