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Abstract:  11 

Genome instability has been recognized as a key driver for microbial and cancer adaptation and 12 

thus plays a central role in many human pathologies. Even though genome instability 13 

encompasses different types of genomic alterations, most available genome analysis software 14 

are limited to just one kind mutation or analytical step. To overcome this limitation and better 15 

understand the role of genetic changes in enhancing pathogenicity we established GIP, a novel, 16 

powerful bioinformatic pipeline for comparative genome analysis. Here we show its application 17 

to whole genome sequencing datasets of Leishmania, Plasmodium, Candida, and cancer. 18 

Applying GIP on available data sets validated our pipeline and demonstrated the power of our 19 

analysis tool to drive biological discovery. Applied to Plasmodium vivax genomes, our pipeline 20 

allowed us to uncover the convergent amplification of erythrocyte binding proteins and to 21 

identify a nullisomic strain. Re-analyzing genomes of drug adapted Candida albicans strains 22 

revealed correlated copy number variations of functionally related genes, strongly supporting a 23 
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mechanism of epistatic adaptation through interacting gene-dosage changes. Our results 24 

illustrate how GIP can be used for the identification of aneuploidy, gene copy number 25 

variations, changes in nucleic acid sequences, and chromosomal rearrangements. Altogether, 26 

GIP can shed light on the genetic bases of cell adaptation and drive disease biomarker 27 

discovery. 28 

 29 
 30 

One Sentence Summary:  31 

GIP - a novel pipeline for detecting, comparing and visualizing genome instability. 32 

Keywords: 33 

Genome instability, aneuploidy, copy number variations, single nucleotide variation, structural 34 

variation, genetic adaptation. 35 

 36 

Main Text:  37 

In recent years, the field of genomics has rapidly expanded with a fast increase in the number 38 

of newly sequenced genomes (1). This surge is a direct consequence of the development of new 39 

and ever more efficient, high-throughput capable sequencing technologies (2). On the one hand, 40 

the improvement in long reads technology allowed the generation of high-quality genome 41 

assemblies (3,4). On the other hand, the decreasing costs for short-reads sequencing and the 42 

parallel increase in sequencing throughput propelled the exponential increase of available 43 

whole genome sequencing (WGS) data (5). Thanks to these advances one can reasonably expect 44 

WGS to rapidly become a key component of personalized medicine and clinical applications. 45 

In this context several consortia-based projects have been established with the goal to produce 46 

WGS for the study of different biological systems (5), and a number of publicly available 47 

databases have been compiled or updated (6). Parallel to data availability, many bioinformatics 48 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.06.15.448580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

tools have been developed to perform specific genome analysis tasks (7,8). For instance, tools 49 

such as Freebayes (9), CNVnator (10) and DELLY (11) have been respectively used for the 50 

detection or characterization of DNA single nucleotide variants (SNVs), copy number 51 

variations (CNVs), and structural variations (SVs), but their scope is limited to the analysis of 52 

one genomic feature at the time. A number of integrative WGS pipelines and workflows have 53 

been established combining the execution of multiple bioinformatics algorithms serving 54 

different analysis steps (12). Even though continuous progress has been made, there is no 55 

standardized or unified approach for genomic investigation. For the development of improved 56 

WGS data analysis pipelines, several important requirements need be considered, including 57 

portability, reproducibility, scalability and compatibility with high-performance computing 58 

(HPC) clusters and remote cloud computing. Here we introduce a novel genome instability 59 

pipeline (GIP) that fulfills all these requirements. GIP facilitates the genome-wide detection, 60 

quantification, comparison and visualization of chromosome aneuploidies, gene CNVs, SNVs 61 

and SVs. GIP is implemented in Nextflow (13), a workflow language that allows to execute 62 

GIP seamlessly in local workstation, on an HPC or remotely in the cloud. All required 63 

environment and software dependencies of GIP are fulfilled and provided with a Singularity 64 

container, thus making GIP reproducible, easy-to-install and easy-to-use. GIP allows the use of 65 

giptools, a tool-suit of R-based modules for genome data exploration, enabling the comparison 66 

of sample sub-sets. GIP and giptools generate a summary report with publication-quality figures 67 

and spreadsheet tables. GIP and giptools constitute a single framework for WGS analysis 68 

suitable both for large scale batch analysis of individual genomes and comparison of samples 69 

from different experimental conditions or origins. Lastly, a key strength of GIP and giptools is 70 

the general applicability to different eukaryotic species. We already successfully applied GIP 71 

on the analysis of Leishmania genomes (14-16). In this study, we validate the use of GIP and 72 

giptools using WGS data from published datasets of the three major human pathogens 73 
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Leishmania infantum, Plasmodium vivax and Candida albicans and as well as three human 74 

cancer cell lines. Furthermore, we demonstrate how the extensive and powerful analytical 75 

approach operated by GIP and giptools can be used to find new biological signal that escaped 76 

previous analyses. 77 

 78 

Results:  79 

The GIP workflow. GIP is a tool for scientific investigation compatible with Linux systems, 80 

requiring minimal configuration and distributed as a self-contained package. GIP consists of 81 

three files: the Nextflow pipeline code, the configuration and the Singularity container files. 82 

The minimum required input is a paired-end WGS data set and a reference genome assembly 83 

in the standard fastq and FASTA format, respectively. GIP analyses include (i) extracting 84 

genomic features such as assembly gaps or repetitive elements, (ii) mapping the reads, (iii) 85 

evaluating chromosome, gene and genomic bin copy numbers, (iv) identifying and visualizing 86 

copy number variation with respect to the reference genome, (v) identifying and quantifying 87 

gene clusters, (vi) detecting and annotating SNVs, (vii) measuring non-synonymous (N) and 88 

synonymous (S) mutations for all genes, (viii) detecting SVs including tandem duplications, 89 

deletions, inversions and break-ends translocations using split-read and read-pair orientation 90 

information, and (ix) producing a report file providing summary statistics, tables and 91 

visualizations (Fig. 1). GIP allows to customize filtering and visualization options via the 92 

configuration file (see methods). The output of GIP can be used as input for giptools, a tool-93 

suite to compare sample sub-sets and highlight chromosome copy number, gene copy number 94 

and SNV differences. 95 

 96 
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Applying giptools on a Leishmania infantum case study. GIP permits the batch analysis of a 97 

set of individual samples, where each sample is considered separately and compared only with 98 

respect to the provided reference genome assembly. As a consequence, all variants and copy 99 

number alterations detected in a sample merely reflect the differences between the sequenced 100 

and the reference genomes. While this application may be sufficient in some circumstances, 101 

research projects often involve downstream comparison between samples. Examples include 102 

the comparison of gene or chromosome copy variation number between for example drug 103 

resistant and drug susceptible samples, or the juxtaposition of SNVs detected in isolates from 104 

different geographic areas. For this purpose, we developed giptools, a suit of thirteen modules 105 

that allows to compare samples processed by GIP (Table 1). All modules in giptools are fully 106 

embedded in the Singularity container and they are provided with their own documentation.  107 

Table 1: giptools modules 108 

 109 

To illustrate the type of exploratory data analyses and the biological questions that can be 110 

addressed, we tested giptools on a previously analyzed dataset of seven clinical Leishmania 111 

infantum isolates from Tunisia (14). Leishmania is the etiological agent of leishmaniasis, a life-112 

threatening human and veterinary disease affecting 12 million people worldwide (17). The 113 

Module name Purpose
karyotype Compare the chromosome sequencing coverage distributions
binCNV Compare bin sequencing coverage in 2 samples
geCNV Compare gene sequencing coverage in 2 samples
ternary Compare gene sequencing coverage in 3 samples
ternaryBin Compare bin sequencing coverage in 3 samples
SNV Compare SNVs in multiple samples
binDensity Density plot of bin sequencing coverage of many samples
geInteraction Detect CNV genes in many samples and produce correlation-based networks
genomeDistance Compare samples genomic distance
phylogeny Extract the SNVs union and infer the phylogenetic tree
convergentCNV Detect convergent CNV gene amplifications
overview Overview of the sequencing coverage of chromosomes, genomic bins and genes
panel Extract genomic information of a gene panel
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parasites were derived from patients affected with visceral leishmaniasis, expanded in cell 114 

culture and their genomes were sequenced. The dataset includes four Glucantime drug 115 

susceptible isolates and three isolates from relapsed patients, and thus comparison may inform 116 

on genetic factors resulting in treatment failure. giptools allowed the detection and visualization 117 

of pervasive intra-chromosomal CNVs across the thirty-six Leishmania chromosomes (Fig. 118 

2A). Additionally, giptools enables targeted comparison of normalized genomic bin sequencing 119 

coverage of sample pairs. We used giptools’ `binCNV` module to compute the ratio between 120 

corresponding genomic bins of the strains LIPA83 over ZK43, which correspond to a first-121 

episode and a relapse leishmaniasis isolate, respectively. giptools represents different 122 

chromosomes as separate panels (Fig. 2B), as part of single genome-wide overview (Fig. S1A) 123 

or as distinct plots (Fig. S1B). This analysis allowed the identification of 2,905 and 2,208 bins 124 

that were respectively amplified or depleted in LIPA83 with respect to ZK43. The results are 125 

returned by giptools as a Microsoft Excel table (.xlsx format) providing ratio scores at each 126 

genomic position (Table S1). Likewise, giptools permits three-way comparisons of normalized 127 

genomic bin sequencing coverage with ternary plots (Fig. 2C). We used this representation to 128 

display the genomic bin relative abundance in samples ZK43, LIPA83 and ZK28. The analysis 129 

shows important strain-specific differences in bin copy number that are visualized by shifts of 130 

the signals out of the center. Similar to genomic bin analysis, giptools makes it possible to 131 

compare the sequencing depth of annotated genes and thus the copy number in two or three 132 

samples (Fig. 2D and Fig. S2). However, the determination of gene copy number might be 133 

impeded by (i) short read length or fragment insert size, (ii) the complexity of the target genome, 134 

or (iii) the presence of repetitive elements. The read map quality (MAPQ) score is a measure 135 

that reflects how much each gene is supported by unambiguously mapped reads (high MAPQ) 136 

in contrast to multimapping reads (low MAPQ). Together with the coverage, GIP also computes 137 

the mean read MAPQ score for each gene and allows a different strategy to determine the copy 138 
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number of low MAPQ genes (see methods). The evaluation of LIPA83 and ZK43 gene 139 

coverage ratio scores revealed 13 gene CNVs with a stringent MAPQ cutoff of 50 (Table S2). 140 

The maximum normalized coverage value of 6.5 was observed for a putative amastin surface 141 

glycoprotein (LINF_310009800). Other examples of gene CNVs in this set include the putative 142 

surface antigen protein 2 (LINF_120013500) and the heat shock protein HSP33 143 

(LINF_300021600) (Table S2). Genes falling below a user defined MAPQ score and sharing 144 

high level of sequence similarity are assigned to the same gene cluster, and their measured 145 

coverage scores are averaged across all members of the group. Low MAPQ scores can also be 146 

associated with single genes, e.g. in the case of internal repetitive elements that cause multiple 147 

ambiguous alignments inside the gene itself, or if mapping occurs in possibly misannotated 148 

intergenic regions. The LIPA83/ZK43 comparison showed 27 CNV gene clusters, including 149 

cluster clstr303 (3 genes annotated as ‘amastin-like’) and cluster clstr16 (2 tb-292 membrane-150 

associated protein-like proteins) (Table S2). These results demonstrate the power of GIP and 151 

giptools to detect and compare intra-chromosomal CNVs in Leishmania at genomic bin level. 152 

Conveniently, analogous two- or three-ways comparisons can be applied to reveal copy number 153 

variations at individual gene or gene cluster levels. 154 

 155 

Comparative genomics of a Plasmodium vivax WGS dataset. We next applied GIP and 156 

giptools on other biological systems to demonstrate its broad applicability outside the 157 

Leishmania field, including the human apicomplexan parasite Plasmodium vivax. Plasmodium 158 

vivax is a protist parasite and a human pathogen causing malaria. Plasmodium vivax gives rise 159 

every year to 130 million clinical cases (18), and it is estimated that 2.5 billion people are at 160 

risk of infection worldwide (19-21). We applied GIP and giptools to investigate genomic 161 

variations across a sizeable dataset of 222 Plasmodium vivax genomes isolated from clinical 162 

samples of 14 countries worldwide (22,23) (Table S3). The phylogenetic tree reconstruction 163 
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and PCA analyses (Fig. 3A and B) showed a high correlation between genotypes and the 164 

geographic origin of the samples. However, we detected substantial genomic variability 165 

between isolates collected at smaller geographical scale, with 14,555 SNVs (~42% of the total) 166 

uniquely characterizing representative samples from five Ethiopian study sites (23) (Fig. 3C 167 

and D). This result may reflect diverging evolutionary trajectories radiating from few founder 168 

strains. At gene level we profiled the copy number variations of two gene panels. The first panel 169 

accounts for 43 previously described genes encoding for potential erythrocyte binding proteins 170 

suggested to operate at the interface of the parasite-host invasion process (23). The second panel 171 

includes two drug resistance markers comprising the chloroquine resistance transporter 172 

PVP01_0109300 and the multidrug resistance protein 1 PVP01_1010900, and four proteins 173 

implicated in red blood cell invasion, such as the merozoite surface protein gene MSP7 174 

PVP01_1219700, the reticulocyte binding protein gene 2c PVP01_0534300, the serine-repeat 175 

antigen 3 PVP01_0417000, and the reticulocyte binding protein 2b PVP01_0800700) (24-33). 176 

Read depth analysis indicated that four genes in the panel (PVP01_0623800, PVP01_1031400, 177 

PVP01_1031200, PVP01_1031300) show a high degree of variability, with amplifications 178 

observed in samples from distinct geographic (Fig. 3E). This convergence is sign of strong 179 

natural selection, which further sustains the functional importance of these genes in the 180 

infection process. Furthermore, 6 genes positioned on chromosome 14 are absent in the Thai 181 

strain PD0689_C as a result of the loss of this chromosome (nullisomy) (Fig. 3E and F). Finally, 182 

the comparison of synonymous and non-synonymous SNVs in the panel of genes revealed 183 

important differences between sample groups. Our analysis indicates an overall higher number 184 

of non-synonymous mutations in Ethiopian compared to Cambodian isolates, therefore 185 

suggesting a stronger evolutionary pressure acting on the African strains (Fig. 3G). Taken 186 

together these analyses well illustrate how GIP and giptools can be readily applied for bulk 187 
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analysis of Plasmodium vivax genomes to assess genome diversity, extract evolutionary 188 

information and identify potential disease biomarkers. 189 

 190 

Gene CNV analysis of Candida albicans evolutionary adapted strains. We next applied GIP 191 

and giptools to the human fungal pathogen Candida albicans, an opportunistic yeast exhibiting 192 

major genome plasticity (34-43) and causing hundreds of thousands of severe infections each 193 

year (44). Candidemia, a bloodstream infection with Candida, are often associated with high 194 

rates of morbidity and mortality (15–50%) notwithstanding existing antifungal treatments 195 

(45,46). We applied GIP and giptools to a Candida albicans WGS dataset described in a recent 196 

study that covers five different progenitor strains (P75063, P75016, P78042, SC5314, 197 

AMS3050) and investigates CNVs driving tolerance and resistance to anti-fungal azole drugs 198 

(47). We analyzed nineteen samples, including (i) four clinical isolates (P75063, P75016, 199 

P78042, SC5314), (ii) seven strains selected in vitro against the anti-fungal drug fluconazole 200 

(FLC) (AMS4104, AMS4105, AMS4106, AMS4107, AMS4397, AMS4444, AMS4702), (iii) 201 

four isogenic colonies adapted to the drug miconazole (AMS3051, AMS3052, AMS3053 and 202 

AMS3054) together with their progenitor (AMS3050), and (iv) three colonies derived from a 203 

miconazole-adapted population and isolated on a rich medium (AMS3092, AMS3093 and 204 

AMS3094) (47-49). GIP and giptools were able to reproduce previous observations of the 205 

amplification of the genes for the drug efflux pumps TAC1 (orf19.3188) and ERG11 206 

(orf19.922), for the stress response proteins HSP70 (orf19.4980), CGR1 (orf19.2722), ERO1 207 

(orf19.4871), TPK1 (orf19.4892), ASR1 (orf19.2344), PBS2 (orf19.7388) and CRZ1 208 

(orf19.7359), and for proteins involved in membrane and cell wall integrity, including CDR3 209 

(orf19.1313), NCP1 (orf19.2672), ECM21 (orf19.4887), MNN23 (orf19.4874), RHB1 210 

(orf19.5994) and KRE6 (orf19.7363) (Table S4). Furthermore, the powerful comparative 211 

approach of our pipeline permitted the discovery of 1,505 genes showing correlating or anti-212 
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correlating copy number variations (Fig. 4A and B, Table S4), which could be assigned to nine 213 

distinct correlation clusters (CC) (Fig. S3A, Table S5) that escaped previous analyses. We 214 

verified the sequencing coverage of genomic regions encompassing gene CNVs, including 215 

three regions amplified in fluconazole resistant strains (Fig. 4B, Fig. S3B) (47) and a region 216 

whose amplification correlates with the level of miconazole resistance (47) (Fig. S3C), as well 217 

as the loss of heterozygosity associated to the depletion of chromosome 3 left arm in sample 218 

AMS3051 (Fig. S3D) (47). Eventually, by representing genes and absolute correlation 219 

respectively as nodes and edges of a network, we identified 9 highly interconnected network 220 

clusters (NC) (Fig. 4C, Table S6). NC7, NC8 and NC9 embody genes from individual 221 

chromosomes, respectively chromosomes 1, 3 and 4. The most parsimonious explanation for 222 

the high levels of correlation observed in these NCs (Fig. 4C) is the occurrence of sub-223 

chromosomal amplifications affecting several adjacent genes. A different scenario is pictured 224 

for each of the remaining NCs (NC1-6) where the genes are located on different chromosomes 225 

thus suggesting genetic interactions that causes coordinated changes in gene copy number. The 226 

gene ontology (GO) and metabolic pathway analyses revealed a significant functional 227 

enrichment of genes expressed on the cell surface and involved in the interaction with the host 228 

(NC2), gibberellin biosynthesis (NC3), transmembrane nucleobase transporters (NC4) and 229 

gluconeogenesis (NC5) (Table S7). Altogether, GIP and giptools are validated by reproducing 230 

previously published results, and beyond that can drive new biological findings as documented 231 

by the discovery of a network of epistatic CNV interactions supporting genomic adaptation in 232 

Candida albicans populations under drug selection. 233 

 234 

Exploring instability of larger genomes using cancer cell lines as a benchmark. The larger 235 

genome size, and the higher number of genes and WGS reads can represent a challenge when 236 

working with higher eukaryotes. For the purpose of comparison, the human genome is ~216 237 

times larger than the one of Candida albicans we analyse in this study. Therefore, we sought 238 
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to evaluate the applicability of the GIP and giptools framework to human data and utilized a 239 

panel of genomes from cancer cell lines as a test set. In our analyses we considered publicly 240 

available WGS data of the cell lines T47D, NCI_H460 and K562 (50), which respectively 241 

derive from human breast, lung and blood cancers. The karyotype analysis revealed aneuploidy 242 

for all chromosomes except chromosome 4 (Fig. 5A). The observed heterogeneity in read depth 243 

across chromosomes, illustrated by large interquartile range in the boxplot, suggests sub-244 

chromosomal or episomal copy number variations, or the co-existence of karyotypically 245 

different sub-populations. Indeed, the coverage analysis confirmed the pervasive presence of 246 

CNVs both at chromosomal and sub-chromosomal levels (Fig. S4) with remarkable instability 247 

observed for specific chromosomes, e.g. chromosomes 6, 9, 10 and 16 (Fig. 5B). Overall, we 248 

detected 1,647,016 SNVs (Supplementary Data 1) and allele frequency shifts with respect to 249 

the reference genome, suggesting haplotype selection and the preferential expression of distinct 250 

alleles in different cell lines (Fig. 5C and Fig. S5). Furthermore, we identified repeated loss of 251 

heterozygosity events and uneven distribution of SNVs that form “patches” of high frequency 252 

correlating with chromosomal and sub-chromosomal CNVs (Fig. 5D, Fig. 5E and Fig. S6). 253 

These results identify GIP and giptools as a powerful new platform to reveal loci, genes or 254 

alleles that are under natural selection in cancer cells, thus allowing important new insight into 255 

the genetic basis of tumor development, cancer cell evolution and drug resistance.   256 

 257 

Discussion: 258 

Genome instability is a key driver of evolution for microbial pathogens and cancer cells (51) 259 

and a major source of human morbidity. Here we introduce GIP and giptools, an integrated 260 

framework for the genotype profiling of biological systems exploiting genome instability for 261 

adaptation. We document the power and versatility of GIP and giptools by performing genomic 262 

screenings of three major pathogenic eukaryotes and human cancer cell lines. While originally 263 
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deployed for Leishmania genome analysis, in this study we validate the use of our pipeline on 264 

other organisms reproducing expected results. For example, in Candida albicans we confirmed 265 

the CNVs correlating to drug resistance as well as a loss of heterozygosity event (Fig. S3B-C 266 

and D). Parallel to this we also show how GIP and giptools can be used for data mining and 267 

scientific discovery. New findings include (i) the discovery of the convergent amplification of 268 

erythrocyte binding proteins in Plasmodium vivax strains sampled from distinct geographic 269 

areas (Fig. 3E), (ii) the detection of a nullisomic strain (Fig. 3F), (iii) the identification of 270 

correlated copy number variations between genes positioned on separate chromosomes of 271 

Candida albicans adapting strains, and (iv) the functional association of such genes, strongly 272 

supporting a mechanism of epistatic interactions exerted through gene-dosage changes, and 273 

corroborating previous reports on adapting Leishmania populations (52). 274 

Importantly, GIP and giptools overcome key limitations of current analysis tools, such 275 

as the breadth of analysis that is often limited to individual types of mutations, and the lack of 276 

genome-wide, comprehensive reports. To ease genome instability investigations our pipeline 277 

offers a single solution to karyotype, gene CNV, SNV and SV batch analyses, providing 278 

summary reports and high-quality, genome-wide visualizations. Furthermore, many current 279 

tools identify variations with respects to a reference assembly only, which leaves the between 280 

samples comparisons to external tools that need installing, may be incompatible in terms of file 281 

format, and may rely on different analytical assumptions. To address this limitation giptools 282 

enables custom sample comparisons, to explore differences and common features between 283 

genomes, and provides a vast choice of analytical tools with compatible features. Likewise, 284 

current tools are often restricted to the analysis of data from one or few species only (53-57), 285 

but are not generally applicable to different biological systems, which interferes with the 286 

investigation of genome variations across multiple species and the exploration potentially 287 

conserved genomic adaptation mechanisms. By contrast, our pipeline limits as much as possible 288 
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the use of hardcoded parametrization, which could limit its use to a specific organism. 289 

Therefore, GIP’s flexible design makes it adapted for the genome analysis of both model and 290 

non-model organisms, including Leishmania or human.  291 

Many current tools are further limited in software portability and reproducibility across 292 

different computer environments, which can produce faulty results calling their clinical 293 

application into question. Conversely, thanks to the Singularity implementation all required 294 

software are embedded and provided within the software container. As a consequence, users 295 

can easily recreate the same work environment just by downloading the pipeline container, and 296 

reproduce exactly the same publication-quality plots and tables presented in this study. Lastly, 297 

one more common limitation is posed by software scalability. In the WGS domain, with the 298 

rapid increase new samples made available and the enormous amount of data generated in each 299 

sequencing run, the CPU and memory resources of local workstation risk to quickly become 300 

inadequate for data analysis. Therefore, it is paramount that WGS tools are implemented to run 301 

on high-performance computing (HPC) clusters and feature remote cloud computing solutions. 302 

Because of its Nextflow implementation GIP can be executed on a local machine, on cluster 303 

resource manager or the cloud. GIP can be applied on individual samples and without additional 304 

effort on large WGS data sets for batch computation as shown for the 222 Plasmodium vivax 305 

genomes. 306 

These results well illustrate how GIP and giptools can be applied to perform extended 307 

genomic analyses in different biological systems and drive biomedical discovery. To conclude, 308 

we believe that GIP and giptools represent a step forward toward reproducible research in 309 

genomics, and provide a robust computational framework to study how microbes and tumor 310 

cells harness genome instability for environmental adaptation and fitness gain. 311 

  312 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.06.15.448580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Figures 313 

Fig. 1 314 

 315 

GIP workflow. The schema on the left recapitulates the GIP inputs, processes and outputs (see 316 

methods). Blue, orange, green and purple boxes indicate genome reference, read mapping, 317 

quantification and variants computation steps, respectively. The panels on the right demonstrate 318 

example plots included in the GIP report computed for individual samples. The “Karyotype” 319 

plot shows the coverage distributions for each chromosome (y-axis). The “Genomic bins” plot 320 

shows the genomic position (x-axis) and the normalized genomic bin sequencing coverage (y-321 

axis). The “Gene CNVs” plot shows the normalized gene sequencing coverage. The “Structural 322 

variants” panel shows a Circos plot representing break-end translocations (black links in the 323 

inmost part of the plot), and other possible structural variations in the outer tracks, including 324 

insertions, duplications, deletions and inversions. The outmost track shows the normalized 325 

sequencing coverage. The “Single nucleotide variants” plot shows on the x and y axes 326 

respectively the genomic position and variant allele frequency of detected SNVs.  327 
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Fig. 2:  328 

 329 

Comparing Leishmania infantum genomes with giptools. (A) Density plot representing the 330 

genomic coverage of the seven Leishmania infantum isolates. The x-axis shows the log 10 331 

normalized coverage of genomic bins. The y-axis reflects the genomic position. The thirty-six 332 

different chromosomes are materialized as separate panels. The blue shading indicates the (2D) 333 

kernel density estimates of genomic bins. The two red vertical lines mark the 1.5 and 0.5 334 Fig. 2
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coverage values. A selection of 50 000 bins with coverage > 1.5 or < 0.5 is shown as black dots. 335 

(B) Scatterplot of the genomic bin normalized sequencing coverage ratio of samples LIPA83 336 

over ZK43. The x any y axes show the ratio score and the genomic position respectively. Ratio 337 

scores > 1.25 are labelled in orange and indicate genomic bin amplification. Ratio scores < 0.75 338 

are labelled in blue and indicate genomic bin depletion. (C) Ternary comparison showing the 339 

relative abundance of the genomic in samples LIPA83, ZK43 and ZK28. The axes report the 340 

fraction of the bins normalized sequencing coverage in the three strains. The blue contour 341 

indicates the log10 bin density. A subset of 5,000 bins is shown as black dots. Each given point 342 

in the plot is adding up to 100. The density area at the center of the plot indicates bins with 343 

equal copy number and thus a ~33 distribution across the three axes. (D) Scatterplot showing 344 

the log10 normalized sequencing coverage of annotated genes in ZK43 (x-axis) and LIPA83 345 

(y-axis). The red line indicates the bisector. Dots represent individual genes. (E) Sequencing 346 

coverage ratio of gene clusters in samples LIPA83 and ZK43. Dots represent gene clusters. For 347 

plots D and E, the ratio scores > 1.5 or < 0.5 are labelled in orange and blue respectively.  348 
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Fig. 3:  349 

 350 
Fig. 3

PD0689_C
coverage

01 02 03 04 05 06 07 08 09 10 11 12 13 14
Chr.

E

A

D

F

C

G

B

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.06.15.448580doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448580
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Plasmodium vivax genomic diversity. (A) Predicted maximum likelihood phylogenetic tree 351 

reconstruction. (B) PCA analysis of the phylogenetic distances estimated from the tree in (A). 352 

Each dot indicates a sample. The colour code reflects the geographic origin of the samples and 353 

matches with the colours of the legend in (A). (C) Venn diagram comparing the SNVs of five 354 

representative Ethiopian strains. (D) Pairwise scatterplot comparing the variant allele frequency 355 

of all detected SNVs in the five Ethiopian strains. (E) Gene panel analysis. The x-axis reports 356 

a set of genes of interest. The y-axis indicates the normalized mean gene coverage. The boxplots 357 

demonstrate the coverage values distributions for each gene across all samples. Each dot 358 

represents the coverage of the indicated gene in a given sample. Dot colours reflect the sample 359 

geographic origin as in (A). (F) Reads per kilo base per million mapped reads (RPKM) 360 

normalized sequencing coverage density track of sample PD0689_C. The boundaries of the 14 361 

chromosomes are shown on the bottom. (G) Comparison of non-synonymous (N) and 362 

synonymous (S) mutations between Ethiopia and Cambodia sample groups. Dots represent 363 

genes. The x-axis represents the difference between the mean non-synonymous mutation count 364 

in the two sample groups. The y-axis represents the difference between the mean synonymous 365 

mutation count in the two sample groups. The dot size demonstrates the ratio of the mean 366 

normalized sequencing coverage between the two sample groups for each gene. Red and blue 367 

dot colors indicate genes belonging to the 43 genes panel (23) and the custom 6 genes panel 368 

respectively.  369 
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Fig. 4:  370 

 371 

Gene CNVs interactions. (A) All-vs-all normalized sequencing coverage correlation heatmap. 372 

The heatmap is symmetrical along its diagonal and reports both on the rows and the columns 373 

the detected gene CNVs. The colour scale indicates with green and pink high levels of positive 374 

and negative Pearson correlation, respectively. The side ribbons demonstrate in different 375 
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colours the chromosome and the correlation cluster of each gene. (B) Gene CNV heatmap. The 376 

columns and the rows report respectively the samples and the detected gene CNVs. The colour 377 

scale indicates the normalized sequencing coverage of the genes. To ease visualization, 378 

coverage values greater than 3 are reported as 3 (red). Black boxes highlight the genomic 379 

regions shown in Fig. S3B (panels 1, 2 and 3) and Fig. S3C. The ribbons on the left indicate 380 

the chromosome and the correlation cluster of each gene. Top ribbons indicate the genotype 381 

and the strains resulting from the different evolutionary experiments. (C) Gene interaction 382 

network. Nodes indicate gene CNVs. Edges reflect the absolute Pearson correlation value. The 383 

closer the nodes are, the higher is the correlation. Only significant interactions (Benjamini-384 

Hochberg adjusted p-value < 0.01) are shown. The colour of the edges indicates in red and blue 385 

respectively positive and negative correlations. The colour of the nodes denotes the predicted 386 

network cluster for each gene.  387 
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Fig. 5:  388 
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Cancer cell lines genome instability. Green, brown, and grey colours indicate respectively 390 

samples K562, NCI_H460 and T47D. (A) Chromosome coverage analysis. The x-axis reports 391 

the chromosomes. The y-axis reports the estimated somy score. The boxes show the somy score 392 

distributions. (B) Sub-chromosomal copy number variation. Dots indicate genomic bins. 393 

Different panels indicate different chromosomes. The panel columns indicate from left to right 394 

four selected chromosomes: 6, 9, 10 and 16. The panel rows show top to bottom the samples 395 

K562, NCI_H460 and T47D. The x-axis indicates the genomic position. The y-axis indicates 396 

the normalized genomic bin sequencing coverage values. Coverage values greater than 5 are 397 

reported as 5. (C) SNV frequency density plots. The four different panels represent different 398 

selected chromosomes: 6, 9, 10 and 16. The x-axis reports the variant allele frequency. The y-399 

axis the estimated kernel density between 0 and 3. (D) SNV frequency scatter plots. The four 400 

different panels represent different selected chromosomes: 6, 9, 10 and 16. The x-axis indicates 401 

the genomic position. The y-axis indicates the variant allele frequency. (E) Chromosome 11 402 

combined SNV and bin coverage plot. To ease visualization, giptools allows the simultaneous 403 

displaying of variant allele frequencies (y-axis, left) and sequencing coverage (y-axis, right). 404 

Dots represent SNVs. The lines represent the normalized bin sequencing coverage. The x-axis 405 

indicates the genomic position. Coverage values greater than 5 are shown as 5.  406 

  407 
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Supplementary figures 408 

Fig. S1:  409 

 410 

Bin coverage ratio visualizations. The figure shows alternative representations produced for the 411 

genomic bin normalized sequencing coverage ratio of samples ZK43 and LIPA83. Same layout 412 

Fig. S1
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as Fig. 2B. (A) Whole genome overview. (B) All the individual chromosomes separately. The 413 

plot shows the example of chromosome 33.  414 
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Fig. S2:  415 

 416 

Two-ways and three-ways gene coverage comparisons. (A) Log10 normalized sequencing 417 

coverage comparison of genes in ZK43 (x-axis) and LIPA83 (y-axis). Same layout a Fig. 2D 418 

but representing the different chromosomes in individual panels. (B) Ternary plot showing the 419 

relative abundance of genes (green dots) and gene clusters (red dots) in samples LIPA83, ZK43 420 
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and ZK28. The axes report the fraction of the genes and genes clusters normalized sequencing 421 

coverage in the three strains. Each given point in the plot adding up to 100. Genes with equal 422 

copy number are shown in the center of the ternary plot, while copy number variations are 423 

visualized by shifts of the dots out of the center. The dots size reflects the fold change variation 424 

between the maximum and the minimum observed normalized coverage value.  425 
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Fig. S3:  426 

 427 

Copy number variations of evolutionary adapted Candida albicans strains. (A) Gene CNV 428 

correlation clusters. The x and y axes indicate respectively the samples and the scaled 429 

normalized sequencing coverage of the genes in each cluster. Different panels indicate different 430 

correlation clusters. (B) Scatterplots showing the bin normalized sequencing coverage (y-axis) 431 
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 28 

of three genomic regions (chr4:400,000-1,000,000; chr3:1,250,000-1,500,000; chr1:2,000,000-432 

2,500,000) in three different samples AMS4702, AMS4104 and AMS4107. The x-axis shows 433 

the genomic position. Dots represent genomic bins. (C) Scatterplot showing the bin normalized 434 

sequencing coverage of a genomic region (chr3:500,000-1,000,000) in five different samples 435 

represented as separate panels. From top to bottom the samples are: AMS3050, AMS3053, 436 

AMS3054, AMS3052 and AMS3051. The x and y axes show respectively the genomic position 437 

and the normalized sequencing coverage. Dots represent bins. (D) Comparative analysis of 438 

chromosome 3 SNVs. AMS3050 SNVs are shown in green, while AMS3051 SNVs are shown 439 

in grey. The x and the y axes show respectively the genomic position and the variant allele 440 

frequency.  441 
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Fig. S4:  442 

 443 

Genomic coverage analysis of three cancer cell lines. The x-axis indicates the genomic position. 444 

The y-axis indicates the normalized genomic bin sequencing coverage values. Dots demonstrate 445 

the genomic bins. To ease visualization, coverage values greater than 5 are reported as 5. 446 

Different panels show different chromosomes. The three panel rows indicate top to bottom the 447 

following samples: K562, NCI_H460 and T47D.   448 
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Fig. S5:  449 

 450 

SNV frequency density plot. The x-axis shows the variant allele frequency. The y-axis the 451 

estimated kernel density between 0 and 3. Green, brown, and grey slopes indicate respectively 452 

samples K562, NCI_H460 and T47D. 453 
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Fig. S6:  455 

 456 

SNV heterogeneity of cancer cell lines. The x-axis indicates the genomic position. The y-axis 457 

indicates the variant allele frequency. The dots indicate SNVs and they are coloured according 458 

to the sample. K562, green; NCI_H460, brown; T47D, grey. Different panels show different 459 

chromosomes. 460 
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Methods:  462 

GIP and giptools. All results presented in this study were generated using GIP and giptools 463 

version 1.0.9. GIP code is maintained and freely distributed at the github page: 464 

https://github.com/giovannibussotti/GIP. giptools container is accessible from the Singularity 465 

cloud at https://cloud.sylabs.io/library/giovannibussotti/default/giptools. The GIP 466 

configuration files (Supplementary Data 2) and the giptools command options used to 467 

generate all results (Supplementary Data 3) are provided. The full documentation of GIP and 468 

giptools including a description of all options is available from 469 

https://gip.readthedocs.io/en/latest/. 470 

Read alignment. WGS reads were downloaded from the Sequence Read Archive (SRA) (58) 471 

and the European Nucleotide Archive (ENA) (59) repositories and the Encyclopedia of DNA 472 

Elements (ENCODE) dashboard (60) (Table S3). For Leishmania infantum the 473 

GCA_900500625 genome reference and gene annotations available from the ENSEMBL 474 

protists (61) server (release-48) were used. For Candida albicans the assembly 21 of the 475 

SC5314 strain genome reference and gene annotations available from the Candida Genome 476 

Database (CGD) (62) were used. For Plasmodium vivax the P01 reference genome and gene 477 

annotations available from PlasmoDB (63) (release-50) were used. For the cancer cell lines the 478 

human genome GRCh38 primary assembly and gene annotations available from ENSEMBL 479 

(release-102) were used. The repetitive elements of reference genomes were soft-masked by 480 

GIP using Red (64). WGS reads were mapped by GIP using BWA-mem (version 0.7.17) 481 

(65,66) run with option -M to label shorter split hits as secondary. Then the alignment files 482 

were sorted, indexed and reformatted by GIP using Samtools (version 1.8) (67). Finally, read 483 

duplicates were removed by GIP using Picard MarkDuplicates 484 

(http://broadinstitute.github.io/picard) (version 2.18.9) with the option 485 
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“VALIDATION_STRINGENCY=LENIENT.” In the four considered datasets, WGS reads 486 

were aligned against full assemblies, including unsorted contigs if present. However just the 487 

canonical assembled chromosomes were considered for all downstream analyses (`chrs` option, 488 

Supplementary Data 2). A minimum read alignment MAPQ score was adopted to select genes 489 

for cluster analysis, and to call for SNVs and SVs (`MAPQ` option, Supplementary Data 2). 490 

Altogether a total of 6,306,951,266 reads were aligned to the respective reference genomes. 491 

The `giptools overview` module was run to gather the alignment statistics as estimated by 492 

Picard CollectAlignmentSummaryMetrics (Table S8).  493 

Genomic bins and genes quantification. GIP was used to evaluate the mean sequencing 494 

coverage and the mean read MAPQ of genomic bins and genes. For genomic bins, GIP 495 

partitioned the input genomes into adjacent windows of user defined lengths (`binSize` option, 496 

Supplementary Data 2). The coverage GC-content score bias was corrected (`CGcorrect` 497 

option, Supplementary Data 2) fitting a LOESS regression with a 5-fold cross validation to 498 

optimize the model span parameter. A larger window length was utilized to bin the reference 499 

genomes for Circos plot representations (`binSizeCircos` option, Supplementary Data 2). In 500 

Fig. 1 (“Genomic bins” and “Gene CNVs” plots), Fig. 2, Fig. S1, Fig. S2 and Fig. 4 bins and 501 

genes coverage scores were normalized by median chromosome coverage to highlight 502 

amplifications or depletions with respect to the chromosome copy number. In Fig. 1 503 

(“Structural variants” plot), Fig. S3B-C, Fig. 3E-G, and Fig. S4A bins and genes coverage 504 

scores were normalized by median genome coverage to account for sequencing library size 505 

differences. GIP evaluated statistically significant copy number variant bins and genes (Fig. 1 506 

“Genomic bins” and “Gene CNVs” plots) using a p-value threshold of 0.001 507 

(`covPerBinSigOPT` and `covPerGeSigOPT` options, Supplementary Data 2). Estimated p-508 

values for bins and genes CNVs were corrected for multiple testing using the Benjamini – 509 

Yekutieli (`--padjust BY `) and the Benjamini – Hochberg (`--padjust BH`) methods. The somy 510 
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scores shown in Fig. 1 (karyotype plot) and Fig. S4B were computed multiplying the median 511 

genome coverage normalized bin coverage by 2. GIP enabled the CNV analysis of genes 512 

sharing high sequence identity by clustering the nucleotide sequences of the genes with low 513 

mean MAPQ score into groups with cd-hit-est (version 4.8.1) (68) with options `-s 0.9 -c 0.9 -514 

r 0 -d 0 -g 1`. Then for each gene cluster GIP computed the mean gene coverage normalized by 515 

median chromosome coverage (Fig. 2E, Fig S2B). 516 

Gene ontology and metabolic pathway enrichment. The FungiDB online tool (Release 52, 517 

20 May 2021) (69) was used to evaluate the functional enrichment of network clusters genes. 518 

For the gene ontology analysis, the biological process (BP), molecular function (MF) and 519 

cellular compartment (CC) terms enrichments were tested, considering both computed and 520 

curated evidences and a p-value cutoff of 0.05. For the metabolic pathway enrichment, both 521 

KEGG (70) and MetaCyc (71) pathway sources were considered with a p-value cutoff of 0.05. 522 

Terms and pathways with Benjamini – Hochberg adjusted p-values < 0.05 were considered 523 

statistically significant. 524 

Sequencing coverage density estimates. GIP was used to convert the read alignment files 525 

(.bam format) in binary data files reflecting sequencing coverage (.bigWig format). The 526 

coverage file were produced using bamCoverage from the deepTools2 suite (72) (version 3.5.1) 527 

with options  "--normalizeUsing RPKM --ignoreDuplicates --binSize 10 --smoothLength 30" 528 

(`bigWigOPT` option, Supplementary Data 2). The coverage track of sample PD0689_C was 529 

visualized with IGV using the `Bar Chart`, `Autoscale` and windowing function `Mean` 530 

options. 531 

Single-nucleotide variant analysis. GIP was used to call SNVs using Freebayes (version 532 

1.3.2) (`freebayesOPT` option, Supplementary Data 2) and filter its output 533 

(`filterFreebayesOPT` option, Supplementary Data 2). Filters included the minimum allele 534 
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frequency (`--minFreq`), the minimum number of reads supporting the alternative alleles (`--535 

minAO`) and minimum mean mapping quality of for the reads supporting the reference (`--536 

minMQMR`) or the alternative allele (`--minMQM`). A higher number of reads supporting the 537 

variants was requested for predictions positioned inside simple repeats of the same nucleotide 538 

(homopolymers) (`--minAOhomopolymer`). The homopolymers were defined as the DNA 539 

region spanning ±5 bases from the SNV (`--contextSpan 5`), with over 40% of identical 540 

nucleotides (--homopolymerFreq 0.4 `). Further, GIP discarded SNVs with sequencing 541 

coverage above or below 4 median absolute deviations (MADs) from the median chromosome 542 

coverage (`--MADrange`). snpEff (version 4.3t) (73) was used to predict the impact of SNVs 543 

on coding sequence. The predicted effects that GIP considered synonymous mutations are: 544 

“synonymous_variant", "stop_retained_variant" and "start_retained". The predicted effects that 545 

GIP considered non-synonymous mutations are: "missense_variant", "start_lost", 546 

"stop_gained", "stop_lost" and "coding_sequence_variant". The phylogenetic tree was 547 

computed by the giptools module `phylogeny` using IQtree2 (version 2.1.2) (74,75) with 548 

options `--seqtype DNA --alrt 1000 -B 1000`. The Venn-diagram comparison considered the 549 

strains QS0044_C, QS0001_C, QS0037_C, QS0016_C and SGH_358 that were sampled from 550 

different locations in Ethiopia, respectively Habala, Badowacho, Arbaminch, Hawassa and 551 

Jimma. The strains were selected to have comparable average genome coverage (23). To infer 552 

the tree GIP considered the set of filtered SNV and adopted the IUPAC ambiguous notation for 553 

the positions with allele frequency below 70%. The tree was visualized by giptools using the 554 

ggtree R-package (76). 555 

Analysis of structural variants. GIP was used to detect structural variants including insertions, 556 

tandem duplications, deletions, inversions and break-end translocations with DELLY (version 557 

0.8.7) (11). To reduce incorrect predictions the DELLY output was additionally filtered 558 

(`filterDellyOPT` option, Supplementary Data 2). GIP discarded poor predictions with 559 
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DELLY label “LowQual” (`--rmLowQual`) and low median MAPQ score of mapping reads (`-560 

-minMAPQ`). SVs positioned in proximity of chromosome ends were removed (--561 

chrEndFilter) to limit false predictions caused by potential misassembled regions close to the 562 

telomeric ends. To ease visualization and limit the analysis only to best supported SVs GIP 563 

limited the output only to the top predictions (`--topHqPercentIns`, `--topHqPercentDel`, `--564 

topHqPercentDup` and `--topHqPercentInv`) based on the SV support score as in Formula 1, 565 

where DV, DR, RV, and RR are respectively the number of high-quality variant pairs, reference 566 

pairs, variant junction reads, and reference junction reads. 567 

𝑫𝑽 +𝑹𝑽
𝑫𝑽+ 𝑹𝑽+ 𝑫𝑹+ 𝑹𝑹 ∗ 𝟏𝟎𝟎 568 

                                                   Formula 1: SV support score. 569 

The predicted structural variants were represented with Circos (version 0.69-9) (77). 570 

Data and materials availability. All data is available in the main text or the supplementary 571 

materials. 572 
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