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Abstract

Summary: The conservation of pathways and genes across species has allowed scientists to use
non-human model organisms to gain a deeper understanding of human biology. However, the use of
traditional model systems such as mice, rats, and zebrafish is costly, time-consuming and increasingly
raises ethical concerns, which highlights the need to search for less complex model organisms. Existing
tools only focus on the few well-studied model systems, most of which are complex animals. To address
these issues, we have developed Orthologous Matrix and Model Organisms, a software and a website
that provide the user with the best simple organism for research into a biological process of interest based
on orthologous relationships between the human and the species. The outputs provided by the database
were supported by a systematic literature review.
Availability and implementation: https://omabrowser.org/omamo/, https://github.com/DessimozLab/omamo
Contact: christophe.dessimoz@unil.ch and sina.majidian@unil.ch

1 Introduction
Model organisms are non-human species used in human biomedical
research to study development, gene regulation, and other cellular
processes because they are relatively fast-growing, inexpensive, and easy
to manipulate. Most importantly, their use has been possible due to the
evolutionary conservation of biological processes (Wangler et al., 2017).
Fast-moving progress in comparative genomics has allowed scientists to
identify these evolutionary relationships by inferring human orthologs,
genes that have diverged due to speciation (Fitch, 1970). Since orthologous
genes tend to be functionally conserved and have common gene expression
patterns, they are a better basis for model organism selection than other
subtypes of homologs, which tend to functionally diverge faster (Altenhoff
et al., 2012; Zheng-Bradley et al., 2010).

Currently used model organisms range from bacteria to complex
mammals. The scientific community, however, aims to reduce the use
of animals in research due to ethical implications, opting to use less

complex organisms where possible. Currently available databases include
MARVVEL (Wang et al., 2019), the Alliance of Genome Resources
portal (Alliance of Genome Resources Consortium, 2000), and MORPHIN
(Hwang et al., 2014). They focus on five to nine ‘traditional’ model
organisms, most of which are complex organisms like mouse, rat and
zebrafish. Moreover, their scope is restricted to human disease-related
research. The only unicellular organisms considered in these databases
are fission and budding yeast, whilst abundance of unicellular species in
nature and their unique features make it difficult to find other non-complex
model organisms for a biological process of interest.

To address the challenges above, we created an orthology-based
database tool OMAMO alongside a user-friendly website that helps to
select the best non-complex model organism for a biological process.
Because the majority of species in the database have not been considered
as model systems in the past, OMAMO has the potential to extend the set
of organisms used in human biomedical research.
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2 Methods
OMAMO takes advantage of the OMA database of orthologous genes.
For a given biological process, the output presents a list of potential model
organisms ranked based on their orthologous relationships with human.

For each species, pyOMA library was used to extract human orthologs
(Altenhoff et al., 2021). For each ortholog, pyOMA was used to retrieve
Gene Ontology (GO) terms, which provide information about the gene
product and can represent one of the following three aspects: molecular
function, cellular component and biological process (Gene Ontology
Consortium, 2021). Some GO terms are general (e.g. ‘cell division’),
whilst others are more specific (‘G2/M transition of mitotic cycle’). To
quantify specificity of a GO term, we used information content (IC)
calculated as -log(p) where p is its empirical frequency in the UniProt
database (Pesquita, 2017), hence more specific GO terms have a higher IC
value. The IC values were used to calculate functional similarity for each
orthologous pair (Supplementary Section 1).

Orthologous pairs with functional similarity of < 0.05 were discarded.
This aims to reduce the number of orthologs that only share general
GO terms in the output. Consequently, gene pairs from a given species
were grouped according to the biological process GO term they share.
To maintain sufficient specificity in functional similarity considered, only
GO terms with the IC value of ≥ 5 were kept. Finally, for each biological
process GO term, species were ranked based on a scoring system, which
takes into account the number of orthologs relevant to the biological
process and average functional similarity across the genes.

We developed a freely accessible website for OMA (Fig.1), with the
source code publically available. Out of the 50 species currently present
in OMAMO, 31 are unicellular eukaryotes and the rest are bacteria. We
suggest at least one model organism for 4620 out of 28,923 available
biological GO terms (Gene Ontology Consortium, 2021). Since OMAMO
is integrated in the OMA, it will be updated alongside the browser,meaning
that the set of organisms will continue to grow and the database will include
the latest GO annotations.

To validate our results, we referred to experimental evidence through
a systematic literature search on PubMed (Supplementary Section 2). The
top five review articles on three of the most well-studied organisms in
OMA (D. discoideum, N. crassa, S. pombe) published in 2010-2021 were
selected from the search output. Out of all biological processes which have
been studied in one of the three organisms, the species of interest was in
the top 5 model organism candidates in 42.6% of respective searches in
OMAMO (Supplementary Section 2). This indicates that our algorithm is
well supported by experimental data found in the literature.

3 Discussion
OMAMO is a freely-available database which aims to help scientists
exploit alternative model species for human biomedical research. With the
limited number of presently used model systems, the scientific community
can now benefit from using other organisms, some of which could become
model systems for processes that have previously only been studied
in animals, leading to reduction in their use in experimental research.
Moreover, this is the first database that provides such a wide range of
potential model organisms. Due to the lack of literature on using species
presented in OMAMO, the validation of results proved to be challenging.
The following step for output validation would be to utilise proposed
model species as model systems in wet-lab experiments. In the future, we
plan to greatly expand the set of species and improve the scoring system
by considering sequence similarity, conservation of protein structure and
reproduction time. Additionally, we hope to provide unicellular model
organisms for studying species other than human, for example animals for
veterinary science research.

(A)

(B)

Fig. 1. Website interface. (A) The main browser page of OMAMO. The user can search a
GO term (‘DNA repair’) or a GO ID (0006281). (B) The output page gives a list of species
ranked based on the score, but the user has the option to sort the output based on the total
number of orthologs or the average functional similarity by clicking on the up-down sorting
icon. The user can view orthologs by clicking on the ‘+’ button.
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Supplementary Information

1. Method

1.1 Functional Similarity Calculations

Functional similarity for each orthologous pair has been estimated using information content-based calculation
of GO term overlap (Supplementary Equation 1), which has been shown to be a good predictor of functional
relatedness between genes (Mistry and Pavlidis, 2008). GO terms have a hierarchical structure, i.e. general GO
terms are at the top, whilst more specific (‘child’) terms are found in the lower branches of the GO hierarchy.
The OMA browser provides only more specific GO annotations, which were then propagated to the parental
terms up until a term with information content of 5 and below was reached. This was done to avoid domain
terms (‘molecular function’, ‘cellular component’, and ‘biological function’) and other very general terms that
are shared amongst almost all orthologs. Taking these terms into account would have led to a skewed
distribution of functional similarity.
For two orthologous genes G1 and G2, we gather a set of GO terms for each ortholog, namely GO1 and GO2.
Then, the functional similarity is defined using the following equations:

Supplementary Equation 1. Information content-based calculation of functional similarity (SJ) of two orthologous genes
based on Jaccard similarity (Popescu et al., 2006). It is measured as the ratio of information content (IC) of overlapping GO
terms (and their parents) to the union of information content stored by GO terms of both genes (and their parental terms).

1.2 Threshold settings

If the user chooses to use the website interface for their research, their result will be given with the following
three filters set to default settings: (i) Minimal functional similarity of orthologous pairs (≥ 0.05)
(Supplementary Figure 1); (ii) Minimum number of orthologous pairs per biological process (no threshold)
(Supplementary Figure 2); (iii) Minimum IC value of GO terms (≥ 5) (Supplementary figure 3). However, if the
user opts to use the software, they can change these settings according to their needs (e.g. if they wish to only
consider orthologs with functional similarity of above 0.5 or if they only want to see species that have more than
a certain number of orthologs for a given biological process).

Supplementary Figure 1. Distribution of functional similarity across
orthologous pairs between Dictyostelium discoideum and Homo Sapiens.
The red box shows default settings, i.e. the database only includes those
orthologous pairs that have functional similarity of above 0.05. If the user
wishes to only see outputs only for orthologs with high functional
similarity, they can choose the threshold value to be higher.
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Supplementary Figure 2. This histogram demonstrates distribution of
orthologous pairs across biological process GO terms. For example, the
peak to the left demonstrates that there are over 700 GO terms that have
only one ortholog from Dictyostelium discoideum associated with them.

Supplementary Figure 3. Distribution of Information content across all
GO terms found in the UniProt as of July 2020. The red box shows the
default setting of information content ≥ 5.

For example, if the user searches GO ID 0010737 (‘protein kinase A signalling’) with default settings, the
output that they would get is like that shown in Supplementary Figure 4 (A). However, if the user changes the
lower threshold for the number of orthologs in a model organism from 0 (default) to 4, their output would be
different, as shown in Supplementary Figure 4 (B).

(A) (B)
Supplementary Figure 4. (A) Output for 0010737 with default settings. (B) Output for 0010737 where the lower threshold
for number of orthologs has been set to 4.

Additionally, when using the code, the user can pick any combination of species present in OMA.

2. Systematic literature search

We chose 15 most relevant publications for the string ((species name) AND (model organism) AND (human)) in
PubMed, five for each of the three species (Dictyostelium discoideum, Neurospora crassa, and
Schizosaccharomyces pombe), from which we collected a total of 94 terms describing a biological process that
has been studied in the species of interest. Searching for 21 of these gave no output or the species of interest
wasn’t in the list of suggested model organisms, which is denoted as ‘-’ in the table below. In 40 out of 94

.CC-BY 4.0 International licensepeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified bythis version posted December 21, 2021. ; https://doi.org/10.1101/2021.11.04.467067doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.04.467067
http://creativecommons.org/licenses/by/4.0/


searches (42.6%), the species of interest was ranked as number 1-5. In 57 out of 94 searches (60.6%), the
organism was in the top 10 suggested model systems, as summarised in the Supplementary Table 1 below.

Supplementary Table 1

Organism Biological GO Terms (Rank No.)

Dictyostelium discoideum
(Bozzaro, 2019; Pearce et
al., 2019; McLaren et al.,
2019; Martín-González et
al., 2021; Stuelten et al.,
2018)

Cell motility (6), chemotaxis (1), phagocytosis (1), macropinocytosis (-), cell
adhesion (2), programmed cell death (4), autophagy (1), cytokinesis (14),
lysosome organisation (2), cell-substrate adhesion (1), chemotaxis to cAMP
(-), establishment of cell polarity (8), cell migration (1), phototaxis (-),
mitochondrial transcription (1), protein insertion into mitochondrial outer
membrane (-), aerobic respiration (2), mitochondrial organisation (10),
mitochondrial localisation (11), thermotaxis(-), oxidative phosphorylation (14),
reactive oxygen species biosynthetic process (1), mitochondrial calcium ion
homeostasis (4), mitochondrial fission (19), macroautophagy (2), cellular
water homeostasis (3), actin cytoskeleton organisation (2), protein
phosphorylation (9), small GTPase-mediated signal transduction (2),
multivesicular body assembly(-), multivesicular body organization (-),
endosomal transport (2), vacuole organization (2), vacuolar transport (4), actin
polymerisation and depolymerisation (2), regulation of cell-substrate adhesion
(2), cellular component assembly (-), vesicle-mediated transport (3),
intracellular signal transduction (3), regulation of signal transduction (11),
regulation of intracellular signal transduction (3), protein processing (12),
Notch receptor processing (-), amyloid precursor protein catabolic process (-),
membrane protein intracellular domain proteolysis (1), ephrin receptor
signalling pathway (-), organelle assembly (15), endosomal transport (2),
multivesicular body assembly (-), energy derivation by oxidation of organic
compounds (2), mitochondrial respiratory chain complex I assembly (6),
mitochondrial electron transport NADH to ubiquinone (7), cellular protein
complex assembly (15), mitochondrial ATP synthesis coupled electron
transport (17), anion transport (4),  regulation of biological quality (-).

Neurospora crassa
(Jolma et al., 2010;
Ridenour et al., 2020;
Pelham et al., 2020;
Dunlap and Loros, 2017;
Hevia et al., 2016)

Circadian rhythm (-), histone methylation (19), histone H3 K27 methylation
(-).

Schizosaccharomyces
pombe
(Allshire and Madhani,
2018; Matthews and
Vosshall, 2020; Lin and
Austriaco, 2014; Zhao,
2017; Florea, 2017)

Heterochromatin organisation (12), heterochromatin assembly (16), histone
methylation H3K9 (-), gene silencing by RNA (5), cell division (2),
programmed cell death(11), ageing (9), autophagy (9), necrotic cell death(-),
intrinsic apoptotic signalling pathway (-), apoptotic process (6), regulation of
cell death (4), mRNA splicing via spliceosome (6), RNA interference (8),
mitochondrial inheritance (-), TOR signalling (4), response to reactive oxygen
species (3), vacuolar acidification (10), mitochondrial fission (4), GMP
biosynthesis (23), regulation of mitochondrial membrane potential (3),
apoptotic DNA fragmentation (5), nuclear fragmentation involved in apoptotic
nuclear change (-), reactive oxygen species process biosynthetic process (10),
cell death (11), NAD+ biosynthetic process (16), response to virus (1),
regulation of cell cycle (5), regulation of vesicle-mediated transport (11), DNA
replication (8), DNA repair (1), G2/M transition of mitotic cycle (2), mRNA
processing (8), response to hydrogen peroxide (3), response to heat (8).
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