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Robots start to play a role in our social landscape, and they are
progressively becoming responsive, both physically and socially.
It begs the question of how humans react to and interact with
robots in a coordinated manner and what the neural underpin-
nings of such behavior are. This exploratory study aims to un-
derstand the differences in human-human and human-robot in-
teractions at a behavioral level and from a neurophysiological
perspective. For this purpose, we adapted a collaborative dy-
namical paradigm from Hwang et al. (1). All 16 participants
held two corners of a tablet while collaboratively guiding a ball
around a circular track either with another participant or a
robot. In irregular intervals, the ball was perturbed outward
creating an artificial error in the behavior, which required cor-
rective measures to return to the circular track again. Concur-
rently, we recorded electroencephalography (EEG). In the be-
havioral data, we found an increased velocity and positional er-
ror of the ball from the track in the human-human condition
vs. human-robot condition. For the EEG data, we computed
event-related potentials. To explore the temporal and spatial
differences in the two conditions, we used time-regression with
overlap-control and corrected for multiple-comparisons using
Threshold-Free-Cluster Enhancement. We found a significant
difference between human and robot partners driven by signif-
icant clusters at fronto-central electrodes. The amplitudes were
stronger with a robot partner, suggesting a different neural pro-
cessing. All in all, our exploratory study suggests that coordinat-
ing with robots affects action monitoring related processing. In
the investigated paradigm, human participants treat errors dur-
ing human-robot interaction differently from those made dur-
ing interactions with other humans.
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Introduction

We constantly interact with other humans, animals, and ma-
chines in our daily lives. Many everyday activities involve
more than one actor at once, and groups of interacting co-
actors have different size. Especially, interactions between
two humans (so-called dyadic interactions) are the most
prevalent in social settings (2). During such situations, we
spend most of our time trying to coordinate our behavior and
actions with other humans. Until recently, human cognition
was mostly studied in non-interactive and single participant

conditions. However, due to novel conceptual and empiri-
cal developments, we are now able to bring dyads instead of
single participants to our labs (3). This approach is called
Second-person neuroscience (3, 4). It suggests that we need
to study the social aspect of our cognition with paradigms
that include real-time interactions between participants in-
stead of the passive observation of socially relevant stimuli
(4). Such an approach can yield a new perspective on human
social cognition.
Coordination between members of a dyad is achieved by joint
actions (5). There are different aspects of coordination that
facilitate achieving common goals between co-actors. Firstly,
(6) showed in pairs of pianists performing solo and duets that
monitoring of our actions, our partner’s actions, and our joint
actions is required to coordinate successfully. Second, being
familiar with each co-actors individual contributions in the
dyad helps to form predictions about the partner’s actions,
which further improves coordination (7). Third, recently pro-
posed action-based communication serves as a fundamental
block of coordination (8). In comparison to verbal communi-
cation, this low-level sensorimotor communication is implicit
and faster. Experiments by (9) serve as examples of sensori-
motor communication in the temporal dimension. Their re-
sults have shown that participants adjusted their actions to
communicate task-relevant information. Fourth, while both
co-actors are engaged in a constant flow of perceptual infor-
mation, they create coupled predictions about each other’s
actions that are necessary to achieve fruitful coordination
(5). (10) investigated coordination tasks with incongruent
demands between partners, and their results suggested the
benefits of reciprocal information flow between participants.
In sum, there are different aspects of human cognition that
allow for the maintenance of dyadic coordination: Action
monitoring, predictions based on familiarity of partner’s ac-
tions, action-based communication, and reciprocal informa-
tion flow.
So far, most dyadic interaction studies investigated the co-
ordination between human co-actors (11, 12). However, in
recent years we are more and more surrounded by robotic
co-actors (13). Furthermore, there are many different predic-
tions for the future of robotics, but all point into the same
direction: there will be more robots among us (14). In line
with this, humanoid robots are getting progressively better
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at socially relevant tasks (15). It is thought that these social
robots will be used in many different fields of our everyday
life in the upcoming years (16). One of the main challenges in
robotics is creating robots that can dynamically interact with
humans and read human emotions (17). Concerning these
changes in our environment, a new research line has emerged
and already substantially contributed to our understanding of
human-robot interactions (18). As many different scientists
are slowly approaching this topic, the field of human-robot
interaction until now focused on human thoughts, feelings,
and behavior towards the robots (19). Studying these specific
aspects is essential and further, we believe that the scientific
community has to investigate real-life interactions between
humans and robots in order to fully understand the dynamics
that underlie this field. Therefore, we propose to use both hu-
man and robot partners in experimental paradigms as this will
help to close the gap in understanding dyadic interactions.

There are different tools and methods to study the social brain
and behavior (20): EEG (21), fMRI (22), MEG (23), and
fNIRS (24). From this list, Electroencephalography (EEG)
stands out as particularly useful for studying dynamical in-
teractions, as it not only aligns with the temporal resolu-
tion of social interactions, but also allows for free movement
and thereby allows for dynamic interactions. This tempo-
ral resolution allows studying brain processes with millisec-
onds precision. One of the methods that are classically used
within EEG research are event-related potentials (ERPs) (21).
ERPs are suitable to study different components of brain pro-
cesses while they evolve over time. The classic study by
(25) showed different brain signatures for correctly and in-
correctly performed trials at around 200-300 milliseconds af-
ter the feedback about an action was perceived. This brain
component was named Feedback related negativity (FRN).
In similar studies, (26) showed that the FRN is sensitive not
only to our own actions but also those of others. (27) fur-
ther extended this finding to different social contexts (coop-
eration and competition). Thus, EEG and specifically ERPs
have been proven valuable tools to investigate the physiolog-
ical basis of social interactions.

However, these studies used static stimuli, and participants
performed their actions independently from each other. In the
last years, more dynamic experiments and real-life studies are
proposed and used within the field of neuroscience (28, 29).
Yet, little is known about action monitoring in such dynamic
situations with non-human, robotic partners.

To fill this gap, we adapted a dynamic dyadic interac-
tion paradigm for human-robot interactions. We chose the
paradigm from (1) and (30), in which two human partici-
pants had to manipulate a virtual ball on a circular elliptic tar-
get displayed on a tablet and received audio feedback of the
ball’s movement. Participants used their fingers to move the
tablet and manipulate the position of the ball. We changed the
paradigm, by adapting the tablet to enable coordination with
the robot and to fit the requirements for EEG measurements.
On the one hand, this paradigm allows for coordination sim-
ilar to a real-life situation; on the other hand, it allows for
the analysis of neural underpinnings of cognitive functions

required for coordination. In this study, we specifically fo-
cused on the aspect of action monitoring with human and
robot partners. Thus, to extend our knowledge the present
study investigates action monitoring in a dynamic interaction
task between humans and robots. Additionally, based on the
results from (1) we decided to test whether auditory feedback
about actions (sonification) influences coordinated behavior
and cognitive processes. Taken together, this study tries to
approach a novel problem with interdisciplinary methods and
sheds new light on the neural processes involved in dynamic
human-robot interactions.

Methods

Participants.
We recruited 16 participants (7 female, mean age = 25.31 ±
1.92 years) from KTH Stockholm Royal Institute of Tech-
nology. We had to exclude two dyads from further analysis,
one due to measurement errors in the robot control and one
due to excessive movements from participants which led to
large artefacts in the EEG data, leaving data from 12 partic-
ipants in 6 recording sessions. Participants had normal or
corrected-to-normal vision and no history of neurological or
psychological impairments. They received course credits for
their participation in the study. Before each experimental ses-
sion, subjects gave their informed consent in writing. Once
we obtained their informed consent, we briefed them on the
experimental setup and task. All instructions and question-
naires were administered to the participants in English. The
Swedish Ethical Review Authority (Etikprövningsnämnden)
approved the study.

Task and Apparatus.
During each recording session, participants performed the
task in four periods of 10 minutes each, twice with a hu-
man partner and twice with the robot. Further, each dyad
(partner human or robot) performed the task with or without
auditory feedback (sonification on or sonification off). The
task was based on a tablet game where the dyads cooperated
with each other to balance a ball on a circular track as they
simultaneously moved it in counter-clockwise direction (1)
(Figure 4). At random intervals, we added perturbations that
radially dispersed the position of the ball away from the cur-
rent position. In order to reduce the subjects’ expectations
of the occurrence of the perturbations, we sampled its rate of
occurrence from a Poisson distribution with λ=4s.
The experimental task was implemented on an Apple IPad
Air tablet (v2, 2048 x 1536 pixel resolution, refresh rate
60Hz) using Objective-C for iOS. During the task, subjects
saw a red ball of 76.8 pixel radius on a circular track with a
radius of 256 pixels and a thickness of 42.67 pixels. The ball
position was represented as the horizontal and vertical coor-
dinates with respect to the center of the circular track (0,0).
The tablet was mounted on a metal frame of size 540mm x
900mm. We further added a square of size 100 pixels x 100
pixels that was used as a signal source for, and covered by, a
luminance sensor. Figure 1 shows all the visual components
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displayed to the participants (the text box on the left side was
used by the experimenter to monitor the experiment status).
During the periods with another human partner, we asked the
participants to not verbally interact with each other. During
the task, they sat face-to-face at 1m distance as they held han-
dles connected to the short end of the frame. Similarly, while
performing the task with the robot, subjects held the short
end of frame while the other end of the frame was clamped
to the grip effectors of the robot. Figure 3 shows the physical
setup of the subjects and the robot during the experiment.
For the periods involving sonification, the position and angu-
lar velocity of the ball were sonified. The auditory feedback
was created by a Gaussian noise generator with a band-pass
filter (cut-off frequency: ±25Hz). The horizontal and verti-
cal coordinates of the ball modulated the pitch of the auditory
feedback, while its angular velocity modulated the loudness.
The sonification procedure was implemented using the spec-
ifications provided in (1).
Lastly, we used a self-manufactured luminance sensor that
synchronized the experimental events (experiment start and
end, and perturbation) between the tablet and the EEG am-
plifier. We changed the luminance source color from black
to white to mark the start of the trials, white to black to mark
the end of the trials. During a session the patch was white,
except at the frame where the perturbation happened, which
was marked with grey (RGB=134,134,134).

1

2

3

Stop

Session ID           ID

Session Number   O

Session Length  300.00

Time passed     123.56

Score                7.69

Stuck delay       4

4

Fig. 1. Schematic of game design on the tablet. (1) Circular track, (2) ball, (3)
flashing rectangle indicating experimental events (covered by luminance sensor),
(4) text box for experiment monitoring (only used by experimenter).

Robot Control.
We used the YuMi robot (ABB, Västerås, Sweden) shown
in Figure 2 for our experiments. We implemented a Carte-
sian space controller based on the original joint-level veloc-
ity controllers provided by the manufacturer. The robot had
direct access to the tablet data and no active sensing was nec-
essary. Starting the robot at the joint position depicted in
the figure 2, we send Cartesian space velocity commands
to both arms at 10 Hz. The Cartesian controller was de-
signed such that the X, Y positions of both end-effectors are
kept constant during an execution, and only the Z position
of the end-effectors are adjusted to move the ball. We de-
note the left and right end-effector velocity commands in

the z axis by vzl and vzr and the current X, Y position of
the ball on the game by (bx, by), respectively. We first ob-
tain the angle θ corresponding to the current position of the
ball in the polar coordinate system by θ = arctan(by, bx).
Then, we obtain the next target angle θ̂ = θ+ π/12 to let
the ball move in the counterclockwise direction. The next
target X ,Y positions of the ball are found as b̂x = Gp(R×
cos(θ̂) − bx), b̂y = Gp(R× sin(θ̂) − by), where R is the ra-
dius of the circle on the IPad game andGp = 0.1 is a constant
gain. The velocity commands in the z axis are then found
as vzl = −Gv(b̂x−αx)−Gv(b̂y−αy),vzr =Gv(b̂x−αx)−
Gv(b̂y −αy), where, αx,αy are gravity acceleration in the
X, Y directions measured by the IPad, and Gv = 0.5 is a con-
stant gain. The command velocities are then clipped to have
an absolute value less than 0.02 m/s, and the clipped values
are sent to the Cartesian velocity controller.

Fig. 2. Robot arms and their degrees of freedom. The participants played with a
Yumi robot. Its arms were able to move the tablet in 3D space (x, y, z).

Procedure.
We prepared both participants for the EEG recording to-
gether, which took around 45 minutes to complete. Once the
subjects were ready to start the experiment, we led them to a
room that housed the robot. Depending on the dyad combi-
nation, we provided oral instructions about the task and clar-
ified any remaining questions. For the human-robot dyads,
we first reset the limbs of the robot to its initial conditions
and then started the task on the tablet. After each block, the
participants were given a short break and then repeated the
task with the alternate sonification condition. The whole ex-
perimental session lasted for about 4 hours.

EEG data acquisition.
We recorded the EEG using two 64-Ag/AgCl electrode sys-
tems (ANT Neuro, Enschede, Netherlands), and two REFA8
amplifiers (TMSi, Enschede, Netherlands) at a sampling rate
of 1024 Hz. The EEG cap consists of 64 electrodes placed
according to the extended international 10/20 system (Wave-
guard, eemagine, Berlin, Germany). We placed the ground
electrode on the collar-bone. We manually adjusted the
impedance of each electrode to be below 10kΩ before each
session. The recording reference was the average reference,
which, only in the single-brain recordings, was later progra-
matically re-referenced to Cz. During human-human interac-
tions, two brains were recorded simultaneously with the sep-
arate amplifiers, synchronized through the ANT-link (Synfi,
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TMSi, Enschede, Netherlands). VEOGs were recorded with
two additional electrodes, one placed below and one above
the eye.

Pre-processing.
The analysis of the EEG data was performed in MATLAB
2016b and the behavioral analyses in Python 3.7.
We preprocessed the data using the EEGLAB toolbox
(v2019.0) (31). As a first step before preprocessing, we
programmatically extracted the trigger events from the lumi-
nance sensor and added them to the recorded data. Then, the
data from each condition was downsampled to 512Hz, fol-
lowed by referencing all datasets to Cz electrode. We then
high-pass filtered the dataset at 0.1Hz and then low-pass fil-
tered it at 120Hz (6 dB cutoff at 0.5Hz, 1 Hz transition band-
width, FIRFILT, EEGLAB plugin, (32)). Following this, we
manually removed channels that showed strong drift behav-
ior or excessive noise (mean: 7, SD: 2.7, range: 1-13). We
manually inspected the continuous data stream and rejected
the portions which exhibited strong muscle artifacts or jumps.
To remove further noise from eye and muscle movements,
we used independent component analysis (ICA) based on
the AMICA algorithm (33). Before performing ICA, we ap-
plied a high-pass filter to the data at 2Hz cut-off to improve
the ICA decomposition (34). We visually inspected the re-
sulting components in combination with using ICLabel (35)
classifier. IClabel was run on epoched data, 200 ms before
and 500 ms after the perturbation. Based on the categoriza-
tion provided by ICLabel, and a visual inspection of the time
course, spectra, and topography, we marked ICs correspond-
ing to eye, heart and muscle movements for rejection (mean:
26.5, SD: 5.2, range: 18-44). We copied the ICA decompo-
sition weights to the cleaned, continuous data and rejected
the artifactual components. Finally, using spherical interpo-
lation, we interpolated the missing channels based on activity
recorded from the neighboring channels.

Behavioral Analysis.
In order to understand the behavioral differences for the fac-
tors partner and sonification, we used measures of mean an-
gular velocity and mean error produces. We first calculated
the instantaneous angular position θ (in degrees) of the ball
using the horizontal and vertical (X, Y) positions of the ball
on the tablet as follows:

θt = 180
π

∗arctan yt
xt

(1)

We used the atan2 function to take into account the X, Y po-
sition in the negative coordinate axes. θt values were trans-
formed from [−π,π] to range [0,2π] . Next, we computed
the instantaneous angular velocity ω of the ball using the fol-
lowing formula where t is the sample time-point:

ω = ∆θ
∆t (2)

We, subsequently, calculated the mean ω for each participant
for the four different conditions. Next, We calculated the er-

ror as the difference of the instantaneous radial distance be-
tween the radius of the track and the ball’s current position
measured as the distance from the track’s center as follows:

errort =
√
x2
t +y2

t −Radiustrack (3)

Deconvolution and EEG Analysis.
Even though the perturbations were sampled from a Poisson
distribution with λ = 4, the corresponding neural responses
might overlap in time and bias the evoked potentials. Fur-
ther, block onset and offset typically elicit very strong ERPs
overlapping with the perturbations. Finally, we see clear, sys-
tematic differences in the behavior depending on the condi-
tion (e.g. higher velocity with a human partner), which could
lead to spurious effects in the ERPs. We further added eccen-
tricity (distance from the circles midpoint), in order to con-
trol for the ball’s trajectory. In order to control both temporal
overlap and covariate confounds, we used linear deconvolu-
tion based on time-regression as implemented in the unfold
toolbox v1.0 (36). Consequently, we modeled the effects of
the partner (human or robot), the sonification (off = 0, on =
1) and their interaction as binary, categorical variables, the
eccentricity and the velocity were coded using B-spline basis
functions and the angular position using a set of circular B-
splines. The block on- and offsets were modeled as intercept
only models. The complete model can be described by the
Wilkinson notation below (37).

perturbation ERP ∼ 1 +partner+sonification

+ partner : sonification
+ circularspline(angular position,8)
+ spline(eccentricity,5)
+ spline(velocity,5)

block onset ERP ∼ 1
block offset ERP ∼ 1

This model was applied on the average referenced continuous
EEG data, and each event was modeled in the time range of
-500ms to 700ms with respect to the event onset.
Similar to the two-stage mass univariate approach, we cal-
culated the t-value over subjects for each of the resulting
regression coefficients (similar to difference waves) for all
electrodes and time points (time-range of -500ms to 700ms).
The multiple comparison problem was corrected using a per-
mutation based test with threshold-free cluster enhancement
(TFCE) (38, 39) with 10,000 permutations(default parame-
ters E = 0.5 and H = 2). We used the eegvis toolbox (40) to
visualize all evoked response potentials.

Results

Behavioral.
In this study, humans played a collaborative game either with
other humans or with robots. We further added sonification
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Fig. 3. Experimental Setup. Participants performed the experiment with a human (A) or a robot partner (B). In each condition they played a tablet game by balancing a virtual
ball on a circular track while moving it in the counter-clockwise direction.

of the ball’s movement as a supplementary auditory feedback
to the participants. Figure 4 shows the raw positions of the
ball overlaid for all subjects and the partner and sonification
conditions. The behavior we analyse here, is the mean veloc-
ity of the ball during each session and the mean deviation of
the ball from the circular track. These measures indicate how
fast the participants performed the task and how much error
they produced, both a proxy of the success of the collabora-
tion.

We calculated the mean angular velocity (ω) for each par-
ticipant for the four different conditions (Figure 5 (A)). To
test the statistical significance of these findings, we com-
puted a 2x2 factorial repeated measures ANOVA with the
factors partner and sonification. The ANOVA showed a sig-
nificant main effect of partner, F (1,11) = 87.09,p < .0001
where subjects exhibited a mean angular velocity of 265.20
degrees/second and SD ±0.28.29 with a human partner,
conversely, with a robot partner subjects showed a mean
angular velocity of 159.23 degrees/second ±29.40. The
ANOVA did not yield a significant main effect of sonifica-
tion, F (1,11) = 1.00,p = 0.33, with mean angular velocity
210.06 degrees/second ±65.51 with sonification off and the
mean angular velocity was 214.36 degrees/second ±62.53
with sonification on. There was no significant interaction of
factors partner and sonification, F (1,11) = 0.04,p = 0.83.
Hence, we can conclude that participants were faster at mov-
ing the ball on the circular track while performing the task
with a human partner.

Next, we analysed the mean error produced by participants
during a session. Figure 5 (B) shows the mean error across
participants for the four different conditions. To statistically
assess these differences, we performed a 2x2 factorial re-
peated measures ANOVA with factors partner and sonifica-
tion. The ANOVA yielded significant main effect for partner
F (1,11) = 42.61,p < .0001 where subjects had a mean er-
ror of 0.04 ±SD = 0.012 while performing with a human
partner, conversely, they had a mean error of 0.01 ± 0.012
while cooperating with the robot. We did not find a signif-
icant main effect of sonification F (1,11) = 1.75,p = 0.21
where subjects had a mean error of 0.032 ± 0.017 with the
sonification off and mean error of 0.033 ± 0.018 with soni-
fication on. There was no significant interaction of factors

partner and sonification, F (1,11) = 0.51,p = 0.48. We can
conclude that subjects made larger errors while performing
the task with a human partner compared to the robot partner.
Lastly, we were interested in the correlation between the be-
havioral measures we analysed. Figure 5 (C) shows the cor-
relation of mean error and mean velocity for the partner and
sonification conditions. For human partner with sonification
off the Pearson correlation showed a correlation coefficient
ρ = 0.98,p < 0.001 and for sonification on ρ = 0.89,p <
0.001. For robot partner with sonification off ρ = 0.97,p <
0.001 and with sonification on ρ = 0.97,p < 0.001. These
results show that the mean error and mean velocity were pos-
itively correlated during the task.

EEG.

Next, we look at the brain activity during the task. Using
a overlap-corrected time regression approach, we investigate
the main effect and interaction ERPs from the 2x2 design,
while adjusting for eccentricity, velocity and position of the
ball (see Methods for details). We only report ERPs time-
locked to perturbation events.
Descriptively, in electrode Cz (Figure 6 (A)), we see the typi-
cal pattern of a positive inflection, followed by a negative and
a second positive inflection after the perturbation onset. We
did not have a specific hypothesis to a predefined component
and analyzed all electrodes and time points simultaneously.
The TFCE analysis reveals two clusters for the main effect of
the factor of partner (Figure 6 (B)). The first cluster is likely
to represent the activity between 230ms and 270ms with its
maximum amplitude being -2.8µV at electrode FC1 (median
p: 0.025, minimal p: 0.018). The second cluster most likely
represents the time range of 515ms to 605ms with a peak at -
1.2µV at electrode FC2 (median p: 0.026, minimal p: 0.002).
Both clusters are found in the central region. No significant
clusters were found for neither the factor sonification nor the
interaction term.
These results show that we find differences in the partici-
pants’ ERPs with respect to their current partner indepen-
dently of their differences in behavior: When interacting with
a robot partner the ERP will have a stronger amplitude indi-
cating a systematically different processing.
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Fig. 4. Distribution of ball positions. (A) Ball positions on the tablet with a human (red) and robot (blue) partner. (B) Ball positions on the tablet for sonified (green) and not
sonified movements (orange). The black circle represents optimal trajectory. It can be seen that participants deviated more with a human partner. No such difference is visible
for a change in the sonification.
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Fig. 5. Behavioral differences between conditions partner and sonification. (A) Differences in mean angular velocity across different participants. The error bars indicate
standard error of mean. (B) Differences in mean error across different participants. The error bars indicate standard error of mean. (C) shows the correlation of mean error
and mean velocity for partner and sonification conditions.

Discussion

Dynamic human-robot interaction studies are at the frontiers
of joint-action research. Our experiment investigated neural
correlates of action monitoring in a dynamic collaboration
task that involves two co-actors. Participants performed the
task with another human and robot partner while we mea-
sured EEG signals. Co-actors tried to keep a virtual ball on
the circle displayed on a tablet; they used their hands (human
arm or robotic arm) to manipulate independent orientation
axes of the tablet. We perturbed the ball to investigate neu-
ral action monitoring processes of the participants. We found
fronto-central ERP components at around 200-300ms after
the ball was perturbed. The components were stronger for hu-
man and robot partner compared to interactions with another
human. These results suggest that the dynamic processing of
our actions is influenced by whether we collaborate with a
robot or a human.

The exploratory aspect of investigating neural underpinnings
of human-robot interactions pose many challenges and ques-
tions. In the present study, we tried our best to reconcile all
of them. However, there are limitations that have to be ad-
dressed. First, our sample size was small in terms of num-
ber of dyads. However, it was not small in terms of record-
ings and total amount of gathered data. Thus, the effects
reported are significant at high level. Second we did not
perform statistics with a predefined hypothesis. Instead, we
performed an exploratory analysis that encompasses all elec-
trodes and time points. It is important to understand that it is
the first study of its kind. Therefore, it has to be replicated
and evaluated by future research (41). Third our results could
be dependent on the robot used in the study. We suggest that
different types of robots (less/more humanoid) could mod-
ulate action monitoring differently. The robot used in the
present study was clearly not-humanoid. Participants could
clearly recognize it as a robot and devoid of typical human

6 | bioRχiv Czeszumski, Gert, Keshava et al. | HRI EEG

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.437133doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.26.437133
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

traits that are often used in communication/collaboration.
Nonetheless, using this robot helped us to maximize the dif-
ference between conditions. Additionally, our claim is sup-
ported by research on a different level of trust depending on
the appearance of humanoid robots (42, 43). Therefore, it
would interesting to perform a similar experiment and com-
pare the results with a more human-like robot. Fourth, as dis-
cussed below, our robot did not have a model of the human
actor. By this, the robot’s behavior helped to boost the char-
acteristic differences between the player’s partners. Fifth, our
statistical analysis does not take the dyadic dependency into
account, possibly biasing the estimated model parameters of
the human-human condition downward. In the future, study
with a bigger sample size, could answer the question whether
dyadic dependencies play a role in the effects reported in our
study. Sixth, even though participants were asked to keep
their eyes on the center of the circular track, we did not con-
trol for eye-movements in this study, which could result in
biased viewing-behavior on the tablet. However, we adjusted
for ball position while modeling the ERPs, which is likely
to be a proxy for current eye position and also remove eye
movement and blink related ICs. Furthermore, the game re-
quired constant attention and engagement, so it was assured
that participants did not look away from the tablet and the
ball. Additionally, we are interested in the EEG signal re-
lated to the behavior, rather than the visual stimulus. All in
all, we addressed the limitations, and are convinced that they
do not impede the interpretations of our results as presented
in next paragraphs.

The behavioral measures of our participants’ actions were
different between human and robot partners. We focused our
analysis on two aspects of collaboration: The speed which
is represented by the ball’s velocity and the accuracy as in-
dicated by the mean error. Our results suggest that partici-
pants perform slower when paired with the robot and achieve
higher accuracy (ball closer to the circular track). There is
a trade-off relation between these factors; this is why we
discuss them together (Figure 5 (C)). One simple explana-
tion could be that the robot’s control were themselves slow
and prone to error. The human participants might have re-
strained themselves and thereby executed artificially slow
movements. Another interpretation of why our participants
slow down (and increased accuracy) while performing with
the robot is that they had less trust in the robot than a hu-
man partner. This is in line with past research that suggests
that level of trust changes during real-time interactions with
robots (44) and that, in general, trust levels are different for
human and robot partners (45). Another interpretation for
slower movements is that it is challenging to create a model
of a partner’s actions during a joint collaborative task with a
robot. Because we typically represent others’ actions as our
own (46), it is possible that in the case of interacting with
a robot we need more time to create such representations.
There is much space for interpretations why having a robot
partner triggered slower movements; however, we would like
to point that the main goal of our study was to investigate neu-
ral correlates of different partners, and behavioral responses

were collected to exclude their influence on neural responses
(see Deconvolution and Analysis for details).

After adjusting for behavioral differences in the EEG analy-
sis, we see that robot partners affect neural correlates of ac-
tion monitoring differently in comparison to a human part-
ner. We found that between 200-300 ms after the perturba-
tion event disturbing the collaboration, the EEG amplitudes
differ at the fronto-central sites. Concerning exploratory as-
pect of this study and used analysis, it is challenging to map
and compare our results with well established ERP compo-
nents. The literature on single participants at these electrodes
and time window suggests that it is when and where monitor-
ing our errors or feedback about our actions unravels (25, 47).
Similarly, when it comes to neural activity involved in action
monitoring in dyadic situations, the same activations play a
role (26, 27). If the error is committed by the participant
and can be inferred from his action (e.g. making a typo), the
brain component involved is called Error-related negativity,
with more negative activation for erroneous actions than cor-
rect ones (48). In case of behavior that needs feedback to un-
derstand the consequences of the action (for example, gam-
bling task), it is called Feedback related negativity (49). In
comparison to these classic, static, and passive experiments,
we had real-time collaboration between two participants, and
we observed similar component peaking around 200-300 ms
after the perturbation happened. Our participants were not
informed about the perturbations, so they could have been
treated as participants’ own or the partner’s error. There-
fore, we suggest that the neural activation we observe in our
study resembles classic components. Importantly, our results
do not only resemble previous research but contribute with
a new finding: robot partners modulate action monitoring.
This result is in line with the other EEG study comparing hu-
mans with robot partners (50). There is a crucial difference
between both studies: Participants in (50) study performed
a task sequentially (turn-taking), while in our study, partic-
ipants interacted with each other in real-life. Both studies
point in the same direction. Robot partners modulate neural
activity.

Our results suggest that robot partners can modulate neural
activity in a dyadic experiment. Our and (50) studies con-
tribute to our understanding of human cognition. Concerning
that there is not many studies that focused on neural under-
pinnings of human-robot interactions, the results we present
here have a value for research topics in the field of join-
action. They are a first exploratory step towards a theoretical
and methodological foundation. We showed the feasibility of
conducting a human-robot interaction study while measur-
ing EEG from the human participant. With full experimental
control, we explored neural correlations of human-robot in-
teractions in an ecologically valid setup (29, 51). There is
vast literature on the topic of joint actions between humans
and robot partners (52, 53). However, what was missing un-
til now, are neural indicators human-robot joint actions. Our
study shows that it is possible to conduct studies with non-
human agents collaborating with humans and measure brain
activity and that the neural basis of action monitoring is af-
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fected by the robot partner.

Lastly, we observed small differences between human and
robot partners at later time points (between 500-600 ms af-
ter the perturbation) around the midline electrodes. These
differences are difficult to interpret. The topography suggest
similar source as the component discussed above. However,
based on time we speculate it could be P3b component. (54)
reported similar component in study that investigated self and
other (human versus computer) generated actions in pianists.
They found that P3b component was present only for self
generated actions, suggesting greater monitoring of self gen-
erated actions. It is important to highlight that in our study,

participant had to dynamically perform the task, while in the
(54) study participants took turns to perform joint actions.
What is similar is that they had to generate actions to achieve
a common joint goal (12). It is possible that the late effect we
found in our experiment has the same function (greater mon-
itoring of self generated actions). However, in comparison
to the earlier effect (200-300 ms after the perturbation), the
size of the effect in our study is small. Therefore, we have to
be careful with interpretations. Future researcher with bigger
sample size can help to understand the function of late ERP
components in joint actions with robots.

Taken together, this study explored and described event-
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related potentials related to action monitoring in humans col-
laborating with other humans or robots. We used a dynamic
real-time collaborative task and found that around 200-300
ms after our actions are disturbed, our brain activity is mod-
ulated by the type of a partner. Our study shows the feasibil-
ity of conducting research on collaboration between human
and non human partners with EEG. Furthermore, results of
our study suggest that non-human partners modulate how we
perceive and evaluate joint actions.
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