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Abstract 13 

Microscopy image analysis has recently made enormous progress both in terms of accuracy and speed 14 

thanks  to  machine  learning methods.  This  greatly  facilitates  the  online  adaptation  of  microscopy 15 

experimental plans using real‐time information of the observed systems and their environments. Here 16 

we report MicroMator, an open and  flexible  software  for defining and driving  reactive microscopy 17 

experiments, and present applications to single‐cell control and single‐cell recombination. 18 

 19 

Introduction 20 

Software  for  microscopy  automation  are  essential  to  support  reproducible  high‐throughput 21 

microscopy experiments1. Samples can now be routinely imaged using complex spatial and temporal 22 

patterns. Yet, in the overwhelming majority of cases, executions of experiments are still cast in stone 23 

at the beginning, with little to no possibility for human or computer‐driven interventions during the 24 

experiments. This is all the more surprising given that image analysis has recently made a giant leap 25 

in  terms  of  accuracy  and  rapidity  thanks  to  deep  learning  methods,  thus  opening  the  way  for 26 

implementing  elaborate  protocols.  Software  empowering  microscopy  with  real‐time  adaptation 27 

capabilities is needed to exploit the full potential of automated microscopes. 28 

Several dedicated microscopy software solutions have been developed for applications requiring real‐29 

time  analysis.  This  is  notably  the  case  for  the  efficient  scanning of  large  and  complex microscopy 30 

samples (eg, Refs2–6). For other important applications, such as real‐time control of cellular processes 31 

(eg, Refs7–13), results are generally obtained using ad hoc software solutions. Very few generic tools 32 

have been developed so far to facilitate the realization of complex, reactive microscopy experiments. 33 

One notable exception is Pycro‐Manager14. This powerful framework is built on top of µManager, a 34 

widely‐used  software15,16  controlling  a  large  range  of  microscopy  hardware.  In  Pycro‐Manager, 35 

reactive  protocols  are  built  from  the  ground  up. Whereas  this  gives  maximal  flexibility,  this  also 36 

increases the difficulty to rapidly design experiments, especially for non‐expert users. Moreover, no 37 

in‐depth case studies demonstrating its practical applicability –and showing possible limitations– have 38 

been reported so far. One can also mention Cheetah, a simple to use Python library to support the 39 

development  of  real‐time  cybergenetic  control  platforms  that  combines  microscopy  imaging  and 40 

microfluidics  control17.  In  its  current  state,  the  possibilities  to  programmatically  control  the 41 

microscope appear limited.  42 
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MicroMator Software 43 

In  this  paper, we present MicroMator,  a  simple  software  solution  supporting  reactive microscopy 44 

experiments, and demonstrate its potential via two challenging case studies. In MicroMator, events 45 

play a fundamental role (Fig 1A). They consist of Triggers and Effects. They can be defined by the user 46 

in a flexible manner. Examples of triggers include "at the 10th frame", "if more than 100 cells are in 47 

the  field of view",  "if  the  fluorescence of  the 3rd newborn cell exceeds 100 a.u." and "if message 48 

!update  position=10  frame=last  is  received  from Discord".  Examples  of  effects  include  changing  a 49 

microscope  configuration,  sending  light  in  the  field  of  view  with  a  given  pattern,  actuating  a 50 

microfluidic pump, or starting an optimization routine. Microscopy experiments are defined by a main 51 

image acquisition loop, that serves as a backbone for the experiment, and by event creation functions 52 

(Fig 1B). Naturally, the main acquisition loop itself can be modified by event effects in the course of 53 

the experiment. MicroMator  is written  in Python 3,  is open‐source and has a modular design. For 54 

controlling hardware, MicroMator primarily uses the powerful Python API of µManager pymmcore, 55 

but can also use other dedicated Python or web‐based APIs provided by vendors, as done  for our 56 

CellAsic  ONIX  microfluidic  platform.  Various  types  of  analysis  can  be  performed  using  dedicated 57 

software  modules,  such  as  on‐line  image  analysis  or  real‐time  control  and  optimization. 58 

Communication modules can be used to interface MicroMator with digital distribution platforms such 59 

as Discord to track experiment progress and potential issues. Lastly, MicroMator leverages Python’s 60 

multiprocessing  module  to  perform  computations  concurrently  and  possesses  an  extensive  and 61 

customizable logging system, gathering logs of all modules in a unique file and fostering reproducible 62 

research (see SI Text).  63 

We  also  provide  SegMator,  a  software  which  uses  U‐Net  for  bright‐field  yeast  cell  segmentation 64 

(provided by DeLTA18), and tracking using TrackPy19. U‐Net is a convolutional neural network with a 65 

structure that excels at image segmentation20. U‐Net can analyze dense fields of cells in a few seconds 66 

and with good accuracy (see SI Text and Fig S1 and S2 and Movie S1).  67 

To  showcase  the  full  potential  of  reactive  experiments  performed with MicroMator, we  designed 68 

experiments  in  which  cellular  processes  are  controlled  in  real‐time.  Single‐cell  stimulations  are 69 

computed on line based on the cell state and/or position, demonstrating that reactive loops can be 70 

implemented at the level of individual cells. These experiments are inspired by previously‐published 71 

studies10,11,13,21 and show how these could be repeated and further extended using generic software.  72 

We  also  provide  a  tutorial  application  in  which  cells  with  fluorescent  proteins  are  imaged  with 73 

increasing durations such that the measured intensity reaches a given threshold (Supplementary Text 74 

1). This could typically be used to guarantee a good signal to noise ratio irrespectively of the initial 75 

fluorescence of the cells. 76 
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 77 
Figure 1. MicroMator overview. A. Modular software architecture. MicroMator consists of an extensible set of 78 
modules that control various hardware and software aspects of microscopy experiments and of a central core 79 
that handles user‐defined events. It is written in the high‐level programming language Python. B. Event‐based 80 
reactive microscopy workflow. Imaging can be followed by online analysis of the samples. This typically involves 81 
segmentation, tracking, quantification of cell properties, and possibly advanced additional computations. Effects 82 
may  then be  triggered based on  the  result  of  the analysis.  These may  include  the physical  actuation of  the 83 
hardware or the initiation of communications or of additional computations. 84 

Model predictive control of gene expression at the single‐cell level in yeast 85 

For our first application, we use the EL222 optogenetic system and the mScarletI fluorescent reporter 86 

to  engineer  light‐responsive  yeast  cells  (Fig  2A).  Using  real‐time  imaging,  segmentation  and  cell 87 

tracking, different cells can be stimulated differently in the field of view using a digital micromirror 88 

device  (DMD).  Our  goal  is  to  implement  different  model  predictive  control  (MPC)  strategies  for 89 

controlling  the  expression  levels  of  a  protein  in  a  cell  population.  The  cellular  response  of  our 90 

engineered cells was characterized for different light stimulation profiles in the same experiment (Fig 91 

2B). Only the most central part of the cell receives significant  light stimulation. This erosion of the 92 

stimulation region helps improving the precision of single‐cell light stimulations in dense cell regions 93 

because of illumination bleed‐through of DMD systems (see SI Text and Fig S4). We then developed 94 

and calibrated an "average cell" (deterministic) and a "single cell" (stochastic) model of light‐driven 95 

gene expression (SI Text and Fig S5, and S6). 96 

In  open  loop  control,  the  average  cell  model  is  used  to  precompute  a  temporal  pattern  of  light 97 

stimulation so that cells follow a target behavior. This light pattern is then applied to all cells in the 98 

field of view (Fig 2C and Movie S2). In closed loop population‐based control, the average cell model 99 

and the average of the measured fluorescence of cells are used by classical state estimators and model 100 

predictive controllers  to  compute  in  real‐time  the appropriate  light  stimulation  to drive  the mean 101 

fluorescence to its target (Fig 2D and Movie S3). Finally, in closed loop single‐cell control, a stochastic 102 

model of  gene expression and  single‐cell  fluorescence measurements  are used by  advanced  state 103 

estimators  and  controllers  to  compute  in  real‐time  the appropriate  light  stimulations  to drive  the 104 

fluorescence of each and every cell in the field of view to its target (Fig 2E and Movie S4). This control 105 

problem  is  quite  challenging  and  needs  to  be  solved  for  hundreds  of  cells  in  parallel.  Advanced 106 

methods for numerical simulation and state estimation were essential (see SI Text and Fig S7). 107 
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Defining control performance as the time averaged deviation to target, we found that the single‐cell 108 

control method leads to a modest reduction of error of the population averaged fluorescence but to 109 

a drastic improvement of the average error of the single‐cell fluorescence (Fig 2F). 110 

 111 
Figure 2. Control gene expression at the single cell level in yeast. A. The red fluorescent protein mScarletI is 112 
placed under the control of the  light‐responsive transcription  factor EL222. B. To efficiently characterize cell 113 
responses to light stimulations, cells in the field of view are partitioned in 3 groups, each group being stimulated 114 
with a different temporal profile. Bright‐field images are segmented and cells are tracked. Then, based on their 115 
groups, cells are stimulated during the appropriate time with eroded masks.   The  temporal evolution of the 116 
mean mScarletI fluorescence of the cells in the three groups is shown with envelopes indicating one standard 117 
deviation. C. Open‐loop control experiment in which a model of the response of the cell population is used to 118 
precompute a light stimulation profile that drives the cell population to the target behavior. The application of 119 
the light profile leads to significant deviations from the target of the individual cell trajectories. D. Closed‐loop 120 
control experiment in which the same model is used jointly with real‐time observations of the population state 121 
to decide which  light profile  to apply  to all  cells, using a receding horizon strategy. E. A stochastic model of 122 
individual cell response is used jointly with single‐cell observations to decide which light profile to apply to each 123 
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cell. F. The different strategies have similar performances to drive the mean fluorescence to its target, but the 124 
single‐cell feedback strategy is significantly better to drive individual cells to their target profiles. 125 

Patterns of recombined yeast cells 126 

For our second application, we constructed a light‐driven artificial recombination system in yeast and 127 

employed different light stimulation strategies to obtain various structures of recombined cells. 128 

We again used the EL222 optogenetic induction system but this time to drive the expression of the 129 

Cre recombinase. The Cre recombinase induces the expression of a fluorescent reporter, mCerulean, 130 

via  an  amplification  step  using  the ATAF1  transcription  factor  (Fig  3A &  3B).  This  strain  has  been 131 

designed as in Ref 22. 132 

Firstly,  we  applied  a  ring‐like  recombination  signal.  More  specifically,  every  cell  that  was  in  the 133 

designated zone at any moment  throughout  the experiment has been  targeted  for  recombination 134 

(Movie S5). As a result, we did obtain a ring‐like pattern of recombined cells (Fig 3C). Experimental 135 

and  biological  limitations  can  be  revealed  by  the  analysis  of  the  tails  of  the  distributions  of  the 136 

recombination  readout  (i.e.,  mCerulean  fluorescence)  within  the  cell  populations  (Fig  3C).  For 137 

example, we  found  that  some cells have been erroneously  targeted  for  recombination because of 138 

tracking issues, and that only a few cells have not shown the recombined phenotype at the end of the 139 

experiment despite having being effectively targeted for recombination (Fig 3C and S9). 140 

Secondly, we tried to create islets of recombined cells. To this end, we dynamically searched for cells 141 

that  were  far  from  any  previously‐targeted  cell,  and  targeted  these  cells  for  recombination.  To 142 

maximize the chances that the chosen cells do recombine, we tracked each chosen cell and targeted 143 

it repeatedly with light stimulations (Movie S4). Our strategy was effective in creating isolated micro‐144 

colonies of recombined cells (Fig 3D). Analysis of the lineage trees of targeted cells and non‐targeted 145 

cells confirmed that recombined cells have a slow growth phenotype. Previous works demonstrating 146 

optogenetically‐driven  recombination  use  static  masks  for  light  targeting21.  Obtaining  single‐cell 147 

resolution as demonstrated  in Fig 3D necessitates real‐time  image analysis and the use of reactive 148 

software. 149 
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 150 
Figure 3. Patterns of recombined yeast cells. A. Upon  light exposure, the Cre recombinase  is expressed and 151 
triggers recombination, leading to the expression of ATAF1 and then of mCerulean‐Far1M. Stars indicate nuclear 152 
localization of the protein. B. Targeted cells are stimulated for 1 second every 6 minutes until the end of the 153 
experiment. Fluorescence levels emitted by targeted cells can be recorded. At the end of the experiment, all 154 
cells are imaged and a recombined or non‐recombined phenotype is attributed. C. A ring‐like region in the field 155 
of view is selected at the beginning of the experiment and all cells entering the designated region at some time 156 
point  are  targeted  for  recombination.  The distributions  of  the  fluorescence  levels  of  the  targeted  and  non‐157 
targeted cells can be computed at the end of the experiment. The vast majority of cells present the expected 158 
phenotype and outliers can be further analyzed. D. Cells are dynamically selected such that no target cells are 159 
close to each other. Cell lineages of targeted and non‐targeted cells can be manually reconstructed and statistics 160 
can be extracted. 161 

Discussion 162 

We  presented  MicroMator  together  with  two  challenging  applications  demonstrating  how  this 163 

software can help using automated microscopy platforms to their full potential. Each application goes 164 

beyond the state of the art. We showed the first demonstration of control of protein expression at 165 

the  single  cell  level  in  dense  field  of  cells.  This  requires  to  jointly  solve  two  challenges,  namely 166 

obtaining  sufficiently precise  single‐cell  stimulations with DMDs and segmenting and  tracking cells 167 
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with  sufficient  accuracy  over  extended  durations. We  also  provide  the  first  demonstration  of  cell 168 

recombination targeted at the single‐cell level, enabling single‐cell resolution patterns. In comparison 169 

with Pycro‐Manager, MicroMator uses the Micro‐Manager GUI to create a main acquisition backbone 170 

for  the experiment and reactive events are then used to enhance or even dynamically modify this 171 

initial  plan.  Events  are  created  by  default  as  separated  threads  and  an  extended  logging  system 172 

gathers  messages  from  all  modules  that  might  be  running  in  parallel.  This  structure  provides 173 

robustness to real‐time issues and facilitates error identification, two critical aspects for developing 174 

long and complex experiments.  175 

Yet, we  foresee  that  reactiveness  in microscopy will  primarily be used  to enhance  and  automate 176 

classical experiments. Examples of simple use cases abound: triggering autofocus only when needed, 177 

dynamically  adjusting  the  imaging  condition  to  the  signal  strength,  identifying  novel  regions  of 178 

interest,  or  following  the  course of  experiments  via  easily  accessible  online  services  (e.g. warning 179 

messages sent on Discord), to provide but a few examples. Thanks to its modular nature and to its use 180 

of a simple but powerful event system, MicroMator capacities can be conveniently expanded to drive 181 

novel  hardware  or  perform  a wide  range  of  analyses. MicroMator  is  a  relatively  simple  software 182 

extension  that  significantly  empowers  laboratory  equipment  that  is  present  in  most  quantitative 183 

biology laboratory worldwide.  184 

Methods 185 

Software and data availability 186 
MicroMator  is  an  open‐source  software.  It  contains  a  core  part  and  an  extensible  list  of  modules.  The 187 
MicroMator core manages the user‐specified events and also the metadata and logging system. The current list 188 
of modules  includes a Microscope Controller module, an  Image Analysis module, a Model Predictive Control 189 
module, and a Discord Bot module. The Microscope Controller module is an interface with the Python wrapper 190 
for MicroManager pymmcore. The Image Analysis module uses deep learning methods to segment yeast cells 191 
from bright‐field images. It also uses an efficient algorithm for cell tracking. This module is also available as a 192 
standalone tool called SegMator. The Model Predictive Control module implements state estimation and model 193 
predictive control routines for deterministic and stochastic systems, at either the population or single‐cell level. 194 
The Discord Bot module uses a web app running on the microscope's computer and connected to the Discord 195 
communication system. 196 

MicroMator, SegMator, event definitions for representative experiments (Fig 2E and S4), and data analysis code 197 
for the experiments (Fig 2E, 3D, and S4), as well as a tutorial example (Supplementary Text 1), can be found 198 
online: https://gitlab.inria.fr/InBio/Public/micromator. Raw and processed data for Fig 2C‐E, 3C‐D, and S4 are 199 
freely available on the zenodo repository: https://doi.org/10.5281/zenodo.4616659 (45GB). 200 

Supplementary movies 201 
 Movie S1: real‐time_segmentation_and_tracking_with_SegMator.mov. Time‐lapse movie showing the real‐202 

time segmentation and tracking quality obtained with SegMator. Left: bright‐field image. Right: bright‐field 203 
image overlaid with segmentation mask in cyan.  204 

 Movie  S2:  optogenetic_control_of_gene_expression‐Open_loop.mov.  Time‐lapse  movie  showing  the 205 
response of the cells (mScarletI fluorescence) in an open‐loop control experiment. Corresponds to Fig. 2C. 206 

 Movie  S3:  optogenetic_control_of_gene_expression‐Population_closed_loop.mov.  Time‐lapse  movie 207 
showing the response of the cells (mScarletI fluorescence) in a population closed‐loop control experiment. 208 
Corresponds to Fig. 2D. 209 

 Movie  S4:  optogenetic_control_of_gene_expression‐Single_cell_closed_loop.mov.  Time‐lapse  movie 210 
showing the response of the cells (mScarletI fluorescence) in a single‐cell closed‐loop control experiment. 211 
Corresponds to Fig. 2E. 212 

 Movie S5: single_cell_recombination‐Islets.mov. Time‐lapse movie showing the light signal sent to cells in 213 
order to create small islets of recombined cells. Corresponds to Fig 3C. 214 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.03.12.435206doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.435206
http://creativecommons.org/licenses/by/4.0/


 

8 
 

 Movie S6: single_cell_recombination‐Ring.mov. (Left) Time‐lapse movie showing the light signal sent to cells 215 
in order to recombine all cells that have been at one moment in a ring‐like pattern. (Right) Image showing 216 
the recombined state of the cells at the end of the experiment. Corresponds to Fig 3D. 217 

Genetic constructions and yeast strains 218 
All  plasmids  and  strains were  constructed  using  the  Yeast  Tool  Kit,  a modular  cloning  framework  for  yeast 219 
synthetic biology23, the common laboratory strain BY4741 (Euroscarf), and the EL222 optogenetic system24. The 220 
light responsive strain (IB44) harbors a constitutively expressed EL222 light‐responsive transcription factor (NLS‐221 
VP16AD‐EL222)  and  an EL222‐responsive promoter  (5xBS‐CYC180pr)  driving  the  expression of  the mScarletI 222 
protein. The IB44 strain genotype is MATa his3Δ1 leu2Δ0::5xBS‐CYC180pr‐mScarletI‐Leu2 met15Δ0 ura3Δ::NLS‐223 
VP16AD‐EL222‐URA3. The recombining strain (IB237) harbors a constitutively expressed EL222 light‐responsive 224 
transcription factor (NLS‐VP16AD‐EL222) floxed between two LoxP sites that upon recombination expresses the 225 
ATAF1 transcription factor. This factor expresses (pATAF1_4x) in turn the mCerulean fluorescent protein fused 226 
to a constitutively active Far1 protein (FAR1M_mCerulean). Lastly, the strain also harbors the Cre recombinase 227 
placed under the control of an EL222‐responsive promoter (5BS‐Gal1pr). The  IB237 strain genotype  is MATa 228 
his3Δ1::pATAF1_4x‐FAR1M_mCerulean‐tDIT1‐HIS3  leu2Δ::5BS‐Gal1pr‐CRE‐tENO1‐LEU2  met15Δ0  ura3Δ:: 229 
pTDH3‐LoxP‐NLS‐VP16AD‐EL222‐tENO1‐LoxP‐ATAF1‐tTDH1‐URA3.  Lastly,  we  also  used  the  IB84  strain  as  a 230 
constitutive  3‐color  strain  to  characterize  DMD  precision.  The  genotype  of  this  strain  is  MATa  his3Δ1 231 
leu2Δ0::pTDH3‐mCerulean‐tTDH1‐pTDH3‐NeonGreen‐tTDH1‐pTDH3‐mScarlet‐tTDH1‐LEU2  met15Δ0  ura3Δ:: 232 
NLS‐VP16AD‐EL222‐URA3.  233 

Culture preparation 234 

Cells were grown at 30°C in synthetic medium (SD) consisting of 2% glucose, low fluorescence yeast nitrogen 235 
base  (Formedium CYN6510), and complete supplement mixture of amino acids and nucleotides (Formedium 236 
DCS0019). For each experiment,  cells were grown overnight  in SC media at 30°C,  then diluted 50  times and 237 
grown for 4 to 5 hours before being loaded in microfluidic plates. 238 

Microscopy setup, microfluidics and imaging 239 
Images were  taken under  a  Leica DMi8  inverted microscope  (Leica Microsystems) with  a  ×63 oil‐immersion 240 
objective  (HC PL APO), an  LTM200 V3  scanning  stage, and an  sCMOS camera  Zyla  4.2  (ANDOR). Bright‐field 241 
images were acquired using a 12V LED light source from Leica Microsystems. Fluorescence images were acquired 242 
using  a  pE‐4000  light  source  from  CoolLED  and  the  following  filter  cubes:  EX:436/20nm  DM:455nm 243 
EM:480/40nm  (CFP),  EX:500/20nm  DM:515nm  EM:535/30nm  (YFP),  and  EX:546/10nm  DM:560nm 244 
EM:585/40nm (RHOD) from Leica Microsystems. Light stimulation was performed using the pE‐4000 light source 245 
and  the  CFP  filter.  Spatially‐resolved  illuminations  were  obtained  thanks  to  a  digital  mirror  device  (DMD) 246 
reflecting the light of a pE‐4000 light source. We used a MOSAIC3 DMD from ANDOR. The device is used both 247 
for targeted fluorescence imaging and for optogenetic stimulations.  A CellASIC ONIX2 system (Merck) was used 248 
together  with  the  Y04C  CellASIC  microfluidic  plates  to  grow  yeast  cells  in  monolayers.  Media  flow  was 249 
maintained by a 7.5 kPa pressure gradient. The media was the same as for pre‐culture. The temperature was 250 
maintained at 30 °C by an opaque environmental box and a temperature controller 2000‐2, both from PECON. 251 
The microscope was operated using MicroMator. 252 

Model predictive control of gene expression 253 
To compare single‐cell and population control strategies, we developed stochastic and deterministic models of 254 
gene expression. Both have been calibrated with  respect  to  the dataset presented  in  Fig 2B and Fig S5.  For 255 
population control, we used the deterministic model, assumed Gaussian measurement noise and used a Kalman 256 
filter for state estimation. Each model assumes a deterministic delay between the time the light signal is applied 257 
and the time protein production is effective. For MPC, fluorescence measurements were taken every 6 minutes 258 
and we considered receding time horizons of 24 minutes. The controller explores the set of  light stimulation 259 
profiles in which a 1000ms light stimulation is either applied or not for each measurement time interval, and 260 
selects the profile minimizing mean square deviations. For tracking purposes, brightfield measurements were 261 
taken every 3 minutes. For single‐cell control, we used the stochastic model and simulated the cell behavior 262 
using a  finite state projection approximation. For each and every cell, state estimation  is performed using a 263 
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Bayesian approach which conditions the probability distribution for each cell on the most recent measurement, 264 
and  light  stimulation  profiles  are  selected  using  the  approach  outlined  above  and  the  expected  absolute 265 
deviation as selection criterion. More information is provided in SI Text. Box plots of Figure 2F indicate the lower 266 
quartile, the median, and the upper quartile of the data, with the whiskers corresponding to 1.5 interquartile 267 
ranges. 268 
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