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ABSTRACT

Super enhancers (SEs) are broad enhancer domains usually containing multiple constituent
enhancers that hold elevated activities in gene regulation. Disruption in one or more constituent
enhancers causes aberrant SE activities that lead to gene dysregulation in diseases. To quantify
SE aberrations, differential analysis is performed to compare SE activities between cell conditions.
The state-of-art strategy in estimating differential SEs relies on overall activities and neglect the
changes in length and structure of SEs. Here, we propose a novel computational method to
identify differential SEs by weighting the combinatorial effects of constituent-enhancer activities
and locations (i.e., internal dynamics). In addition to overall activity changes, our method identified
four novel classes of differential SEs with distinct enhancer structural alterations. We demonstrate
that these structure alterations hold distinct regulatory impact, such as regulating different number
of genes and modulating gene expression with different strengths, highlighting the differentiated
regulatory roles of these unexplored SE features. When compared to the existing method, our
method showed improved identification of differential SEs that were linked to better discernment
of cell-type-specific SE activity and functional interpretation. We implement an R package, DASE,

to facilitate the use of our method.
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INTRODUCTION

Super enhancers (SEs) were proposed as broad regulatory domains on genome, usually
spanning a minimum of thousands of base pairs and consisting of multiple constituent enhancers
(CEs) (1). The CEs work together as a unit, instead of separately, to facilitate high enhancer
activity, observed as dense enrichment of cell master regulators, coactivators, mediators and
chromatin factors at SEs (2). These characteristics were further demonstrated by the fact that,
distinct from regular enhancers, SE is specifically linked to gene regulation associated with cell

identity and disease mechanisms (3,4).

Recent studies further showed that, beyond the elevated activity, the internal mechanics of SEs
also paly critical roles in defining their prominent roles in gene regulation, known as multi-promoter
targeting and long-range interactions (5-8). Some SEs form a clear hierarchical structure where
hub CEs are responsible for the functional and structural organization of the whole SEs (6,9).
Other SEs, in contrary, receive relative balanced contribution from the CEs. In addition, CEs could
establish an open chromatin interaction network within individual SEs (7), indicating the internal

crosstalk across CEs in orchestrating SEs’ unique functions.

The activity and relations of individual CEs were well appreciated during computational
identification of SEs. Existing algorithms usually contain two processing steps (2,10). First, the
activity and locations of genome-wide enhancers are inferred through peak detection using
chromatin immunoprecipitation sequencing (ChlP-seq) data (11), particularly that measuring the
binding of mediators, master regulators, or active histone mark H3K27Ac. Second, the inferred
activity and locations are summarized linearly to prioritize broad enhancer regions (2,3), i.e., SEs,

that contain densely enriched enhancers with high activities, i.e., the CEs.
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However, the organization of CEs were not considered by current approaches in differential
analysis of SEs, a key aspect of research interest when comparing across biological conditions
(12-16). The alteration of SEs has been found to be highly associated with disease dysregulation
and could be used for drug target identification (14-16). These approaches, in which SEs are
treated as individual entities, usually identify differential SEs based on binary strategy, which
compares the presence and absence of SEs between biological conditions, neglecting the
constituent enhancer statuses. Consequently, differential SEs are generated largely depending
on the parameters that algorithms utilized to detect super enhancers (2,3). In addition, the
sensitivity to detect changes in the local enhancer organization are downplayed within the broad

genomic regions occupied by SEs.

Here, we propose a novel computational method to identify differential SEs by summarizing the
combinatorial effects of constituent-enhancer activities and locations. In addition to overall activity
changes, our method detects four extra differential categories specifically pointing to the internal
structural alterations of SEs. We demonstrate the unique characteristics of these differential SE
categories using public datasets by linking their altered activity to TF binding and gene expression
with 3D chromatin interactions (17-19). The results indicate that each SE category regulates
distinct sets of gene targets and their expression. Further, we show that our method maximizes
the discernment of cell identities when comparing SE profiles of cell lines from the same cancer
type. Our method provides sensitive and biologically meaningful identification of differential SEs,
which complements existing understanding of SE dynamics. We implemented an R package,

DASE (Differential Analysis of Super Enhancers: https://github.com/tenglab/DASE), to facilitate

the use of our method.
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RESULTS

Internal dynamics underlie genome-wide SE differences

SEs usually contain multiple constituent enhancers (CEs) located in close genomic proximity
along the genome (2,20). It is important to understand the roles of CEs in contributing to the SE
lineage-specificity. We explored the SE profiles for six cancer cell types (Figure 1 and Methods)
using ChIP-seq data of H3K27Ac histone modification from ENCODE project (21). We found that
CEs within the same SEs could alter differently across cell types. For example, the CEs, located
at two previous reported SE loci responsible for MYC regulation in multiple cancers (22-25),
showed divergent activity patterns across the six cell types (Figure 1a). We term such divergent
alterations between CEs as the internal dynamics of SEs, which underline the individual CE

effects on determining the cell-type-specific SE activity.

We then performed pair-wise comparisons of SE profiles across the six cancer cell types. On
average, over 40% of CEs showed significant differential activity (fold-change > 4 and g-value <
0.05) that accounts for over 80% of total SEs in these cell types (Figure 1b). This indicates that
SEs undergo frequent internal alterations across cell types. We further estimated how the
alteration of CEs contributed to the overall differences of SEs. Here, we identified differential SEs
between cancer cell types using the presence/absence (binary) strategy. A small portion of SEs
(~10%) with significantly altered CEs didn’t show overall differences, while the majority of SEs
changed in the same directions as their altered CEs (Figure 1b). This implies the divergent

influences of CEs on the overall differential statuses of SEs genome-widely.

Next, we examined the characteristics of CEs that might affect their contribution to the overall SE
differences. Not surprisingly, the spanning width and regulatory activity of CEs, indicated by
H3K27Ac ChlP-seq coverage, showed significant associations with overall SE differences

(Figure 1c-d). In brief, differential CEs with smaller width or lower activity presented less impacts
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on the overall statuses of their corresponding SEs. Therefore, we built a model to summarize SE

internal dynamics by accounting for these characteristics.

Modeling internal dynamics leads to distinct patterns of differential SEs

We developed a weighted spline model, implemented as an R package DASE, to summarize the
internal dynamics into the overall differential statuses of SEs (Figure 2 and Methods). In brief,
differential CEs were first evaluated using existing strategies on detecting differential ChIP-seq
peaks (26). Then, a spline was fitted, stratified by enhancer positions, to smooth the differential
signals for consecutive CEs. In the smoothing, the activities and width of CEs were taken as fitting
weights. Finally, the spline curves were evaluated with permutations to determine reliable
differential sub-regions within the SEs, which were further summarized towards the overall

differential statuses of SEs.

To illustrate the utility of DASE, we compared SE profiles between two cancer cell lines, K562
and MCF7. These two cell lines have high-quality annotation datasets on ENCODE data portal,
including transcription factor binding, 3D chromatin interactions and gene expression, to help
evaluate the identified differential SEs. DASE detected an overall-change as well as four novel
patterns of differential SEs highlighting the structural alterations within SEs, denoted as shortened,
shifted, hollowed and other complex scenarios, separately (Figure 2). Overall-change SEs
represent significant overall activity alterations (as captured by the binary strategy) as well as
consistent altering behavior among CEs. (Figure 2a). Shortened SEs have significant changes
in their sizes by gaining or dismissing CEs on one or both ends of the SEs (Figure 2b). Shifted
SEs have migrated genomic locations without significant size changes (i.e., CEs gained on one
end of the SEs and dismissed on the other end) (Figure 2c). Hollowed SEs represent those with
altered CEs in the middle while the two ends remain intact (Figure 2d). Other complex scenario

SEs represent all other complicated or rare cases (Supplementary Figure 1). Examples of SE
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structural alterations reveal that structural differences do not necessarily accompany overall
activity differences (Figure 2a-d). Together, they provide novel insights to understand SE
dynamics between cell conditions. In addition, we note that marginal activity differences that were
over-claimed as differential SEs by the binary strategy could be properly corrected by DASE

(Figure 2e).

In total, about 52% of the differential SEs showed overall-change between K562 and MCF7,
reflecting the distinct chromatin structure underlying each cancer type (Supplementary Figure
2). Shortened SEs dominated among all types of structural differences (65%), indicating the wide
spreading of SE size changes. The other types of structural differences, although not prevailing,
represent the diverse dynamics of SE profiles responsible for cell-type-specific gene regulation.
We show that those structural differences consistently present in comparisons across more

cancer cell types in later sections.

Diverse differential SEs synergistically build up gene regulation

We further characterized the functional roles of the differential SE patterns in gene regulation.
SEs are usually enriched with various transcriptional regulators and cofactors (8), which play
critical roles in supporting SE interactions with gene targets (Figure 3a). We examined the protein
binding profiles across the differential SE patterns. In total, we analyzed 78 transcription factors
that have ChlIP-seq data available for K562 and MCF7 cell lines by ENCODE project.
Transcription factors showed a high correlation with CE activities (Figure 3b and Supplementary
Figure 3), regardless of the differential patterns of the corresponding SEs (Supplementary
Figure 4), suggesting different patterns of SE alterations share similar mechanisms in recruiting
transcription factors. Among these transcription factors, two clear modes of enrichment were
identified (Figure 3b and Supplementary Figure 3): 1) those enriched at active CEs in both K562

and MCF7 cell lines (e.g., MBD2), suggesting that these transcription factors are involved in
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maintaining key cell functions; 2) those enriched at active CEs in only one cell type but not the
other (e.g., NFRKB and FOXA1), indicating their roles in cell-type-specific gene regulation. This
suggests different types of SE alterations are involved in both cell-type-specific and

housekeeping-related regulation.

Beyond transcription factor binding, we examined the downstream effects of SE alterations on
gene expression. We identified SE target genes in each cell type using 3D chromatin interactions
based on POLR2A targeted ChIA-PET data. As expected, the gained CEs usually establish new
gene targets, while the dismissed CEs remove existing targets (Figure 3c). Consequently, SEs
with increased activity (e.g., strengthened or lengthened with gained CEs) in one cell type usually
target more genes compared to their altered forms (e.g., weakened or shortened with dismissed
CEs) in the other cell type (Figure 3d). Interestingly, we observed that such effects differed across
the differential SE patterns, with heavier effects presented by overall-change, shortened and
hollowed SEs, and nearly no effects by shifted SEs. The marginal effects by shifted SEs are
expected as they provide no signs of the altering directions of SE activities. Here, to minimize the
sequencing coverage effects on gene target counting with ChlA-PET data, we normalized the
count differences by subtracting the median count difference (i.e., 1) of the control SE group (i.e.,

the non-differential SEs).

Differential analysis of gene expression between K562 and MCF7 cell lines indicated that the
gained CEs between the two cell types were significantly associated with upregulated gene
expression (Figure 3e). A similar association was also observed at the SE level, with increased
SE activity presenting higher amplification on gene expression (Figure 3f). Again, overall-change
and shortened SEs showed higher regulatory effects, while shifted SEs presented nearly no

effects. Here, hollowed SEs showed no impact on gene expression, indicating their functions
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might be limited to maintaining the proper number of gene targets (Figure 3d). As a control, we

observed no significant effects on gene expression by the non-differential SEs (Figure 3f).

We then performed pathway enrichment analysis on genes linked by different types of SE
alterations. The majority of genes (~75%) are linked by only one type of differential SEs (Figure
3g), with the overall-change and shortened SEs linked with the most and comparable number of
genes. We focused on these genes linked by only one type of SEs and identified distinct sets of
signaling pathways uniquely associated with each type of differential SEs (Figure 3h). For
instance, FoxO Signaling Pathway (27-29), cAMP Signaling Pathway (30), and AMPK signaling
pathway (31) are enriched with genes linked to overall-change, shortened, and hollowed SEs,
respectively. In summary, different patterns of SE alterations synergistically build up gene

regulation by playing distinct roles in modulating gene expression and cellular functions.

Accounting for internal dynamics improves identification and interpretation of differential
SEs

Besides the characterization of SE structural alterations, DASE presents an overall improvement
on differential SE identification over the existing binary strategy (12-16). We summarized the
improvements based on pair-wise comparisons across the six cancer cell types. These cells have
H3K27Ac ChIP-seq, 3D chromatin interaction, and gene expression data available which enable
the functional assessment on targeting gene expression. On average, the discrepant identification
between DASE and the binary strategy accounts for ~18% of the total SEs and covers all patterns
of SE alterations (Figure 4a). Most newly identified differential SEs by DASE have structural
alterations (~91%). Among all discrepant differential SEs, the overall-change SEs newly identified
by DASE showed the strongest impact on altering the numbers and expression of the gene targets
(Figure 4b), suggesting they were falsely identified as non-differential by the binary strategy. The

other newly identified SEs by DASE presented relatively higher gene effects compared to the
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differential SEs only identified by the binary strategy (Figure 4b), suggesting the overall improved
sensitivity and specificity by the DASE identification. Here, we didn’t assess the shifted and other
complex scenario SEs in this analysis as they provided no signs of the altering direction for gene
expression. To avoid confounding effects from genes targeted by multiple SEs, we left out genes

that were also linked by the common differential or non-differential SEs in the analysis.

We further evaluated DASE by gene functions linked to the differential SEs. We identified cell-
type-specific regulated genes that were linked to the SEs with increased activity (i.e., overall
increased, lengthened, or hollowed with increased CEs) in one cancer cell type compared to the
other five cell types. We then compared the obtained gene list between DASE and the binary
strategy. Surprisingly, DASE recovered nearly all the cell-type-specific regulated genes by the
binary strategy and found additional genes mainly linked to the SE structural alterations (Figure
4c). We examined the pathways enriched in these additionally identified genes and found a
number of cancer-type-specific pathways, indicating the cancer-specific roles of the novel
structural alterations (Figure 4d). For example, Insulin Signaling Pathway (32), ErbB Signaling
Pathway (33), Thyroid Hormone Signaling Pathway (34), TGF-beta Signaling Pathway (35), NF-
kappa B signaling pathway (36), and Neurotrophin Signaling Pathway (37), linked to SEs that
DASE uniquely identified in A549, HCT116, HepG2, K562, MCF7 and SK-N-SH, respectively. In
summary, DASE showed improved sensitivity in linking differential SEs to cancer-specific

regulation, particularly through the consideration of internal structural alterations.

Accounting for internal dynamics maximize the discerning of cell identity
Given the improved sensitivity in the cross-cancer analysis above, we further evaluate DASE by
within-cancer comparison. We applied DASE to compare SE profiles between two similar cancer

cell lines, BC1 and BC3, that are B lymphocyte cells derived from Lymphoma under different viral
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infections. We previously demonstrated that different viral infections led to a distinct enhancer

connectome on these cell lines (16).

Overall, the two similar cell lines presented much higher similarity of SE profiles (Figure 5a). We
linked the differential SEs to their target genes using chromatin interactions identified by H3K27Ac
HiChIP datasets. Similar gene effect patterns were observed across differential SE patterns, as
we found previously (Figure 3c-f). The linked genes were enriched in both frequency and
expression in the same direction as CEs/SEs altering between BC1 and BC3 cell lines (Figure
5b-e). Specifically, such effects are stronger by overall-change SEs, followed by shortened SEs,
consistent with the findings in cross-cancer analysis (Figure 3c-f). Finally, we extracted the
uniquely linked genes by the differential SE patterns (Figure 5f) and performed pathway
enrichment analysis. We found unique pathways such as Viral Carcinogenesis particularly linked
to the shortened SEs (Figure 5g). This suggests shortened SEs play key roles in gene
dysregulation in response to the different viral carcinogenesis between BC1 and BC3 cell lines
(38,39). Therefore, by accounting for the SE internal dynamics, we found that cell-line-specific
gene regulation linked to differential SEs, particularly those with structural alterations, highlighting
the differentiated roles of SE categories and the importance of featuring internal dynamics in SE

differential analysis.

DISCUSSION

In this manuscript, we proposed a novel computational method DASE to identify differential SEs
by summarizing the internal dynamics. We categorized differential SEs into five major groups
based on their overall activity and structural alterations: overall-change, shortened, hollowed,
shifted, and others. By assessing differential SEs with the enriched transcription factors and linked
target genes, we found distinct characteristics associated with different groups of SEs, such as

linking with different numbers of genes and affecting gene expression at divergent impact. When
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compared with the widely adapted binary approach, DASE found an improved list of differential
SEs which are linked to distinct cancer-specific gene functions. This highlighted the elevated
performance by DASE identification. It further demonstrated the increased power in identifying

cell-line-specific SE regulation when applied to similar cell lines.

Specifically, our improved performance is powered by the consideration of SE internal dynamics.
For instance, SEs might show frequent internal alterations yet with no overall activity changes, as
shown in our study. These differences, however, if not accounted for, could under-estimate the
genome-wide variation of SE profiles and consequentially bias the evaluation of SE effects on
gene regulation. On the other side, significant activity changes of SEs are usually combined with
structural alterations, either globally or partially, indicating modeling structural differences won’t
lose specificity in detecting true SE differences. However, we did notice that some SEs hold
marginal activity changes which were weighted differently as discrepant calls between the binary
strategy and our methods. Nevertheless, these SEs usually showed lower effects on gene
expression compared to other differential SEs. Especially, those discrepant differential SEs could
regulate genes in alternative way by altering the number of linked gene targets if they present

significant structural alterations.

One limitation of our methods is that we cannot identify structural differences when a SE contains
only one CE. We proposed a weighted spline model to account for the contribution of CEs by their
width and activities. Thus, the model requires at least two CEs within a SE to generate a confident
estimation. In practice, we identified SEs with only one CE as either non-differentials or overall-
change if their activities are significantly altered. In addition, we identified differential SEs as other
complex scenarios if their internal patterns cannot be attributed to all other categories. We
detailed this in the Methods section. In practice, we found this category only accounts for a small

portion of SEs (Figure 5a). We leave a closer interpretation of such complexity to future work.
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SEs were conceptionally defined based on the intensity and enrichment of consecutive enhancers
(2,3). As a result, significant changes of SEs may correspond to two scenarios: activity changing
between two SEs or status transitions between SEs and regular enhancers. These scenarios may
associate with different functional interpretations since regular enhancers tend to regulate less
and closer genes compared to SEs. Although we didn’t provide approaches to discriminate the
two scenarios as that goes beyond the scope of our proposed study, feasible strategies could be
implemented in future work to improve the downstream interpretation. For instance, scanning the
distances between SEs and gene promoters could help filter regular enhancers as they are
usually close to their gene targets (40,41). Also, SE alterations can be linked to the status changes
of local chromatin, such as phase separation (42), to help determine if transitions occur between
SE and regular enhancers. These require the integration of additional datasets to define

chromatin statuses.

MATERIALS AND METHODS

Data acquisition

H3K27ac enrichment, gene expression and 3D interaction data were downloaded from ENCODE
data portal (43) and GEO repositories (44). Specifically, quality-controlled alignment files of
H3K27Ac ChIP-seq and RNA-seq, and chromatin contacts files of POLR2A ChIA-PET were
downloaded from ENCODE for six selected cancer cell lines (A549 - Lung Cancer, HCT116 -

Colorectal Cancer, HepG2 - Liver Cancer, K562 - Leukemia, MCF7 — Breast Cancer, and SK-N-

SH - Neuroblastoma) (accession ID documented in Supplementary Table 1). Raw sequencing
files of H3K27ac ChIP-seq, RNA-seq and H3K27ac HiChIP for BC1 and BC3 cell lines were
downloaded from GEO with accession IDs GSE136090 (16) & GSE114791 (45) (Supplementary

Table 1).
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H3K27Ac ChiP-seq data pre-processing

Raw ChlIP-seq data from GEO was first aligned to human genome using Bowtie2 (46). Then, all
alignment files were processed for peak calling using MACS2 (11), followed by SE detection using
ROSE (2). All tools were applied with default parameters. ChlP-seq blacklist regions were

excluded for downstream analysis (47).

RNA-seq data analysis

RNA-seq alignment files downloaded from ENCODE were quantified for gene expression using
featureCount (48) based on GENCODE annotations. Raw FASTQ files from GEO were processed
with semi-alignment and quantification tool Salmon (49) to generate gene expression count table
based on GENCODE transcriptome. Then, differential analysis of gene expression was estimated
using DESeqg2 (50) for all two-condition comparisons. The shrunk fold-changes were extracted to

represent gene expression differences (51).

3D chromatin contacts analysis

The chromatin contacts generated by ENCODE project from POLR2A ChIA-PET data were
directly adapted to link genes and super enhancers for ENCODE cancer cell lines. Basically,
ENCODE project applied strict quality controls, and filtered confident chromatin contacts with at
least 3 normalized interactions (52). H3K27Ac HiChlIP data of BC1 and BC3 cell lines are
analyzed the same as previously described (16). In brief, reads were aligned to human genome
using HiC-Pro (53). Sequencing replicates were merged to call chromatin contacts using hichipper

(54) with confident interactions defined as at least 3 normalized interactions.

Differential analysis of CEs and binary SE differences
For each comparison between two cell lines that both have two ChIP-seq replicates, a uniform

peak list was first created by merging overlapped peaks across the compared samples. ChlP-seq
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reads were then quantified using featureCount (48) to generate a read count table for the peak
list. Differential peak analysis was performed by adapting DESeq2 (50) (with parameter
type=‘mean’) to account for the varied dispersion between peaks with low and high read counts.
The differential statuses of CEs (H3K27Ac peaks within SEs) were extracted based on their
estimated log2 fold-changes and corresponding g-values. We also extracted the normalized

coverage for CEs as the weight inputs for SE differential analysis.

Binary SE differences were estimated based on the presence and absence of SEs between
compared conditions. Basically, if a SE presents in both compared conditions at the same given
location regardless size or activity changes, it will be identified as non-differential. In contrast, if a

SE only presents in one condition at a given location, it will be identified as differential.

Modeling differential SEs with SE internal dynamics by DASE
DASE identifies differential SEs by accounting for the combinatorial effects of CEs weighted with
their activities and locations. In detail, the methods include the following steps (Supplementary

Figure 5).

Input preparation. A uniform list of SEs is generated by merging overlapped SEs between
compared conditions. The differential statuses (log2 fold-change) of all CEs located within SEs
are extracted as well as their activities (ChlP-seq coverage) and locations (genomic coordinates),
as calculated above. In practice, we select the maximum ChlIP-seq coverage between compared

conditions for each CE to provide better weights in the spline model below.

Weighted spline model. For each SE, the log2 fold-change values of CEs stratified by their
genomic locations are fitted using b-spline model, where the importance of CEs is weighted by

their relative activities. As a result, CEs show less impacts on the spline fitting if they have low
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activities and stay close to other CEs. We implement the spline model using R package splines.
In addition, to ensure the robustness of b-splines in the case of too many low- or mild-activity CEs,
we pre-estimate the degree of freedom for each fitting based on the number of top ranked CEs in
each SEs. We choose top ranked CEs as the minimum number of enhancers that build up at least
95% of total SE activity. In detail, we set the degree of freedom of b-spline as 2, 3 and 4 if this

number of top ranked CEs is less than 4, between 4-6, and larger than 6, respectively.

Significance estimation. We use permutations to define significant fitted values by b-spline. In
brief, we randomly shuffle enhance activities in each compared sample, re-estimate the
differential statuses of all CEs and re-fit splines for all SEs. As a result, we generate a null
distribution of fitted b-spline values for all CEs. We repeat the processes 10 times for a stable null
distribution. Significant fitted values are defined as those having greater or smaller values than
the upper or lower inflection points (significant thresholds) of the null distribution (Supplementary

Figure 5).

Status summarization for SE sub-regions. We divide each SE into multiple sub-regions using the
intersects of b-spline curves and the significant thresholds (Figure 2). For instance, the curve
located above the upper threshold indicates an up-altered partial region within the SE, while the
curve located below the lower threshold indicates a down-altered partial region. The curves in
between indicate non-altered SE sub-regions. To decrease potential noises in SE segmentation,

we ignore sub-regions in which CEs account for less than 1% of the SE activities.

Overall differential status. We further summarize the overall differential statuses for SEs with
heuristic approaches based on the statuses, locations, and activity occupancies (i.e., the
percentage of activity over the total activity of SEs) of segmented sub-regions. Specifically, if only

one region is resulted from segmentation of b-spline curve of a SE, the SE will be identified as
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either non-differential or differential depending on the status of that segment. If two segments are
resulted (i.e one is significant and one is un-altered), we determine differential SEs based on the
activity occupancy of the significant segment. In detail, two-segment SEs are identified as non-
differential, shortened or overall-change if the significant segment occupies less than 10%,
between 10%-90% and more than 90% of total SE activities. For a three-segment SE, we first
check if it is hollowed based on whether the middle segment is significantly altered. If not, we
check if it is shifted based on whether the three segments cover three different statues (i.e., up-
altered, down-altered and on-altered) separately. Otherwise, the remaining three-segment SEs
fall into the following situation: the middle segment is non-significant while the left and right
segments are both significant with the same altering direction. We then identify the overall SE
statues as non-differential, shortened and overall-change based on the total activity occupancies
of the left and right segments as below 10%, between 10%-50% and above 50%. It is noted that
the overall-change are filtered with different criteria (break points at 90% vs 50%) in two-segment
and three-segment SEs, to account for the total size impacts from the altered segments. For a
SE with more than 3 segments, it is identified as other complex scenario except that a four-
segment SE holding all three statuses is defined as hollowed. Finally, we rank the significance of
differential SEs using the activity occupancies of the significant segments separately for overall-

change, shortened, hollowed and shifted SEs.

Transcription factor enrichment analysis

ChlP-seq bam files for 78 documented transcription factors in both K562 and MCF7 cell lines
were downloaded from ENCODE with accession ID provided in Supplementary Table 1. After
calling differential SEs between MCF7 and K562 with DASE, we extracted transcription factor
occupancy from ChlP-seq data for significant differential (fold-change >4 & g-value < 0.05) CEs
that locate within differential SE categories: overall-change, shortened, hollowed, and shifted. The

occupancy heatmap for transcription factors were generated with Deeptools v3.5.1 (55).


https://doi.org/10.1101/2021.09.25.461810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.25.461810; this version posted November 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SE-gene targeting

We identify SE-gene targeting relationship using 3D chromatin contacts generated from POLR2A
ChlA-PET or H3K27Ac HiChIP. Basically, a valid targeting is defined if one end of chromatin
contacts is overlapped with SEs, while the other end is overlapped with gene promoters (selected
as -3kbp - 1kbp from genes’ transcription start sites). Targeting relations are ignored if the SE-

promoter distances are less than 20kb or greater than 500kb.

Pathway enrichment analysis

For pathway enrichment in genes linked by different SE categories, gene sets were first identified
for each SE categories based on SE-gene targeting relations in both compared conditions. Then,
only uniquely linked genes by each SE category were selected for pathway enrichment using
DAVID Bioinformatics Resources v6.8 (56) based on KEGG database (57). For pathway
enrichment in genes linked by cancer-specific SEs, genes were selected as those only identified
by DASE compared to the binary strategy. Significant pathways were selected to have p-value

less than 0.05.

FUNDING
This work was supported in part by the Biostatistics and Bioinformatics Shared Resource at the

Moffitt Cancer Center [NCI P30 CA076292].

CONFLICT OF INTEREST

The authors declare no conflict of interests.


https://doi.org/10.1101/2021.09.25.461810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.25.461810; this version posted November 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

REFERENCES
1. Pott, S. and Lieb, J.D. (2015) What are super-enhancers? Nat Genet, 47, 8-12.
2. Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B.,

Lee, T.I. and Young, R.A. (2013) Master transcription factors and mediator establish
super-enhancers at key cell identity genes. Cell, 153, 307-319.

3. Hnisz, D., Abraham, B.J,, Lee, T.I., Lau, A., Saint-Andre, V., Sigova, A.A., Hoke, H.A. and
Young, R.A. (2013) Super-enhancers in the control of cell identity and disease. Cell, 155,
934-947.

4, Parker, S.C., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama, J.A., van

Bueren, K.L., Chines, P.S., Narisu, N., Program, N.C.S. et al. (2013) Chromatin stretch
enhancer states drive cell-specific gene regulation and harbor human disease risk
variants. Proc Natl Acad Sci U S A, 110, 17921-17926.

5. Beagrie, R.A., Scialdone, A., Schueler, M., Kraemer, D.C., Chotalia, M., Xie, S.Q., Barbieri,
M., de Santiago, |., Lavitas, L.M., Branco, M.R. et al. (2017) Complex multi-enhancer
contacts captured by genome architecture mapping. Nature, 543, 519-524.

6. Huang, J., Li, K., Cai, W., Liu, X., Zhang, Y., Orkin, S.H., Xu, J. and Yuan, G.C. (2018)
Dissecting super-enhancer hierarchy based on chromatin interactions. Nat Commun, 9,
943.

7. Li, T, Jia, L., Cao, Y., Chen, Q. and Li, C. (2018) OCEAN-C: mapping hubs of open
chromatin interactions across the genome reveals gene regulatory networks. Genome
Biol, 19, 54.

8. Novo, C.L., Javierre, B.M., Cairns, J., Segonds-Pichon, A., Wingett, S.W., Freire-Pritchett,
P., Furlan-Magaril, M., Schoenfelder, S., Fraser, P. and Rugg-Gunn, P.J. (2018) Long-
Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are
Reorganized upon Pluripotent State Transition. Cell Rep, 22, 2615-2627.

9. Kai, Y., Li, B.E., Zhu, M., Li, G.Y., Chen, F., Han, Y., Cha, H.J., Orkin, S.H., Cai, W., Huang, J.
et al. (2021) Mapping the evolving landscape of super-enhancers during cell
differentiation. Genome Biol, 22, 269.

10. Loven, J., Hoke, H.A,, Lin, C.Y., Lau, A., Orlando, D.A,, Vakoc, C.R., Bradner, J.E., Lee, T.I.
and Young, R.A. (2013) Selective inhibition of tumor oncogenes by disruption of super-
enhancers. Cell, 153, 320-334.

11. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C.,
Myers, R.M., Brown, M., Li, W. et al. (2008) Model-based analysis of ChIP-Seq (MACS).
Genome Biol, 9, R137.

12. Amaral, P.P. and Bannister, A.J. (2014) Re-place your BETs: the dynamics of super
enhancers. Mol Cell, 56, 187-189.

13. Allahyar, A., Vermeulen, C., Bouwman, B.A.M., Krijger, P.H.L., Verstegen, M., Geeven, G.,
van Kranenburg, M., Pieterse, M., Straver, R., Haarhuis, J.H.l. et al. (2018) Enhancer hubs
and loop collisions identified from single-allele topologies. Nat Genet, 50, 1151-1160.

14. Jia, Y., Chng, W.J. and Zhou, J. (2019) Super-enhancers: critical roles and therapeutic
targets in hematologic malignancies. J Hematol Oncol, 12, 77.


https://doi.org/10.1101/2021.09.25.461810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.25.461810; this version posted November 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

15. Yuan, J.,, Jiang, Y.Y., Mayakonda, A., Huang, M., Ding, LW., Lin, H., Yu, F., Lu, Y., Loh,
T.K.S., Chow, M. et al. (2017) Super-Enhancers Promote Transcriptional Dysregulation in
Nasopharyngeal Carcinoma. Cancer Res, 77, 6614-6626.

16. Wang, C., Zhang, L., Ke, L., Ding, W., Jiang, S., Li, D., Narita, Y., Hou, I., Liang, J., Li, S. et
al. (2020) Primary effusion lymphoma enhancer connectome links super-enhancers to
dependency factors. Nat Commun, 11, 6318.

17. Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S.,
Ho, A., Mei, P.H. et al. (2009) An oestrogen-receptor-alpha-bound human chromatin
interactome. Nature, 462, 58-64.

18. Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J. and
Chang, H.Y. (2016) HiChlIP: efficient and sensitive analysis of protein-directed genome
architecture. Nat Methods, 13, 919-922.

19. Fullwood, M.J., Wei, C.L,, Liu, E.T. and Ruan, Y. (2009) Next-generation DNA sequencing
of paired-end tags (PET) for transcriptome and genome analyses. Genome Res, 19, 521-
532.

20. Shin, H.Y., Willi, M., HyunYoo, K., Zeng, X., Wang, C., Metser, G. and Hennighausen, L.
(2016) Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet,
48, 904-911.

21. Consortium, E.P. (2012) An integrated encyclopedia of DNA elements in the human
genome. Nature, 489, 57-74.

22. Schuijers, J., Manteiga, J.C., Weintraub, A.S., Day, D.S., Zamudio, A.V., Hnisz, D., Lee, T.I.
and Young, R.A. (2018) Transcriptional Dysregulation of MYC Reveals Common
Enhancer-Docking Mechanism. Cell Rep, 23, 349-360.

23. Chen, D., Zhao, Z., Huang, Z., Chen, D.C., Zhu, X.X., Wang, Y.Z., Yan, Y.W., Tang, S.,
Madhavan, S., Ni, W. et al. (2018) Super enhancer inhibitors suppress MYC driven
transcriptional amplification and tumor progression in osteosarcoma. Bone Res, 6, 11.

24, Lancho, O. and Herranz, D. (2018) The MYC Enhancer-ome: Long-Range Transcriptional
Regulation of MYC in Cancer. Trends Cancer, 4, 810-822.

25. Wang, C., Jiang, S., Zhang, L., Li, D., Liang, J., Narita, Y., Hou, I., Zhong, Q., Gewurz, B.E.,
Teng, M. et al. (2019) TAF Family Proteins and MEF2C Are Essential for Epstein-Barr
Virus Super-Enhancer Activity. J Virol, 93.

26. Ross-Innes, C.S., Stark, R., Teschendorff, A.E., Holmes, K.A.,, Ali, H.R., Dunning, M.J.,
Brown, G.D., Gojis, O., Ellis, 1.0., Green, A.R. et al. (2012) Differential oestrogen receptor
binding is associated with clinical outcome in breast cancer. Nature, 481, 389-393.

27. Pellicano, F., Scott, M.T., Helgason, G.V., Hopcroft, L.E., Allan, E.K., Aspinall-O'Dea, M.,
Copland, M., Pierce, A., Huntly, B.J., Whetton, A.D. et al. (2014) The antiproliferative
activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO
transcription factors. Stem Cells, 32, 2324-2337.

28. Lin, C.H., Chang, C.Y., Lee, K.R,, Lin, H.J., Chen, T.H. and Wan, L. (2015) Flavones inhibit
breast cancer proliferation through the Akt/FOX03a signaling pathway. BMC Cancer, 15,
958.

29. Hornsveld, M., Smits, L.M.M., Meerlo, M., van Amersfoort, M., Groot Koerkamp, M.J.A,,
van Leenen, D., Kloet, D.E.A., Holstege, F.C.P., Derksen, P.W.B., Burgering, B.M.T. et al.


https://doi.org/10.1101/2021.09.25.461810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.25.461810; this version posted November 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(2018) FOXO Transcription Factors Both Suppress and Support Breast Cancer
Progression. Cancer Res, 78, 2356-2369.

30. Dong, H., Claffey, K.P., Brocke, S. and Epstein, P.M. (2015) Inhibition of breast cancer cell
migration by activation of cAMP signaling. Breast Cancer Res Treat, 152, 17-28.

31. Mihaylova, M.M. and Shaw, R.J. (2011) The AMPK signalling pathway coordinates cell
growth, autophagy and metabolism. Nat Cell Biol, 13, 1016-1023.

32. Kodama, Y., Baxter, R.C. and Martin, J.L. (2002) Insulin-like growth factor-I inhibits cell
growth in the a549 non-small lung cancer cell line. Am J Respir Cell Mol Biol, 27, 336-
344,

33. Lee, H., Lee, H., Chin, H., Kim, K. and Lee, D. (2014) ERBB3 knockdown induces cell cycle
arrest and activation of Bak and Bax-dependent apoptosis in colon cancer cells.
Oncotarget, 5, 5138-5152.

34. Liao, C.H., Yeh, C.T., Huang, Y.H., Wu, S.M., Chi, H.C., Tsai, M.M., Tsai, C.Y., Liao, C.J.,
Tseng, Y.H., Lin, Y.H. et al. (2012) Dickkopf 4 positively regulated by the thyroid hormone
receptor suppresses cell invasion in human hepatoma cells. Hepatology, 55, 910-920.

35. Dong, M. and Blobe, G.C. (2006) Role of transforming growth factor-beta in hematologic
malignancies. Blood, 107, 4589-4596.

36. Liu, T., Zhang, L., Joo, D. and Sun, S.C. (2017) NF-kappaB signaling in inflammation.
Signal Transduct Target Ther, 2.

37. Capasso, M. and Diskin, S.J. (2010) Genetics and genomics of neuroblastoma. Cancer
Treat Res, 155, 65-84.

38. Cesarman, E., Moore, P.S., Rao, P.H., Inghirami, G., Knowles, D.M. and Chang, Y. (1995)
In vitro establishment and characterization of two acquired immunodeficiency
syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-
associated herpesvirus-like (KSHV) DNA sequences. Blood, 86, 2708-2714.

39. Arvanitakis, L., Mesri, E.A., Nador, R.G., Said, J.W., Asch, A.S., Knowles, D.M. and
Cesarman, E. (1996) Establishment and characterization of a primary effusion (body
cavity-based) lymphoma cell line (BC-3) harboring kaposi's sarcoma-associated
herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood, 88, 2648-2654.

40. Fulco, C.P., Nasser, J., Jones, T.R., Munson, G., Bergman, D.T., Subramanian, V.,
Grossman, S.R., Anyoha, R., Doughty, B.R., Patwardhan, T.A. et al. (2019) Activity-by-
contact model of enhancer-promoter regulation from thousands of CRISPR
perturbations. Nat Genet, 51, 1664-1669.

41. Moore, J.E., Pratt, H.E., Purcaro, M.J. and Weng, Z. (2020) A curated benchmark of
enhancer-gene interactions for evaluating enhancer-target gene prediction methods.
Genome Biol, 21, 17.

42. Sabari, B.R., Dall'Agnese, A., Boija, A., Klein, |.A., Coffey, E.L., Shrinivas, K., Abraham, B.J.,
Hannett, N.M., Zamudio, A.V., Manteiga, J.C. et al. (2018) Coactivator condensation at
super-enhancers links phase separation and gene control. Science, 361.

43, Davis, C.A., Hitz, B.C,, Sloan, C.A., Chan, E.T., Davidson, J.M., Gabdank, 1., Hilton, J.A.,
Jain, K., Baymuradov, U.K., Narayanan, A.K. et al. (2018) The Encyclopedia of DNA
elements (ENCODE): data portal update. Nucleic Acids Res, 46, D794-D801.

44, Edgar, R., Domrachev, M. and Lash, A.E. (2002) Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res, 30, 207-210.


https://doi.org/10.1101/2021.09.25.461810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.25.461810; this version posted November 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

45, Wong, J.P., Stuhlmiller, T.J., Giffin, L.C,, Lin, C., Bigi, R., Zhao, J., Zhang, W., Bravo Cruz,
A.G., Park, S.1., Earp, H.S. et al. (2019) Kinome profiling of non-Hodgkin lymphoma
identifies Tyro3 as a therapeutic target in primary effusion lymphoma. Proc Natl Acad
SciUSA, 116, 16541-16550.

46. Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat
Methods, 9, 357-359.

47. Amemiya, H.M., Kundaje, A. and Boyle, A.P. (2019) The ENCODE Blacklist: Identification
of Problematic Regions of the Genome. Sci Rep, 9, 9354.

48. Liao, Y., Smyth, G.K. and Shi, W. (2014) featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics, 30, 923-930.

49, Patro, R., Duggal, G., Love, M.l., Irizarry, R.A. and Kingsford, C. (2017) Salmon provides
fast and bias-aware quantification of transcript expression. Nat Methods, 14, 417-419.

50. Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol, 15, 550.

51. Zhu, A, Ibrahim, J.G. and Love, M.I. (2019) Heavy-tailed prior distributions for sequence
count data: removing the noise and preserving large differences. Bioinformatics, 35,
2084-2092.

52. Consortium, E.P., Moore, J.E., Purcaro, M.J., Pratt, H.E., Epstein, C.B., Shoresh, N.,
Adrian, J., Kawli, T., Davis, C.A., Dobin, A. et al. (2020) Expanded encyclopaedias of DNA
elements in the human and mouse genomes. Nature, 583, 699-710.

53. Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker,
J. and Barillot, E. (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data
processing. Genome Biol, 16, 259.

54. Lareau, C.A. and Aryee, M.J. (2018) hichipper: a preprocessing pipeline for calling DNA
loops from HiChIP data. Nat Methods, 15, 155-156.

55. Ramirez, F., Dundar, F., Diehl, S., Gruning, B.A. and Manke, T. (2014) deepTools: a
flexible platform for exploring deep-sequencing data. Nucleic Acids Res, 42, W187-191.

56. Huang da, W., Sherman, B.T. and Lempicki, R.A. (2009) Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4, 44-57.

57. Kanehisa, M. and Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res, 28, 27-30.


https://doi.org/10.1101/2021.09.25.461810
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.25.461810; this version posted November 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a
Enhancers 1= = 1 PoOmEIL o m—
L O UV AU SR WY 1YV | NV DN SN0 SRV 17 A
Ksez | R N R Y [
wetie 4l al Lf | RN T TP L
A549 ‘ I J
HepG2 ‘JI N A S R Nt
SK-N-SH ! 1 : 1 1 i u abd 1 i l ..“ i
Gene (hg38)™ t = — * ‘
MYC
b c d
100 .Constituent enhancers 15 15 *kkk
.SEs *kkk r 1
— X
§ 75 xR o)
~ £ 10 © 10
g g g
8 H 3
c 50 g z
3 =] 2
fud o pras
(<] (9] o
o o 5 I 5
25
0 0 0
+/o +/+ +/o +/+ Non-differential ~ Differential Non-differential ~ Differential
SE groups SE groups

Figure 1. Internal dynamics of super enhancers. a). CEs show frequent alterations across
cancer cell types at two reported SE loci associated to MYC regulation. ChiP-seq coverage of
H3K27Ac are shown. SEs and CEs are labeled at the top as red and grey bars, separately. b).
Frequencies of differential enhancers (fold-change > 4 & g-value < 0.05) and differential SEs
(based on binary strategy). Labels on the x-axis indicate features filtered by differential (“+”) or
no filtering (“0”), while left and right symbols correspond to filters on CEs and SEs, respectively.
c). Relative width of differential CEs from non-differential and differential SEs. Relative width is
defined as the percentage of CE width over the summed width from all CEs within a SE. d).
Relative coverage of differential CEs from non-differential and differential SEs. Relative coverage
is defined as the percentage of CE coverage over the summed coverage from all CEs within a

SE.
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Figure 2. Differential SEs modeled with DASE. SE examples are listed with overall-change (a),
shortened (b), shifted (c), hollowed (d) and non-differential(e). In each sub-figure, the upper panel
lists in order the SE regions, CEs, H3K27Ac ChIP-seq coverage in two cell types with two
replicates. The lower panel shows the fitted b-splines in addition to the original log2 fold-change
values for CEs (points). Dashed lines indicate the estimated thresholds from permutation to define

differential segments within SE regions. In (e), red text indicates the cell line where SE was

detected at this locus by the binary strategy.
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Figure 3. Differential SE categories linked to distinct regulatory features. a). An example

shows transcription factor in aiding SE-gene regulation. b). Differential CEs enriched with cell-



type-specific (NKRKB & FOXA1) and key-function (MBD2) related transcription factors. Top
panels are transcription factor signals at CEs active in K562. Bottom panels are transcription
factor signals at CEs enriched in MCF7. Middle panels are the aggregated binding signals from
the top and bottom panels with blue and orange lines indicating signals in K562 and MCF7,
separately. The signs of y-axises in the middle panels represent enrichment directions. c).
Differences on the linked gene numbers between MCF7 and K562 by differential CEs, which are
grouped by their altering statuses. Gene targets are identified based on chromatin contacts from
POLR2A ChIA-PET data. d). Differences on the linked gene numbers between MCF7 and K562
by differential SEs, which are grouped by their differential patterns. For each differential SE
category, SEs are separated into two sub-groups based on their enrichment directions. e). log2
fold-change of the linked genes between MCF7 and K562 by differential CEs. f. log2 fold-change
of the linked genes between MCF7 and K562 by differential SEs. For each differential SE category,
genes are separated into two groups by the enrichment directions of their linked SEs. g. Overlaps
of the linked genes by four differential SE categories between MCF7 and K562. h. KEGG signaling

pathways (p < 0.05) uniquely associated to each differential SE category.
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Figure 4. Comparisons between DASE and the binary strategy. a). Average discrepancies
between DASE and the binary strategy across pair-wise comparisons of the six cancer cell types.
Light grey: common non-differentials by DASE and the binary strategy; Dark grey: common
differentials; purple: differential only by the binary strategy; blue: differential only by DASE. X-axis
is labels with SE categories based on DASE. b). Impact on gene expression and linked gene
numbers by the discrepant differential SEs between DASE and the binary strategy. Bars indicate
the mean of log2 fold-change of gene expression or changes of linked gene numbers in each
pair-wise comparison and error bars represent the standard error of the means. Results from the
two altering directions of the gene effects are merged based on absolute values. c¢). Genes
uniquely linked to SEs with increased activity (overall increased, lengthened or hollowed with
increased CEs) in one cancer cell type compared to the other five cells. Green: genes uniquely
found by binary strategy; red: genes uniquely found by DASE; grey: genes found by both methods.

d). KEGG pathways (p < 0.05) enriched in the uniquely linked genes by DASE.
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Figure 5. Identifying SE differences between similar cancer cell lines. a). Proportions of
differential SE categories identified from within-cancer (BC1 vs. BC3) and cross-cancer
comparisons (pairwise between six cancer cell types from ENCODE). Count differences (b,c) and
log2 fold-changes (d,e) of linked genes by differential CEs (b,d) and SEs (c,e) between BC1 and
BC3 cell lines. Gene targets are identified based on chromatin contacts from H3K27Ac HiChIP
data. f). Overlaps of SE-linked genes across four differential SE categories between BC1 and

BC3. g. KEGG pathways (p < 0.05) that uniquely associated to each differential SE category.



