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ABSTRACT 

Super enhancers (SEs) are broad enhancer domains usually containing multiple constituent 

enhancers that hold elevated activities in gene regulation. Disruption in one or more constituent 

enhancers causes aberrant SE activities that lead to gene dysregulation in diseases. To quantify 

SE aberrations, differential analysis is performed to compare SE activities between cell conditions. 

The state-of-art strategy in estimating differential SEs relies on overall activities and neglect the 

changes in length and structure of SEs. Here, we propose a novel computational method to 

identify differential SEs by weighting the combinatorial effects of constituent-enhancer activities 

and locations (i.e., internal dynamics). In addition to overall activity changes, our method identified 

four novel classes of differential SEs with distinct enhancer structural alterations. We demonstrate 

that these structure alterations hold distinct regulatory impact, such as regulating different number 

of genes and modulating gene expression with different strengths, highlighting the differentiated 

regulatory roles of these unexplored SE features. When compared to the existing method, our 

method showed improved identification of differential SEs that were linked to better discernment 

of cell-type-specific SE activity and functional interpretation. We implement an R package, DASE, 

to facilitate the use of our method.  
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INTRODUCTION 

Super enhancers (SEs) were proposed as broad regulatory domains on genome, usually 

spanning a minimum of thousands of base pairs and consisting of multiple constituent  enhancers 

(CEs) (1). The CEs work together as a unit, instead of separately, to facilitate high enhancer 

activity, observed as dense enrichment of cell master regulators, coactivators, mediators and 

chromatin factors at SEs (2). These characteristics were further demonstrated by the fact that, 

distinct from regular enhancers, SE is specifically linked to gene regulation associated with cell 

identity and disease mechanisms (3,4).  

 

Recent studies further showed that, beyond the elevated activity, the internal mechanics of SEs 

also paly critical roles in defining their prominent roles in gene regulation, known as multi-promoter 

targeting and long-range interactions (5-8). Some SEs form a clear hierarchical structure where 

hub CEs are responsible for the functional and structural organization of the whole SEs (6,9). 

Other SEs, in contrary, receive relative balanced contribution from the CEs. In addition, CEs could 

establish an open chromatin interaction network within individual SEs (7), indicating the internal 

crosstalk across CEs in orchestrating SEs’ unique functions.  

 

The activity and relations of individual CEs were well appreciated during computational 

identification of SEs. Existing algorithms usually contain two processing steps (2,10). First, the 

activity and locations of genome-wide enhancers are inferred through peak detection using 

chromatin immunoprecipitation sequencing (ChIP-seq) data (11), particularly that measuring the 

binding of mediators, master regulators, or active histone mark H3K27Ac. Second, the inferred 

activity and locations are summarized linearly to prioritize broad enhancer regions (2,3), i.e., SEs, 

that contain densely enriched enhancers with high activities, i.e., the CEs.  
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However, the organization of CEs were not considered by current approaches in differential 

analysis of SEs, a key aspect of research interest when comparing across biological conditions 

(12-16). The alteration of SEs has been found to be highly associated with disease dysregulation 

and could be used for drug target identification (14-16). These approaches, in which SEs are 

treated as individual entities, usually identify differential SEs based on binary strategy, which 

compares the presence and absence of SEs between biological conditions, neglecting the 

constituent enhancer statuses. Consequently, differential SEs are generated largely depending 

on the parameters that algorithms utilized to detect super enhancers (2,3). In addition, the 

sensitivity to detect changes in the local enhancer organization are downplayed within the broad 

genomic regions occupied by SEs.  

 

Here, we propose a novel computational method to identify differential SEs by summarizing the 

combinatorial effects of constituent-enhancer activities and locations. In addition to overall activity 

changes, our method detects four extra differential categories specifically pointing to the internal 

structural alterations of SEs. We demonstrate the unique characteristics of these differential SE 

categories using public datasets by linking their altered activity to TF binding and gene expression 

with 3D chromatin interactions (17-19). The results indicate that each SE category regulates 

distinct sets of gene targets and their expression. Further, we show that our method maximizes 

the discernment of cell identities when comparing SE profiles of cell lines from the same cancer 

type. Our method provides sensitive and biologically meaningful identification of differential SEs, 

which complements existing understanding of SE dynamics. We implemented an R package, 

DASE (Differential Analysis of Super Enhancers: https://github.com/tenglab/DASE), to facilitate 

the use of our method. 
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RESULTS 

Internal dynamics underlie genome-wide SE differences 

SEs usually contain multiple constituent enhancers (CEs) located in close genomic proximity 

along the genome (2,20). It is important to understand the roles of CEs in contributing to the SE 

lineage-specificity. We explored the SE profiles for six cancer cell types (Figure 1 and Methods) 

using ChIP-seq data of H3K27Ac histone modification from ENCODE project (21). We found that 

CEs within the same SEs could alter differently across cell types. For example, the CEs, located 

at two previous reported SE loci responsible for MYC regulation in multiple cancers (22-25), 

showed divergent activity patterns across the six cell types (Figure 1a). We term such divergent 

alterations between CEs as the internal dynamics of SEs, which underline the individual CE 

effects on determining the cell-type-specific SE activity. 

 

We then performed pair-wise comparisons of SE profiles across the six cancer cell types. On 

average, over 40% of CEs showed significant differential activity (fold-change > 4 and q-value < 

0.05) that accounts for over 80% of total SEs in these cell types (Figure 1b). This indicates that 

SEs undergo frequent internal alterations across cell types. We further estimated how the 

alteration of CEs contributed to the overall differences of SEs. Here, we identified differential SEs 

between cancer cell types using the presence/absence (binary) strategy. A small portion of SEs 

(~10%) with significantly altered CEs didn’t show overall differences, while the majority of SEs 

changed in the same directions as their altered CEs (Figure 1b). This implies the divergent 

influences of CEs on the overall differential statuses of SEs genome-widely. 

 

Next, we examined the characteristics of CEs that might affect their contribution to the overall SE 

differences. Not surprisingly, the spanning width and regulatory activity of CEs, indicated by 

H3K27Ac ChIP-seq coverage, showed significant associations with overall SE differences 

(Figure 1c-d). In brief, differential CEs with smaller width or lower activity presented less impacts 
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on the overall statuses of their corresponding SEs. Therefore, we built a model to summarize SE 

internal dynamics by accounting for these characteristics. 

 

Modeling internal dynamics leads to distinct patterns of differential SEs 

We developed a weighted spline model, implemented as an R package DASE, to summarize the 

internal dynamics into the overall differential statuses of SEs (Figure 2 and Methods). In brief, 

differential CEs were first evaluated using existing strategies on detecting differential ChIP-seq 

peaks (26). Then, a spline was fitted, stratified by enhancer positions, to smooth the differential 

signals for consecutive CEs. In the smoothing, the activities and width of CEs were taken as fitting 

weights. Finally, the spline curves were evaluated with permutations to determine reliable 

differential sub-regions within the SEs, which were further summarized towards the overall 

differential statuses of SEs.  

 

To illustrate the utility of DASE, we compared SE profiles between two cancer cell lines, K562 

and MCF7. These two cell lines have high-quality annotation datasets on ENCODE data portal, 

including transcription factor binding, 3D chromatin interactions and gene expression, to help 

evaluate the identified differential SEs. DASE detected an overall-change as well as four novel 

patterns of differential SEs highlighting the structural alterations within SEs, denoted as shortened, 

shifted, hollowed and other complex scenarios, separately (Figure 2). Overall-change SEs 

represent significant overall activity alterations (as captured by the binary strategy) as well as 

consistent altering behavior among CEs. (Figure 2a).  Shortened SEs have significant changes 

in their sizes by gaining or dismissing CEs on one or both ends of the SEs (Figure 2b). Shifted 

SEs have migrated genomic locations without significant size changes (i.e., CEs gained on one 

end of the SEs and dismissed on the other end) (Figure 2c). Hollowed SEs represent those with 

altered CEs in the middle while the two ends remain intact (Figure 2d). Other complex scenario 

SEs represent all other complicated or rare cases (Supplementary Figure 1). Examples of SE 
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structural alterations reveal that structural differences do not necessarily accompany overall 

activity differences (Figure 2a-d). Together, they provide novel insights to understand SE 

dynamics between cell conditions. In addition, we note that marginal activity differences that were 

over-claimed as differential SEs by the binary strategy could be properly corrected by DASE 

(Figure 2e). 

 

In total, about 52% of the differential SEs showed overall-change between K562 and MCF7, 

reflecting the distinct chromatin structure underlying each cancer type (Supplementary Figure 

2). Shortened SEs dominated among all types of structural differences (65%), indicating the wide 

spreading of SE size changes. The other types of structural differences, although not prevailing, 

represent the diverse dynamics of SE profiles responsible for cell-type-specific gene regulation. 

We show that those structural differences consistently present in comparisons across more 

cancer cell types in later sections.  

 

Diverse differential SEs synergistically build up gene regulation 

We further characterized the functional roles of the differential SE patterns in gene regulation. 

SEs are usually enriched with various transcriptional regulators and cofactors (8), which play 

critical roles in supporting SE interactions with gene targets (Figure 3a). We examined the protein 

binding profiles across the differential SE patterns. In total, we analyzed 78 transcription factors 

that have ChIP-seq data available for K562 and MCF7 cell lines by ENCODE project. 

Transcription factors showed a high correlation with CE activities (Figure 3b and Supplementary 

Figure 3), regardless of the differential patterns of the corresponding SEs (Supplementary 

Figure 4), suggesting different patterns of SE alterations share similar mechanisms in recruiting 

transcription factors. Among these transcription factors, two clear modes of enrichment were 

identified (Figure 3b and Supplementary Figure 3): 1) those enriched at active CEs in both K562 

and MCF7 cell lines (e.g., MBD2), suggesting that these transcription factors are involved in 
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maintaining key cell functions; 2) those enriched at active CEs in only one cell type but not the 

other (e.g., NFRKB and FOXA1), indicating their roles in cell-type-specific gene regulation. This 

suggests different types of SE alterations are involved in both cell-type-specific and 

housekeeping-related regulation. 

 

Beyond transcription factor binding, we examined the downstream effects of SE alterations on 

gene expression. We identified SE target genes in each cell type using 3D chromatin interactions 

based on POLR2A targeted ChIA-PET data. As expected, the gained CEs usually establish new 

gene targets, while the dismissed CEs remove existing targets (Figure 3c). Consequently, SEs 

with increased activity (e.g., strengthened or lengthened with gained CEs) in one cell type usually 

target more genes compared to their altered forms (e.g., weakened or shortened with dismissed 

CEs) in the other cell type (Figure 3d). Interestingly, we observed that such effects differed across 

the differential SE patterns, with heavier effects presented by overall-change, shortened and 

hollowed SEs, and nearly no effects by shifted SEs. The marginal effects by shifted SEs are 

expected as they provide no signs of the altering directions of SE activities. Here, to minimize the 

sequencing coverage effects on gene target counting with ChIA-PET data, we normalized the 

count differences by subtracting the median count difference (i.e., 1) of the control SE group (i.e., 

the non-differential SEs).  

 

Differential analysis of gene expression between K562 and MCF7 cell lines indicated that the 

gained CEs between the two cell types were significantly associated with upregulated gene 

expression (Figure 3e). A similar association was also observed at the SE level, with increased 

SE activity presenting higher amplification on gene expression (Figure 3f). Again, overall-change 

and shortened SEs showed higher regulatory effects, while shifted SEs presented nearly no 

effects. Here, hollowed SEs showed no impact on gene expression, indicating their functions 
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might be limited to maintaining the proper number of gene targets (Figure 3d). As a control, we 

observed no significant effects on gene expression by the non-differential SEs (Figure 3f).  

 

We then performed pathway enrichment analysis on genes linked by different types of SE 

alterations. The majority of genes (~75%) are linked by only one type of differential SEs (Figure 

3g), with the overall-change and shortened SEs linked with the most and comparable number of 

genes. We focused on these genes linked by only one type of SEs and identified distinct sets of 

signaling pathways uniquely associated with each type of differential SEs (Figure 3h). For 

instance, FoxO Signaling Pathway (27-29), cAMP Signaling Pathway (30), and AMPK signaling 

pathway (31)  are enriched with genes linked to overall-change, shortened, and hollowed SEs, 

respectively. In summary, different patterns of SE alterations synergistically build up gene 

regulation by playing distinct roles in modulating gene expression and cellular functions. 

 

Accounting for internal dynamics improves identification and interpretation of differential 

SEs  

Besides the characterization of SE structural alterations, DASE presents an overall improvement 

on differential SE identification over the existing binary strategy (12-16). We summarized the 

improvements based on pair-wise comparisons across the six cancer cell types. These cells have 

H3K27Ac ChIP-seq, 3D chromatin interaction, and gene expression data available which enable 

the functional assessment on targeting gene expression. On average, the discrepant identification 

between DASE and the binary strategy accounts for ~18% of the total SEs and covers all patterns 

of SE alterations (Figure 4a). Most newly identified differential SEs by DASE have structural 

alterations (~91%). Among all discrepant differential SEs, the overall-change SEs newly identified 

by DASE showed the strongest impact on altering the numbers and expression of the gene targets 

(Figure 4b), suggesting they were falsely identified as non-differential by the binary strategy. The 

other newly identified SEs by DASE presented relatively higher gene effects compared to the 
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differential SEs only identified by the binary strategy (Figure 4b), suggesting the overall improved 

sensitivity and specificity by the DASE identification. Here, we didn’t assess the shifted and other 

complex scenario SEs in this analysis as they provided no signs of the altering direction for gene 

expression. To avoid confounding effects from genes targeted by multiple SEs, we left out genes 

that were also linked by the common differential or non-differential SEs in the analysis.  

 

We further evaluated DASE by gene functions linked to the differential SEs. We identified cell-

type-specific regulated genes that were linked to the SEs with increased activity (i.e., overall 

increased, lengthened, or hollowed with increased CEs) in one cancer cell type compared to the 

other five cell types. We then compared the obtained gene list between DASE and the binary 

strategy. Surprisingly, DASE recovered nearly all the cell-type-specific regulated genes by the 

binary strategy and found additional genes mainly linked to the SE structural alterations (Figure 

4c). We examined the pathways enriched in these additionally identified genes and found a 

number of cancer-type-specific pathways, indicating the cancer-specific roles of the novel 

structural alterations (Figure 4d). For example, Insulin Signaling Pathway (32), ErbB Signaling 

Pathway (33), Thyroid Hormone Signaling Pathway (34), TGF-beta Signaling Pathway (35), NF-

kappa B signaling pathway (36), and Neurotrophin Signaling Pathway (37), linked to SEs that 

DASE uniquely identified in A549, HCT116, HepG2, K562, MCF7 and SK-N-SH, respectively. In 

summary, DASE showed improved sensitivity in linking differential SEs to cancer-specific 

regulation, particularly through the consideration of internal structural alterations. 

 

Accounting for internal dynamics maximize the discerning of cell identity 

Given the improved sensitivity in the cross-cancer analysis above, we further evaluate DASE by 

within-cancer comparison. We applied DASE to compare SE profiles between two similar cancer 

cell lines, BC1 and BC3, that are B lymphocyte cells derived from Lymphoma under different viral 
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infections. We previously demonstrated that different viral infections led to a distinct enhancer 

connectome on these cell lines (16).  

 

Overall, the two similar cell lines presented much higher similarity of SE profiles (Figure 5a). We 

linked the differential SEs to their target genes using chromatin interactions identified by H3K27Ac 

HiChIP datasets. Similar gene effect patterns were observed across differential SE patterns, as 

we found previously (Figure 3c-f). The linked genes were enriched in both frequency and 

expression in the same direction as CEs/SEs altering between BC1 and BC3 cell lines (Figure 

5b-e). Specifically, such effects are stronger by overall-change SEs, followed by shortened SEs, 

consistent with the findings in cross-cancer analysis (Figure 3c-f). Finally, we extracted the 

uniquely linked genes by the differential SE patterns (Figure 5f) and performed pathway 

enrichment analysis. We found unique pathways such as Viral Carcinogenesis particularly linked 

to the shortened SEs (Figure 5g). This suggests shortened SEs play key roles in gene 

dysregulation in response to the different viral carcinogenesis between BC1 and BC3 cell lines 

(38,39). Therefore, by accounting for the SE internal dynamics, we found that cell-line-specific 

gene regulation linked to differential SEs, particularly those with structural alterations, highlighting 

the differentiated roles of SE categories and the importance of featuring internal dynamics in SE 

differential analysis. 

 

DISCUSSION 

In this manuscript, we proposed a novel computational method DASE to identify differential SEs 

by summarizing the internal dynamics. We categorized differential SEs into five major groups 

based on their overall activity and structural alterations: overall-change, shortened, hollowed, 

shifted, and others. By assessing differential SEs with the enriched transcription factors and linked 

target genes, we found distinct characteristics associated with different groups of SEs, such as 

linking with different numbers of genes and affecting gene expression at divergent impact. When 
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compared with the widely adapted binary approach, DASE found an improved list of differential 

SEs which are linked to distinct cancer-specific gene functions. This highlighted the elevated 

performance by DASE identification. It further demonstrated the increased power in identifying 

cell-line-specific SE regulation when applied to similar cell lines. 

 

Specifically, our improved performance is powered by the consideration of SE internal dynamics. 

For instance, SEs might show frequent internal alterations yet with no overall activity changes, as 

shown in our study. These differences, however, if not accounted for, could under-estimate the 

genome-wide variation of SE profiles and consequentially bias the evaluation of SE effects on 

gene regulation. On the other side, significant activity changes of SEs are usually combined with 

structural alterations, either globally or partially, indicating modeling structural differences won’t 

lose specificity in detecting true SE differences. However, we did notice that some SEs hold 

marginal activity changes which were weighted differently as discrepant calls between the binary 

strategy and our methods. Nevertheless, these SEs usually showed lower effects on gene 

expression compared to other differential SEs. Especially, those discrepant differential SEs could 

regulate genes in alternative way by altering the number of linked gene targets if they present 

significant structural alterations. 

 

One limitation of our methods is that we cannot identify structural differences when a SE contains 

only one CE. We proposed a weighted spline model to account for the contribution of CEs by their 

width and activities. Thus, the model requires at least two CEs within a SE to generate a confident 

estimation. In practice, we identified SEs with only one CE as either non-differentials or overall-

change if their activities are significantly altered. In addition, we identified differential SEs as other 

complex scenarios if their internal patterns cannot be attributed to all other categories. We 

detailed this in the Methods section.  In practice, we found this category only accounts for a small 

portion of SEs (Figure 5a). We leave a closer interpretation of such complexity to future work. 
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SEs were conceptionally defined based on the intensity and enrichment of consecutive enhancers 

(2,3). As a result, significant changes of SEs may correspond to two scenarios: activity changing 

between two SEs or status transitions between SEs and regular enhancers. These scenarios may 

associate with different functional interpretations since regular enhancers tend to regulate less 

and closer genes compared to SEs. Although we didn’t provide approaches to discriminate the 

two scenarios as that goes beyond the scope of our proposed study, feasible strategies could be 

implemented in future work to improve the downstream interpretation. For instance, scanning the 

distances between SEs and gene promoters could help filter regular enhancers as they are 

usually close to their gene targets (40,41). Also, SE alterations can be linked to the status changes 

of local chromatin, such as phase separation (42), to help determine if transitions occur between 

SE and regular enhancers. These require the integration of additional datasets to define 

chromatin statuses.  

 

MATERIALS AND METHODS 

Data acquisition 

H3K27ac enrichment, gene expression and 3D interaction data were downloaded from ENCODE 

data portal (43) and GEO repositories (44). Specifically, quality-controlled alignment files of 

H3K27Ac ChIP-seq and RNA-seq, and chromatin contacts files of POLR2A ChIA-PET were 

downloaded from ENCODE for six selected cancer cell lines (A549 - Lung Cancer, HCT116 - 

Colorectal Cancer, HepG2 - Liver Cancer, K562 - Leukemia, MCF7 – Breast Cancer, and SK-N-

SH - Neuroblastoma) (accession ID documented in Supplementary Table 1). Raw sequencing 

files of H3K27ac ChIP-seq, RNA-seq and H3K27ac HiChIP for BC1 and BC3 cell lines were 

downloaded from GEO with accession IDs GSE136090 (16) & GSE114791 (45) (Supplementary 

Table 1).  
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H3K27Ac ChIP-seq data pre-processing 

Raw ChIP-seq data from GEO was first aligned to human genome using Bowtie2 (46). Then, all 

alignment files were processed for peak calling using MACS2 (11), followed by SE detection using 

ROSE (2). All tools were applied with default parameters. ChIP-seq blacklist regions were 

excluded for downstream analysis (47).  

 

RNA-seq data analysis 

RNA-seq alignment files downloaded from ENCODE were quantified for gene expression using 

featureCount (48) based on GENCODE annotations. Raw FASTQ files from GEO were processed 

with semi-alignment and quantification tool Salmon (49) to generate gene expression count table 

based on GENCODE transcriptome. Then, differential analysis of gene expression was estimated 

using DESeq2 (50) for all two-condition comparisons. The shrunk fold-changes were extracted to 

represent gene expression differences (51).  

 

3D chromatin contacts analysis  

The chromatin contacts generated by ENCODE project from POLR2A ChIA-PET data were 

directly adapted to link genes and super enhancers for ENCODE cancer cell lines. Basically, 

ENCODE project applied strict quality controls, and filtered confident chromatin contacts with at 

least 3 normalized interactions (52). H3K27Ac HiChIP data of BC1 and BC3 cell lines are 

analyzed the same as previously described (16). In brief, reads were aligned to human genome 

using HiC-Pro (53). Sequencing replicates were merged to call chromatin contacts using hichipper 

(54) with confident interactions defined as at least 3 normalized interactions. 

 

Differential analysis of CEs and binary SE differences 

For each comparison between two cell lines that both have two ChIP-seq replicates, a uniform 

peak list was first created by merging overlapped peaks across the compared samples. ChIP-seq 
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reads were then quantified using featureCount (48) to generate a read count table for the peak 

list.  Differential peak analysis was performed by adapting DESeq2 (50) (with parameter 

type=‘mean’) to account for the varied dispersion between peaks with low and high read counts. 

The differential statuses of CEs (H3K27Ac peaks within SEs) were extracted based on their 

estimated log2 fold-changes and corresponding q-values. We also extracted the normalized 

coverage for CEs as the weight inputs for SE differential analysis.  

 

Binary SE differences were estimated based on the presence and absence of SEs between 

compared conditions. Basically, if a SE presents in both compared conditions at the same given 

location regardless size or activity changes, it will be identified as non-differential. In contrast, if a 

SE only presents in one condition at a given location, it will be identified as differential.  

 

Modeling differential SEs with SE internal dynamics by DASE 

DASE identifies differential SEs by accounting for the combinatorial effects of CEs weighted with 

their activities and locations. In detail, the methods include the following steps (Supplementary 

Figure 5).  

 

Input preparation. A uniform list of SEs is generated by merging overlapped SEs between 

compared conditions. The differential statuses (log2 fold-change) of all CEs located within SEs 

are extracted as well as their activities (ChIP-seq coverage) and locations (genomic coordinates), 

as calculated above. In practice, we select the maximum ChIP-seq coverage between compared 

conditions for each CE to provide better weights in the spline model below. 

 

Weighted spline model. For each SE, the log2 fold-change values of CEs stratified by their 

genomic locations are fitted using b-spline model, where the importance of CEs is weighted by 

their relative activities. As a result, CEs show less impacts on the spline fitting if they have low 
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activities and stay close to other CEs. We implement the spline model using R package splines. 

In addition, to ensure the robustness of b-splines in the case of too many low- or mild-activity CEs, 

we pre-estimate the degree of freedom for each fitting based on the number of top ranked CEs in 

each SEs. We choose top ranked CEs as the minimum number of enhancers that build up at least 

95% of total SE activity. In detail, we set the degree of freedom of b-spline as 2, 3 and 4 if this 

number of top ranked CEs is less than 4, between 4-6, and larger than 6, respectively.  

 

Significance estimation. We use permutations to define significant fitted values by b-spline. In 

brief, we randomly shuffle enhance activities in each compared sample, re-estimate the 

differential statuses of all CEs and re-fit splines for all SEs. As a result, we generate a null 

distribution of fitted b-spline values for all CEs. We repeat the processes 10 times for a stable null 

distribution. Significant fitted values are defined as those having greater or smaller values than 

the upper or lower inflection points (significant thresholds) of the null distribution (Supplementary 

Figure 5).  

 

Status summarization for SE sub-regions. We divide each SE into multiple sub-regions using the 

intersects of b-spline curves and the significant thresholds (Figure 2). For instance, the curve 

located above the upper threshold indicates an up-altered partial region within the SE, while the 

curve located below the lower threshold indicates a down-altered partial region. The curves in 

between indicate non-altered SE sub-regions. To decrease potential noises in SE segmentation, 

we ignore sub-regions in which CEs account for less than 1% of the SE activities. 

 

Overall differential status. We further summarize the overall differential statuses for SEs with 

heuristic approaches based on the statuses, locations, and activity occupancies (i.e., the 

percentage of activity over the total activity of SEs) of segmented sub-regions. Specifically, if only 

one region is resulted from segmentation of b-spline curve of a SE, the SE will be identified as 
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either non-differential or differential depending on the status of that segment. If two segments are 

resulted (i.e one is significant and one is un-altered), we determine differential SEs based on the 

activity occupancy of the significant segment. In detail, two-segment SEs are identified as non-

differential, shortened or overall-change if the significant segment occupies less than 10%, 

between 10%-90% and more than 90% of total SE activities. For a three-segment SE, we first 

check if it is hollowed based on whether the middle segment is significantly altered. If not, we 

check if it is shifted based on whether the three segments cover three different statues (i.e., up-

altered, down-altered and on-altered) separately. Otherwise, the remaining three-segment SEs 

fall into the following situation: the middle segment is non-significant while the left and right 

segments are both significant with the same altering direction. We then identify the overall SE 

statues as non-differential, shortened and overall-change based on the total activity occupancies 

of the left and right segments as below 10%, between 10%-50% and above 50%. It is noted that 

the overall-change are filtered with different criteria (break points at 90% vs 50%) in two-segment 

and three-segment SEs, to account for the total size impacts from the altered segments. For a 

SE with more than 3 segments, it is identified as other complex scenario except that a four-

segment SE holding all three statuses is defined as hollowed. Finally, we rank the significance of 

differential SEs using the activity occupancies of the significant segments separately for overall-

change, shortened, hollowed and shifted SEs. 

 

Transcription factor enrichment analysis  

ChIP-seq bam files for 78 documented transcription factors in both K562 and MCF7 cell lines 

were downloaded from ENCODE with accession ID provided in Supplementary Table 1. After 

calling differential SEs between MCF7 and K562 with DASE, we extracted transcription factor 

occupancy from ChIP-seq data for significant differential (fold-change >4 & q-value < 0.05) CEs 

that locate within differential SE categories: overall-change, shortened, hollowed, and shifted. The 

occupancy heatmap for transcription factors were generated with Deeptools v3.5.1 (55). 
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SE-gene targeting 

We identify SE-gene targeting relationship using 3D chromatin contacts generated from POLR2A 

ChIA-PET or H3K27Ac HiChIP. Basically, a valid targeting is defined if one end of chromatin 

contacts is overlapped with SEs, while the other end is overlapped with gene promoters (selected 

as -3kbp - 1kbp from genes’ transcription start sites). Targeting relations are ignored if the SE-

promoter distances are less than 20kb or greater than 500kb.  

 

Pathway enrichment analysis  

For pathway enrichment in genes linked by different SE categories, gene sets were first identified 

for each SE categories based on SE-gene targeting relations in both compared conditions. Then, 

only uniquely linked genes by each SE category were selected for pathway enrichment using 

DAVID Bioinformatics Resources v6.8 (56) based on KEGG database (57).  For pathway 

enrichment in genes linked by cancer-specific SEs, genes were selected as those only identified 

by DASE compared to the binary strategy. Significant pathways were selected to have p-value 

less than 0.05. 
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FIGURES 

 
Figure 1. Internal dynamics of super enhancers. a). CEs show frequent alterations across 

cancer cell types at two reported SE loci associated to MYC regulation. ChIP-seq coverage of 

H3K27Ac are shown. SEs and CEs are labeled at the top as red and grey bars, separately. b). 

Frequencies of differential enhancers (fold-change > 4 & q-value < 0.05) and differential SEs 

(based on binary strategy).  Labels on the x-axis indicate features filtered by differential (“+”) or 

no filtering (“o”), while left and right symbols correspond to filters on CEs and SEs, respectively. 

c). Relative width of differential CEs from non-differential and differential SEs. Relative width is 

defined as the percentage of CE width over the summed width from all CEs within a SE. d). 

Relative coverage of differential CEs from non-differential and differential SEs. Relative coverage 

is defined as the percentage of CE coverage over the summed coverage from all CEs within a 

SE.  
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Figure 2. Differential SEs modeled with DASE. SE examples are listed with overall-change (a), 

shortened (b), shifted (c), hollowed (d) and non-differential(e). In each sub-figure, the upper panel 

lists in order the SE regions, CEs, H3K27Ac ChIP-seq coverage in two cell types with two 

replicates. The lower panel shows the fitted b-splines in addition to the original log2 fold-change 

values for CEs (points). Dashed lines indicate the estimated thresholds from permutation to define 

differential segments within SE regions. In (e), red text indicates the cell line where SE was 

detected at this locus by the binary strategy.  
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Figure 3. Differential SE categories linked to distinct regulatory features. a). An example 

shows transcription factor in aiding SE-gene regulation. b). Differential CEs enriched with cell-
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type-specific (NKRKB & FOXA1) and key-function (MBD2) related transcription factors. Top 

panels are transcription factor signals at CEs active in K562. Bottom panels are transcription 

factor signals at CEs enriched in MCF7. Middle panels are the aggregated binding signals from 

the top and bottom panels with blue and orange lines indicating signals in K562 and MCF7, 

separately. The signs of y-axises in the middle panels represent enrichment directions. c). 

Differences on the linked gene numbers between MCF7 and K562 by differential CEs, which are 

grouped by their altering statuses. Gene targets are identified based on chromatin contacts from 

POLR2A ChIA-PET data. d). Differences on the linked gene numbers between MCF7 and K562 

by differential SEs, which are grouped by their differential patterns. For each differential SE 

category, SEs are separated into two sub-groups based on their enrichment directions. e). log2 

fold-change of the linked genes between MCF7 and K562 by differential CEs. f. log2 fold-change 

of the linked genes between MCF7 and K562 by differential SEs. For each differential SE category, 

genes are separated into two groups by the enrichment directions of their linked SEs.  g. Overlaps 

of the linked genes by four differential SE categories between MCF7 and K562. h. KEGG signaling 

pathways (p < 0.05) uniquely associated to each differential SE category. 

 

  



 

Figure 4. Comparisons between DASE and the binary strategy. a). Average discrepancies 

between DASE and the binary strategy across pair-wise comparisons of the six cancer cell types. 

Light grey: common non-differentials by DASE and the binary strategy; Dark grey: common 

differentials; purple: differential only by the binary strategy; blue: differential only by DASE. X-axis 

is labels with SE categories based on DASE. b). Impact on gene expression and linked gene 

numbers by the discrepant differential SEs between DASE and the binary strategy. Bars indicate 

the mean of log2 fold-change of gene expression or changes of linked gene numbers in each 

pair-wise comparison and error bars represent the standard error of the means. Results from the 

two altering directions of the gene effects are merged based on absolute values. c). Genes 

uniquely linked to SEs with increased activity (overall increased, lengthened or hollowed with 

increased CEs) in one cancer cell type compared to the other five cells. Green: genes uniquely 

found by binary strategy; red: genes uniquely found by DASE; grey: genes found by both methods. 

d). KEGG pathways (p < 0.05) enriched in the uniquely linked genes by DASE. 
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Figure 5. Identifying SE differences between similar cancer cell lines. a). Proportions of 

differential SE categories identified from within-cancer (BC1 vs. BC3) and cross-cancer 

comparisons (pairwise between six cancer cell types from ENCODE). Count differences (b,c) and 

log2 fold-changes (d,e) of linked genes by differential CEs (b,d) and SEs (c,e) between BC1 and 

BC3 cell lines. Gene targets are identified based on chromatin contacts from H3K27Ac HiChIP 

data.  f). Overlaps of SE-linked genes across four differential SE categories between BC1 and 

BC3. g. KEGG pathways (p < 0.05) that uniquely associated to each differential SE category. 
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