
1 
 

Interpreting machine learning models to investigate circadian regulation and facilitate exploration of 1 
clock function 2 
 3 
Authors: Laura-Jayne Gardiner1*, Rachel Rusholme-Pilcher2, Josh Colmer2, Hannah Rees2, Juan 4 
Manuel Crescente1,3, Anna Paola Carrieri1, Susan Duncan2, Edward O. Pyzer-Knapp1, Ritesh Krishna1 5 
and Anthony Hall2,4 6 
 7 
Affiliations: 1 IBM Research, The Hartree Centre, Warrington, WA4 4AD, UK  8 
2 Earlham Institute, Norwich, UK, NR4 7UZ 9 
3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina 10 
4 School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. 11 
 12 
Laura-Jayne Gardiner: Laura-Jayne.Gardiner@ibm.com  13 
Rachel Rusholme-Pilcher: Rachel.Rusholme-Pilcher@earlham.ac.uk 14 
Josh Colmer: josh.colmer@earlham.ac.uk 15 
Hannah Rees: Hannah.Rees@earlham.ac.uk 16 
Juan Manuel Crescente: juan.crescente@gmail.com  17 
Anna Paola Carrieri: Acarrieri@uk.ibm.com 18 
Susan Duncan: Susan.Duncan2@jic.ac.uk 19 
Edward O. Pyzer-Knapp: EPyzerK3@uk.ibm.com  20 
Ritesh Krishna: Ritesh.Krishna@uk.ibm.com 21 
Anthony Hall: Anthony.Hall@earlham.ac.uk 22 
 23 
Authors for correspondence: 24 
 25 
Dr Laura-Jayne Gardiner  26 
Email: Laura-Jayne.Gardiner@ibm.com 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.04.429826doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429826
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract  41 
The circadian clock is an important adaptation to life on earth. Here, we use machine learning to 42 
predict complex temporal circadian gene expression patterns in Arabidopsis. Most significantly, we 43 
classify circadian genes using DNA sequence features generated from public genomic resources, with 44 
no experimental work or prior knowledge needed. We use model explanation to rank DNA sequence 45 
features, observing transcript-specific combinations of potential circadian regulatory elements that 46 
discriminate temporal phase of expression. Model interpretation/explanation provides the backbone 47 
of our methodological advances, giving insight into biological processes and experimental design. 48 
Next, we use model interpretation to optimize sampling strategies when we predict circadian 49 
transcripts using reduced numbers of transcriptomic timepoints, saving both time and money. Finally, 50 
we predict the circadian time from a single transcriptomic timepoint, deriving novel marker transcripts 51 
that are most impactful for accurate prediction, this could facilitate the identification of altered clock 52 
function from existing datasets.  53 
 54 
Introduction  55 
The circadian clock is an internal molecular 24-hour timer that is a critical adaptation to life on Earth. 56 
It temporally orchestrates physiology, biochemistry and metabolism across the day/night cycle. As a 57 
result, it regulates many traits associated with fitness and survival [1,2]. The clock is a well 58 
characterised transcriptional regulatory network which drives complex, widespread and robust 59 
patterns of temporal gene expression [3,4].  However, our understanding of such complex 60 
transcriptional regulatory systems is limited by our ability to assay them, requiring the generation of 61 
long high-resolution time-series datasets.  62 
 63 
In plants, much of our understanding of circadian regulation, comes from our study of the model plant 64 
Arabidopsis thaliana. This has yielded a plethora of public multi-omic resources [5,6,7] that can be 65 
re-analysed to give new insights into the roles and functions of complex regulatory networks. In this 66 
study, we use newly generated datasets, published temporal datasets [8,9,10] (Table S1) and 67 
Arabidopsis genomes, in combination with machine learning (ML) approaches (see Glossary for 68 
definitions of terms), to make predictions about circadian gene regulation and expression patterns.  69 
Critically, we advance existing approaches using explainable AI algorithms and interpretation of our 70 
models (Glossary), such methods help us to understand the predictions made by ML models. In this 71 
case, giving insight into biological processes and experimental design alongside our predictions. 72 
Clarity with respect to how a model makes its predictions, we propose, will also generate confidence 73 
and trust in the model, promoting its usage. We use the Arabidopsis circadian clock as an example of 74 
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a complex transcriptional regulatory network since some of its key regulatory elements are already 75 
known, allowing validation of our findings with experimental evidence. 76 
 77 
Circadian gene expression rhythms reflect a variety of waveform shapes with a characteristic 78 
periodicity of ~24h [11]. Recent computational methods for identifying these rhythms from 79 
transcriptomic time course datasets have achieved circadian gene classification with as few as 3-6 80 
timepoints (saving time for sampling and money for sequencing) [12]. However, some of the most 81 
popular approaches describe optimal sampling strategies for the identification of rhythms running 82 
with >3 days of data and 2-hourly sampling resolution [13, 14]. We propose that this is partly due to 83 
concern for the loss of information as a result of down sampling. Since the cost implications of this are 84 
high, our focus is on designing trusted down-sampling strategies for capturing circadian oscillations 85 
using a non-optimal number of timepoints. As such, firstly, we develop ML models that not only 86 
classify circadian expression patterns using iteratively lower numbers of transcriptomic timepoints 87 
improving accuracy compared to the state-of-the-art. But moreover, we use model interpretation to 88 
quantify the best transcriptomic timepoints for sampling. We believe that this predictive insight on 89 
when to sample will be a valuable reference for experimental biologists when planning experiments. 90 
 91 
Next, we re-define the field, developing ML models that distinguish circadian transcripts using no 92 
transcriptomic timepoint information, and instead using only DNA sequence features (Glossary). The 93 
theory supporting this is that a major mechanism of (circadian or otherwise) gene expression control 94 
is through transcription factor binding to regulatory DNA sequence. Considering previous work in 95 
Arabidopsis it is likely that the promoter, 5’UTR and the first part of the coding region are the most 96 
useful locations for transcription factor binding site (TFBS) detection [15]. Genes expressed with 97 
similar patterns are more likely to be controlled by similar sets of TFBSs.  In addition, small RNAs 98 
(sRNAs), comprising microRNAs (miRNAs) and small interfering RNAs (siRNAs) are thought to affect 99 
transcript abundance via post-transcriptional regulation of mRNA [16]. Plant miRNAs predominately 100 
bind to the coding regions of mRNA, and to a lesser extent 5′UTR and 3′UTR regions [17,18]. As such, 101 
we consider both coding and non-coding regions to classify circadian genes using DNA sequence. Our 102 
DNA sequence features are profiles of k-mer-based motif representations that are identified de novo 103 
and embody a comprehensive picture of TFBS, sRNA/RNA binding sites and other sequence-based 104 
regulatory elements, since we incorporate the promoter, 5’UTR, 3’UTR and coding regions. 105 
 106 
A key strength of our DNA-sequence based approach is that we classify circadian transcripts using k-107 
mer-based motif representations generated from pre-existing public genomic resources with no 108 
experimental work or prior knowledge of regulatory elements needed. Computational regulatory motif 109 
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discovery methods typically search for overrepresented words across DNA sequences using methods 110 
such as Expectation Maximization (EM) and Gibbs sampling [19,20,21,22]. Approaches are typically 111 
limited by a requirement for input information e.g., co-expressed genes, site abundance, number of 112 
sites per sequence or a fixed motif length [23,24,25]. Furthermore, Artificial Intelligence (AI) has been 113 
used to predict transcriptomic profiles directly using features such as DNA sequence or epigenetic 114 
marks. These features typically include representations of TFBS [26,27], enhancers [28], histone 115 
modifications [29] or open chromatin regions [30]. However, again, these approaches typically require 116 
experimental data or prior knowledge of regulatory elements that our approach does not need, or they 117 
focus on single gene expression states and do not consider complex patterns, as our methods do.   118 
 119 
Additionally, AI-based work in the field of expression prediction has largely lacked comprehensive 120 
model explanation [31].  Here, we expose the potential, alongside our DNA-sequence based predictive 121 
model, to use explainable AI to discover regulatory motifs and explore their functional consequences. 122 
We exploit model explanation to identify, on a transcript-by-transcript basis, the ranked regulatory 123 
sequences that guide the classification of its expression pattern as circadian. We identify both small 124 
and larger combinations of regulatory elements that, in combination, give a larger overall impact on 125 
gene classification. These regulatory sequences are candidate causal genetic features that could 126 
control gene expression and allow us to understand the regulatory mechanisms governing circadian 127 
expression patterns and even manipulate its regulation, focused here on circadian rhythmicity. 128 
Ultimately, we use model explanation to generate and validate hypotheses in silico, facilitating both 129 
gene expression prediction and derivative regulatory element discovery.  130 
 131 
Finally, assaying circadian clock function, as opposed to simply identifying transcript rhythmicity, has 132 
been a major challenge for the study of the circadian regulation in organisms ranging from mammals 133 
to plants. Recent work applied ML to circadian time course transcriptomic datasets from human blood, 134 
to predict the phase of the endogenous circadian clock (circadian time, CT), using a single time point 135 
from a set of marker genes [32,33]. This allows the use of one time point to identify altered clock 136 
function e.g., due to disease or environmental conditions. An equivalent major challenge exists in plant 137 
sciences. As such, we use ML to predict the circadian time in Arabidopsis from a single transcriptomic 138 
timepoint using marker genes. To advance previous offerings, we identify novel marker genes as part 139 
of our interpretable approach ensuring that they represent a diverse range of temporal patterns with 140 
consistent amplitudes across datasets to facilitate accurate and robust phase prediction irrespective 141 
of sample phase. Counter-intuitively our marker genes do not include the core clock genes used in 142 
previous studies for time prediction [34]. Taken together, these tools constitute a suite of informative 143 
resources for both experimental biologists and the interpretation of further circadian datasets. 144 
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Results and Discussion  145 
 146 
ML model interpretation optimizes timepoint down-sampling to define circadian transcripts  147 
We used MetaCycle as our baseline for detecting circadian signals in dense time-series transcriptomic 148 
data [13]. MetaCycle is one of the most well-maintained and accessible tools within the community 149 
incorporating a variety of the most widely used methods ARSER [35], JTK_CYCLE [36] and Lomb-150 
Scargle [37] and integrating their results so that rhythmic prediction is a cumulation of different 151 
statistical approaches. We ran MetaCycle (see Methods) on a published Arabidopsis time-series 152 
transcriptomic dataset generated by [8], which was sampled every 4-hours for 48-hours, starting 24-153 
hours after transfer to constant conditions (LL) (Table S1). The data was processed to produce 154 
normalized counts per transcript (see Methods). MetaCycle classified 9,394 out of 44,963 transcripts 155 
as circadian (q<0.05), with 7,734 denoted as high confidence (q<0.02) (Supplementary Note 1). We 156 
trained a series of ML classifiers to predict if a transcript was circadian or non-circadian in a binary 157 
classification system using 7,734 of the least likely candidates to be circadian (q>0.99) labelled by 158 
MetaCycle alongside the 7,734 highly circadian transcripts (q<0.02) (see Methods; Glossary; 159 
Supplementary Note 2). For the ML models we report the F1 scores that measure the accuracy of the 160 
model on a scale of 0 to 1, with 1 being most accurate (Glossary). Considering all 12 transcriptomic 161 
time points, the best model was generated with LightGBM after optimization (Methods; Figure S1a, 162 
Table S2) with: an F1 score of 0.999 on the training data, an F1 score of 0.955 on the (held out) test 163 
data and a mean F1 cross validation score of 0.939 (Glossary). Our confusion matrix (Figure S1b; 164 
Glossary) highlights consistently high accuracy of our model irrespective of the class that is being 165 
predicted (circadian/non-circadian). 166 
 167 
Our best ML model (LightGBM) was able to assign a matching circadian/non-circadian label to the 168 
majority of the transcripts that MetaCycle labelled. Overall, there is good agreement between our 169 
model and MetaCycle. However, the overlap was not 100% so we examined the small proportion of 170 
transcripts that were “inaccurately” classified. We found that the “inaccurately” classified cases by 171 
our ML model were more likely to be intermediate or border-line cases for MetaCycle (Figure 1) or 172 
edge cases e.g., with slightly longer period lengths (Figure S1). We deduced this because cases 173 
rejected by MetaCycle as circadian but accepted by the ML (false positives-FP) had significantly lower 174 
(MetaCycle derived) p-values than the cases that were rejected by both MetaCycle and ML (true 175 
negatives-TN) (p<0.0001, t=6.8795, df=7753). Conversely, cases accepted by MetaCycle as rhythmic 176 
but rejected by ML (false negatives-FN) had higher (MetaCycle derived) p-values than cases 177 
categorised as rhythmic by both MetaCycle and ML (true positives-TP) (p<0.0001, t=5.7744, df=7711) 178 
(Figure 1a). Additionally, cases rejected by MetaCycle as circadian but accepted by the ML (FP) have 179 
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significantly lower relative amplitudes compared to the TP calls where both methods agree 180 
(p<0.0001, t=8.3845, df=7732). Conversely, cases accepted by Metacycle as rhythmic but rejected 181 
by ML (FN), had a significantly higher relative amplitude than the true negative calls (p=0.036, 182 
t=2.0924, df=7732) (Figure 1b). This also highlights that the ML model is not simply using high and 183 
low expression levels to discriminate circadian and non-circadian status of transcripts.  184 
 185 

 186 
 187 

Figure 1. Arabidopsis circadian/non-circadian comparative ML binary classification analysis with 188 
12 transcriptomic timepoints. Class 0=Non-circadian and Class 1=Circadian. Histograms in (a-b) all 189 
relate to the best model from Figure S1a that was generated using LightGBM, the histograms are 190 
colour coded as per the confusion matrix shown in the legend to the right i.e. showing where our model 191 
assigned True Positive labels (TP), False Positive labels (FP), False Negative labels (FN) and True 192 
Negative labels (TN). The histograms show the frequency of transcripts that had various (a) p-values 193 
or (b) relative amplitudes assigned to them by Metacycle.  194 
 195 
 196 
We assessed the effect of reducing the number of transcriptomic timepoints on the accuracy of our 197 
classification of circadian/non-circadian transcripts. For our best ML model (derived using 12 198 
timepoints), we reduced the number of timepoints (or features) sequentially from 12 down to 3. To 199 
obtain each of the interim reduced sets of timepoints from 12 to 3, we used well-known feature 200 
selection tools chi-square and eli5 (Glossary) and compared these against testing every possible 201 
feature combination for the timepoint number (see Methods). The method of trialling every possible 202 
feature combination for each reduced timepoint number enabled us to most accurately classify 203 
transcripts as circadian/non-circadian (Figure 2a). Using this approach with 6 timepoints, we achieved 204 
a mean classification F1 accuracy score of 0.886 on cross validation and a score of 0.792 using only 205 

MetaCycle rAMP
[0

.0
0,

 0
.2

0]
(0

.2
0,

 0
.4

0]
(0

.4
0,

 0
.6

0]
(0

.6
0,

 0
.8

0]
(0

.8
0,

 1
.0

0]
(1

.0
0,

 1
.2

0]
(1

.2
0,

 1
.4

0]
(1

.4
0,

 1
.6

0]
(1

.6
0,

 1
.8

0]
(1

.8
0,

 2
.0

0]
(2

.0
0,

 2
.2

0]
(2

.2
0,

 2
.4

0]
(2

.4
0,

 2
.6

0]
(2

.6
0,

 2
.8

0]

Ge
ne

 Fr
eq

ue
nc

y
0

500

1000

1500

2000

2500

3000

3500

4000

7653 81

60           7674

MetaCycle p-value

[0
.5

0,
 0

.5
5]

(0
.5

5,
 0

.6
0]

(0
.6

0,
 0

.6
5]

(0
.6

5,
 0

.7
0]

(0
.7

0,
 0

.7
5]

(0
.7

5,
 0

.8
0]

(0
.8

0,
 0

.8
5]

(0
.8

5,
 0

.9
0]

(0
.9

0,
 0

.9
5]

(0
.9

5,
 1

.0
0]

(1
.0

0,
 1

.0
5]

Ge
ne

 Fr
eq

ue
nc

y

0
200
400
600
800

1000
1200
1400
1600
1800
2000

MetaCycle p-value

[0
.0

00
0,

 0
.0

00
3]

(0
.0

00
3,

 0
.0

00
6]

(0
.0

00
6,

 0
.0

00
9]

(0
.0

00
9,

 0
.0

01
2]

(0
.0

01
2,

 0
.0

01
5]

(0
.0

01
5,

 0
.0

01
8]

(0
.0

01
8,

 0
.0

02
1]

(0
.0

02
1,

 0
.0

02
4]

(0
.0

02
4,

 0
.0

02
7]

(0
.0

02
7,

 0
.0

03
0]

(0
.0

03
0,

 0
.0

03
3]

(0
.0

03
3,

 0
.0

03
6]

Ge
ne

 Fr
eq

ue
nc

y

0

1000

2000

3000

4000

5000

6000

MetaCycle p-value

[0
.5

0,
 0

.5
5]

(0
.5

5,
 0

.6
0]

(0
.6

0,
 0

.6
5]

(0
.6

5,
 0

.7
0]

(0
.7

0,
 0

.7
5]

(0
.7

5,
 0

.8
0]

(0
.8

0,
 0

.8
5]

(0
.8

5,
 0

.9
0]

(0
.9

0,
 0

.9
5]

(0
.9

5,
 1

.0
0]

Ge
ne

 Fr
eq

ue
nc

y

0

2

4

6

8

10

12

14

MetaCycle Period

[1
7.

51
, 1

8.
51

]
(1

8.
51

, 1
9.

51
]

(1
9.

51
, 2

0.
51

]
(2

0.
51

, 2
1.

51
]

(2
1.

51
, 2

2.
51

]
(2

2.
51

, 2
3.

51
]

(2
3.

51
, 2

4.
51

]
(2

4.
51

, 2
5.

51
]

(2
5.

51
, 2

6.
51

]
(2

6.
51

, 2
7.

51
]

(2
7.

51
, 2

8.
51

]
(2

8.
51

, 2
9.

51
]

Ge
ne

 Fr
eq

ue
nc

y

0
2
4
6
8

10
12
14

16

MetaCycle Phase

[0
.0

8,
 2

.0
8]

(2
.0

8,
 4

.0
8]

(4
.0

8,
 6

.0
8]

(6
.0

8,
 8

.0
8]

(8
.0

8,
 1

0.
08

]
(1

0.
08

, 1
2.

08
]

(1
2.

08
, 1

4.
08

]
(1

4.
08

, 1
6.

08
]

(1
6.

08
, 1

8.
08

]
(1

8.
08

, 2
0.

08
]

(2
0.

08
, 2

2.
08

]
(2

2.
08

, 2
4.

08
]

(2
4.

08
, 2

6.
08

]

Ge
ne

 Fr
eq

ue
nc

y

0

2

4

6

8

10

12

14

MetaCycle rAMP

[0
.0

0,
 0

.1
0]

(0
.1

0,
 0

.2
0]

(0
.2

0,
 0

.3
0]

(0
.3

0,
 0

.4
0]

(0
.4

0,
 0

.5
0]

(0
.5

0,
 0

.6
0]

(0
.6

0,
 0

.7
0]

(0
.7

0,
 0

.8
0]

(0
.8

0,
 0

.9
0]

(0
.9

0,
 1

.0
0]

(1
.0

0,
 1

.1
0]

(1
.1

0,
 1

.2
0]

(1
.2

0,
 1

.3
0]

Ge
ne

 Fr
eq

ue
nc

y

0

10

20

30

40

50

60

MetaCycle p-value

[0
.0

00
0,

 0
.0

00
3]

(0
.0

00
3,

 0
.0

00
6]

(0
.0

00
6,

 0
.0

00
9]

(0
.0

00
9,

 0
.0

01
2]

(0
.0

01
2,

 0
.0

01
5]

(0
.0

01
5,

 0
.0

01
8]

(0
.0

01
8,

 0
.0

02
1]

(0
.0

02
1,

 0
.0

02
4]

(0
.0

02
4,

 0
.0

02
7]

(0
.0

02
7,

 0
.0

03
0]

(0
.0

03
0,

 0
.0

03
3]

(0
.0

03
3,

 0
.0

03
6]

Ge
ne

 Fr
eq

ue
nc

y

0
2
4
6
8

10
12
14
16
18

MetaCycle Period

[1
7.

44
, 1

8.
44

]
(1

8.
44

, 1
9.

44
]

(1
9.

44
, 2

0.
44

]
(2

0.
44

, 2
1.

44
]

(2
1.

44
, 2

2.
44

]
(2

2.
44

, 2
3.

44
]

(2
3.

44
, 2

4.
44

]
(2

4.
44

, 2
5.

44
]

(2
5.

44
, 2

6.
44

]
(2

6.
44

, 2
7.

44
]

(2
7.

44
, 2

8.
44

]
(2

8.
44

, 2
9.

44
]

(2
9.

44
, 3

0.
44

]
(3

0.
44

, 3
1.

44
]

Ge
ne

 Fr
eq

ue
nc

y

0

2

4

6

8

10

12

MetaCycle Phase

[0
.3

5,
 2

.3
5]

(2
.3

5,
 4

.3
5]

(4
.3

5,
 6

.3
5]

(6
.3

5,
 8

.3
5]

(8
.3

5,
 1

0.
35

]

(1
0.

35
, 1

2.
35

]

(1
2.

35
, 1

4.
35

]

(1
4.

35
, 1

6.
35

]

(1
6.

35
, 1

8.
35

]

(1
8.

35
, 2

0.
35

]

(2
0.

35
, 2

2.
35

]

(2
2.

35
, 2

4.
35

]

Ge
ne

 Fr
eq

ue
nc

y

0
1
2
3
4
5
6
7

8

MetaCycle rAMP

[0
.0

7,
 0

.1
7]

(0
.1

7,
 0

.2
7]

(0
.2

7,
 0

.3
7]

(0
.3

7,
 0

.4
7]

(0
.4

7,
 0

.5
7]

(0
.5

7,
 0

.6
7]

(0
.6

7,
 0

.7
7]

(0
.7

7,
 0

.8
7]

(0
.8

7,
 0

.9
7]

(0
.9

7,
 1

.0
7]

(1
.0

7,
 1

.1
7]

(1
.1

7,
 1

.2
7]

(1
.2

7,
 1

.3
7]

(1
.3

7,
 1

.4
7]

(1
.4

7,
 1

.5
7]

Ge
ne

 Fr
eq

ue
nc

y

0

2

4

6

8

10

12

14

Tr
an

sc
rip

t F
re

qu
en

cy
Tr

an
sc

rip
t F

re
qu

en
cy

Tr
an

sc
rip

t F
re

qu
en

cy
Tr

an
sc

rip
t F

re
qu

en
cy

Tr
an

sc
rip

t F
re

qu
en

cy
Tr

an
sc

rip
t F

re
qu

en
cy

Tr
an

sc
rip

t F
re

qu
en

cy

Tr
an

sc
rip

t F
re

qu
en

cy

a. b.

MetaCycle rAMP
[0

.0
0,

 0
.2

0]
(0

.2
0,

 0
.4

0]
(0

.4
0,

 0
.6

0]
(0

.6
0,

 0
.8

0]
(0

.8
0,

 1
.0

0]
(1

.0
0,

 1
.2

0]
(1

.2
0,

 1
.4

0]
(1

.4
0,

 1
.6

0]
(1

.6
0,

 1
.8

0]

Ge
ne

 Fr
eq

ue
nc

y
0

500

1000

1500

2000

2500

3000

3500

MetaCycle rAMP

[0
.0

0,
 0

.2
0]

(0
.2

0,
 0

.4
0]

(0
.4

0,
 0

.6
0]

(0
.6

0,
 0

.8
0]

(0
.8

0,
 1

.0
0]

(1
.0

0,
 1

.2
0]

(1
.2

0,
 1

.4
0]

Ge
ne

 Fr
eq

ue
nc

y

0

10

20

30

40

50

60

70

80

MetaCycle rAMP

[0
.0

0,
 0

.2
0]

(0
.2

0,
 0

.4
0]

(0
.4

0,
 0

.6
0]

(0
.6

0,
 0

.8
0]

(0
.8

0,
 1

.0
0]

(1
.0

0,
 1

.2
0]

(1
.2

0,
 1

.4
0]

(1
.4

0,
 1

.6
0]

Ge
ne

 Fr
eq

ue
nc

y

0

5

10

15

20

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.04.429826doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429826
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

3 time points (Table S3). Table S3 also highlights, for these most accurate models, that we have 206 
consistently high accuracy irrespective of the class that is being predicted (circadian/non-circadian). 207 
Using model interpretation i.e., identifying the combinations of features that gave the highest 208 
accuracies, we were able to define the most optimal sampling strategies for the different numbers of 209 
timepoints. For selection of 6 or more timepoints, the best combinations tended to be consecutive 210 
timepoints extending across the intersect of day 1 and day 2. In contrast, when selecting low numbers 211 
of timepoints, more accurate classifications were made when timepoints were spaced across a single 212 
day (Figure 2b). Figure 2c highlights this showing the best combination of reduced timepoints in each 213 
category 12-3 for the example transcript phytochrome A (PHYA). 214 
 215 

 216 
 217 
Figure 2. Arabidopsis circadian/non-circadian comparative ML binary classification analysis to 218 
reduce the number of transcriptomic timepoints. For our best ML model, we reduced the number of 219 
timepoints sequentially from 12 down to 3. (a) To obtain each reduced set of timepoints, we compare 220 
using chi-square (Chi2) and eli5 (Eli5) feature selection with the best set comparing every possible 221 
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random feature combination (All). Here we show the best F1 score after 5-fold cross validation for 222 
each set of reduced timepoints. (b) Detailing the 10 best combinations of features that gave the 223 
highest accuracy or F1 score for each reduced set of timepoints. Labels N3-N11 show the number of 224 
reduced timepoints. Labels avexp_24-avexp_68 show the sampling times. Counts 0-10 represent the 225 
number of times each timepoint appeared in the 10 best combinations of features. (c) For the example 226 
gene PHYA showing a line plot of the gene’s expression values across the best combination of reduced 227 
timepoints in each category 12-3. Expression values are uniformly reduced by ~5% for each reduced 228 
timepoint combination to allow separation of lines for visualization.  229 
 230 
In order to test how generalizable our model is on unseen data (Glossary), we used the most accurate 231 
model for the reduced set of 3 timepoints (timepoints 36, 48 and 60) for the binary classification of, 232 
firstly, a second Arabidopsis transcriptomic time-series dataset developed by [9] and secondly, a 233 
newly developed wheat transcriptomic dataset representing a divergent plant species from 234 
Arabidopsis (Table S1). These additional unrelated test datasets represent different sampling 235 
strategies and experimental setups (see Methods). Both test datasets were processed 236 
bioinformatically as per our original [8] dataset (see Methods). For the Arabidopsis [9] dataset, the 237 
timepoints did not match those used to train our model; sampling started 2 hours after exposure to 238 
constant light (rather than 24 hours after) and samples were taken every 3 hours instead of every 4. 239 
As such, we selected the closest times to those that were used to train our model according to time 240 
of day relative to dawn (timepoints 11, 23 and 35). Even so, the F1 score (representing accuracy) for 241 
classification of this gene set was relatively high at 0.714, amounting to a decrease in accuracy of only 242 
0.08 compared to the dataset that the model was trained on. For the wheat dataset, sampling started 243 
24 hours after exposure to constant light and measurements were taken every 2 hours instead of 244 
every 4. Therefore, here, matching the time of day relative to dawn, we were able to select equivalent 245 
timepoints (12, 24 and 36 hours) and the F1 score was slightly higher at 0.769 amounting to a 246 
decrease of only 0.02 on a highly divergent species. The model therefore generalizes well irrespective 247 
of the sample’s species, particularly with matched timepoints relative to dawn. 248 
 249 
We compared our timepoint reduction analysis using ML to a range of analyses representing the state-250 
of-the-art across the different timepoint numbers. MetaCycle requires a minimum of 6 timepoints for 251 
circadian analysis, and benefits from these timepoints being evenly sampled across the chosen time 252 
period [13]. As such, we reduced timepoints from 12 to 6 to enable comparison including evenly 253 
spaced sampling patterns; 4hourly/1day, 8hourly/2days versus the best suggested sampling times 254 
from our ML analysis (4hourly/1day from 36-56 hours from Figure 2b and 2c). The reduction to 6 255 
timepoints significantly decreased the number of positive circadian gene calls by MetaCycle that were 256 
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conserved with the 12 timepoint analysis, independently of the sampling technique used. In fact, the 257 
highest proportion of the 9,394 circadian genes identified with 12 timepoints by MetaCycle that were 258 
also identified with 6 timepoints (p<0.05) was 63.7% (Table S4). This accuracy is still ~25% lower 259 
than the F1 score we achieved with 6 timepoints and our best ML model (Table S3). Furthermore, 260 
when comparing the F1 score of our 3-timepoint ML model it was more appropriate to use a 3-261 
timepoint state-of-the-art analysis performed by Spörl et al. [12]. Table S4 highlights that we achieve 262 
a 12% higher accuracy with only 3 timepoints in a like-for-like comparison with Spörl et al. [12]. This 263 
accuracy improvement is in addition to the experimental design insight that we provide.  264 
 265 
Circadian genes can be classified using de novo generated DNA sequence-based k-mer spectra 266 
We investigated if it was possible to eliminate transcriptomic timepoints completely and use DNA 267 
sequence features alone to classify transcripts as circadian/non-circadian. To achieve this, we 268 
generated k-mer profiles de-novo for the mRNA and promoter sequences associated with each 269 
transcript, comparing a range of k-mer lengths (see Methods; Glossary). We trained a series of ML 270 
classifiers to predict if a transcript was circadian or non-circadian in a binary classification system 271 
using the derived k-mer profiles for the same set of transcripts and MetaCycle derived labels used 272 
previously (for the transcriptomic ML model). Across the range of k-mers the best models were 273 
consistently generated with the classifier LightGBM and the most accurate model used a k-mer length 274 
of 6 to generate separate feature sets for the promoter and mRNA regions (8,192 features of k-mer 275 
counts per transcript) that were both inputted into the model (see Methods). This best optimized 276 
model showed (Figure 3a, Table S2): a mean F1 score of 0.766 on cross validation (standard deviation 277 
0.006) and a test F1 score of 0.751 on class 0 (non-circadian) and 0.804 on class 1 (circadian). Again, 278 
our accuracy was largely balanced between the classes. An optimal k-mer length of 6bp for this 279 
analysis could reflect this being the smallest length k-mer that we would not expect to simply occur 280 
by chance, therefore giving ideal resolution. Due to the large number of features created when using 281 
a k-mer length of 6, using feature selection we tested the accuracy of our rhythmic classification when 282 
subsets of the feature set were used (Figure 3b; Glossary). We can reduce the feature number to ~200 283 
and still achieve an F1 score above 0.7, but the highest accuracy was achieved with all 8,192 features 284 
and as such, for downstream investigations we used the full feature set.  285 
 286 
Our de-novo k-mer generation approach allows downstream identification and investigation of both 287 
known and previously unknown sites with only the annotation of the TSS and TTS of a transcript 288 
required. Our short k-mers (6bp) should mainly represent regulatory elements such as TFBSs when 289 
derived from promoter/UTR regions. However, our inclusion of coding regions may allow us to 290 
encompass additional regulators e.g., miRNA binding sites. Although miRNAs tend to be 20-24bp in 291 
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length, our k-mers may represent miRNA seed regions that are typically ~6bp in length and 292 
perfectly/near-perfectly match targets [17].  293 
 294 

 295 
 296 
Figure 3. Arabidopsis circadian/non-circadian ML binary classification analysis using k-mer 297 
profiles. For our best performing classifier LightGBM we compare the F1 scores generated using (a) 298 
different k-mer lengths (4-7bp) for classification, with or without the use of oversampling (OS) since 299 
our classes are not perfectly balanced (Glossary). (b) To obtain each reduced set of k-mers we use 300 
chi-square (Chi2) feature selection. Here we show the best F1 score after 5-fold cross validation for 301 
each set of reduced features. (c) shows the top 30 most impactful features for predicting class 1 302 
(circadian) considering all samples in the dataset (training and test) as calculated using SHAP (Shapley 303 
Additive exPlanations) (Glossary). Feature value equates to the frequency of a k-mer per transcript. 304 
When the frequency of a k-mer per transcript is high (red) and it has a positive SHAP value, this high 305 
frequency is driving the prediction of a circadian transcript. This is often coupled to the situation where 306 
the lower frequency of the same k-mer per transcript (blue) has a negative SHAP value, so the absence 307 
of the k-mer is driving the prediction of a non-circadian transcript. On the contrary, when the 308 
frequency of a k-mer per transcript is high (red) and has a negative SHAP value, the high frequency is 309 
driving the prediction of a non-circadian transcript. This is often coupled to the situation where the 310 
lower frequency of the k-mer per transcript (blue) has a positive SHAP value, so the absence of the k-311 
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mer is driving the prediction of a circadian transcript. Features e.g. the k-mer TATTGC, are labelled as 312 
“TATTGC” for counts from the promoter and “TATTGC .1” for counts from the mRNA. 313 
 314 
Explanation of DNA sequence-based ML model links to circadian regulation 315 
We next wanted to explain our model, to identify which k-mer’s were most influential in guiding it to 316 
predict transcripts as circadian, since these k-mer’s could represent the most critical regulatory 317 
elements for circadian regulation. If we observe known circadian regulatory elements in this process, 318 
this is also a means of validation of the model. As such, we used SHAP (Shapley Additive exPlanations) 319 
to explain our best DNA sequence-based model’s predictions by computing the contribution of each 320 
feature or k-mer to that prediction i.e., ranked feature impact on the classification (Glossary) [38]. We 321 
did this firstly at a global level by looking at the top 30 most impactful features across all of the 322 
transcripts for distinguishing class 1 (circadian) from class 0 (non-circadian) (Glossary; Figure 3c).  323 
Approximately half of the most impactful k-mers in Figure 3c show a positive correlation between k-324 
mer frequency and the SHAP value or feature impact on the model. Higher frequencies of these k-325 
mers for a transcript indicate a higher impact on it being classified as circadian. Of these positively 326 
correlated top 30 k-mers, 55% of those that contributed to the circadian classification of a transcript 327 
were predominantly in the promoter or the UTR of transcripts. We hypothesized that these k-mers 328 
represent TFBSs for transcription factors (TFs) linked to circadian regulation.  329 
 330 
To investigate if our most impactful promoter/UTR k-mers for prediction were in fact TFBSs, we 331 
aligned known Arabidopsis TFBSs to each of the k-mers and filtered the most significant matches 332 
(Table S5; see Methods). We then validated the k-mers that match/likely represent TFBSs using 333 
experimental evidence or insight from the literature; many of the matched k-mers were closely 334 
associated with circadian regulation or circadian related processes. Notable k-mers of interest 335 
included (k-mer number 1; Table S5) matches to TFBS for two photo-responsive TFs (AT3G58630 and 336 
AT5G05550) (p-value 0.0002, e-value 0.18) which form interactions with a number of circadian-337 
related proteins e.g. LIGHT INSENSITIVE PERIOD1 (LIP1), CONSTANS-Like (COL) 11 [39] and 338 
REVEILLE 2 (RVE2) [40]. Another k-mer (k-mer number 7; Table S5) matched a motif bound by several 339 
ethylene-responsive binding proteins (p=0.00003, e=0.02); ethylene synthesis is known to be both a 340 
circadian controlled process and also a moderator of the circadian clock [41,42]. We also found 341 
matches as would have been predicted for binding sites of known circadian TF’s including LUX 342 
ARRYTHMO (LUX) [43], CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) [44] and LATE ELONGATED 343 
HYPOCOTYL (LHY) [45], alongside several motifs associated with light-induced or repressed 344 
sequences (SORLIP/SORLREP) (Table S5).  345 
 346 
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In contrast to our promoter/UTR k-mers, four of the positively correlated top 30 most impactful k-mer 347 
features defined by SHAP were observed primarily in coding regions across the circadian predicted 348 
transcripts. Since miRNAs are thought to influence circadian controlled processes [46,47] and are 349 
common in coding regions, we tested the possibility that these k-mers could represent miRNAs by 350 
aligning them (plus surrounding sequence) to mature ath-miRNA sequences to identify possible 351 
matches (see Methods). Two of the four k-mers and their flanking sequence matched miRNA 352 
sequences that were associated with developmental timing [48] and chloroplast biogenesis [49]. 353 
Therefore, for a subset of transcripts, the k-mers could represent putative miRNA binding sites that 354 
have been experimentally linked to circadian regulated processes, although this only accounts for a 355 
small proportion of the transcripts (Table S5). As such, we next investigated the possibility that these 356 
k-mers could represent RNA binding motifs (see Methods). In doing so we validated two of the k-mers 357 
by linking them to RNA binding motifs that are associated with circadian related processes. RNA-358 
binding proteins are key regulators of gene expression and post-transcriptional regulation in 359 
eukaryotes, and, due to strong sequence conservation, their recognition preferences can be inferred 360 
from RNA-binding motifs. Two of the four coding sequence derived k-mers matched RNA-binding 361 
motifs (Table S5, p<0.05). The first is targeted by the RNA-binding protein Serine and Arginine Rich 362 
Splicing Factor 7 (SRSF7). This has been linked to circadian processes since circadian temperature 363 
cycles are known to drive rhythmic SR protein phosphorylation to control alternative splicing [50]. The 364 
Arabidopsis protein RSZ22 is a known true ortholog of the human SRSF7 SR factor that this alignment 365 
could represent [51]. The second k-mer matched motif is targeted by the RNA-binding protein LIN28A 366 
(Homo sapiens). The Arabidopsis protein Cold-Shock Protein 1 (CSP1) is a known homolog of LIN28A 367 
with a similar functional role in reprogramming, that this alignment could represent [52]. CSP1 has 368 
been implicated in seed germination timing that is also known to be clock related [53].  369 
 370 
Transcript-specific explanations reveal sub-classes within the binary class circadian 371 
Our DNA sequence-based model used binary classification to discriminate transcripts under circadian 372 
regulation from those that are not, which is useful to identify circadian regulatory elements from 373 
model explanations. However, circadian rhythms reflect a variety of waveform shapes. As such, we 374 
bioinformatically identified co-expression modules (Glossary) from the transcriptomic profiles of the 375 
circadian transcripts that were used to train our ML models using weighted gene co-expression 376 
network analysis (WGCNA) [54]. This resulted in 8 modules with distinct circadian expression profiles. 377 
These modules represent groups of transcripts differentiated by phase of expression with the 378 
following observed (Figure S2); morning phases 0 (cluster 7) and 4 (cluster 5/6), day phase 8 (cluster 379 
3), day/evening phase 12 (cluster 2), evening phase 16 (cluster 1) and night phase 20 (cluster 4/8).  380 
 381 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.04.429826doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.04.429826
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

We next sought to group our circadian transcripts into subgroups representative of different phases 382 
of expression, but rather than using transcriptomic information, this time we wanted to use the SHAP 383 
impact values of their k-mers. This effectively divides our DNA sequence-based model’s binary class 384 
circadian into multiple sub-classes, providing further insight into transcript rhythmicity. To enable 385 
this, we used model explanation of our best DNA sequence-based predictive model, but rather than 386 
identifying the most impactful k-mers in general (global explanation) for predicting class 1 (circadian), 387 
as previously, we now identify the most impactful k-mers for the classification of each circadian 388 
transcript individually (local explanation) (Glossary). For this, we focus on the true positive circadian 389 
transcripts where MetaCycle and our ML model predict circadian. These local explanations are 390 
transcript specific and could highlight k-mers that are regulating each transcript’s expression. Each 391 
transcript has a calculated SHAP impact value per feature (8,192 k-mers) and this set of values we 392 
refer to as the SHAP value profile for a transcript. The k-mer with the highest SHAP value being the 393 
most influential on the transcript’s classification as circadian. Comparison of these profiles allows us 394 
to compare and subdivide the transcripts within the binary class circadian, using DNA sequence 395 
composition related to gene regulation, rather than transcriptomic profile.   396 
 397 
To investigate this, after deriving local explanations, we filtered the most circadian transcripts 398 
according to their SHAP explanation (“most positive cumulative SHAP value”, Figure 4a, see methods, 399 
Glossary). Then we focused on known circadian genes that were within this set i.e., experimentally 400 
validated and widely known true positive genes from previous studies. We clustered the derivative 401 
transcripts of these genes based on the similarity of their SHAP value profiles, which represent the 402 
relative impact of the k-mers on their classification as circadian (Figure 4b). In groups to the right of 403 
the dendrogram (purple), 85% of transcripts peak in their expression in the morning/day, whereas in 404 
groups to the left, 77% of transcripts peak in the evening/night (phases determined by MetaCycle). 405 
Therefore, circadian transcripts with more similar k-mer SHAP value profiles also had similar 406 
expression phases, thus dividing our circadian class into sub-classes representing phases of 407 
rhythmicity using k-mer information. For example, PRR3 and LUX were found to have similar SHAP 408 
value profiles and we validated this by observing their similar transcriptomic expression profiles, with 409 
evening phases of expression of ZT15 and ZT13 respectively. Notable exceptions include the two LNK 410 
genes which have a transcript expression profile which peaks in the morning but have SHAP profiles 411 
similar to evening and night expressed genes, with LNK1 most closely linked to TOC1. This suggests 412 
that LNK1/LNK2 may be regulated by a separate mechanism to that regulating other dawn expressed 413 
genes. In the morning/day cluster we also see the gene TIC which peaks at dusk in the transcriptomic 414 
data; previously, rhythmicity of TIC was not detected in whole seedlings whereas here, we confidently 415 
classify this transcript as circadian from aerial tissue (MetaCycle q=0.004). Previous work concluded 416 
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that TIC functions in the late evening [55] but plays a role regulating LHY that is in the same 417 
morning/day cluster as TIC, this may explain its appearance here [56]. Finally, we also see the night 418 
gene PHYB in the morning/day cluster, this may be due to the additional presence of the closely 419 
related PHYA in this cluster [57]. 420 
 421 

 422 
 423 
Figure 4. Investigating Arabidopsis circadian true positive transcripts after ML binary k-mer DNA 424 
sequence-based classification analysis. For our best performing classifier LightGBM. (a) Box plot to 425 
show the range of SHAP values across all true positive transcripts (correctly predicted as circadian). 426 
A positive SHAP value for a k-mer, for a specific transcript, indicates that the k-mer is driving the 427 
prediction of circadian, while a negative SHAP value indicates that the k-mer is driving the prediction 428 
of non-circadian for that transcript. SHAP values are summed for each transcript and the sum is 429 
defined here as the cumulative SHAP value. (b) Dendrogram produced by clustering known core 430 
circadian transcripts according to their profiles of SHAP values if the transcripts were also present in 431 
Q1-3 of (a). We clustered transcripts using hierarchical clustering with average linkage and 432 
Euclidean distance (see Methods). Dendrogram labels coloured according to peak phases of 433 
expression; morning (0-6 hours), day (7-12 hours), evening (13-18 hours) and night (19-24 hours) as 434 
determined by (i) MetaCycle or (ii) the module of origin of the transcript from our 8 WGCNA generated 435 
modules. (c-d) Box plot to show the range of SHAP values across all true positive transcripts in groups 436 
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morning day evening night for the specific k-mers (c) GATATT (Evening element) and (d) AAACCC 437 
(Telo-box). 438 
 439 
 440 
We noted from our transcript SHAP value profile clustering (Figure 4b), that for sub-classes of 441 
transcripts with similar expression phases, the most impactful k-mers per sub-class could represent 442 
sequences that are regulating time-of-day specific expression. Identifying these using model 443 
explanation could facilitate the estimation of circadian expression phase without the need for a 444 
transcriptomic time course. To test this hypothesis, we split the transcripts into morning, day, evening 445 
and night and investigated which k-mers differentiated the groups. We identified the top 30 most 446 
variable k-mers between the four groups’ consensus SHAP explanations, these k-mers should 447 
therefore vary most in their impact between the groups (see Methods) (Table S6). Since we are 448 
comparing the k-mers that differentiate groups of transcripts that are separated by their phase of 449 
expression, we validated our hypothesis by matching the k-mers to binding sites that have been 450 
experimentally associated with specific times of day. For example, the late-night specific telo box [58], 451 
a G-box related sequence thought to associate with late night and dawn genes [59] and the Evening 452 
Element (EE) that appeared twice in the top 30 with two k-mers matching it. When we compared the 453 
importance of these k-mers between the morning, day, evening and night groups, the EE had a higher 454 
impact on model prediction in the evening group than in the other three groups and this difference 455 
was statistically significant compared to both morning and night (Figure 4c, Table S7). Additionally, 456 
the Telo-box had a higher impact on model prediction when observed in the night group compared to 457 
all other groups and this difference was statistically significant compared to day and evening, fitting 458 
with its late-night specificity (Figure 4d, Table S7).  459 
 460 
Case study: transcript-specific explanation for PHYA-E guides re-classification of PHYC  461 
The PHYTOCHROME (PHY) genes encode red and far-red photoreceptors directly involved in setting 462 
the clock. Previous studies have identified circadian regulation of PHY A-E as rhythmic.  [60]. However, 463 
PHYC/PHYD/PHYE were all called non-circadian by MetaCycle with q-values of 0.99, 0.60 and 0.13 464 
respectively. These genes should be rhythmic, but this may not be clearly reflected in the 465 
transcriptomic data, likely due to their low amplitude expression patterns (Figure S3a). As a result, 466 
these genes were missing from downstream analysis and can be used as a case study of unseen test 467 
datapoints (Glossary) for the ML models. For the PHYA-E primary transcripts, Table S8 highlights 468 
MetaCycle’s 40% accuracy, only classifying PHYA-B as circadian, compared to our ML (12 timepoint) 469 
model’s 80% accuracy since we additionally classify PHYD-E as circadian. This is supported by 470 
visually evident rhythmic expression in the transcriptomic data, particularly for PHYE and to a lesser 471 
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extent for PHYD (Figure 2a). We maintain our 80% accuracy when we generate k-mer profiles for the 472 
PHYA-E transcripts and use our DNA sequence or k-mer based ML model to predict circadian/non-473 
circadian. Both of our ML models (transcriptomic and DNA-sequence-based) classify PHYC as non-474 
circadian with the other primary PHY transcripts predicted circadian. Even the DNA sequence-based 475 
ML model discriminated PHYC from the other PHY transcripts despite sequence similarity between 476 
them. Moreover, the transcriptomic expression profile for PHYC provides an unconvincing circadian 477 
rhythm, with an amplitude tending towards zero (0.02), compared to the other transcripts (Figure 478 
S3a). Here, we assumed that all of the PHYA-E primary transcripts were circadian. This may reflect 479 
previous work that concluded a weak rhythmic association of PHYC potentially due to post-480 
transcriptional circadian regulation not promoter regulated expression [60,61].   481 
 482 
We used the SHAP explanations for the PHYA-E transcripts to identify the regulatory elements that 483 
were most impactful in guiding their classifications, using the DNA sequence-based model. We 484 
compared the SHAP impact values between each of the PHY transcripts A/B/D/E (circadian) and PHYC 485 
(non-circadian) to identify those k-mers or regulatory elements that are most impactful in predicting 486 
PHYA/B/D/E to be circadian but also in predicting PHYC to be non-circadian (six identified in Table 487 
S9). The change in frequency of these k-mers is most likely to be responsible for the circadian/non-488 
circadian predictive differences between the transcripts according to our model (Supplementary Note 489 
3; Figure 5). To investigate if altering any of the six identified k-mers (Table S9) had the potential to 490 
induce rhythmicity in PHYC, we sequentially evolved the spectrum of PHYC, one k-mer at a time, to 491 
mimic the robustly rhythmic  PHYA/B transcripts more and more with each iteration. We used our DNA 492 
sequence-based ML model to classify the evolved transcripts. Firstly, removing k-mers GGTAGA then 493 
TTTCTG sites, resulted in predictive probabilities for the circadian class of 0.42 and 0.48 respectively 494 
(increasing from 0.38). Secondly, adding AAATAA increased the predictive probability of circadian 495 
class membership further to 0.58. Finally, adding TCTCCG resulted in a circadian class predictive 496 
probability of 0.75 and placed this transcript’s classification now confidently as circadian. We noted 497 
that some potential regulatory elements are more important than others, having a larger effect on the 498 
classification of the transcript; for example, k-mers in the 5’UTR had a larger effect on classification. 499 
Additionally, we show that multiple elements combine to have a greater impact on transcript 500 
classification and potentially regulation.  501 
 502 
We aligned known Arabidopsis TFBSs to the UTR-based k-mers from PHYA/B that most positively 503 
impacted PHYCs circadian re-classification during our evolution to suggest biological reasons why 504 
these sites may be having such a large effect. Firstly, AAATAA aligned to the TFBS of MYB56 that is 505 
involved in the regulation of anthocyanin levels in response to circadian rhythms [62] (Table S5). 506 
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Secondly, TCTCCG matched TFBS of AT3G58630 that has a protein-protein interaction with LIP1 a 507 
gene known to function in the clock regulating light input downstream of photoreceptors such as PHYB 508 
[63].  509 
 510 

 511 
 512 
Figure 5. Investigating Arabidopsis PHYA-E transcripts after ML binary k-mer classification 513 
analysis. We compared the SHAP explanations between each of the primary PHY transcripts A/B/D/E 514 
and PHYC. Here a high comparative number translates to regulatory elements being more impactful 515 
in predicting PHY A/B/D/E to be circadian but also typically more impactful in predicting PHYC to be 516 
non-circadian. Schematics of the transcript sequences for PHYA-E and the associated start positions 517 
of the 6bp k-mers TTTCAG, TCTCCG, AAATAA, TTTCTG, GGTAGA and CCGTCG, that were identified as 518 
in the top three highest values per comparison (PHYA versus PHYC, PHYB versus PHYC, PHYD versus 519 
PHYC and PHYE versus PHYC) with the largest differences in SHAP values (Table S9; Supplementary 520 
Note 3). 521 
 522 
 523 
To extend this analysis beyond the well-known PHYA-E genes, we collated a further 41 known key 524 
circadian genes, with published evidence of rhythmic expression from across the literature and 525 
compared the classification accuracy of their associated primary transcripts between MetaCycle, our 526 
ML model using 12 timepoints and our ML model using DNA sequence (Table S10). MetaCycle shows 527 
an overall accuracy of 80.49% classifying the 41 transcripts as circadian compared to 95.12% with 528 
the ML transcriptomic model (Table S11). We tested 10 of the 41 genes that were not used to train 529 
either of our ML models and were therefore unseen datapoints, mainly due to MetaCycle not assigning 530 
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a highly confident classification to their transcripts (q<0.01) due to low amplitude expression profiles. 531 
These are problematic transcripts for classification and can be used as a measure of the worst-case 532 
scenario for predictions. Using 12 timepoints our ML model was much more accurate at correctly 533 
classifying these transcripts as circadian despite their problematic low amplitude rhythms (80% 534 
accuracy versus 20% for MetaCycle). This suggests that our model has the potential to generalize well 535 
to unseen transcripts. Interestingly, our model that used DNA sequence alone achieved a higher 536 
accuracy of 90% on the unseen datapoints, which was much closer to its recorded accuracy on all 41 537 
genes (92.68%) sidestepping the problems associated with low recorded amplitudes using genetic 538 
sequence features.  539 
 540 
Predictions using DNA sequence generalize to other Arabidopsis ecotypes 541 
We previously ascertained that our ML model (using DNA sequence) can accurately make predictions 542 
on unseen datapoints. We assessed this in both our initial testing (with held out test data; Glossary) 543 
and in our case study analysis of known circadian genes. We next want to assess how well our model 544 
performs on unseen DNA from a different source to that used for model training (Col-0). We selected 545 
the Arabidopsis ecotype Ws-2 for this test, generating k-mer spectra for related transcripts and using 546 
the transcriptomic dataset generated by [10] to label Ws-2 transcripts circadian/non-circadian to 547 
gauge accuracy (Table S1; Supplementary Note 4; Figure S4). From this analysis, 71.4% of Ws-2 DNA 548 
sequence-based classifications matched their labels derived from [10] transcriptomic data. This is 549 
only ~5% lower than the accuracy given by the DNA sequence-based model using Col-0 (mean F1 550 
score of 0.766 on cross validation) and therefore, we see only a minimal decrease in accuracy applying 551 
our model to a new ecotype (Supplementary Note 5). 552 

We next wanted to use our DNA sequence-based model to identify transcripts that differentiated in 553 
rhythmicity between Arabidopsis ecotypes. Then we use model explanation to explain which 554 
regulatory elements influence this and can validate findings. Such functionality gives tremendous 555 
power for downstream gene expression manipulation. We identified 12 transcripts that were 556 
classified as circadian for Col-0 but non-circadian for Ws-2 by the DNA sequence-based model (both 557 
with a predictive probability >0.8) (Table S12). We ranked the transcripts according to the predictive 558 
probability of them being circadian for Col-0 and the corresponding predictive probability of them 559 
being non-circadian for Ws-2. Our most confident or top ranked transcript was AT1G58602.1-560 
RECOGNITION OF PERONOSPORA PARASITICA 7 (RPP7) i.e. the most probable circadian transcript 561 
in Col-0 (probability 0.999) and the most probable non-circadian in Ws-2 (probability 0.991). RPP 562 
genes have been previously reported to confer resistance to races of P. parasitica in an ecotype 563 
specific manner. A functional copy of RPP7 is thought to mediate resistance to infection by the 564 
Peronospora isolate Hiks1. Work by [64] found that while Col-0 has a functional RPP7 and is resistant 565 
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to Hiks1, Ws-2 is susceptible to attack by this pathogen. This coincides with our DNA-sequence 566 
predictions suggesting that the circadian behaviour of RPP7 is important for defence functionality. 567 
This conclusion is also supported in the experimental transcriptomic data where RPP7 in Ws-2 shows 568 
consistent low expression but in Col-0 it is expressed at higher levels with a circadian rhythm (Figure 569 
S5a) [64]. RPP7 has been linked to circadian regulation; firstly, because resistance (R)-genes in the 570 
RPP family were reported to be under CCA1 control [65], and secondly, via RPP7’s required interactor 571 
EDM2 that is involved in the promotion of floral transition by regulating the floral repressor FLC [66].  572 

Previous evidence supports our observed differentiation in rhythmicity of RPP7 between Col-0 and 573 
Ws-2. However, our advantage would be to use model explanation to understand which elements 574 
differ between Col-0 and Ws-2; in this example in Ws-2, this could represent which elements to 575 
change to render it resistant to Hiks2. As such, for each k-mer, we compared the SHAP impact values 576 
from the DNA sequence-based model between the Col-0 and Ws-2 homologs of AT1G58602.1 577 
(RPP7). We ranked the k-mers in ascending order as the difference in SHAP impact values between 578 
the homologs increased, to highlight the regulatory elements that were most impactful in guiding the 579 
differential circadian/non-circadian predictions (Figure S5). The top 5 ranked k-mers, according to 580 
differences in SHAP impact, closely linked either to the circadian clock or to disease resistance 581 
mechanisms, or both (Supplementary Note 6). We then sequentially evolved the k-mer spectrum for 582 
AT1G58602.1 in Ws-2, a k-mer at a time to match Col-0 more and more with each iteration. Each 583 
iterative evolved transcript was classified using the DNA sequence-based model, where we observed 584 
that the predictive probability of the circadian class for each evolved gene quickly increased (Figure 585 
S5b). Adaptation of 26 Ws-2 k-mers to match Col-0 was needed to change the prediction for Ws-2 586 
from non-circadian to circadian and adaptation of 124 Ws-2 k-mers was needed to reach the 587 
maximum predictive probability of 0.999. We noted that the predictive probability of the circadian 588 
class for Ws-2 was highly positively correlated (0.676) with the difference in SHAP values between 589 
the Col-0 and Ws-2 k-mers (Figure S5c). Our analysis shows that some regulatory elements have a 590 
larger effect on the classification of the transcript than others and that this effect is quantifiable using 591 
model explanation. We also show the potential for large combinations of regulatory elements to work 592 
together, potentially each contributing a small amount, to result in a large overall impact on gene 593 
classification and potentially regulation e.g., the 26 k-mers that we changed here to convert Ws-2 to 594 
be classified as circadian.  595 

Identifying a set of transcriptional biomarkers that predict internal circadian time 596 
To complete our suite of circadian resources, here, as opposed to identifying transcript rhythmicity, 597 
we consider the experiment as a whole, using ML to determine the circadian time of sampling i.e. 598 
predicting the phase of the endogenous circadian clock, using a set of transcriptional biomarkers from 599 
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any single transcriptomic timepoint. Previous studies have developed such models for human and 600 
mammalian transcriptome data sets [32,33,34,67,68]. However, we develop a new method that we 601 
apply to plant data that innovatively uses model interpretation to identify a set of new Arabidopsis 602 
biomarker transcripts to guide our predictions. This incorporates, biomarker selection from across 603 
circadian phases to increase accuracy and robustness. 604 
 605 
To train our model we used  the TPM normalised circadian dataset described earlier [8] and the two 606 
further transcriptomic datasets [9,10] for validation and testing (see methods; Glossary). Firstly, we 607 
aggregated a selection of metrics to rank and select transcript subsets from [8] according to their 608 
confidence of rhythmicity for model training. Table S13 highlights the mean absolute errors (MAE) of 609 
the predictions of circadian time without hyperparameter optimization (Glossary) on the three 610 
temporal transcriptomic datasets, using different sized subsets of the highest ranked rhythmic genes. 611 
The lowest MAE, based on the [10] test dataset, was 104 minutes and was observed with a selected 612 
subset of 50 transcripts. Using confidence of rhythmicity for transcript prioritization, we noted that 613 
the representation of our subsets of transcripts across the 8 co-expression modules generated by the 614 
WGCNA gene co-expression network analysis was not uniform (Figure S6a; Glossary). This reflects an 615 
uneven representation across the phases of rhythmic expression. Therefore, secondly, we prioritized 616 
selection of transcripts using model interpretation in the form of feature selection to make the 617 
frequency distribution across the modules more uniform (see Methods; Glossary). Optimizing 618 
performance based on the validation dataset, our best performing model overall used a final subset 619 
of 15 transcripts (Table S14) and had a MAE of 21 minutes on the training data, 56 minutes on the [9] 620 
validation data and 46 minutes on the test data from [10]. Figure S6b and S6c also highlight that after 621 
such feature selection there was a decrease in the generalisation error on average across the [10] test 622 
dataset with the improvements in MAE decreasing as the number of genes increased. This supports 623 
the theory that features containing different temporal patterns of varying strengths outperform 624 
features containing strong but highly correlated patterns.  625 
 626 
The performance of our best model (15 transcripts with a MAE of 46 minutes on the test data) is in 627 
line with the ~1-hour test error reported by [67] using their state-of-the-art method ZeitZeiger. As 628 
such, we applied ZeitZeiger to our datasets [8,9,10], to compare directly with our model. To reflect 629 
our previous approach, firstly, dataset [8] was used to fit ZeitZeiger, with predictions then being 630 
generated on the validation [9] and testing [10] datasets to compare with the predictions generated 631 
by our method. Our approach significantly outperformed ZeitZeiger on the test dataset (MAE of 46 632 
compared to 143 minutes, Figure S7) demonstrating our efficacy at generating highly accurate 633 
predictions for circadian time. We also noted a large disparity in training, validation and test errors by 634 
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ZeitZeiger (MAE of 6 minutes on training, 119 on validation and 143 on test) that suggests overfitting 635 
(Glossary). We hypothesized that our selection of biomarker transcripts to ensure even representation 636 
across the phases of rhythmic expression, would yield a more robust or generalizable mapping from 637 
expression data to internal circadian time i.e., less overfitting; this analysis supports this hypothesis.  638 
 639 
The 15 transcripts in our final subset act as a small subgroup of biomarker transcripts that are 640 
sufficient to allow prediction of the circadian time (Table S14). Interestingly, the 15 transcripts did not 641 
include any core clock genes. This analysis was conducted using the ecotype Col-0. However, using 642 
the Ws-2 data [10] a MAE on this ecotype of only 53 minutes was observed (5 minutes lower than for 643 
Col-0 on which the model was trained). Generally, we observed no relationship between circadian 644 
time and prediction error except for in the training dataset where errors at the 20-hour timepoint were 645 
significantly larger than the other times (Figure S6d). However, variation in error across the timepoints 646 
typically stayed under 90 minutes allowing sufficient resolution of circadian time given that typical 647 
sampling strategies are between 2-4 hourly.  648 
 649 
 650 
Conclusions  651 
We describe a series of ML based approaches that enable cost-effective analysis and insight into 652 
circadian regulation in Arabidopsis. One of the drawbacks of ML is a lack of clarity as to why it makes 653 
specific predictions. We focus on illuminating what is inside the ‘black box’ via explanation or 654 
interpretation of predictive ML models. Although we demonstrate this for circadian rhythms, this 655 
approach has widespread implications for other complex or temporal gene expression patterns.  656 
 657 
When we predict circadian transcripts using low numbers of mRNA-seq timepoints, not only do we 658 
improve accuracy compared to existing methods, but we also use model interpretation to optimize 659 
sampling strategies. Some of the most accurate reduced sampling strategies that we identify align 660 
with existing approaches e.g., timepoints spaced evenly across a day. However, other identified 661 
strategies were unexpected e.g., consecutive timepoints or those across the intersect of day 1 and 2.  662 
 663 
Most significantly, we use only DNA sequence features for accurate circadian classification, 664 
requiring no prior knowledge of regulatory elements or transcriptomic data. This offers advantages 665 
over existing methods to not only predict expression but to decipher regulation at the same time since, 666 
using an explainable AI algorithm, we define regulatory elements on the fly as we make predictions. 667 
Automated definition and prioritization of these feature profiles for transcripts, de novo, using AI, has 668 
the potential to support functional annotation of genomes and precision agriculture. This application 669 
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could re-define how we generate testable hypotheses to understand gene expression control. Our 670 
predictive accuracy is possibly higher than our current estimates as our DNA based approach scores 671 
the potential of a gene to be circadian regulated. However, it is possible that this regulation may be 672 
restricted to specific tissue types or developmental stages. Therefore, our experimental generated 673 
labels may be underestimating the number of rhythmic genes. We propose incorporating both DNA 674 
sequence features with epigenetic or additional biological features into predictive models to refine 675 
predictions, since epigenetic modifications are thought to effect tissue-specific gene expression.  676 
 677 
Finally, we predict circadian time while using model interpretation to derive novel Arabidopsis marker 678 
transcripts. These selected transcripts could be used to test single datapoints in existing and emerging 679 
Arabidopsis datasets to investigate how genotypes, treatments and environmental conditions affect 680 
circadian clock function. 681 
 682 
 683 
Glossary 684 
Machine Learning (ML): A branch of artificial intelligence based on the idea that systems can learn 685 
from data, identify patterns and make decisions with minimal human intervention. 686 
Model interpretation/explanation/explainable AI: A set of methods and algorithms that help us to 687 
understand and interpret the predictions made by ML models. 688 
Features e.g. DNA sequence features: Input variables into ML models, a feature is a measurable 689 
property or characteristic related to the phenotype being observed/predicted. 690 
ML classifiers: A ML classifier is an algorithm that predicts the class (e.g., circadian or non-circadian) 691 
of given data points (e.g., transcripts). A ML classifier utilizes training data to understand how given 692 
input variables or features of a data point relate to a specific class or classes. Once the classifier is 693 
trained, it can predict the class for unseen data points in the test data. 694 
Binary classification system; Classification is a supervised learning approach in which the ML model 695 
learns from the input data or feature set and then uses this learning to classify new observations into 696 
one of two possible classes (e.g., circadian or non-circadian).  697 
Training data: The data used to train a ML algorithm or model e.g., a table where the rows are the 698 
data points such as transcripts and the columns are the features describing the data points. 699 
Test data (held out): A dataset (e.g., a table transcripts x features) that is independent of the training 700 
dataset, the model has not seen this data during training-it is “held out”. If a ML model has been fitted 701 
to the training dataset and then also fits the test dataset well (shows accurate predictive performance 702 
on the test dataset) then we would say that minimal overfitting has taken place. 703 
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Model validation: An independent dataset (e.g., a table transcripts x features) that is specifically used 704 
to tune the parameters of a ML classifier i.e. used to measure performance and guide model training. 705 
LightGBM: Short for Light Gradient Boosting Machine, is a distributed gradient boosting framework 706 
for ML. It is based on decision tree algorithms and used for ranking, classification and other ML tasks 707 
e.g., the LightGBM classifier is used for classification tasks. 708 
Cross Validation (CV): Cross Validation is a technique that is used to evaluate ML models. It involves 709 
training several ML models on subsets of the available input data (also known as folds) and evaluating 710 
them on the remaining (held out) subset of the data. For example, in k-fold cross-validation, you split 711 
the input data into k subsets or folds of data specifically. 712 
Parameters or Hyper-parameters: The part of the ML model (e.g., LightGBM) that is learned from the 713 
training data. If the ML model is the hypothesis then the parameters are used to tailor the hypothesis 714 
to the training data. 715 
Fine tuning: Making small adjustments to the hyper-parameters of a ML model using the training data 716 
while performing CV to achieve the desired output or optimized performance (here higher accuracy).  717 
True positive (TP): The model correctly predicts the positive class or class 1 (e.g., circadian) 718 
True negative (TN): The model correctly predicts the negative class or class 0 (e.g., non-circadian). 719 
False positive (FP): The model incorrectly predicts the positive class (e.g., predicts circadian but the 720 
true class is non-circadian).  721 
False negative (FN): The model incorrectly predicts the negative class (e.g., predicts non-circadian 722 
but the true class is circadian). 723 
Confusion Matrix: A table/matrix with two rows and two columns that reports the number of false 724 
positives, false negatives, true positives, and true negatives computed from a ML model’s prediction 725 
on a subset of data e.g. test, training or both. 726 
Precision (P): The ratio of correctly predicted positive observations (true positives) to the total 727 
predicted positive observation. P=TP/(TP+FP). Precision answers the question “Of all the predicted 728 
positive observations (e.g., correctly predicted circadian), how many were actually positives (e.g., true 729 
circadian)?”. High precision score relates to low false positive rates.  730 
Recall (R): The ratio of the correctly predicted positive observations to the total of observations in the 731 
positive class. R=TP/(TP+FN). Recall answers the question “Of all the true positive observations (e.g., 732 
true circadian), how many were correctly predicted as positive (e.g., circadian) by the model?” 733 
F1 score: The F1-score is a measure of the accuracy of a ML model. More precisely, the F1-score is 734 
the weighted average (harmonic mean) of calculated from the precision and recall. Note that usually 735 
when precision increases, recall decreases and vice versa. The highest possible F1 score is 1, 736 
indicating perfect precision and recall, and the lowest possible value is 0.  737 
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Feature selection: These methods are used to reduce the number of input variables or features to 738 
those that are thought to be most useful to a ML model in order to predict the target variable (here 739 
circadian/non-circadian class). 740 
Eli5 Feature selection: Computes feature importance for any ML model by measuring how, in this 741 
case, the F1 accuracy score decreases when a feature is not available. This method is also known as 742 
“permutation importance” or “Mean Decrease Accuracy (MDA)”. 743 
Chi2 Feature selection: Can be used to measure the dependence between input features to the ML 744 
model and class. This score can be used to select the features with the highest values for the test chi-745 
squared statistic, relative to the classes. Using this function “weeds out” the features that are the 746 
most likely to be independent of class and therefore irrelevant for classification. 747 
Generalizable: The ability of a ML model to maintain its accuracy across a range of different datasets 748 
e.g., here we apply a model trained on Arabidopsis to the divergent species wheat. 749 
k-mer profiles: Sub-sequences of length k, composed of nucleotides (A, T, G, and C) and contained 750 
within a biological DNA sequence. Our selected k-mer length of 6 yields 46 (4096) possible k-mers 751 
from the 4 nucleotides in the DNA alphabet. Every possible k-mer is counted in each transcript and 752 
promoter (separate counts) generating a k-mer count numerical profile of 4096*2 = 8192 features.  753 
Oversampling: Involves randomly selecting samples from the minority class (class with lower 754 
numbers of training samples), typically replicating them and adding them to the training dataset to 755 
even the number of samples between the classes. Rather than replicating the minority 756 
observations/samples it is alternatively possible to create synthetic observations based upon the 757 
existing minority observations. 758 
SHAP: An explainable AI algorithm, called Shapley Additive exPlanations - SHAP. SHAP combines 759 
game theory with local explanation enabling accurate interpretations on why and how a ML model 760 
predicted a particular value (in our case a binary class) for a given sample.  761 
SHAP impact values: For binary classification using our DNA sequence-based model, the SHAP 762 
explainer returns two SHAP value tables (transcripts x k-mer-based features), one for the class 0 (non-763 
circadian) and one for the class 1 (circadian). These SHAP values represent the contribution of each 764 
feature to that prediction i.e. ranked feature impact on the transcript classification distinguishing class 765 
1 (circadian) from class 0 (non-circadian).  766 
Global explanation: Looking at the most impactful features across all of the transcripts for 767 
distinguishing class 1 (circadian) from class 0 (non-circadian).   768 
Co-expression modules: Correspond to clusters of genes that have a similar shape expression profile 769 
across the transcriptomic time series. They are likely to have similar functions or involve common 770 
biological processes. 771 
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Local explanation: Rather than identifying the most impactful features in general (global explanation) 772 
for predicting class 1 (circadian) across all of the transcripts, distinctly, local explanation relates to 773 
the identification of the most impactful features for the classification of each circadian transcript 774 
individually i.e., transcript-specific explanations. A positive SHAP value for a feature, for a specific 775 
transcript, indicates that the feature is driving the prediction of circadian, while a negative SHAP value 776 
indicates that the feature is driving the prediction of non-circadian for that transcript.  777 
Cumulative SHAP value: SHAP values are summed for each transcript and the sum is defined here 778 
as the cumulative SHAP value. 779 
 780 
 781 
Methods 782 
 783 
Data generation 784 
The datasets used in this analysis are detailed in Table S1. All previously published datasets have 785 
details for data generation in the relevant associated publication. For the wheat time course: Cadenza 786 
seedlings were grown under 12:12 light:dark cycles at 22C for 14 days before transfer to constant 787 
light. After 24 hours under constant conditions, whole aerial tissue samples were taken every 2 hours 788 
for 3 days starting at perceived dawn (ZT=0).  Total RNA was extracted using Qiagen RNeasy plant 789 
mini kits. Illumina TruSeq strand specific libraries and mRNA-seq was carried out by Novogene Co. 790 
Ltd. 150bp PE reads were generated from each library to an average depth of 70M reads. 791 
Bioinformatic analysis of transcriptomic information 792 
Arabidopsis: Raw reads were obtained in FASTQ format for each Arabidopsis dataset [8,9,10]. These 793 
reads were filtered for quality, and any remaining adaptor sequence trimmed with Trimmomatic [69]. 794 
Surviving reads were aligned to the Arabidopsis thaliana genome (TAIR 10) using HISAT2 [70] with 795 
default parameters, except for maximum intron length, which was set at 5000nt. Uniquely mapped 796 
transcripts were quantified using StringTie [71] and the raw expression counts per transcript, for each 797 
replicate were subsequently normalised using DESeq2 [72]. A custom Perl script was also used to 798 
extract the TPM values from StringTie quantifications.  799 
Wheat: The wheat mRNA-seq samples, of 150bp PE reads were aligned, quantified and normalised as 800 
described above, except that HISAT2 was used with default parameters and reads were mapped to 801 
the Chinese Spring RefSeq v1.0 wheat genome [73]. 802 
Defining circadian genes using MetaCycle 803 
Initially, Metacycle [13] was implemented on the [8] Arabidopsis DESeq2 normalized gene expression 804 
counts (average expression count across two biological replicates, per transcript) to classify rhythmic 805 
expression using the 12 timepoints. This analysis included 44,963 transcripts. Metacycle (meta2d) 806 
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was run with the following parameters on each of the normalized and non-normalized datasets; 807 
minimum period length of 18, maximum period length of 30, ARSER/JTK-CYCLE/Lomb-Scargle 808 
methods used [35-37], phase adjustment with predicted period length and the Fishers method was 809 
used to integrate multiple P-values. The output of this analysis includes a measure of period (the 810 
integrated period from MetaCycle is an arithmetic mean value of multiple periods from the 811 
implemented methods), phase (phase integration is based on the mean of circular quantities) and 812 
amplitude (amplitude is associated with general expression level and relative amplitude is used to 813 
compare amplitudes of genes with different expression levels). Finally, Benjamini-Hochberg q-values 814 
(BH.Q) were reported. Typically, significantly rhythmic gene expression profiles are defined at values 815 
q<0.05, we also use q<0.02 to limit selections based on the highest confidence. 816 
MetaCycle was also implemented on wheat (variety Cadenza) transcriptomic timepoints (Table S1). 817 
Here, we also used DESeq2 normalized gene expression counts (average expression count across four 818 
biological replicates, per transcript) to classify rhythmic expression using the 24 timepoints. 819 
MetaCycle was used to detect rhythmicity in the normalized time course dataset with the same 820 
parameters used previously for Arabidopsis. MetaCycle classified 30,065 out of 112,955 analysed 821 
high confidence transcripts as circadian using a maximum q-value of 0.05. To select wheat transcripts 822 
as a test dataset for the Arabidopsis Col-0 trained transcriptomic ML model, we focused on 25,000 823 
transcripts that MetaCycle classified (labelled) as highly circadian i.e. with high confidence (q<0.015) 824 
and 25,000 of the least likely candidates to be circadian genes (q>0.99) identified by MetaCycle with 825 
24 timepoints.   826 
Clustering circadian transcripts according to transcriptomic profiles 827 
Gene co-expression analysis was carried out using the R package WGCNA [54]. The 9,394 transcripts 828 
identified by MetaCycle as significantly rhythmic (q-value < 0.05) were filtered to remove transcripts 829 
where the sum of normalised expression counts across 21 or more replicates was less than 10. The 830 
remaining 8,136 transcripts were used to construct signed hybrid networks on a replicate basis using 831 
the blockwiseModules() function. The soft power threshold was calculated as 16, and the following 832 
parameters were used; minModuleSize = 30, corType = bicor, maxPOutliers = 0.05, mergeCutHeight 833 
= 0.15. Highly connected hub genes were identified for each of the eight co-expression modules using 834 
the function chooseTopHubInEachModule().  835 
Binary classification: ML model training and tuning 836 
We used Scikit Learn (v3.7) for the ML binary classification analysis to predict if a gene was circadian 837 
or not with either transcriptomic or DNA sequence-based feature sets [74]. Unless otherwise stated, 838 
the MinMaxScaler was used to scale the features from 0 to 1, 90% of the data was used for training 839 
and the remaining 10% was held out for testing. 5-fold cross validation was performed on the training 840 
data. We used K-folds for cross validation (n_splits=5). The methods’ hyperparameters were 841 
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optimized using a grid search to test a range of parameters (Table S15) for the following classifiers: 842 
Logistic Regression, Gaussian process, Random Forest, XGBoost, LightGBM, Support Vector Machine 843 
(SVM) (linear kernel), Decision Tree and K nearest neighbours (KNN). We selected the best ML model 844 
for each use-case (using best parameters after fine tuning), according to the highest F1-score on test 845 
set and cross validation.  846 
The features used to train our initial transcriptomic (12 timepoint) ML model were the normalized 847 
averaged expression profiles for each Arabidopsis Col-0 transcript [8] and the “baseline gold-848 
standard” circadian/non-circadian labels as defined by MetaCycle using 12 timepoints and stated in 849 
the main text and methods (Supplementary Note 1). We trained ML classifiers to predict if a transcript 850 
was circadian or non-circadian in a binary classification system using 7,734 of the least likely 851 
candidates to be circadian (q>0.99) labelled by MetaCycle alongside the 7,734 highly circadian 852 
transcripts (q<0.02). Additional transcriptomic models developed downstream, were trained using 853 
reduced numbers of timepoints either from the same [8] dataset or from a different data source 854 
(Arabidopsis Col-0 from [10]) with the same “baseline gold-standard” labels as previously. All 855 
transcriptomic models use normalized averaged expression profiles for each transcript.  856 
To test the accuracy of our best trained transcriptomic ML binary classification model that uses 3 857 
timepoints; for Arabidopsis Col-0 [9] test data, we assessed all predictions with a prediction 858 
probability or confidence of 95% or more and expressed those classed correctly as a proportion of the 859 
correct plus incorrect predictions to gain an overall accuracy percentage (for Arabidopsis this 860 
encompassed 14,652 predictions). Since the [9] test data is derived from Arabidopsis Col-0 we used 861 
the original [8] MetaCycle derived “baseline gold-standard” Col-0 labels to calculate accuracy. For 862 
wheat, we tested accuracy using the 50,000 genes (25,000 circadian and 25,000 non-circadian 863 
labelled by MetaCycle) that have already been filtered to encompass highly circadian and non-864 
circadian representative genes, therefore, here we use the overall F1 score for our predictions directly. 865 
The features/attributes used to train our DNA sequence-based ML model were the k-mer profiles for 866 
each transcript (Arabidopsis Col-0) and circadian/non-circadian “baseline gold-standard” labels as 867 
defined by MetaCycle. To train our initial model, we generated k-mer profiles de-novo for the mRNA 868 
and promoter sequences associated with each transcript. We trained a series of ML classifiers to 869 
predict if a transcript was circadian or non-circadian in a binary classification system using 6,907 of 870 
the least likely candidates to be circadian alongside the 7,481 of the highly circadian transcripts used 871 
previously. However, these numbers were reduced from the 7,734 used previously due to our focus 872 
on mRNA only (removing ncRNA, snoRNA and lncRNA’s). To develop our feature sets we trialled k-873 
mers from 4-7bp in length to encompass a range from smaller k-mers that we expect to see by chance 874 
to larger k-mers that we would not expect to see by chance in a promoter (1,500bp) or mRNA region 875 
(average length 2069bp); k-mers of 4, 5, 6, 7bp occur by chance every 256, 1024, 4096 and 16,384bp 876 
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respectively, given equal frequency of the four nucleotides. Since we trialled k-mers ranging from 4-877 
7bp in length, our feature numbers varied from 256-16,384 to reflect the numbers of possible k-mers 878 
(4k) from the 4 nucleotides in the DNA alphabet. Every possible k-mer of length k, e.g. 6bp, is counted 879 
in each transcript and promoter (separate counts) defined as 1500bp upstream of the TSS, meaning 880 
that no prior knowledge of regulatory elements or detailed gene annotation is required. Although we 881 
tested combining k-mer counts for mRNA and promoter regions, predictions were consistently more 882 
accurate generating separate feature sets for the promoter and mRNA regions (e.g., for 6bp k-mers 883 
resulting in 46 or 4,096 * 2 = 8,192 features) that were both inputted into the model.  884 
Binary classification: Model explanation 885 
Explainable AI was used to rank and select omic features as suggested by [75,76] and we investigated 886 
the explanations of the predictions for the DNA sequence-based ML model. Firstly, based on the best 887 
LightGBM model for the Arabidopsis Col-0 dataset from [8] on which the model was trained (i.e. 888 
6,907+7,481= 14,388 transcripts and 8192 k-mer-based features). We applied the hyper-tuned 889 
LightGBM coupled up with an explainable AI algorithm, called Shapley Additive exPlanations - SHAP 890 
[38], as to predict and explain the class (circadian or non-circadian) of each transcript across the entire 891 
dataset. SHAP combines game theory with local explanation enabling accurate interpretations on why 892 
and how the model predicted a particular value (in our case a binary value) for a given instance. We 893 
used the python implementation of SHAP, version 0.35.0, available via the conda-forge channel 894 
(https://anaconda.org/conda-forge/shap). To obtain the appropriate SHAP explainer we combined 895 
shap.TreeExplainer with the hyper-tuned LightGBM model detailed in Table S2. Finally, we used the 896 
obtained SHAP explainer to compute SHAP values for the entire set of transcripts and k-mers. As we 897 
are performing a binary classification task, the SHAP explainer returned two SHAP values tables of the 898 
same dimension (number of transcripts x number of k-mer-based features), respectively for the class 899 
0 (non-circadian) and the class 1 (circadian). In this manuscript we focus on the SHAP values for the 900 
class 1 – circadian. We used the SHAP summary plot function to produce Figure 3c that provides a 901 
global view of the local explanations when predicting class 1 (circadian) considering all samples in the 902 
dataset (training and test). Figure 3c shows the top 30 most impactful features/k-mers. Finally, we 903 
used the SHAP explainer to provides SHAP values, therefore explanations, for unseen transcripts from 904 
PHYA-E and the Col-0 and Ws-2 homologs of AT1G78040.3.  905 
Association of k-mers with TFBS, RNA binding motifs and miRNAs 906 
We detail the closest matches of the k-mer’s to known TFBSs with p<0.05 as defined using Tomtom 907 
motif comparison with otherwise default settings [77]. The TFBSs used were Arabidopsis DAP-seq 908 
derived motifs [78]. We also detail the closest matches of the k-mer’s to known RNA binding motifs 909 
with p<0.05 as defined using Tomtom motif comparison with otherwise default settings [77]. Here, 910 
the RNA binding motifs used were from a systematic analysis of the RNA motifs recognized by RNA-911 
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binding proteins conducted by [79].The position of the k-mer is described as promoter or mRNA; if 912 
mRNA we express the percentage of mRNAs with the k-mer in their UTR region as a proportion of all 913 
genes with a UTR k-mer.  914 
For each occurrence of the k-mer across the true positive circadian transcripts, 27nt sequence 915 
upstream and downstream of the 6-mer was extracted. These were then collated into a bwa-index for 916 
each 6-mer and 428 mature ath-miRNA sequences [80] were aligned to these indices using bwa-aln 917 
(maximum edit distance of 1, no gap opens or extensions allowed, seed sequence of 8nt, no edit 918 
distance permitted in seed sequence). SAM files were filtered to retain only those matches where the 919 
Arabidopsis query transcript was in the opposite orientation to the miRNA, included the k-mer and 920 
exhibited a maximum of 3 mismatches between putative target and miRNA. Candidate transcript/k-921 
mer combinations were then tabulated with corresponding transcript information from Ensembl and 922 
miRNA annotation from miRBase [80]. 923 
Filtering transcripts with most positive cumulative SHAP value  924 
We summed the SHAP values individually for each transcript that our DNA sequence-based model 925 
accurately identified as circadian (true positives). The distribution of these cumulative SHAP values 926 
ranged from -0.27 to 9.61 with an average of 6.44 (Figure 4a). We filtered the circadian calls that were 927 
made with the most certainty according to the SHAP explanation (“most positive cumulative SHAP 928 
value”), removing those in the lower quartile Q1 i.e. those transcripts with a value lower than 6.29, 929 
leaving 5,536 of the transcripts where the most k-mers drive the prediction of circadian. 930 
Clustering genes using SHAP values 931 
Clustering of genes based on SHAP values; for each gene we selected the top 5 most influential 932 
features or k-mers to its classification as circadian i.e., the 5 highest SHAP values. We then clustered 933 
the genes according to these profiles using hierarchical clustering with average linkage and 934 
Euclidean distance.  935 
Comparing morning/day/night/evening genes 936 
We selected representative morning (phase 2-4hours), day (phase 9-11 hours), evening (phase 15-937 
17 hours) and night (phase 21-23 hours) genes, by selecting those phases central to each of the 938 
groups as detailed since we define phase 0-6.99999 as morning, 7-12.999999 as day, 13-939 
18.9999999 as evening, 19-24.999999 hours as night. For each group, across all genes we calculated 940 
the average SHAP value for each k-mer. We compared groups calculating the standard deviation 941 
between the groups for each k-mer. We ranked k-mers according to increasing variation between the 942 
four groups i.e. higher standard deviation or variability of k-mer importance.  943 
Identifying marker genes to tell the circadian time using a single transcriptomic timepoint 944 
We developed a ML based pipeline to predict the circadian time (phase) at any single transcriptomic 945 
sampling timepoint using gene expression data from a set of marker genes. Here superior accuracy 946 
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was achieved with an artificial neural network, it also allowed the simplistic implementation of a 947 
custom multioutput loss function, as such, we implemented this rather than the traditional ML 948 
methods used previously in this study. We note that this approach is more complex than our previous 949 
models, requiring custom code, as such we provide the code in a Jupyter Notebook and instructions 950 
to run this code at: https://github.com/JoshuaColmer/HallCircadian/. The three transcriptomic 951 
datasets used previously (Table S1) from [8], [9], and [10] were used for training, validation and testing 952 
respectively. The training dataset was used to learn the circadian time in hours, from the expression 953 
data from each transcriptomic timepoint individually, whilst the validation set was utilised for 954 
adjusting hyperparameters to reduce overfitting. The test set was used to estimate the error on 955 
unseen data for two different ecotypes Col-0 and Ws-2. Here, expression data was normalised by 956 
calculating transcripts per million (TPM) for increased uniformity between datasets, as in this 957 
experiment they were being directly compared. We removed genes whose expression distributions 958 
were too different between datasets based on the two-sample Kolmogorov-Smirnov test (q<0.05) and 959 
their minimum and maximum values, as well as removing low variance genes, using a threshold of 5, 960 
which was adjusted to minimise validation error. Since here, calculation of phase was critical to our 961 
predictions we extended our previous approach to quantify this more robustly; MetaCycle was used 962 
alongside cross-correlation with circadian time and autocorrelation, to quantify gene expression 963 
rhythmicity in the training dataset. The scores for each metric were combined using a Gaussian copula 964 
yielding one score per gene. The top-ranking n genes were taken forward for model training and 965 
further feature selection where n was adjusted to minimise validation error. As previously 966 
MinMaxScaler was used to scale the features from 0 to 1, fitted on the training set and applied to 967 
validation and test sets.  968 
We created a shallow neural network using TensorFlow (v2.0.0) [81] comprising three fully connected 969 
layers with ReLU activation functions and 32, 128, 512 and 2 neurons respectively followed by a 2 970 
neuron softmax layer. The learning rate, number of training epochs and architecture of the network 971 
were optimised using the hyperas (v0.4.1) package to minimise the loss for the validation dataset. 972 
Due to the cyclical nature of the target (time 0-24 hours), standard regression loss functions were not 973 
suitable for this task. To quantify the error in the predictions, we defined the loss function as the 974 
squared angle between actual circadian time and predicted circadian time after being transformed 975 
onto a unit circle. 976 
We used feature selection as previously to select n circadian genes for model training, prioritizing 977 
weighted representation of genes from each of the 8 expression sub-clusters generated by the 978 
WGCNA gene co-expression network analysis [54]. We hoped this would improve generalisation and 979 
robustness of the model as the similarity between features would be reduced and the diversity of 980 
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features should enable the neural network to engineer more complex representations of the 981 
expression data compared to if all features belonged to the same phase cluster. 982 
 983 
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