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Abstract

The circadian clock is an important adaptation to life on earth. Here, we use machine learning to
predict complex temporal circadian gene expression patterns in Arabidopsis. Most significantly, we
classify circadian genes using DNA sequence features generated from public genomic resources, with
no experimental work or prior knowledge needed. We use model explanation to rank DNA sequence
features, observing transcript-specific combinations of potential circadian regulatory elements that
discriminate temporal phase of expression. Model interpretation/explanation provides the backbone
of our methodological advances, giving insight into biological processes and experimental design.
Next, we use model interpretation to optimize sampling strategies when we predict circadian
transcripts using reduced numbers of transcriptomic timepoints, saving both time and money. Finally,
we predict the circadian time from a single transcriptomic timepoint, deriving novel marker transcripts
that are most impactful for accurate prediction, this could facilitate the identification of altered clock

function from existing datasets.

Introduction

The circadian clock is an internal molecular 24-hour timer that is a critical adaptation to life on Earth.
It temporally orchestrates physiology, biochemistry and metabolism across the day/night cycle. As a
result, it regulates many traits associated with fitness and survival [1,2]. The clock is a well
characterised transcriptional regulatory network which drives complex, widespread and robust
patterns of temporal gene expression [3,4]. However, our understanding of such complex
transcriptional regulatory systems is limited by our ability to assay them, requiring the generation of

long high-resolution time-series datasets.

In plants, much of our understanding of circadian regulation, comes from our study of the model plant
Arabidopsis thaliana. This has yielded a plethora of public multi-omic resources [5,6,7] that can be
re-analysed to give new insights into the roles and functions of complex regulatory networks. In this
study, we use newly generated datasets, published temporal datasets [8,9,10] (Table S1) and
Arabidopsis genomes, in combination with machine learning (ML) approaches (see Glossary for
definitions of terms), to make predictions about circadian gene regulation and expression patterns.
Critically, we advance existing approaches using explainable Al algorithms and interpretation of our
models (Glossary), such methods help us to understand the predictions made by ML models. In this
case, giving insight into biological processes and experimental design alongside our predictions.
Clarity with respect to how a model makes its predictions, we propose, will also generate confidence

and trust in the model, promoting its usage. We use the Arabidopsis circadian clock as an example of
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75  acomplex transcriptional regulatory network since some of its key regulatory elements are already
76  known, allowing validation of our findings with experimental evidence.
77
78  Circadian gene expression rhythms reflect a variety of waveform shapes with a characteristic
79  periodicity of ~24h [11]. Recent computational methods for identifying these rhythms from
80  transcriptomic time course datasets have achieved circadian gene classification with as few as 3-6
81 timepoints (saving time for sampling and money for sequencing) [12]. However, some of the most
82 popular approaches describe optimal sampling strategies for the identification of rhythms running
83  with >3 days of data and 2-hourly sampling resolution [13, 14]. We propose that this is partly due to
84  concern for the loss of information as a result of down sampling. Since the cost implications of this are
85 high, our focus is on designing trusted down-sampling strategies for capturing circadian oscillations
86  using a non-optimal number of timepoints. As such, firstly, we develop ML models that not only
87  classify circadian expression patterns using iteratively lower numbers of transcriptomic timepoints
88 improving accuracy compared to the state-of-the-art. But moreover, we use model interpretation to
89  quantify the best transcriptomic timepoints for sampling. We believe that this predictive insight on
90  when to sample will be a valuable reference for experimental biologists when planning experiments.
91
92 Next, we re-define the field, developing ML models that distinguish circadian transcripts using no
93  transcriptomic timepoint information, and instead using only DNA sequence features (Glossary). The
94 theory supporting this is that a major mechanism of (circadian or otherwise) gene expression control
95 is through transcription factor binding to regulatory DNA sequence. Considering previous work in
96  Arabidopsis it is likely that the promoter, 5’'UTR and the first part of the coding region are the most
97  useful locations for transcription factor binding site (TFBS) detection [15]. Genes expressed with
98 similar patterns are more likely to be controlled by similar sets of TFBSs. In addition, small RNAs
99  (sRNAs), comprising microRNAs (miRNAs) and small interfering RNAs (siRNAs) are thought to affect
100  transcript abundance via post-transcriptional regulation of mMRNA [16]. Plant miRNAs predominately
101 bind to the coding regions of mMRNA, and to a lesser extent 5'UTR and 3'UTR regions [17,18]. As such,
102  we consider both coding and non-coding regions to classify circadian genes using DNA sequence. Our
103 DNA sequence features are profiles of k-mer-based motif representations that are identified de novo
104  and embody a comprehensive picture of TFBS, sRNA/RNA binding sites and other sequence-based
105  regulatory elements, since we incorporate the promoter, 5’UTR, 3’UTR and coding regions.
106
107  Akey strength of our DNA-sequence based approach is that we classify circadian transcripts using k-
108  mer-based motif representations generated from pre-existing public genomic resources with no

109  experimental work or prior knowledge of regulatory elements needed. Computational regulatory motif
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110  discovery methods typically search for overrepresented words across DNA sequences using methods
111 such as Expectation Maximization (EM) and Gibbs sampling [19,20,21,22]. Approaches are typically
112 limited by a requirement for input information e.g., co-expressed genes, site abundance, number of
113 sites per sequence or a fixed motif length [23,24,25]. Furthermore, Artificial Intelligence (AI) has been
114  used to predict transcriptomic profiles directly using features such as DNA sequence or epigenetic
115  marks. These features typically include representations of TFBS [26,27], enhancers [28], histone
116  modifications [29] or open chromatin regions [30]. However, again, these approaches typically require
117  experimental data or prior knowledge of regulatory elements that our approach does not need, or they
118  focus on single gene expression states and do not consider complex patterns, as our methods do.
119

120  Additionally, Al-based work in the field of expression prediction has largely lacked comprehensive
121 model explanation [31]. Here, we expose the potential, alongside our DNA-sequence based predictive
122 model, to use explainable Al to discover regulatory motifs and explore their functional consequences.
123 We exploit model explanation to identify, on a transcript-by-transcript basis, the ranked regulatory
124 sequences that guide the classification of its expression pattern as circadian. We identify both small
125  and larger combinations of regulatory elements that, in combination, give a larger overall impact on
126  gene classification. These regulatory sequences are candidate causal genetic features that could
127  control gene expression and allow us to understand the regulatory mechanisms governing circadian
128  expression patterns and even manipulate its regulation, focused here on circadian rhythmicity.
129 Ultimately, we use model explanation to generate and validate hypotheses in silico, facilitating both
130  gene expression prediction and derivative regulatory element discovery.

131

132 Finally, assaying circadian clock function, as opposed to simply identifying transcript rhythmicity, has
133 been a major challenge for the study of the circadian regulation in organisms ranging from mammals
134 toplants. Recent work applied ML to circadian time course transcriptomic datasets from human blood,
135  to predict the phase of the endogenous circadian clock (circadian time, CT), using a single time point
136  from a set of marker genes [32,33]. This allows the use of one time point to identify altered clock
137  functione.g., due to disease or environmental conditions. An equivalent major challenge exists in plant
138  sciences. As such, we use ML to predict the circadian time in Arabidopsis from a single transcriptomic
139 timepoint using marker genes. To advance previous offerings, we identify novel marker genes as part
140  of our interpretable approach ensuring that they represent a diverse range of temporal patterns with
141 consistent amplitudes across datasets to facilitate accurate and robust phase prediction irrespective
142 of sample phase. Counter-intuitively our marker genes do not include the core clock genes used in
143 previous studies for time prediction [34]. Taken together, these tools constitute a suite of informative

144 resources for both experimental biologists and the interpretation of further circadian datasets.
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145  Results and Discussion

146

147 ML model interpretation optimizes timepoint down-sampling to define circadian transcripts

148  We used MetaCycle as our baseline for detecting circadian signals in dense time-series transcriptomic
149  data [13]. MetaCycle is one of the most well-maintained and accessible tools within the community
150  incorporating a variety of the most widely used methods ARSER [35], JTK_CYCLE [36] and Lomb-
151 Scargle [37] and integrating their results so that rhythmic prediction is a cumulation of different
152  statistical approaches. We ran MetaCycle (see Methods) on a published Arabidopsis time-series
153  transcriptomic dataset generated by [8], which was sampled every 4-hours for 48-hours, starting 24-
154  hours after transfer to constant conditions (LL) (Table S1). The data was processed to produce
155  normalized counts per transcript (see Methods). MetaCycle classified 9,394 out of 44,963 transcripts
156  as circadian (q<0.05), with 7,734 denoted as high confidence (q<0.02) (Supplementary Note 1). We
157  trained a series of ML classifiers to predict if a transcript was circadian or non-circadian in a binary
158  classification system using 7,734 of the least likely candidates to be circadian (q>0.99) labelled by
159  MetaCycle alongside the 7,734 highly circadian transcripts (q<0.02) (see Methods; Glossary;
160  Supplementary Note 2). For the ML models we report the F1 scores that measure the accuracy of the
161 model on a scale of 0 to 1, with 1 being most accurate (Glossary). Considering all 12 transcriptomic
162  time points, the best model was generated with LightGBM after optimization (Methods; Figure S1la,
163  Table S2) with: an F1 score of 0.999 on the training data, an F1 score of 0.955 on the (held out) test
164  data and a mean F1 cross validation score of 0.939 (Glossary). Our confusion matrix (Figure Sib;
165  Glossary) highlights consistently high accuracy of our model irrespective of the class that is being
166  predicted (circadian/non-circadian).

167

168  Our best ML model (LightGBM) was able to assign a matching circadian/non-circadian label to the
169  majority of the transcripts that MetaCycle labelled. Overall, there is good agreement between our
170  model and MetaCycle. However, the overlap was not 100% so we examined the small proportion of
171  transcripts that were “inaccurately” classified. We found that the “inaccurately” classified cases by
172 our ML model were more likely to be intermediate or border-line cases for MetaCycle (Figure 1) or
173  edge cases e.g., with slightly longer period lengths (Figure S1). We deduced this because cases
174  rejected by MetaCycle as circadian but accepted by the ML (false positives-FP) had significantly lower
175  (MetaCycle derived) p-values than the cases that were rejected by both MetaCycle and ML (true
176  negatives-TN) (p<0.0001, t=6.8795, df=7753). Conversely, cases accepted by MetaCycle as rhythmic
177  but rejected by ML (false negatives-FN) had higher (MetaCycle derived) p-values than cases
178  categorised as rhythmic by both MetaCycle and ML (true positives-TP) (p<0.0001, t=5.7744, df=7711)
179  (Figure 1a). Additionally, cases rejected by MetaCycle as circadian but accepted by the ML (FP) have
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180  significantly lower relative amplitudes compared to the TP calls where both methods agree
181 (p<0.0001, t=8.3845, df=7732). Conversely, cases accepted by Metacycle as rhythmic but rejected
182 by ML (FN), had a significantly higher relative amplitude than the true negative calls (p=0.036,
183  t=2.0924, df=7732) (Figure 1b). This also highlights that the ML model is not simply using high and
184  low expression levels to discriminate circadian and non-circadian status of transcripts.

185
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188  Figure 1. Arabidopsis circadian/non-circadian comparative ML binary classification analysis with
189 12 transcriptomic timepoints. Class 0=Non-circadian and Class 1=Circadian. Histograms in (a-b) all
190  relate to the best model from Figure Sla that was generated using LightGBM, the histograms are
191  colourcoded as per the confusion matrix shown in the legend to the right i.e. showing where our model
192  assigned True Positive labels (TP), False Positive labels (FP), False Negative labels (FN) and True
193 Negative labels (TN). The histograms show the frequency of transcripts that had various (a) p-values
194  or (b) relative amplitudes assigned to them by Metacycle.

195

196

197  We assessed the effect of reducing the number of transcriptomic timepoints on the accuracy of our
198  classification of circadian/non-circadian transcripts. For our best ML model (derived using 12
199  timepoints), we reduced the number of timepoints (or features) sequentially from 12 down to 3. To
200  obtain each of the interim reduced sets of timepoints from 12 to 3, we used well-known feature
201 selection tools chi-square and eli5 (Glossary) and compared these against testing every possible
202 feature combination for the timepoint number (see Methods). The method of trialling every possible
203 feature combination for each reduced timepoint number enabled us to most accurately classify
204  transcripts as circadian/non-circadian (Figure 2a). Using this approach with 6 timepoints, we achieved

205  amean classification F1 accuracy score of 0.886 on cross validation and a score of 0.792 using only
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206 3 time points (Table S3). Table S3 also highlights, for these most accurate models, that we have
207  consistently high accuracy irrespective of the class that is being predicted (circadian/non-circadian).
208  Using model interpretation i.e., identifying the combinations of features that gave the highest
209  accuracies, we were able to define the most optimal sampling strategies for the different numbers of
210  timepoints. For selection of 6 or more timepoints, the best combinations tended to be consecutive
211 timepoints extending across the intersect of day 1 and day 2. In contrast, when selecting low numbers
212 of timepoints, more accurate classifications were made when timepoints were spaced across a single
213 day (Figure 2b). Figure 2c highlights this showing the best combination of reduced timepoints in each
214 category 12-3 for the example transcript phytochrome A (PHYA).
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218  Figure 2. Arabidopsis circadian/non-circadian comparative ML binary classification analysis to
219  reduce the number of transcriptomic timepoints. For our best ML model, we reduced the number of
220  timepoints sequentially from 12 down to 3. (a) To obtain each reduced set of timepoints, we compare

221 using chi-square (Chi2) and eli5 (Eli5) feature selection with the best set comparing every possible
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222 random feature combination (All). Here we show the best F1 score after 5-fold cross validation for
223  each set of reduced timepoints. (b) Detailing the 10 best combinations of features that gave the
224 highest accuracy or F1 score for each reduced set of timepoints. Labels N3-N11 show the number of
225  reduced timepoints. Labels avexp_24-avexp_68 show the sampling times. Counts 0-10 represent the
226 number of times each timepoint appeared in the 10 best combinations of features. (c) For the example
227  gene PHYA showingaline plot of the gene’s expression values across the best combination of reduced
228  timepoints in each category 12-3. Expression values are uniformly reduced by ~5% for each reduced
229  timepoint combination to allow separation of lines for visualization.

230

231  Inorderto test how generalizable our model is on unseen data (Glossary), we used the most accurate
232 model for the reduced set of 3 timepoints (timepoints 36, 48 and 60) for the binary classification of,
233 firstly, a second Arabidopsis transcriptomic time-series dataset developed by [9] and secondly, a
234 newly developed wheat transcriptomic dataset representing a divergent plant species from
235  Arabidopsis (Table S1). These additional unrelated test datasets represent different sampling
236  strategies and experimental setups (see Methods). Both test datasets were processed
237  bioinformatically as per our original [8] dataset (see Methods). For the Arabidopsis [9] dataset, the
238  timepoints did not match those used to train our model; sampling started 2 hours after exposure to
239  constant light (rather than 24 hours after) and samples were taken every 3 hours instead of every 4.
240  As such, we selected the closest times to those that were used to train our model according to time
241 of day relative to dawn (timepoints 11, 23 and 35). Even so, the F1 score (representing accuracy) for
242 classification of this gene set was relatively high at 0.714, amounting to a decrease in accuracy of only
243 0.08 compared to the dataset that the model was trained on. For the wheat dataset, sampling started
244 24 hours after exposure to constant light and measurements were taken every 2 hours instead of
245  every 4. Therefore, here, matching the time of day relative to dawn, we were able to select equivalent
246  timepoints (12, 24 and 36 hours) and the F1 score was slightly higher at 0.769 amounting to a
247  decrease of only 0.02 on a highly divergent species. The model therefore generalizes well irrespective
248  of the sample’s species, particularly with matched timepoints relative to dawn.

249

250  We compared our timepoint reduction analysis using ML to a range of analyses representing the state-
251 of-the-art across the different timepoint numbers. MetaCycle requires a minimum of 6 timepoints for
252 circadian analysis, and benefits from these timepoints being evenly sampled across the chosen time
253  period [13]. As such, we reduced timepoints from 12 to 6 to enable comparison including evenly
254 spaced sampling patterns; 4hourly/1day, 8hourly/2days versus the best suggested sampling times
255  from our ML analysis (4hourly/1day from 36-56 hours from Figure 2b and 2c). The reduction to 6

256  timepoints significantly decreased the number of positive circadian gene calls by MetaCycle that were


https://doi.org/10.1101/2021.02.04.429826
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429826; this version posted February 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

257  conserved with the 12 timepoint analysis, independently of the sampling technique used. In fact, the
258  highest proportion of the 9,394 circadian genes identified with 12 timepoints by MetaCycle that were
259  also identified with 6 timepoints (p<0.05) was 63.7% (Table S4). This accuracy is still ~25% lower
260  than the F1 score we achieved with 6 timepoints and our best ML model (Table S3). Furthermore,
261 when comparing the F1 score of our 3-timepoint ML model it was more appropriate to use a 3-
262  timepoint state-of-the-art analysis performed by Sporl et al. [12]. Table S4 highlights that we achieve
263  a12% higher accuracy with only 3 timepoints in a like-for-like comparison with Spérl et al. [12]. This
264  accuracy improvement is in addition to the experimental design insight that we provide.

265

266  Circadian genes can be classified using de novo generated DNA sequence-based k-mer spectra
267  We investigated if it was possible to eliminate transcriptomic timepoints completely and use DNA
268  sequence features alone to classify transcripts as circadian/non-circadian. To achieve this, we
269  generated k-mer profiles de-novo for the mRNA and promoter sequences associated with each
270  transcript, comparing a range of k-mer lengths (see Methods; Glossary). We trained a series of ML
271 classifiers to predict if a transcript was circadian or non-circadian in a binary classification system
272  using the derived k-mer profiles for the same set of transcripts and MetaCycle derived labels used
273  previously (for the transcriptomic ML model). Across the range of k-mers the best models were
274  consistently generated with the classifier LightGBM and the most accurate model used a k-mer length
275  of 6 to generate separate feature sets for the promoter and mRNA regions (8,192 features of k-mer
276  counts per transcript) that were both inputted into the model (see Methods). This best optimized
277 model showed (Figure 3a, Table S2): a mean F1 score of 0.766 on cross validation (standard deviation
278  0.006) and a test F1 score of 0.751 on class 0 (non-circadian) and 0.804 on class 1 (circadian). Again,
279  our accuracy was largely balanced between the classes. An optimal k-mer length of 6bp for this
280  analysis could reflect this being the smallest length k-mer that we would not expect to simply occur
281 by chance, therefore giving ideal resolution. Due to the large number of features created when using
282  ak-merlength of 6, using feature selection we tested the accuracy of our rhythmic classification when
283  subsets of the feature set were used (Figure 3b; Glossary). We can reduce the feature number to ~200
284  andstill achieve an F1 score above 0.7, but the highest accuracy was achieved with all 8,192 features
285  and as such, for downstream investigations we used the full feature set.

286

287  Our de-novo k-mer generation approach allows downstream identification and investigation of both
288  known and previously unknown sites with only the annotation of the TSS and TTS of a transcript
289  required. Our short k-mers (6bp) should mainly represent regulatory elements such as TFBSs when
290  derived from promoter/UTR regions. However, our inclusion of coding regions may allow us to

291  encompass additional regulators e.g., miRNA binding sites. Although miRNAs tend to be 20-24bp in
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292  length, our k-mers may represent miRNA seed regions that are typically ~6bp in length and
293 perfectly/near-perfectly match targets [17].
294
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297  Figure 3. Arabidopsis circadian/non-circadian ML binary classification analysis using k-mer
298  profiles. For our best performing classifier LightGBM we compare the F1 scores generated using (a)
299  different k-mer lengths (4-7bp) for classification, with or without the use of oversampling (OS) since
300  our classes are not perfectly balanced (Glossary). (b) To obtain each reduced set of k-mers we use
301  chi-square (Chi2) feature selection. Here we show the best F1 score after 5-fold cross validation for
302  each set of reduced features. (c) shows the top 30 most impactful features for predicting class 1
303  (circadian) considering all samples in the dataset (training and test) as calculated using SHAP (Shapley
304  Additive exPlanations) (Glossary). Feature value equates to the frequency of a k-mer per transcript.
305  When the frequency of a k-mer per transcript is high (red) and it has a positive SHAP value, this high
306  frequencyis driving the prediction of a circadian transcript. This is often coupled to the situation where
307  thelower frequency of the same k-mer per transcript (blue) has a negative SHAP value, so the absence
308 of the k-mer is driving the prediction of a non-circadian transcript. On the contrary, when the
309  frequency of a k-mer per transcript is high (red) and has a negative SHAP value, the high frequency is
310  driving the prediction of a non-circadian transcript. This is often coupled to the situation where the

311 lower frequency of the k-mer per transcript (blue) has a positive SHAP value, so the absence of the k-
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312  merisdriving the prediction of a circadian transcript. Features e.g. the k-mer TATTGC, are labelled as
313  “TATTGC” for counts from the promoter and “TATTGC .1” for counts from the mRNA.

314

315  Explanation of DNA sequence-based ML model links to circadian regulation

316  We next wanted to explain our model, to identify which k-mer’s were most influential in guiding it to
317  predict transcripts as circadian, since these k-mer’s could represent the most critical regulatory
318  elements for circadian regulation. If we observe known circadian regulatory elements in this process,
319 thisisalsoameans of validation of the model. As such, we used SHAP (Shapley Additive exPlanations)
320  to explain our best DNA sequence-based model’s predictions by computing the contribution of each
321 feature or k-mer to that prediction i.e., ranked feature impact on the classification (Glossary) [38]. We
322 did this firstly at a global level by looking at the top 30 most impactful features across all of the
323 transcripts for distinguishing class 1 (circadian) from class 0 (non-circadian) (Glossary; Figure 3c).
324 Approximately half of the most impactful k-mers in Figure 3¢ show a positive correlation between k-
325  mer frequency and the SHAP value or feature impact on the model. Higher frequencies of these k-
326  mers for a transcript indicate a higher impact on it being classified as circadian. Of these positively
327  correlated top 30 k-mers, 55% of those that contributed to the circadian classification of a transcript
328  were predominantly in the promoter or the UTR of transcripts. We hypothesized that these k-mers
329  represent TFBSs for transcription factors (TFs) linked to circadian regulation.

330

331  To investigate if our most impactful promoter/UTR k-mers for prediction were in fact TFBSs, we
332 aligned known Arabidopsis TFBSs to each of the k-mers and filtered the most significant matches
333  (Table S5; see Methods). We then validated the k-mers that match/likely represent TFBSs using
334  experimental evidence or insight from the literature; many of the matched k-mers were closely
335  associated with circadian regulation or circadian related processes. Notable k-mers of interest
336  included (k-mer number 1; Table S5) matches to TFBS for two photo-responsive TFs (AT3G58630 and
337  AT5G05550) (p-value 0.0002, e-value 0.18) which form interactions with a number of circadian-
338 related proteins e.g. LIGHT INSENSITIVE PERIOD1 (LIP1), CONSTANS-Like (COL) 11 [39] and
339  REVEILLE 2 (RVE2) [40]. Another k-mer (k-mer number 7; Table S5) matched a motif bound by several
340  ethylene-responsive binding proteins (p=0.00003, e=0.02); ethylene synthesis is known to be both a
341 circadian controlled process and also a moderator of the circadian clock [41,42]. We also found
342  matches as would have been predicted for binding sites of known circadian TF’s including LUX
343 ARRYTHMO (LUX) [43], CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) [44] and LATE ELONGATED
344  HYPOCOTYL (LHY) [45], alongside several motifs associated with light-induced or repressed
345  sequences (SORLIP/SORLREP) (Table S5).

346
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347 In contrast to our promoter/UTR k-mers, four of the positively correlated top 30 most impactful k-mer
348  features defined by SHAP were observed primarily in coding regions across the circadian predicted
349  transcripts. Since miRNAs are thought to influence circadian controlled processes [46,47] and are
350  common in coding regions, we tested the possibility that these k-mers could represent miRNAs by
351  aligning them (plus surrounding sequence) to mature ath-miRNA sequences to identify possible
352  matches (see Methods). Two of the four k-mers and their flanking sequence matched miRNA
353  sequences that were associated with developmental timing [48] and chloroplast biogenesis [49].
354  Therefore, for a subset of transcripts, the k-mers could represent putative miRNA binding sites that
355 have been experimentally linked to circadian regulated processes, although this only accounts for a
356  small proportion of the transcripts (Table S5). As such, we next investigated the possibility that these
357  k-mers could represent RNA binding motifs (see Methods). In doing so we validated two of the k-mers
358 by linking them to RNA binding motifs that are associated with circadian related processes. RNA-
359  binding proteins are key regulators of gene expression and post-transcriptional regulation in
360 eukaryotes, and, due to strong sequence conservation, their recognition preferences can be inferred
361  from RNA-binding motifs. Two of the four coding sequence derived k-mers matched RNA-binding
362  motifs (Table S5, p<0.05). The first is targeted by the RNA-binding protein Serine and Arginine Rich
363  Splicing Factor 7 (SRSF7). This has been linked to circadian processes since circadian temperature
364  cycles are known to drive rhythmic SR protein phosphorylation to control alternative splicing [50]. The
365  Arabidopsis protein RSZ22 is a known true ortholog of the human SRSF7 SR factor that this alignment
366  could represent[51]. The second k-mer matched motif is targeted by the RNA-binding protein LIN28A
367  (Homo sapiens). The Arabidopsis protein Cold-Shock Protein 1 (CSP1) is a known homolog of LIN28A
368  with a similar functional role in reprogramming, that this alignment could represent [52]. CSP1 has
369  beenimplicated in seed germination timing that is also known to be clock related [53].

370

371 Transcript-specific explanations reveal sub-classes within the binary class circadian

372  Our DNA sequence-based model used binary classification to discriminate transcripts under circadian
373  regulation from those that are not, which is useful to identify circadian regulatory elements from
374  model explanations. However, circadian rhythms reflect a variety of waveform shapes. As such, we
375  bioinformatically identified co-expression modules (Glossary) from the transcriptomic profiles of the
376  circadian transcripts that were used to train our ML models using weighted gene co-expression
377  network analysis (WGCNA) [54]. This resulted in 8 modules with distinct circadian expression profiles.
378  These modules represent groups of transcripts differentiated by phase of expression with the
379  following observed (Figure S2); morning phases 0 (cluster 7) and 4 (cluster 5/6), day phase 8 (cluster
380  3), day/evening phase 12 (cluster 2), evening phase 16 (cluster 1) and night phase 20 (cluster 4/8).
381

12


https://doi.org/10.1101/2021.02.04.429826
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429826; this version posted February 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

382  We next sought to group our circadian transcripts into subgroups representative of different phases
383  of expression, but rather than using transcriptomic information, this time we wanted to use the SHAP
384  impact values of their k-mers. This effectively divides our DNA sequence-based model’s binary class
385 circadian into multiple sub-classes, providing further insight into transcript rhythmicity. To enable
386  this, we used model explanation of our best DNA sequence-based predictive model, but rather than
387 identifying the most impactful k-mers in general (global explanation) for predicting class 1 (circadian),
388 as previously, we now identify the most impactful k-mers for the classification of each circadian
389  transcript individually (local explanation) (Glossary). For this, we focus on the true positive circadian
390  transcripts where MetaCycle and our ML model predict circadian. These local explanations are
391 transcript specific and could highlight k-mers that are regulating each transcript’s expression. Each
392  transcript has a calculated SHAP impact value per feature (8,192 k-mers) and this set of values we
393  refer to as the SHAP value profile for a transcript. The k-mer with the highest SHAP value being the
394  most influential on the transcript’s classification as circadian. Comparison of these profiles allows us
395  to compare and subdivide the transcripts within the binary class circadian, using DNA sequence
396  composition related to gene regulation, rather than transcriptomic profile.

397

398  To investigate this, after deriving local explanations, we filtered the most circadian transcripts
399  according to their SHAP explanation (“most positive cumulative SHAP value”, Figure 4a, see methods,
400  Glossary). Then we focused on known circadian genes that were within this set i.e., experimentally
401  validated and widely known true positive genes from previous studies. We clustered the derivative
402 transcripts of these genes based on the similarity of their SHAP value profiles, which represent the
403 relative impact of the k-mers on their classification as circadian (Figure 4b). In groups to the right of
404  the dendrogram (purple), 85% of transcripts peak in their expression in the morning/day, whereas in
405  groups to the left, 77% of transcripts peak in the evening/night (phases determined by MetaCycle).
406  Therefore, circadian transcripts with more similar k-mer SHAP value profiles also had similar
407  expression phases, thus dividing our circadian class into sub-classes representing phases of
408  rhythmicity using k-mer information. For example, PRR3 and LUX were found to have similar SHAP
409  value profiles and we validated this by observing their similar transcriptomic expression profiles, with
410  evening phases of expression of ZT15 and ZT13 respectively. Notable exceptions include the two LNK
411 genes which have a transcript expression profile which peaks in the morning but have SHAP profiles
412  similar to evening and night expressed genes, with LNKI most closely linked to TOCZ1. This suggests
413  that LNK1/LNK2 may be regulated by a separate mechanism to that regulating other dawn expressed
414  genes. In the morning/day cluster we also see the gene TIC which peaks at dusk in the transcriptomic
415  data; previously, rhythmicity of TIC was not detected in whole seedlings whereas here, we confidently

416  classify this transcript as circadian from aerial tissue (MetaCycle q=0.004). Previous work concluded
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417  that TIC functions in the late evening [55] but plays a role regulating LHY that is in the same
418  morning/day cluster as TIC, this may explain its appearance here [56]. Finally, we also see the night
419  gene PHYB in the morning/day cluster, this may be due to the additional presence of the closely

420 related PHYA in this cluster [57].
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424  Figure 4. Investigating Arabidopsis circadian true positive transcripts after ML binary k-mer DNA
425  sequence-based classification analysis. For our best performing classifier LightGBM. (a) Box plot to
426  show the range of SHAP values across all true positive transcripts (correctly predicted as circadian).
427 A positive SHAP value for a k-mer, for a specific transcript, indicates that the k-mer is driving the
428  prediction of circadian, while a negative SHAP value indicates that the k-mer is driving the prediction
429  of non-circadian for that transcript. SHAP values are summed for each transcript and the sum is
430  defined here as the cumulative SHAP value. (b) Dendrogram produced by clustering known core
431 circadian transcripts according to their profiles of SHAP values if the transcripts were also present in
432  Q1-3 of (a). We clustered transcripts using hierarchical clustering with average linkage and
433 Euclidean distance (see Methods). Dendrogram labels coloured according to peak phases of
434  expression; morning (0-6 hours), day (7-12 hours), evening (13-18 hours) and night (19-24 hours) as
435  determined by (i) MetaCycle or (ii) the module of origin of the transcript from our 8 WGCNA generated

436  modules. (c-d) Box plot to show the range of SHAP values across all true positive transcripts in groups

14


https://doi.org/10.1101/2021.02.04.429826
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429826; this version posted February 8, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

437  morning day evening night for the specific k-mers (c) GATATT (Evening element) and (d) AAACCC
438  (Telo-box).

439

440

441  We noted from our transcript SHAP value profile clustering (Figure 4b), that for sub-classes of
442  transcripts with similar expression phases, the most impactful k-mers per sub-class could represent
443  sequences that are regulating time-of-day specific expression. Identifying these using model
444  explanation could facilitate the estimation of circadian expression phase without the need for a
445  transcriptomic time course. To test this hypothesis, we split the transcripts into morning, day, evening
446  and night and investigated which k-mers differentiated the groups. We identified the top 30 most
447  variable k-mers between the four groups’ consensus SHAP explanations, these k-mers should
448  therefore vary most in their impact between the groups (see Methods) (Table Sé6). Since we are
449  comparing the k-mers that differentiate groups of transcripts that are separated by their phase of
450  expression, we validated our hypothesis by matching the k-mers to binding sites that have been
451 experimentally associated with specific times of day. For example, the late-night specific telo box [58],
452  a G-box related sequence thought to associate with late night and dawn genes [59] and the Evening
453  Element (EE) that appeared twice in the top 30 with two k-mers matching it. When we compared the
454  importance of these k-mers between the morning, day, evening and night groups, the EE had a higher
455 impact on model prediction in the evening group than in the other three groups and this difference
456  was statistically significant compared to both morning and night (Figure 4c, Table S7). Additionally,
457  the Telo-box had a higher impact on model prediction when observed in the night group compared to
458  all other groups and this difference was statistically significant compared to day and evening, fitting
459  with its late-night specificity (Figure 4d, Table S7).

460

461  Case study: transcript-specific explanation for PHYA-E guides re-classification of PHYC

462  The PHYTOCHROME (PHY) genes encode red and far-red photoreceptors directly involved in setting
463  theclock. Previous studies have identified circadian regulation of PHY A-E as rhythmic. [60]. However,
464  PHYC/PHYD/PHYE were all called non-circadian by MetaCycle with g-values of 0.99, 0.60 and 0.13
465  respectively. These genes should be rhythmic, but this may not be clearly reflected in the
466  transcriptomic data, likely due to their low amplitude expression patterns (Figure S3a). As a result,
467  these genes were missing from downstream analysis and can be used as a case study of unseen test
468  datapoints (Glossary) for the ML models. For the PHYA-E primary transcripts, Table S8 highlights
469  MetaCycle’s 40% accuracy, only classifying PHYA-B as circadian, compared to our ML (12 timepoint)
470  model’s 80% accuracy since we additionally classify PHYD-E as circadian. This is supported by

471  visually evident rhythmic expression in the transcriptomic data, particularly for PHYE and to a lesser
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472  extent for PHYD (Figure 2a). We maintain our 80% accuracy when we generate k-mer profiles for the
473 PHYA-E transcripts and use our DNA sequence or k-mer based ML model to predict circadian/non-
474  circadian. Both of our ML models (transcriptomic and DNA-sequence-based) classify PHYC as non-
475  circadian with the other primary PHY transcripts predicted circadian. Even the DNA sequence-based
476 ML model discriminated PHYC from the other PHY transcripts despite sequence similarity between
477 them. Moreover, the transcriptomic expression profile for PHYC provides an unconvincing circadian
478  rhythm, with an amplitude tending towards zero (0.02), compared to the other transcripts (Figure
479  S3a). Here, we assumed that all of the PHYA-E primary transcripts were circadian. This may reflect
480  previous work that concluded a weak rhythmic association of PHYC potentially due to post-
481 transcriptional circadian regulation not promoter regulated expression [60,61].

482

483  We used the SHAP explanations for the PHYA-E transcripts to identify the regulatory elements that
484  were most impactful in guiding their classifications, using the DNA sequence-based model. We
485  compared the SHAP impact values between each of the PHY transcripts A/B/D/E (circadian) and PHYC
486  (non-circadian) to identify those k-mers or regulatory elements that are most impactful in predicting
487  PHYA/B/D/E to be circadian but also in predicting PHYC to be non-circadian (six identified in Table
488  S9). The change in frequency of these k-mers is most likely to be responsible for the circadian/non-
489  circadian predictive differences between the transcripts according to our model (Supplementary Note
490  3; Figure 5). To investigate if altering any of the six identified k-mers (Table S9) had the potential to
491 induce rhythmicity in PHYC, we sequentially evolved the spectrum of PHYC, one k-mer at a time, to
492  mimic the robustly rhythmic PHYA/B transcripts more and more with each iteration. We used our DNA
493  sequence-based ML model to classify the evolved transcripts. Firstly, removing k-mers GGTAGA then
494  TTTCTG sites, resulted in predictive probabilities for the circadian class of 0.42 and 0.48 respectively
495  (increasing from 0.38). Secondly, adding AAATAA increased the predictive probability of circadian
496  class membership further to 0.58. Finally, adding TCTCCG resulted in a circadian class predictive
497 probability of 0.75 and placed this transcript’s classification now confidently as circadian. We noted
498  that some potential regulatory elements are more important than others, having a larger effect on the
499 classification of the transcript; for example, k-mers in the 5’UTR had a larger effect on classification.
500  Additionally, we show that multiple elements combine to have a greater impact on transcript
501 classification and potentially regulation.

502

503  We aligned known Arabidopsis TFBSs to the UTR-based k-mers from PHYA/B that most positively
504  impacted PHYCs circadian re-classification during our evolution to suggest biological reasons why
505 these sites may be having such a large effect. Firstly, AAATAA aligned to the TFBS of MYB56 that is

506 involved in the regulation of anthocyanin levels in response to circadian rhythms [62] (Table S5).
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507  Secondly, TCTCCG matched TFBS of AT3G58630 that has a protein-protein interaction with LIP1 a

508  geneknown to functionin the clock regulating light input downstream of photoreceptors such as PHYB

509  [63].
510
5'UTR Exon 1 Exon 2 Exon 3 Exon 4 3'UTR
—— TTTCAG.
AT1G09570.1 (PHYA) ——— TCTCCG.
Prediction: 0.995 Intron  Start Intron Intron Intron Stop — AAATAA
— TTTCTG.

GGTAGA
—— CCGTCG.

S5’UTR Exon 1 Exon Exon 3 Exon 4 3'UTR
AT2G18750.1 (PHYS) s —

Prediction: 0.998 Start Intron Intron Intron Stop

5'UTR Exon 1 Exon 2 Exon 3 3'UTR
ATS5G35840.1 (PHYC) T e —

Prediction: 0.381 Start Intron Intron Stop

5'UTR Exon 1 Exon 2 Exon 3 Exon 4 3'UTR
AT4G16250.1 (PHYD)
drediction: 0.553 Start Intron Intron Intron Stop

5’UTR Exon 1 Exon 2 Exon 3 Exon 4 3'UTR
{T4G18130.1 (PHYE) | 1 s
'rediction: 0.646 Start Intron Intron Intron Stop
512

513 Figure 5. Investigating Arabidopsis PHYA-E transcripts after ML binary k-mer classification
514  analysis. We compared the SHAP explanations between each of the primary PHY transcripts A/B/D/E
515  and PHYC. Here a high comparative number translates to regulatory elements being more impactful
516  in predicting PHY A/B/D/E to be circadian but also typically more impactful in predicting PHYC to be
517 non-circadian. Schematics of the transcript sequences for PHYA-E and the associated start positions
518 of the 6bp k-mers TTTCAG, TCTCCG, AAATAA, TTTCTG, GGTAGA and CCGTCG, that were identified as
519  inthe top three highest values per comparison (PHYA versus PHYC, PHYB versus PHYC, PHYD versus
520  PHYC and PHYE versus PHYC) with the largest differences in SHAP values (Table S9; Supplementary
521  Note 3).

522

523

524  To extend this analysis beyond the well-known PHYA-E genes, we collated a further 41 known key
525  circadian genes, with published evidence of rhythmic expression from across the literature and
526  compared the classification accuracy of their associated primary transcripts between MetaCycle, our
527 ML model using 12 timepoints and our ML model using DNA sequence (Table S10). MetaCycle shows
528  an overall accuracy of 80.49% classifying the 41 transcripts as circadian compared to 95.12% with
529  the ML transcriptomic model (Table S11). We tested 10 of the 41 genes that were not used to train

530  either of our ML models and were therefore unseen datapoints, mainly due to MetaCycle not assigning
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531 a highly confident classification to their transcripts (q<0.01) due to low amplitude expression profiles.
532  These are problematic transcripts for classification and can be used as a measure of the worst-case
533 scenario for predictions. Using 12 timepoints our ML model was much more accurate at correctly
534  classifying these transcripts as circadian despite their problematic low amplitude rhythms (80%
535  accuracy versus 20% for MetaCycle). This suggests that our model has the potential to generalize well
536  to unseen transcripts. Interestingly, our model that used DNA sequence alone achieved a higher
537  accuracy of 90% on the unseen datapoints, which was much closer to its recorded accuracy on all 41
538  genes (92.68%) sidestepping the problems associated with low recorded amplitudes using genetic
539  sequence features.

540

541 Predictions using DNA sequence generalize to other Arabidopsis ecotypes

542  We previously ascertained that our ML model (using DNA sequence) can accurately make predictions
543  on unseen datapoints. We assessed this in both our initial testing (with held out test data; Glossary)
544  andin our case study analysis of known circadian genes. We next want to assess how well our model
545  performs on unseen DNA from a different source to that used for model training (Col-0). We selected
546  the Arabidopsis ecotype Ws-2 for this test, generating k-mer spectra for related transcripts and using
547  the transcriptomic dataset generated by [10] to label Ws-2 transcripts circadian/non-circadian to
548  gauge accuracy (Table S1; Supplementary Note 4; Figure S4). From this analysis, 71.4% of Ws-2 DNA
549  sequence-based classifications matched their labels derived from [10] transcriptomic data. This is
550  only ~5% lower than the accuracy given by the DNA sequence-based model using Col-0 (mean F1
551 score of 0.766 on cross validation) and therefore, we see only a minimal decrease in accuracy applying

552 our model to a new ecotype (Supplementary Note 5).

553  We next wanted to use our DNA sequence-based model to identify transcripts that differentiated in
554  rhythmicity between Arabidopsis ecotypes. Then we use model explanation to explain which
555  regulatory elements influence this and can validate findings. Such functionality gives tremendous
556  power for downstream gene expression manipulation. We identified 12 transcripts that were
557  classified as circadian for Col-0 but non-circadian for Ws-2 by the DNA sequence-based model (both
558  with a predictive probability >0.8) (Table S12). We ranked the transcripts according to the predictive
559  probability of them being circadian for Col-0 and the corresponding predictive probability of them
560  being non-circadian for Ws-2. Our most confident or top ranked transcript was AT1G58602.1-
561 RECOGNITION OF PERONOSPORA PARASITICA 7 (RPP7) i.e. the most probable circadian transcript
562  in Col-0 (probability 0.999) and the most probable non-circadian in Ws-2 (probability 0.991). RPP
563 genes have been previously reported to confer resistance to races of P. parasitica in an ecotype
564  specific manner. A functional copy of RPP7 is thought to mediate resistance to infection by the

565  Peronospora isolate Hiks1. Work by [64] found that while Col-0 has a functional RPP7 and is resistant
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566  to Hiks1, Ws-2 is susceptible to attack by this pathogen. This coincides with our DNA-sequence
567  predictions suggesting that the circadian behaviour of RPP7 is important for defence functionality.
568  This conclusion is also supported in the experimental transcriptomic data where RPP7 in Ws-2 shows
569  consistent low expression but in Col-0 it is expressed at higher levels with a circadian rhythm (Figure
570  S5a) [64]. RPP7 has been linked to circadian regulation; firstly, because resistance (R)-genes in the
571 RPP family were reported to be under CCA1 control [65], and secondly, via RPP7’s required interactor

572  EDM2 that is involved in the promotion of floral transition by regulating the floral repressor FLC [66].

573  Previous evidence supports our observed differentiation in rhythmicity of RPP7 between Col-0 and
574  Ws-2. However, our advantage would be to use model explanation to understand which elements
575  differ between Col-0 and Ws-2; in this example in Ws-2, this could represent which elements to
576  change to render it resistant to Hiks2. As such, for each k-mer, we compared the SHAP impact values
577  from the DNA sequence-based model between the Col-O and Ws-2 homologs of AT1G58602.1
578  (RPP7). We ranked the k-mers in ascending order as the difference in SHAP impact values between
579  the homologs increased, to highlight the regulatory elements that were most impactful in guiding the
580 differential circadian/non-circadian predictions (Figure S5). The top 5 ranked k-mers, according to
581  differences in SHAP impact, closely linked either to the circadian clock or to disease resistance
582  mechanisms, or both (Supplementary Note 6). We then sequentially evolved the k-mer spectrum for
583  AT1G58602.1 in Ws-2, a k-mer at a time to match Col-0 more and more with each iteration. Each
584  iterative evolved transcript was classified using the DNA sequence-based model, where we observed
585  that the predictive probability of the circadian class for each evolved gene quickly increased (Figure
586  S5b). Adaptation of 26 Ws-2 k-mers to match Col-0 was needed to change the prediction for Ws-2
587  from non-circadian to circadian and adaptation of 124 Ws-2 k-mers was needed to reach the
588  maximum predictive probability of 0.999. We noted that the predictive probability of the circadian
589  class for Ws-2 was highly positively correlated (0.676) with the difference in SHAP values between
590  the Col-0 and Ws-2 k-mers (Figure S5c). Our analysis shows that some regulatory elements have a
591 larger effect on the classification of the transcript than others and that this effect is quantifiable using
592  model explanation. We also show the potential for large combinations of regulatory elements to work
593  together, potentially each contributing a small amount, to result in a large overall impact on gene
594  classification and potentially regulation e.g., the 26 k-mers that we changed here to convert Ws-2 to

595 be classified as circadian.

596 Identifying a set of transcriptional biomarkers that predict internal circadian time
597  To complete our suite of circadian resources, here, as opposed to identifying transcript rhythmicity,
598  we consider the experiment as a whole, using ML to determine the circadian time of sampling i.e.

599  predicting the phase of the endogenous circadian clock, using a set of transcriptional biomarkers from
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600 any single transcriptomic timepoint. Previous studies have developed such models for human and
601  mammalian transcriptome data sets [32,33,34,67,68]. However, we develop a new method that we
602  apply to plant data that innovatively uses model interpretation to identify a set of new Arabidopsis
603 biomarker transcripts to guide our predictions. This incorporates, biomarker selection from across
604  circadian phases to increase accuracy and robustness.

605

606  To train our model we used the TPM normalised circadian dataset described earlier [8] and the two
607  further transcriptomic datasets [9,10] for validation and testing (see methods; Glossary). Firstly, we
608  aggregated a selection of metrics to rank and select transcript subsets from [8] according to their
609  confidence of rhythmicity for model training. Table S13 highlights the mean absolute errors (MAE) of
610  the predictions of circadian time without hyperparameter optimization (Glossary) on the three
611 temporal transcriptomic datasets, using different sized subsets of the highest ranked rhythmic genes.
612  The lowest MAE, based on the [10] test dataset, was 104 minutes and was observed with a selected
613  subset of 50 transcripts. Using confidence of rhythmicity for transcript prioritization, we noted that
614  therepresentation of our subsets of transcripts across the 8 co-expression modules generated by the
615  WGCNA gene co-expression network analysis was not uniform (Figure Sé6a; Glossary). This reflects an
616  uneven representation across the phases of rhythmic expression. Therefore, secondly, we prioritized
617 selection of transcripts using model interpretation in the form of feature selection to make the
618  frequency distribution across the modules more uniform (see Methods; Glossary). Optimizing
619 performance based on the validation dataset, our best performing model overall used a final subset
620  of 15 transcripts (Table S14) and had a MAE of 21 minutes on the training data, 56 minutes on the [9]
621  validation data and 46 minutes on the test data from [10]. Figure S6b and Sé6c also highlight that after
622  such feature selection there was a decrease in the generalisation error on average across the [10] test
623  dataset with the improvements in MAE decreasing as the number of genes increased. This supports
624  the theory that features containing different temporal patterns of varying strengths outperform
625  features containing strong but highly correlated patterns.

626

627  The performance of our best model (15 transcripts with a MAE of 46 minutes on the test data) is in
628 line with the ~1-hour test error reported by [67] using their state-of-the-art method ZeitZeiger. As
629  such, we applied ZeitZeiger to our datasets [8,9,10], to compare directly with our model. To reflect
630  our previous approach, firstly, dataset [8] was used to fit ZeitZeiger, with predictions then being
631 generated on the validation [9] and testing [10] datasets to compare with the predictions generated
632 by our method. Our approach significantly outperformed ZeitZeiger on the test dataset (MAE of 46
633  compared to 143 minutes, Figure S7) demonstrating our efficacy at generating highly accurate

634  predictions for circadian time. We also noted a large disparity in training, validation and test errors by
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635  ZeitZeiger (MAE of 6 minutes on training, 119 on validation and 143 on test) that suggests overfitting
636  (Glossary). We hypothesized that our selection of biomarker transcripts to ensure even representation
637  across the phases of rhythmic expression, would yield a more robust or generalizable mapping from
638  expression data to internal circadian time i.e., less overfitting; this analysis supports this hypothesis.
639

640  The 15 transcripts in our final subset act as a small subgroup of biomarker transcripts that are
641  sufficient to allow prediction of the circadian time (Table S14). Interestingly, the 15 transcripts did not
642 include any core clock genes. This analysis was conducted using the ecotype Col-0. However, using
643  the Ws-2 data [10] a MAE on this ecotype of only 53 minutes was observed (5 minutes lower than for
644  Col-0 on which the model was trained). Generally, we observed no relationship between circadian
645  time and prediction error except for in the training dataset where errors at the 20-hour timepoint were
646  significantly larger than the other times (Figure S6d). However, variation in error across the timepoints
647  typically stayed under 90 minutes allowing sufficient resolution of circadian time given that typical
648  sampling strategies are between 2-4 hourly.

649

650

651  Conclusions

652  We describe a series of ML based approaches that enable cost-effective analysis and insight into
653  circadian regulation in Arabidopsis. One of the drawbacks of ML is a lack of clarity as to why it makes
654  specific predictions. We focus on illuminating what is inside the ‘black box’ via explanation or
655 interpretation of predictive ML models. Although we demonstrate this for circadian rhythms, this
656  approach has widespread implications for other complex or temporal gene expression patterns.

657

658  When we predict circadian transcripts using low numbers of mRNA-seq timepoints, not only do we
659  improve accuracy compared to existing methods, but we also use model interpretation to optimize
660  sampling strategies. Some of the most accurate reduced sampling strategies that we identify align
661 with existing approaches e.g., timepoints spaced evenly across a day. However, other identified
662  strategies were unexpected e.g., consecutive timepoints or those across the intersect of day 1 and 2.
663

664  Most significantly, we useonly DNA sequence features for accurate circadian classification,
665  requiring no prior knowledge of regulatory elements or transcriptomic data. This offers advantages
666  overexisting methods to not only predict expression but to decipher regulation at the same time since,
667 using an explainable AI algorithm, we define regulatory elements on the fly as we make predictions.
668  Automated definition and prioritization of these feature profiles for transcripts, de novo, using Al, has

669  the potential to support functional annotation of genomes and precision agriculture. This application
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670  could re-define how we generate testable hypotheses to understand gene expression control. Our
671 predictive accuracy is possibly higher than our current estimates as our DNA based approach scores
672  the potential of a gene to be circadian regulated. However, it is possible that this regulation may be
673 restricted to specific tissue types or developmental stages. Therefore, our experimental generated
674  labels may be underestimating the number of rhythmic genes. We propose incorporating both DNA
675  sequence features with epigenetic or additional biological features into predictive models to refine
676  predictions, since epigenetic modifications are thought to effect tissue-specific gene expression.
677

678 Finally, we predict circadian time while using model interpretation to derive novel Arabidopsis marker
679  transcripts. These selected transcripts could be used to test single datapoints in existing and emerging
680  Arabidopsis datasets to investigate how genotypes, treatments and environmental conditions affect
681  circadian clock function.

682

683

684  Glossary

685  Machine Learning (ML): A branch of artificial intelligence based on the idea that systems can learn
686  from data, identify patterns and make decisions with minimal human intervention.

687 Model interpretation/explanation/explainable AI: A set of methods and algorithms that help us to
688  understand and interpret the predictions made by ML models.

689 Features e.g. DNA sequence features: Input variables into ML models, a feature is a measurable
690  property or characteristic related to the phenotype being observed/predicted.

691 ML classifiers: A ML classifier is an algorithm that predicts the class (e.g., circadian or non-circadian)
692  of given data points (e.g., transcripts). A ML classifier utilizes training data to understand how given
693 input variables or features of a data point relate to a specific class or classes. Once the classifier is
694  trained, it can predict the class for unseen data points in the test data.

695  Binary classification system; Classification is a supervised learning approach in which the ML model
696  learns from the input data or feature set and then uses this learning to classify new observations into
697  one of two possible classes (e.g., circadian or non-circadian).

698  Training data: The data used to train a ML algorithm or model e.g., a table where the rows are the
699  data points such as transcripts and the columns are the features describing the data points.

700  Test data (held out): A dataset (e.g., a table transcripts x features) that is independent of the training
701  dataset, the model has not seen this data during training-it is “held out”. If a ML model has been fitted
702  tothe training dataset and then also fits the test dataset well (shows accurate predictive performance

703  onthe test dataset) then we would say that minimal overfitting has taken place.
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704  Model validation: An independent dataset (e.g., a table transcripts x features) that is specifically used
705  totune the parameters of a ML classifier i.e. used to measure performance and guide model training.
706  LightGBM: Short for Light Gradient Boosting Machine, is a distributed gradient boosting framework
707  for ML. It is based on decision tree algorithms and used for ranking, classification and other ML tasks
708 e.g., the LightGBM classifier is used for classification tasks.

709  Cross Validation (CV): Cross Validation is a technique that is used to evaluate ML models. It involves
710  training several ML models on subsets of the available input data (also known as folds) and evaluating
711  them on the remaining (held out) subset of the data. For example, in k-fold cross-validation, you split
712 the input data into k subsets or folds of data specifically.

713  Parameters or Hyper-parameters: The part of the ML model (e.g., LightGBM) that is learned from the
714 training data. If the ML model is the hypothesis then the parameters are used to tailor the hypothesis
715  tothetraining data.

716  Fine tuning: Making small adjustments to the hyper-parameters of a ML model using the training data
717  while performing CV to achieve the desired output or optimized performance (here higher accuracy).
718  True positive (TP): The model correctly predicts the positive class or class 1 (e.g., circadian)

719  True negative (TN): The model correctly predicts the negative class or class 0 (e.g., non-circadian).
720  False positive (FP): The model incorrectly predicts the positive class (e.g., predicts circadian but the
721  true class is non-circadian).

722  False negative (FN): The model incorrectly predicts the negative class (e.g., predicts non-circadian
723 but the true class is circadian).

724 Confusion Matrix: A table/matrix with two rows and two columns that reports the number of false
725 positives, false negatives, true positives, and true negatives computed from a ML model’s prediction
726  onasubset of data e.g. test, training or both.

727  Precision (P): The ratio of correctly predicted positive observations (true positives) to the total
728  predicted positive observation. P=TP/(TP+FP). Precision answers the question “Of all the predicted
729 positive observations (e.g., correctly predicted circadian), how many were actually positives (e.g., true
730  circadian)?”. High precision score relates to low false positive rates.

731 Recall (R): The ratio of the correctly predicted positive observations to the total of observations in the
732 positive class. R=TP/(TP+FN). Recall answers the question “Of all the true positive observations (e.g.,
733 true circadian), how many were correctly predicted as positive (e.g., circadian) by the model?”

734  FA1 score: The Fl-score is a measure of the accuracy of a ML model. More precisely, the F1-score is
735  the weighted average (harmonic mean) of calculated from the precision and recall. Note that usually
736  when precision increases, recall decreases and vice versa. The highest possible F1 scoreis 1,

737  indicating perfect precision and recall, and the lowest possible value is 0.
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738  Feature selection: These methods are used to reduce the number of input variables or features to
739  those that are thought to be most useful to a ML model in order to predict the target variable (here
740  circadian/non-circadian class).

741  ELli5 Feature selection: Computes feature importance for any ML model by measuring how, in this
742  case, the F1 accuracy score decreases when a feature is not available. This method is also known as
743  “permutation importance” or “Mean Decrease Accuracy (MDA)”.

744  Chi2 Feature selection: Can be used to measure the dependence between input features to the ML
745  model and class. This score can be used to select the features with the highest values for the test chi-
746  squared statistic, relative to the classes. Using this function “weeds out” the features that are the
747  most likely to be independent of class and therefore irrelevant for classification.

748  Generalizable: The ability of a ML model to maintain its accuracy across a range of different datasets
749  e.g., here we apply a model trained on Arabidopsis to the divergent species wheat.

750  k-mer profiles: Sub-sequences of length k, composed of nucleotides (A, T, G, and C) and contained
751 within a biological DNA sequence. Our selected k-mer length of 6 yields 4°(4096) possible k-mers
752 from the 4 nucleotides in the DNA alphabet. Every possible k-mer is counted in each transcript and
753  promoter (separate counts) generating a k-mer count numerical profile of 4096*2 = 8192 features.
754  Oversampling: Involves randomly selecting samples from the minority class (class with lower
755 numbers of training samples), typically replicating them and adding them to the training dataset to
756  even the number of samples between the classes. Rather than replicating the minority
757  observations/samples it is alternatively possible to create synthetic observations based upon the
758  existing minority observations.

759  SHAP: An explainable AI algorithm, called Shapley Additive exPlanations - SHAP. SHAP combines
760  game theory with local explanation enabling accurate interpretations on why and how a ML model
761 predicted a particular value (in our case a binary class) for a given sample.

762  SHAP impact values: For binary classification using our DNA sequence-based model, the SHAP
763  explainer returns two SHAP value tables (transcripts x k-mer-based features), one for the class 0 (non-
764  circadian) and one for the class 1 (circadian). These SHAP values represent the contribution of each
765  featuretothat prediction i.e. ranked feature impact on the transcript classification distinguishing class
766 1 (circadian) from class 0 (non-circadian).

767  Global explanation: Looking at the most impactful features across all of the transcripts for
768  distinguishing class 1 (circadian) from class 0 (non-circadian).

769  Co-expression modules: Correspond to clusters of genes that have a similar shape expression profile
770  across the transcriptomic time series. They are likely to have similar functions or involve common

771 biological processes.
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772 Local explanation: Rather than identifying the most impactful features in general (global explanation)
773  for predicting class 1 (circadian) across all of the transcripts, distinctly, local explanation relates to
774  the identification of the most impactful features for the classification of each circadian transcript
775  individually i.e., transcript-specific explanations. A positive SHAP value for a feature, for a specific
776  transcript, indicates that the feature is driving the prediction of circadian, while a negative SHAP value
777  indicates that the feature is driving the prediction of non-circadian for that transcript.

778  Cumulative SHAP value: SHAP values are summed for each transcript and the sum is defined here
779  asthe cumulative SHAP value.

780

781

782  Methods

783

784  Data generation

785  The datasets used in this analysis are detailed in Table S1. All previously published datasets have
786  details for data generation in the relevant associated publication. For the wheat time course: Cadenza
787  seedlings were grown under 12:12 light:dark cycles at 22C for 14 days before transfer to constant
788  light. After 24 hours under constant conditions, whole aerial tissue samples were taken every 2 hours
789  for 3 days starting at perceived dawn (ZT=0). Total RNA was extracted using Qiagen RNeasy plant
790  mini kits. Illumina TruSeq strand specific libraries and mRNA-seq was carried out by Novogene Co.
791 Ltd. 150bp PE reads were generated from each library to an average depth of 70M reads.

792  Bioinformatic analysis of transcriptomic information

793  Arabidopsis: Raw reads were obtained in FASTQ format for each Arabidopsis dataset [8,9,10]. These
794  reads were filtered for quality, and any remaining adaptor sequence trimmed with Trimmomatic [69].
795  Surviving reads were aligned to the Arabidopsis thaliana genome (TAIR 10) using HISAT2 [70] with
796  default parameters, except for maximum intron length, which was set at 5000nt. Uniquely mapped
797  transcripts were quantified using StringTie [71] and the raw expression counts per transcript, for each
798 replicate were subsequently normalised using DESeq2 [72]. A custom Perl script was also used to
799  extract the TPM values from StringTie quantifications.

800  Wheat: The wheat mRNA-seq samples, of 150bp PE reads were aligned, quantified and normalised as
801 described above, except that HISAT2 was used with default parameters and reads were mapped to
802  the Chinese Spring RefSeq v1.0 wheat genome [73].

803  Defining circadian genes using MetaCycle

804  Initially, Metacycle [13] was implemented on the [8] Arabidopsis DESeq2 normalized gene expression
805  counts (average expression count across two biological replicates, per transcript) to classify rhythmic

806  expression using the 12 timepoints. This analysis included 44,963 transcripts. Metacycle (meta2d)
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807  was run with the following parameters on each of the normalized and non-normalized datasets;
808  minimum period length of 18, maximum period length of 30, ARSER/JTK-CYCLE/Lomb-Scargle
809  methods used [35-37], phase adjustment with predicted period length and the Fishers method was
810  used to integrate multiple P-values. The output of this analysis includes a measure of period (the
811 integrated period from MetaCycle is an arithmetic mean value of multiple periods from the
812  implemented methods), phase (phase integration is based on the mean of circular quantities) and
813 amplitude (amplitude is associated with general expression level and relative amplitude is used to
814  compare amplitudes of genes with different expression levels). Finally, Benjamini-Hochberg g-values
815  (BH.Q) were reported. Typically, significantly rhythmic gene expression profiles are defined at values
816  g<0.05, we also use q<0.02 to limit selections based on the highest confidence.

817  MetaCycle was also implemented on wheat (variety Cadenza) transcriptomic timepoints (Table S1).
818 Here, we also used DESeq2 normalized gene expression counts (average expression count across four
819  biological replicates, per transcript) to classify rhythmic expression using the 24 timepoints.
820  MetaCycle was used to detect rhythmicity in the normalized time course dataset with the same
821 parameters used previously for Arabidopsis. MetaCycle classified 30,065 out of 112,955 analysed
822  high confidence transcripts as circadian using a maximum g-value of 0.05. To select wheat transcripts
823 as a test dataset for the Arabidopsis Col-0 trained transcriptomic ML model, we focused on 25,000
824  transcripts that MetaCycle classified (labelled) as highly circadian i.e. with high confidence (q<0.015)
825  and 25,000 of the least likely candidates to be circadian genes (q>0.99) identified by MetaCycle with
826 24 timepoints.

827  Clustering circadian transcripts according to transcriptomic profiles

828  Gene co-expression analysis was carried out using the R package WGCNA [54]. The 9,394 transcripts
829  identified by MetaCycle as significantly rhythmic (g-value < 0.05) were filtered to remove transcripts
830  where the sum of normalised expression counts across 21 or more replicates was less than 10. The
831 remaining 8,136 transcripts were used to construct signed hybrid networks on a replicate basis using
832  the blockwiseModules() function. The soft power threshold was calculated as 16, and the following
833  parameters were used; minModuleSize = 30, corType = bicor, maxPOutliers = 0.05, mergeCutHeight
834  =0.15. Highly connected hub genes were identified for each of the eight co-expression modules using
835  the function chooseTopHubInEachModule().

836  Binary classification: ML model training and tuning

837  We used Scikit Learn (v3.7) for the ML binary classification analysis to predict if a gene was circadian
838  or not with either transcriptomic or DNA sequence-based feature sets [74]. Unless otherwise stated,
839  the MinMaxScaler was used to scale the features from 0 to 1, 90% of the data was used for training
840  andthe remaining 10% was held out for testing. 5-fold cross validation was performed on the training

841  data. We used K-folds for cross validation (n_splits=5). The methods’ hyperparameters were
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842 optimized using a grid search to test a range of parameters (Table S15) for the following classifiers:
843  Logistic Regression, Gaussian process, Random Forest, XGBoost, LightGBM, Support Vector Machine
844  (SVM) (linear kernel), Decision Tree and K nearest neighbours (KNN). We selected the best ML model
845  for each use-case (using best parameters after fine tuning), according to the highest F1-score on test
846  setand cross validation.

847  The features used to train our initial transcriptomic (12 timepoint) ML model were the normalized
848  averaged expression profiles for each Arabidopsis Col-0 transcript [8] and the “baseline gold-
849  standard” circadian/non-circadian labels as defined by MetaCycle using 12 timepoints and stated in
850  the main text and methods (Supplementary Note 1). We trained ML classifiers to predict if a transcript
851  was circadian or non-circadian in a binary classification system using 7,734 of the least likely
852  candidates to be circadian (q>0.99) labelled by MetaCycle alongside the 7,734 highly circadian
853 transcripts (q<0.02). Additional transcriptomic models developed downstream, were trained using
854  reduced numbers of timepoints either from the same [8] dataset or from a different data source
855  (Arabidopsis Col-0 from [10]) with the same “baseline gold-standard” labels as previously. All
856  transcriptomic models use normalized averaged expression profiles for each transcript.

857  To test the accuracy of our best trained transcriptomic ML binary classification model that uses 3
858  timepoints; for Arabidopsis Col-0 [9] test data, we assessed all predictions with a prediction
859  probability or confidence of 95% or more and expressed those classed correctly as a proportion of the
860  correct plus incorrect predictions to gain an overall accuracy percentage (for Arabidopsis this
861 encompassed 14,652 predictions). Since the [9] test data is derived from Arabidopsis Col-0 we used
862  the original [8] MetaCycle derived “baseline gold-standard” Col-0 labels to calculate accuracy. For
863  wheat, we tested accuracy using the 50,000 genes (25,000 circadian and 25,000 non-circadian
864  labelled by MetaCycle) that have already been filtered to encompass highly circadian and non-
865  circadian representative genes, therefore, here we use the overall F1 score for our predictions directly.
866  The features/attributes used to train our DNA sequence-based ML model were the k-mer profiles for
867  each transcript (Arabidopsis Col-0) and circadian/non-circadian “baseline gold-standard” labels as
868  defined by MetaCycle. To train our initial model, we generated k-mer profiles de-novo for the mRNA
869  and promoter sequences associated with each transcript. We trained a series of ML classifiers to
870  predict if a transcript was circadian or non-circadian in a binary classification system using 6,907 of
871  the least likely candidates to be circadian alongside the 7,481 of the highly circadian transcripts used
872  previously. However, these numbers were reduced from the 7,734 used previously due to our focus
873  on mRNA only (removing ncRNA, snoRNA and IncRNA'’s). To develop our feature sets we trialled k-
874  mers from 4-7bpin length to encompass a range from smaller k-mers that we expect to see by chance
875  tolarger k-mers that we would not expect to see by chance in a promoter (1,500bp) or mRNA region

876  (average length 2069bp); k-mers of 4, 5, 6, 7bp occur by chance every 256, 1024, 4096 and 16,384bp
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877  respectively, given equal frequency of the four nucleotides. Since we trialled k-mers ranging from 4-
878  7bpinlength, our feature numbers varied from 256-16,384 to reflect the numbers of possible k-mers
879 (4% from the 4 nucleotides in the DNA alphabet. Every possible k-mer of length k, e.g. 6bp, is counted
880  ineach transcript and promoter (separate counts) defined as 1500bp upstream of the TSS, meaning
881 that no prior knowledge of regulatory elements or detailed gene annotation is required. Although we
882  tested combining k-mer counts for mRNA and promoter regions, predictions were consistently more
883  accurate generating separate feature sets for the promoter and mRNA regions (e.g., for 6bp k-mers
884  resulting in 4°0r 4,096 * 2 = 8,192 features) that were both inputted into the model.

885  Binary classification: Model explanation

886  Explainable AI was used to rank and select omic features as suggested by [75,76] and we investigated
887  the explanations of the predictions for the DNA sequence-based ML model. Firstly, based on the best
888  LightGBM model for the Arabidopsis Col-0 dataset from [8] on which the model was trained (i.e.
889  6,907+7,481= 14,388 transcripts and 8192 k-mer-based features). We applied the hyper-tuned
890  LightGBM coupled up with an explainable AI algorithm, called Shapley Additive exPlanations - SHAP
891 [38], as to predict and explain the class (circadian or non-circadian) of each transcript across the entire
892  dataset. SHAP combines game theory with local explanation enabling accurate interpretations on why
893 and how the model predicted a particular value (in our case a binary value) for a given instance. We
894  used the python implementation of SHAP, version 0.35.0, available via the conda-forge channel
895  (https://anaconda.org/conda-forge/shap). To obtain the appropriate SHAP explainer we combined
896  shap.TreeExplainer with the hyper-tuned LightGBM model detailed in Table S2. Finally, we used the
897  obtained SHAP explainer to compute SHAP values for the entire set of transcripts and k-mers. As we
898 are performing a binary classification task, the SHAP explainer returned two SHAP values tables of the
899  same dimension (number of transcripts x number of k-mer-based features), respectively for the class
900 0 (non-circadian) and the class 1 (circadian). In this manuscript we focus on the SHAP values for the
901  class 1 - circadian. We used the SHAP summary plot function to produce Figure 3c that provides a
902  global view of the local explanations when predicting class 1 (circadian) considering all samples in the
903  dataset (training and test). Figure 3¢ shows the top 30 most impactful features/k-mers. Finally, we
904  usedthe SHAP explainer to provides SHAP values, therefore explanations, for unseen transcripts from
905  PHYA-E and the Col-0 and Ws-2 homologs of AT1G78040.3.

906  Association of k-mers with TFBS, RNA binding motifs and miRNAs

907  We detail the closest matches of the k-mer’s to known TFBSs with p<0.05 as defined using Tomtom
908  motif comparison with otherwise default settings [77]. The TFBSs used were Arabidopsis DAP-seq
909  derived motifs [78]. We also detail the closest matches of the k-mer’s to known RNA binding motifs
910  with p<0.05 as defined using Tomtom motif comparison with otherwise default settings [77]. Here,

911  the RNA binding motifs used were from a systematic analysis of the RNA motifs recognized by RNA-
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912  binding proteins conducted by [79].The position of the k-mer is described as promoter or mRNA; if
913  mRNA we express the percentage of mRNAs with the k-mer in their UTR region as a proportion of all
914  genes with a UTR k-mer.

915  For each occurrence of the k-mer across the true positive circadian transcripts, 27nt sequence
916  upstream and downstream of the 6-mer was extracted. These were then collated into a bwa-index for
917  each 6-mer and 428 mature ath-miRNA sequences [80] were aligned to these indices using bwa-aln
918 (maximum edit distance of 1, no gap opens or extensions allowed, seed sequence of 8nt, no edit
919  distance permitted in seed sequence). SAM files were filtered to retain only those matches where the
920  Arabidopsis query transcript was in the opposite orientation to the miRNA, included the k-mer and
921  exhibited a maximum of 3 mismatches between putative target and miRNA. Candidate transcript/k-
922 mer combinations were then tabulated with corresponding transcript information from Ensembl and
923  miRNA annotation from miRBase [80].

924 Filtering transcripts with most positive cumulative SHAP value

925  We summed the SHAP values individually for each transcript that our DNA sequence-based model
926  accurately identified as circadian (true positives). The distribution of these cumulative SHAP values
927  rangedfrom-0.27 to 9.61 with an average of 6.44 (Figure 4a). We filtered the circadian calls that were
928  made with the most certainty according to the SHAP explanation (“most positive cumulative SHAP
929  value”), removing those in the lower quartile Q1 i.e. those transcripts with a value lower than 6.29,
930 leaving 5,536 of the transcripts where the most k-mers drive the prediction of circadian.

931  Clustering genes using SHAP values

932  Clustering of genes based on SHAP values; for each gene we selected the top 5 most influential
933  features or k-mers to its classification as circadian i.e., the 5 highest SHAP values. We then clustered
934  the genes according to these profiles using hierarchical clustering with average linkage and
935  Euclidean distance.

936  Comparing morning/day/night/evening genes

937  We selected representative morning (phase 2-4hours), day (phase 9-11 hours), evening (phase 15-
938 17 hours) and night (phase 21-23 hours) genes, by selecting those phases central to each of the
939  groups as detailed since we define phase 0-6.99999 as morning, 7-12.999999 as day, 13-
940  18.9999999 as evening, 19-24.999999 hours as night. For each group, across all genes we calculated
941 the average SHAP value for each k-mer. We compared groups calculating the standard deviation
942  between the groups for each k-mer. We ranked k-mers according to increasing variation between the
943  four groups i.e. higher standard deviation or variability of k-mer importance.

944  1dentifying marker genes to tell the circadian time using a single transcriptomic timepoint

945  We developed a ML based pipeline to predict the circadian time (phase) at any single transcriptomic

946  sampling timepoint using gene expression data from a set of marker genes. Here superior accuracy
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947  was achieved with an artificial neural network, it also allowed the simplistic implementation of a
948  custom multioutput loss function, as such, we implemented this rather than the traditional ML
949  methods used previously in this study. We note that this approach is more complex than our previous
950  models, requiring custom code, as such we provide the code in a Jupyter Notebook and instructions
951 to run this code at: https://github.com/JoshuaColmer/HallCircadian/. The three transcriptomic
952  datasets used previously (Table S1) from[8], [9], and [10] were used for training, validation and testing
953  respectively. The training dataset was used to learn the circadian time in hours, from the expression
954  data from each transcriptomic timepoint individually, whilst the validation set was utilised for
955  adjusting hyperparameters to reduce overfitting. The test set was used to estimate the error on
956  unseen data for two different ecotypes Col-0 and Ws-2. Here, expression data was normalised by
957 calculating transcripts per million (TPM) for increased uniformity between datasets, as in this
958  experiment they were being directly compared. We removed genes whose expression distributions
959  weretoo different between datasets based on the two-sample Kolmogorov-Smirnov test (q<0.05) and
960  their minimum and maximum values, as well as removing low variance genes, using a threshold of 5,
961  which was adjusted to minimise validation error. Since here, calculation of phase was critical to our
962 predictions we extended our previous approach to quantify this more robustly; MetaCycle was used
963  alongside cross-correlation with circadian time and autocorrelation, to quantify gene expression
964  rhythmicity in the training dataset. The scores for each metric were combined using a Gaussian copula
965  vyielding one score per gene. The top-ranking n genes were taken forward for model training and
966  further feature selection where n was adjusted to minimise validation error. As previously
967  MinMaxScaler was used to scale the features from 0 to 1, fitted on the training set and applied to
968  validation and test sets.

969  We created a shallow neural network using TensorFlow (v2.0.0) [81] comprising three fully connected
970  layers with ReLU activation functions and 32, 128, 512 and 2 neurons respectively followed by a 2
971 neuron softmax layer. The learning rate, number of training epochs and architecture of the network
972  were optimised using the hyperas (v0.4.1) package to minimise the loss for the validation dataset.
973  Due to the cyclical nature of the target (time 0-24 hours), standard regression loss functions were not
974  suitable for this task. To quantify the error in the predictions, we defined the loss function as the
975  squared angle between actual circadian time and predicted circadian time after being transformed
976  onto a unit circle.

977  We used feature selection as previously to select n circadian genes for model training, prioritizing
978  weighted representation of genes from each of the 8 expression sub-clusters generated by the
979  WGCNA gene co-expression network analysis [54]. We hoped this would improve generalisation and

980  robustness of the model as the similarity between features would be reduced and the diversity of
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981  features should enable the neural network to engineer more complex representations of the
982  expression data compared to if all features belonged to the same phase cluster.
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