

1 Interpreting machine learning models to investigate circadian regulation and facilitate exploration of
2 clock function

3
4 **Authors:** Laura-Jayne Gardiner^{1*}, Rachel Rusholme-Pilcher², Josh Colmer², Hannah Rees², Juan
5 Manuel Crescente^{1,3}, Anna Paola Carrieri¹, Susan Duncan², Edward O. Pyzer-Knapp¹, Ritesh Krishna¹
6 and Anthony Hall^{2,4}

7
8 **Affiliations:** ¹ IBM Research, The Hartree Centre, Warrington, WA4 4AD, UK

9 ² Earlham Institute, Norwich, UK, NR4 7UZ

10 ³ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

11 ⁴ School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.

12
13 Laura-Jayne Gardiner: Laura-Jayne.Gardiner@ibm.com

14 Rachel Rusholme-Pilcher: Rachel.Rusholme-Pilcher@earlham.ac.uk

15 Josh Colmer: josh.colmer@earlham.ac.uk

16 Hannah Rees: Hannah.Rees@earlham.ac.uk

17 Juan Manuel Crescente: juan.crescented@gmail.com

18 Anna Paola Carrieri: Acarrieri@uk.ibm.com

19 Susan Duncan: Susan.Duncan2@jic.ac.uk

20 Edward O. Pyzer-Knapp: EPyzerK3@uk.ibm.com

21 Ritesh Krishna: Ritesh.Krishna@uk.ibm.com

22 Anthony Hall: Anthony.Hall@earlham.ac.uk

23

24 Authors for correspondence:

25

26 Dr Laura-Jayne Gardiner

27 Email: Laura-Jayne.Gardiner@ibm.com

28

29

30

31

32

33

34

35

36

37

38

39

40

41 **Abstract**

42 The circadian clock is an important adaptation to life on earth. Here, we use machine learning to
43 predict complex temporal circadian gene expression patterns in *Arabidopsis*. Most significantly, we
44 classify circadian genes using DNA sequence features generated from public genomic resources, with
45 no experimental work or prior knowledge needed. We use model explanation to rank DNA sequence
46 features, observing transcript-specific combinations of potential circadian regulatory elements that
47 discriminate temporal phase of expression. Model interpretation/explanation provides the backbone
48 of our methodological advances, giving insight into biological processes and experimental design.
49 Next, we use model interpretation to optimize sampling strategies when we predict circadian
50 transcripts using reduced numbers of transcriptomic timepoints, saving both time and money. Finally,
51 we predict the circadian time from a single transcriptomic timepoint, deriving novel marker transcripts
52 that are most impactful for accurate prediction, this could facilitate the identification of altered clock
53 function from existing datasets.

54

55 **Introduction**

56 The circadian clock is an internal molecular 24-hour timer that is a critical adaptation to life on Earth.
57 It temporally orchestrates physiology, biochemistry and metabolism across the day/night cycle. As a
58 result, it regulates many traits associated with fitness and survival [1,2]. The clock is a well
59 characterised transcriptional regulatory network which drives complex, widespread and robust
60 patterns of temporal gene expression [3,4]. However, our understanding of such complex
61 transcriptional regulatory systems is limited by our ability to assay them, requiring the generation of
62 long high-resolution time-series datasets.

63

64 In plants, much of our understanding of circadian regulation, comes from our study of the model plant
65 *Arabidopsis thaliana*. This has yielded a plethora of public multi-omic resources [5,6,7] that can be
66 re-analysed to give new insights into the roles and functions of complex regulatory networks. In this
67 study, we use newly generated datasets, published temporal datasets [8,9,10] (Table S1) and
68 *Arabidopsis* genomes, in combination with machine learning (ML) approaches (see Glossary for
69 definitions of terms), to make predictions about circadian gene regulation and expression patterns.
70 Critically, we advance existing approaches using explainable AI algorithms and interpretation of our
71 models (Glossary), such methods help us to understand the predictions made by ML models. In this
72 case, giving insight into biological processes and experimental design alongside our predictions.
73 Clarity with respect to how a model makes its predictions, we propose, will also generate confidence
74 and trust in the model, promoting its usage. We use the *Arabidopsis* circadian clock as an example of

75 a complex transcriptional regulatory network since some of its key regulatory elements are already
76 known, allowing validation of our findings with experimental evidence.

77

78 Circadian gene expression rhythms reflect a variety of waveform shapes with a characteristic
79 periodicity of ~24h [11]. Recent computational methods for identifying these rhythms from
80 transcriptomic time course datasets have achieved circadian gene classification with as few as 3-6
81 timepoints (saving time for sampling and money for sequencing) [12]. However, some of the most
82 popular approaches describe optimal sampling strategies for the identification of rhythms running
83 with >3 days of data and 2-hourly sampling resolution [13, 14]. We propose that this is partly due to
84 concern for the loss of information as a result of down sampling. Since the cost implications of this are
85 high, our focus is on designing trusted down-sampling strategies for capturing circadian oscillations
86 using a non-optimal number of timepoints. As such, firstly, we develop ML models that not only
87 classify circadian expression patterns using iteratively lower numbers of transcriptomic timepoints
88 improving accuracy compared to the state-of-the-art. But moreover, we use model interpretation to
89 quantify the best transcriptomic timepoints for sampling. We believe that this predictive insight on
90 when to sample will be a valuable reference for experimental biologists when planning experiments.

91

92 Next, we re-define the field, developing ML models that distinguish circadian transcripts using no
93 transcriptomic timepoint information, and instead using only DNA sequence features (Glossary). The
94 theory supporting this is that a major mechanism of (circadian or otherwise) gene expression control
95 is through transcription factor binding to regulatory DNA sequence. Considering previous work in
96 *Arabidopsis* it is likely that the promoter, 5'UTR and the first part of the coding region are the most
97 useful locations for transcription factor binding site (TFBS) detection [15]. Genes expressed with
98 similar patterns are more likely to be controlled by similar sets of TFBSs. In addition, small RNAs
99 (sRNAs), comprising microRNAs (miRNAs) and small interfering RNAs (siRNAs) are thought to affect
100 transcript abundance via post-transcriptional regulation of mRNA [16]. Plant miRNAs predominately
101 bind to the coding regions of mRNA, and to a lesser extent 5'UTR and 3'UTR regions [17,18]. As such,
102 we consider both coding and non-coding regions to classify circadian genes using DNA sequence. Our
103 DNA sequence features are profiles of *k*-mer-based motif representations that are identified *de novo*
104 and embody a comprehensive picture of TFBS, sRNA/RNA binding sites and other sequence-based
105 regulatory elements, since we incorporate the promoter, 5'UTR, 3'UTR and coding regions.

106

107 A key strength of our DNA-sequence based approach is that we classify circadian transcripts using *k*-
108 mer-based motif representations generated from pre-existing public genomic resources with no
109 experimental work or prior knowledge of regulatory elements needed. Computational regulatory motif

110 discovery methods typically search for overrepresented words across DNA sequences using methods
111 such as Expectation Maximization (EM) and Gibbs sampling [19,20,21,22]. Approaches are typically
112 limited by a requirement for input information e.g., co-expressed genes, site abundance, number of
113 sites per sequence or a fixed motif length [23,24,25]. Furthermore, Artificial Intelligence (AI) has been
114 used to predict transcriptomic profiles directly using features such as DNA sequence or epigenetic
115 marks. These features typically include representations of TFBS [26,27], enhancers [28], histone
116 modifications [29] or open chromatin regions [30]. However, again, these approaches typically require
117 experimental data or prior knowledge of regulatory elements that our approach does not need, or they
118 focus on single gene expression states and do not consider complex patterns, as our methods do.
119

120 Additionally, AI-based work in the field of expression prediction has largely lacked comprehensive
121 model explanation [31]. Here, we expose the potential, alongside our DNA-sequence based predictive
122 model, to use explainable AI to discover regulatory motifs and explore their functional consequences.
123 We exploit model explanation to identify, on a transcript-by-transcript basis, the ranked regulatory
124 sequences that guide the classification of its expression pattern as circadian. We identify both small
125 and larger combinations of regulatory elements that, in combination, give a larger overall impact on
126 gene classification. These regulatory sequences are candidate causal genetic features that could
127 control gene expression and allow us to understand the regulatory mechanisms governing circadian
128 expression patterns and even manipulate its regulation, focused here on circadian rhythmicity.
129 Ultimately, we use model explanation to generate and validate hypotheses *in silico*, facilitating both
130 gene expression prediction and derivative regulatory element discovery.
131

132 Finally, assaying circadian clock function, as opposed to simply identifying transcript rhythmicity, has
133 been a major challenge for the study of the circadian regulation in organisms ranging from mammals
134 to plants. Recent work applied ML to circadian time course transcriptomic datasets from human blood,
135 to predict the phase of the endogenous circadian clock (circadian time, CT), using a single time point
136 from a set of marker genes [32,33]. This allows the use of one time point to identify altered clock
137 function e.g., due to disease or environmental conditions. An equivalent major challenge exists in plant
138 sciences. As such, we use ML to predict the circadian time in *Arabidopsis* from a single transcriptomic
139 timepoint using marker genes. To advance previous offerings, we identify novel marker genes as part
140 of our interpretable approach ensuring that they represent a diverse range of temporal patterns with
141 consistent amplitudes across datasets to facilitate accurate and robust phase prediction irrespective
142 of sample phase. Counter-intuitively our marker genes do not include the core clock genes used in
143 previous studies for time prediction [34]. Taken together, these tools constitute a suite of informative
144 resources for both experimental biologists and the interpretation of further circadian datasets.

145 **Results and Discussion**

146

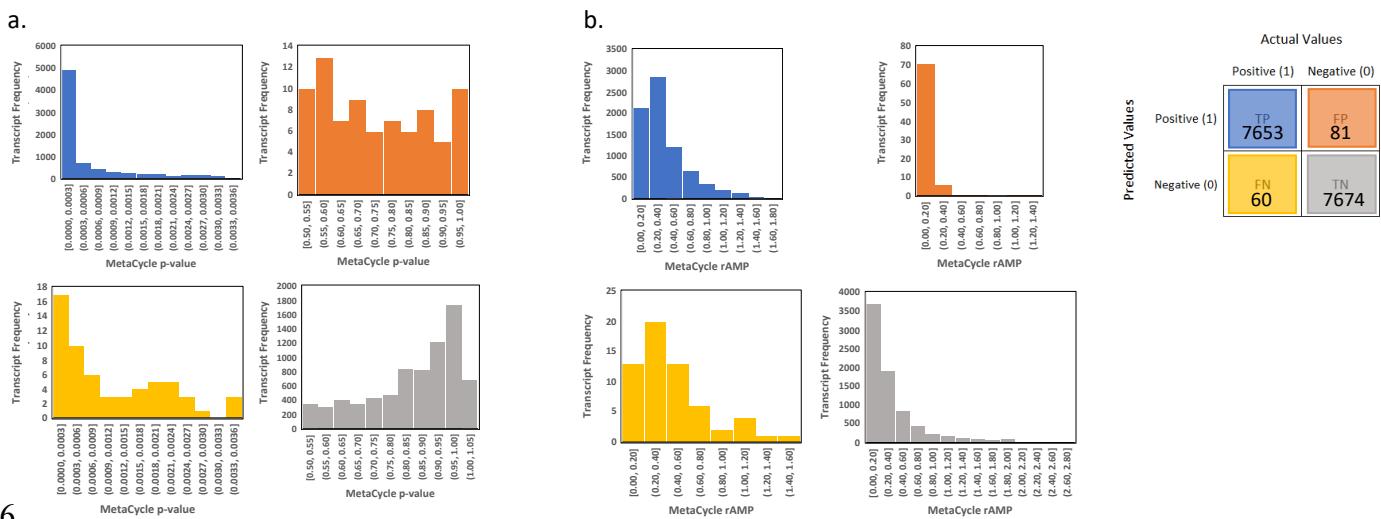
147 **ML model interpretation optimizes timepoint down-sampling to define circadian transcripts**

148 We used MetaCycle as our baseline for detecting circadian signals in dense time-series transcriptomic
149 data [13]. MetaCycle is one of the most well-maintained and accessible tools within the community
150 incorporating a variety of the most widely used methods ARSER [35], JTK_CYCLE [36] and Lomb-
151 Scargle [37] and integrating their results so that rhythmic prediction is a cumulation of different
152 statistical approaches. We ran MetaCycle (see Methods) on a published *Arabidopsis* time-series
153 transcriptomic dataset generated by [8], which was sampled every 4-hours for 48-hours, starting 24-
154 hours after transfer to constant conditions (LL) (Table S1). The data was processed to produce
155 normalized counts per transcript (see Methods). MetaCycle classified 9,394 out of 44,963 transcripts
156 as circadian ($q < 0.05$), with 7,734 denoted as high confidence ($q < 0.02$) (Supplementary Note 1). We
157 trained a series of ML classifiers to predict if a transcript was circadian or non-circadian in a binary
158 classification system using 7,734 of the least likely candidates to be circadian ($q > 0.99$) labelled by
159 MetaCycle alongside the 7,734 highly circadian transcripts ($q < 0.02$) (see Methods; Glossary;
160 Supplementary Note 2). For the ML models we report the F1 scores that measure the accuracy of the
161 model on a scale of 0 to 1, with 1 being most accurate (Glossary). Considering all 12 transcriptomic
162 time points, the best model was generated with LightGBM after optimization (Methods; Figure S1a,
163 Table S2) with: an F1 score of 0.999 on the training data, an F1 score of 0.955 on the (held out) test
164 data and a mean F1 cross validation score of 0.939 (Glossary). Our confusion matrix (Figure S1b;
165 Glossary) highlights consistently high accuracy of our model irrespective of the class that is being
166 predicted (circadian/non-circadian).

167

168 Our best ML model (LightGBM) was able to assign a matching circadian/non-circadian label to the
169 majority of the transcripts that MetaCycle labelled. Overall, there is good agreement between our
170 model and MetaCycle. However, the overlap was not 100% so we examined the small proportion of
171 transcripts that were “inaccurately” classified. We found that the “inaccurately” classified cases by
172 our ML model were more likely to be intermediate or border-line cases for MetaCycle (Figure 1) or
173 edge cases e.g., with slightly longer period lengths (Figure S1). We deduced this because cases
174 rejected by MetaCycle as circadian but accepted by the ML (false positives-FP) had significantly lower
175 (MetaCycle derived) p-values than the cases that were rejected by both MetaCycle and ML (true
176 negatives-TN) ($p < 0.0001$, $t = 6.8795$, $df = 7753$). Conversely, cases accepted by MetaCycle as rhythmic
177 but rejected by ML (false negatives-FN) had higher (MetaCycle derived) p-values than cases
178 categorised as rhythmic by both MetaCycle and ML (true positives-TP) ($p < 0.0001$, $t = 5.7744$, $df = 7711$)
179 (Figure 1a). Additionally, cases rejected by MetaCycle as circadian but accepted by the ML (FP) have

180 significantly lower relative amplitudes compared to the TP calls where both methods agree
 181 ($p<0.0001$, $t=8.3845$, $df=7732$). Conversely, cases accepted by Metacycle as rhythmic but rejected
 182 by ML (FN), had a significantly higher relative amplitude than the true negative calls ($p=0.036$,
 183 $t=2.0924$, $df=7732$) (Figure 1b). This also highlights that the ML model is not simply using high and
 184 low expression levels to discriminate circadian and non-circadian status of transcripts.
 185



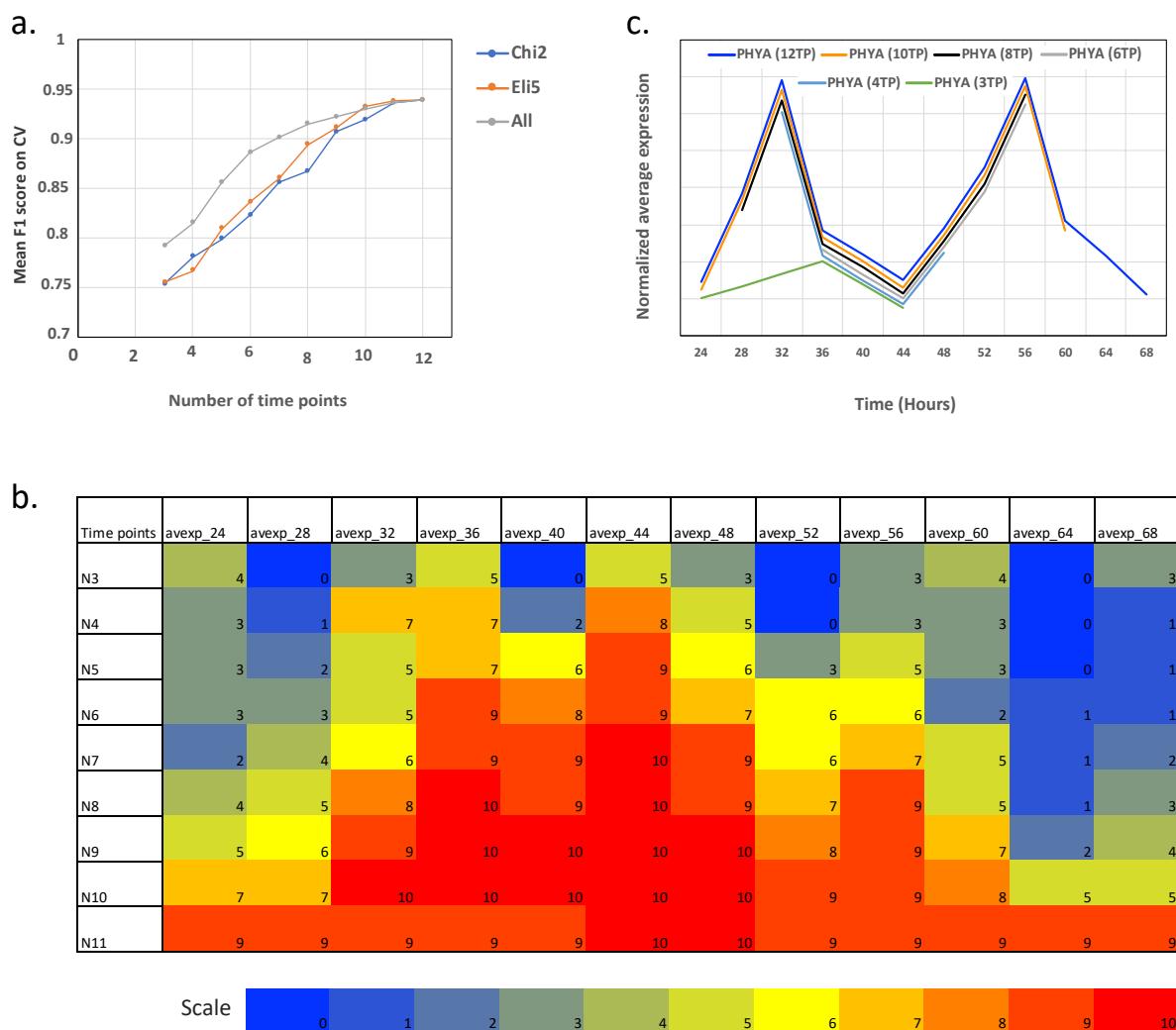
186
 187

188 **Figure 1. Arabidopsis circadian/non-circadian comparative ML binary classification analysis with**
 189 **12 transcriptomic timepoints.** Class 0=Non-circadian and Class 1=Circadian. Histograms in **(a-b)** all
 190 relate to the best model from Figure S1a that was generated using LightGBM, the histograms are
 191 colour coded as per the confusion matrix shown in the legend to the right i.e. showing where our model
 192 assigned True Positive labels (TP), False Positive labels (FP), False Negative labels (FN) and True
 193 Negative labels (TN). The histograms show the frequency of transcripts that had various **(a)** p-values
 194 or **(b)** relative amplitudes assigned to them by Metacycle.

195
 196

197 We assessed the effect of reducing the number of transcriptomic timepoints on the accuracy of our
 198 classification of circadian/non-circadian transcripts. For our best ML model (derived using 12
 199 timepoints), we reduced the number of timepoints (or features) sequentially from 12 down to 3. To
 200 obtain each of the interim reduced sets of timepoints from 12 to 3, we used well-known feature
 201 selection tools chi-square and eli5 (Glossary) and compared these against testing every possible
 202 feature combination for the timepoint number (see Methods). The method of trialling every possible
 203 feature combination for each reduced timepoint number enabled us to most accurately classify
 204 transcripts as circadian/non-circadian (Figure 2a). Using this approach with 6 timepoints, we achieved
 205 a mean classification F1 accuracy score of 0.886 on cross validation and a score of 0.792 using only

206 3 time points (Table S3). Table S3 also highlights, for these most accurate models, that we have
 207 consistently high accuracy irrespective of the class that is being predicted (circadian/non-circadian).
 208 Using model interpretation i.e., identifying the combinations of features that gave the highest
 209 accuracies, we were able to define the most optimal sampling strategies for the different numbers of
 210 timepoints. For selection of 6 or more timepoints, the best combinations tended to be consecutive
 211 timepoints extending across the intersect of day 1 and day 2. In contrast, when selecting low numbers
 212 of timepoints, more accurate classifications were made when timepoints were spaced across a single
 213 day (Figure 2b). Figure 2c highlights this showing the best combination of reduced timepoints in each
 214 category 12-3 for the example transcript phytochrome A (*PHYA*).
 215



216

217

218 **Figure 2. Arabidopsis circadian/non-circadian comparative ML binary classification analysis to**
 219 **reduce the number of transcriptomic timepoints.** For our best ML model, we reduced the number of
 220 timepoints sequentially from 12 down to 3. **(a)** To obtain each reduced set of timepoints, we compare
 221 using chi-square (Chi2) and eli5 (Eli5) feature selection with the best set comparing every possible

222 random feature combination (All). Here we show the best F1 score after 5-fold cross validation for
223 each set of reduced timepoints. **(b)** Detailing the 10 best combinations of features that gave the
224 highest accuracy or F1 score for each reduced set of timepoints. Labels N3-N11 show the number of
225 reduced timepoints. Labels avexp_24-avexp_68 show the sampling times. Counts 0-10 represent the
226 number of times each timepoint appeared in the 10 best combinations of features. **(c)** For the example
227 gene *PHYA* showing a line plot of the gene's expression values across the best combination of reduced
228 timepoints in each category 12-3. Expression values are uniformly reduced by ~5% for each reduced
229 timepoint combination to allow separation of lines for visualization.

230

231 In order to test how generalizable our model is on unseen data (Glossary), we used the most accurate
232 model for the reduced set of 3 timepoints (timepoints 36, 48 and 60) for the binary classification of,
233 firstly, a second *Arabidopsis* transcriptomic time-series dataset developed by [9] and secondly, a
234 newly developed wheat transcriptomic dataset representing a divergent plant species from
235 *Arabidopsis* (Table S1). These additional unrelated test datasets represent different sampling
236 strategies and experimental setups (see Methods). Both test datasets were processed
237 bioinformatically as per our original [8] dataset (see Methods). For the *Arabidopsis* [9] dataset, the
238 timepoints did not match those used to train our model; sampling started 2 hours after exposure to
239 constant light (rather than 24 hours after) and samples were taken every 3 hours instead of every 4.
240 As such, we selected the closest times to those that were used to train our model according to time
241 of day relative to dawn (timepoints 11, 23 and 35). Even so, the F1 score (representing accuracy) for
242 classification of this gene set was relatively high at 0.714, amounting to a decrease in accuracy of only
243 0.08 compared to the dataset that the model was trained on. For the wheat dataset, sampling started
244 24 hours after exposure to constant light and measurements were taken every 2 hours instead of
245 every 4. Therefore, here, matching the time of day relative to dawn, we were able to select equivalent
246 timepoints (12, 24 and 36 hours) and the F1 score was slightly higher at 0.769 amounting to a
247 decrease of only 0.02 on a highly divergent species. The model therefore generalizes well irrespective
248 of the sample's species, particularly with matched timepoints relative to dawn.

249

250 We compared our timepoint reduction analysis using ML to a range of analyses representing the state-
251 of-the-art across the different timepoint numbers. MetaCycle requires a minimum of 6 timepoints for
252 circadian analysis, and benefits from these timepoints being evenly sampled across the chosen time
253 period [13]. As such, we reduced timepoints from 12 to 6 to enable comparison including evenly
254 spaced sampling patterns; 4hourly/1day, 8hourly/2days versus the best suggested sampling times
255 from our ML analysis (4hourly/1day from 36-56 hours from Figure 2b and 2c). The reduction to 6
256 timepoints significantly decreased the number of positive circadian gene calls by MetaCycle that were

257 conserved with the 12 timepoint analysis, independently of the sampling technique used. In fact, the
258 highest proportion of the 9,394 circadian genes identified with 12 timepoints by MetaCycle that were
259 also identified with 6 timepoints ($p < 0.05$) was 63.7% (Table S4). This accuracy is still ~25% lower
260 than the F1 score we achieved with 6 timepoints and our best ML model (Table S3). Furthermore,
261 when comparing the F1 score of our 3-timepoint ML model it was more appropriate to use a 3-
262 timepoint state-of-the-art analysis performed by Spörl et al. [12]. Table S4 highlights that we achieve
263 a 12% higher accuracy with only 3 timepoints in a like-for-like comparison with Spörl et al. [12]. This
264 accuracy improvement is in addition to the experimental design insight that we provide.

265

266 **Circadian genes can be classified using *de novo* generated DNA sequence-based k -mer spectra**

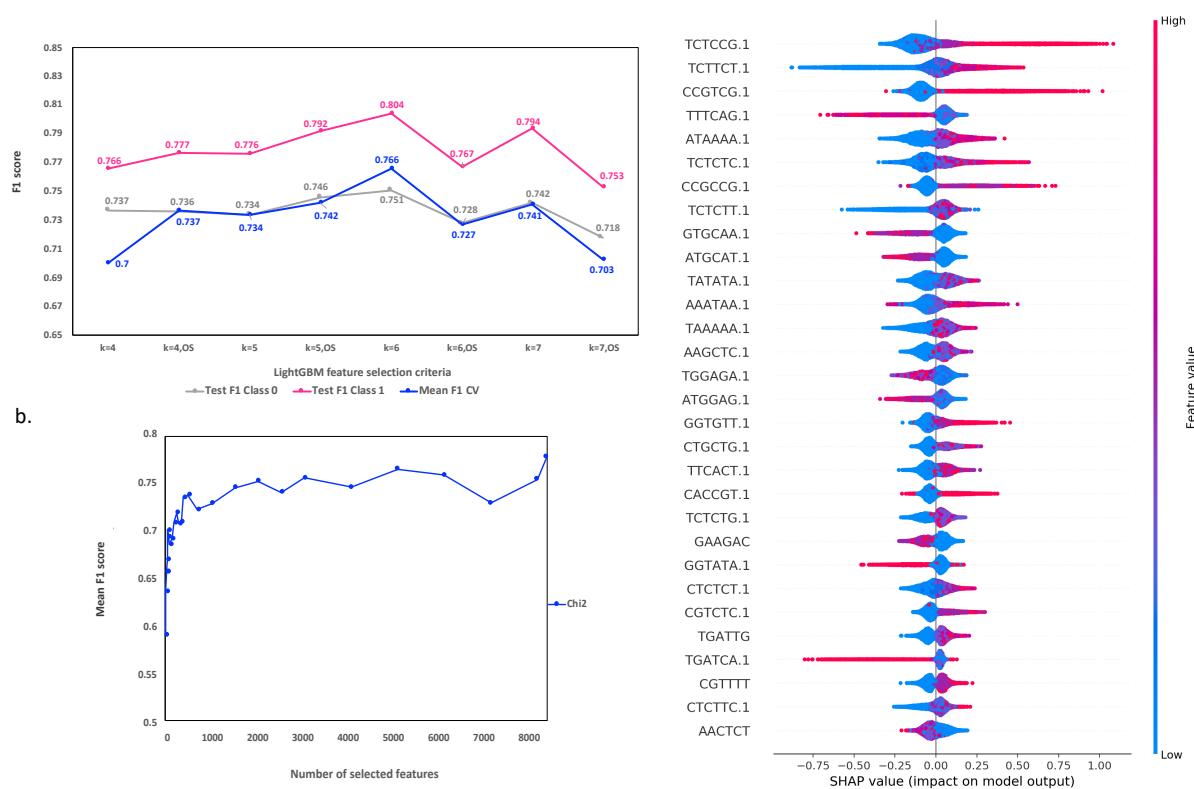
267 We investigated if it was possible to eliminate transcriptomic timepoints completely and use DNA
268 sequence features alone to classify transcripts as circadian/non-circadian. To achieve this, we
269 generated k -mer profiles *de-novo* for the mRNA and promoter sequences associated with each
270 transcript, comparing a range of k -mer lengths (see Methods; Glossary). We trained a series of ML
271 classifiers to predict if a transcript was circadian or non-circadian in a binary classification system
272 using the derived k -mer profiles for the same set of transcripts and MetaCycle derived labels used
273 previously (for the transcriptomic ML model). Across the range of k -mers the best models were
274 consistently generated with the classifier LightGBM and the most accurate model used a k -mer length
275 of 6 to generate separate feature sets for the promoter and mRNA regions (8,192 features of k -mer
276 counts per transcript) that were both inputted into the model (see Methods). This best optimized
277 model showed (Figure 3a, Table S2): a mean F1 score of 0.766 on cross validation (standard deviation
278 0.006) and a test F1 score of 0.751 on class 0 (non-circadian) and 0.804 on class 1 (circadian). Again,
279 our accuracy was largely balanced between the classes. An optimal k -mer length of 6bp for this
280 analysis could reflect this being the smallest length k -mer that we would not expect to simply occur
281 by chance, therefore giving ideal resolution. Due to the large number of features created when using
282 a k -mer length of 6, using feature selection we tested the accuracy of our rhythmic classification when
283 subsets of the feature set were used (Figure 3b; Glossary). We can reduce the feature number to ~200
284 and still achieve an F1 score above 0.7, but the highest accuracy was achieved with all 8,192 features
285 and as such, for downstream investigations we used the full feature set.

286

287 Our *de-novo* k -mer generation approach allows downstream identification and investigation of both
288 known and previously unknown sites with only the annotation of the TSS and TTS of a transcript
289 required. Our short k -mers (6bp) should mainly represent regulatory elements such as TFBSS when
290 derived from promoter/UTR regions. However, our inclusion of coding regions may allow us to
291 encompass additional regulators e.g., miRNA binding sites. Although miRNAs tend to be 20-24bp in

292 length, our k -mers may represent miRNA seed regions that are typically ~6bp in length and
293 perfectly/near-perfectly match targets [17].

294



295

296

297 **Figure 3. Arabidopsis circadian/non-circadian ML binary classification analysis using k -mer**
298 **profiles.** For our best performing classifier LightGBM we compare the F1 scores generated using **(a)**
299 different k -mer lengths (4-7bp) for classification, with or without the use of oversampling (OS) since
300 our classes are not perfectly balanced (Glossary). **(b)** To obtain each reduced set of k -mers we use
301 chi-square (Chi2) feature selection. Here we show the best F1 score after 5-fold cross validation for
302 each set of reduced features. **(c)** shows the top 30 most impactful features for predicting class 1
303 (circadian) considering all samples in the dataset (training and test) as calculated using SHAP (Shapley
304 Additive exPlanations) (Glossary). Feature value equates to the frequency of a k -mer per transcript.
305 When the frequency of a k -mer per transcript is high (red) and it has a positive SHAP value, this high
306 frequency is driving the prediction of a circadian transcript. This is often coupled to the situation where
307 the lower frequency of the same k -mer per transcript (blue) has a negative SHAP value, so the absence
308 of the k -mer is driving the prediction of a non-circadian transcript. On the contrary, when the
309 frequency of a k -mer per transcript is high (red) and has a negative SHAP value, the high frequency is
310 driving the prediction of a non-circadian transcript. This is often coupled to the situation where the
311 lower frequency of the k -mer per transcript (blue) has a positive SHAP value, so the absence of the k -

312 mer is driving the prediction of a circadian transcript. Features e.g. the k -mer TATTGC, are labelled as
313 “TATTGC” for counts from the promoter and “TATTGC .1” for counts from the mRNA.

314

315 **Explanation of DNA sequence-based ML model links to circadian regulation**

316 We next wanted to explain our model, to identify which k -mer's were most influential in guiding it to
317 predict transcripts as circadian, since these k -mer's could represent the most critical regulatory
318 elements for circadian regulation. If we observe known circadian regulatory elements in this process,
319 this is also a means of validation of the model. As such, we used SHAP (Shapley Additive exPlanations)
320 to explain our best DNA sequence-based model's predictions by computing the contribution of each
321 feature or k -mer to that prediction i.e., ranked feature impact on the classification (Glossary) [38]. We
322 did this firstly at a global level by looking at the top 30 most impactful features across all of the
323 transcripts for distinguishing class 1 (circadian) from class 0 (non-circadian) (Glossary; Figure 3c).
324 Approximately half of the most impactful k -mers in Figure 3c show a positive correlation between k -
325 mer frequency and the SHAP value or feature impact on the model. Higher frequencies of these k -
326 mers for a transcript indicate a higher impact on it being classified as circadian. Of these positively
327 correlated top 30 k -mers, 55% of those that contributed to the circadian classification of a transcript
328 were predominantly in the promoter or the UTR of transcripts. We hypothesized that these k -mers
329 represent TFBSs for transcription factors (TFs) linked to circadian regulation.

330

331 To investigate if our most impactful promoter/UTR k -mers for prediction were in fact TFBSs, we
332 aligned known *Arabidopsis* TFBSs to each of the k -mers and filtered the most significant matches
333 (Table S5; see Methods). We then validated the k -mers that match/likely represent TFBSs using
334 experimental evidence or insight from the literature; many of the matched k -mers were closely
335 associated with circadian regulation or circadian related processes. Notable k -mers of interest
336 included (k -mer number 1; Table S5) matches to TFBS for two photo-responsive TFs (AT3G58630 and
337 AT5G05550) (p-value 0.0002, e-value 0.18) which form interactions with a number of circadian-
338 related proteins e.g. LIGHT INSENSITIVE PERIOD1 (LIP1), CONSTANS-Like (COL) 11 [39] and
339 REVEILLE 2 (RVE2) [40]. Another k -mer (k -mer number 7; Table S5) matched a motif bound by several
340 ethylene-responsive binding proteins (p=0.00003, e=0.02); ethylene synthesis is known to be both a
341 circadian controlled process and also a moderator of the circadian clock [41,42]. We also found
342 matches as would have been predicted for binding sites of known circadian TF's including LUX
343 ARRHYTHMO (LUX) [43], CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) [44] and LATE ELONGATED
344 HYPOCOTYL (LHY) [45], alongside several motifs associated with light-induced or repressed
345 sequences (SORLIP/SORLREP) (Table S5).

346

347 In contrast to our promoter/UTR k -mers, four of the positively correlated top 30 most impactful k -mer
348 features defined by SHAP were observed primarily in coding regions across the circadian predicted
349 transcripts. Since miRNAs are thought to influence circadian controlled processes [46,47] and are
350 common in coding regions, we tested the possibility that these k -mers could represent miRNAs by
351 aligning them (plus surrounding sequence) to mature ath-miRNA sequences to identify possible
352 matches (see Methods). Two of the four k -mers and their flanking sequence matched miRNA
353 sequences that were associated with developmental timing [48] and chloroplast biogenesis [49].
354 Therefore, for a subset of transcripts, the k -mers could represent putative miRNA binding sites that
355 have been experimentally linked to circadian regulated processes, although this only accounts for a
356 small proportion of the transcripts (Table S5). As such, we next investigated the possibility that these
357 k -mers could represent RNA binding motifs (see Methods). In doing so we validated two of the k -mers
358 by linking them to RNA binding motifs that are associated with circadian related processes. RNA-
359 binding proteins are key regulators of gene expression and post-transcriptional regulation in
360 eukaryotes, and, due to strong sequence conservation, their recognition preferences can be inferred
361 from RNA-binding motifs. Two of the four coding sequence derived k -mers matched RNA-binding
362 motifs (Table S5, $p < 0.05$). The first is targeted by the RNA-binding protein Serine and Arginine Rich
363 Splicing Factor 7 (SRSF7). This has been linked to circadian processes since circadian temperature
364 cycles are known to drive rhythmic SR protein phosphorylation to control alternative splicing [50]. The
365 *Arabidopsis* protein RSZ22 is a known true ortholog of the human SRSF7 SR factor that this alignment
366 could represent [51]. The second k -mer matched motif is targeted by the RNA-binding protein LIN28A
367 (*Homo sapiens*). The *Arabidopsis* protein Cold-Shock Protein 1 (CSP1) is a known homolog of LIN28A
368 with a similar functional role in reprogramming, that this alignment could represent [52]. CSP1 has
369 been implicated in seed germination timing that is also known to be clock related [53].
370

371 **Transcript-specific explanations reveal sub-classes within the binary class circadian**

372 Our DNA sequence-based model used binary classification to discriminate transcripts under circadian
373 regulation from those that are not, which is useful to identify circadian regulatory elements from
374 model explanations. However, circadian rhythms reflect a variety of waveform shapes. As such, we
375 bioinformatically identified co-expression modules (Glossary) from the transcriptomic profiles of the
376 circadian transcripts that were used to train our ML models using weighted gene co-expression
377 network analysis (WGCNA) [54]. This resulted in 8 modules with distinct circadian expression profiles.
378 These modules represent groups of transcripts differentiated by phase of expression with the
379 following observed (Figure S2); morning phases 0 (cluster 7) and 4 (cluster 5/6), day phase 8 (cluster
380 3), day/evening phase 12 (cluster 2), evening phase 16 (cluster 1) and night phase 20 (cluster 4/8).
381

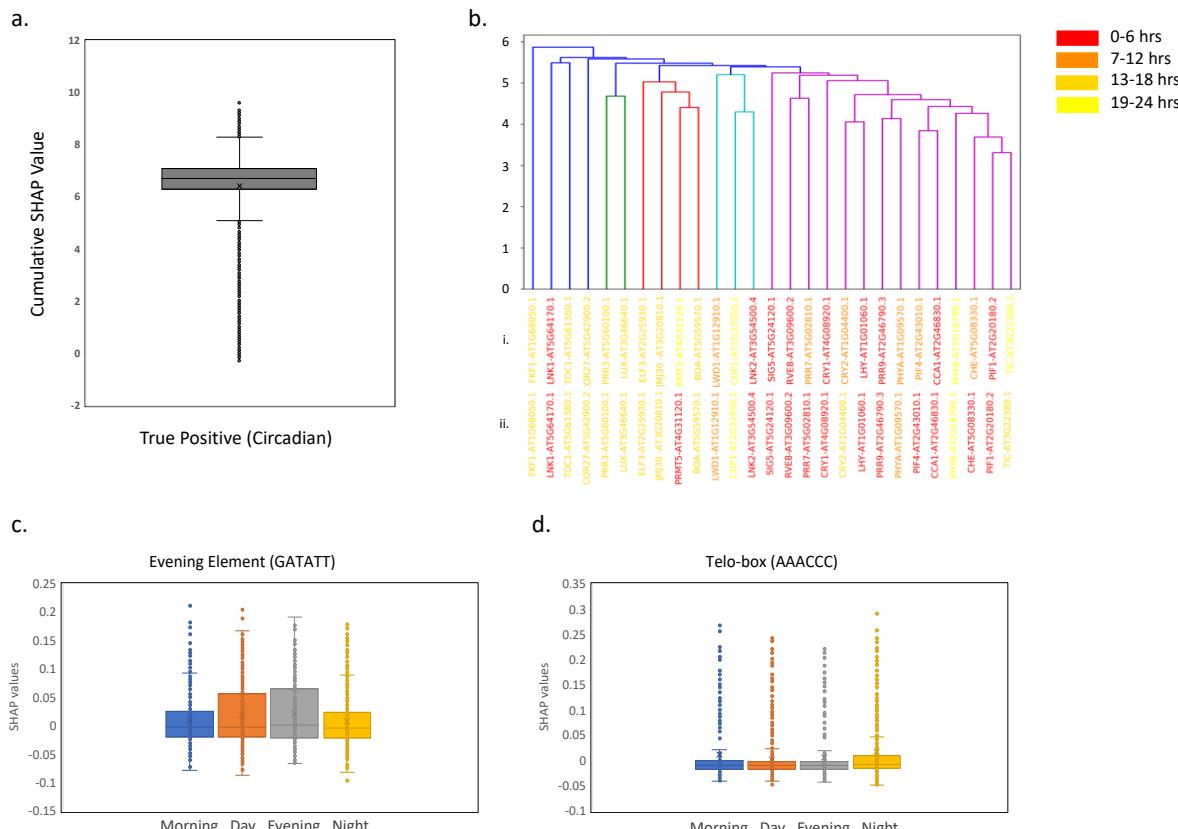
382 We next sought to group our circadian transcripts into subgroups representative of different phases
383 of expression, but rather than using transcriptomic information, this time we wanted to use the SHAP
384 impact values of their *k*-mers. This effectively divides our DNA sequence-based model's binary class
385 circadian into multiple sub-classes, providing further insight into transcript rhythmicity. To enable
386 this, we used model explanation of our best DNA sequence-based predictive model, but rather than
387 identifying the most impactful *k*-mers in general (global explanation) for predicting class 1 (circadian),
388 as previously, we now identify the most impactful *k*-mers for the classification of each circadian
389 transcript individually (local explanation) (Glossary). For this, we focus on the true positive circadian
390 transcripts where MetaCycle and our ML model predict circadian. These local explanations are
391 transcript specific and could highlight *k*-mers that are regulating each transcript's expression. Each
392 transcript has a calculated SHAP impact value per feature (8,192 *k*-mers) and this set of values we
393 refer to as the SHAP value profile for a transcript. The *k*-mer with the highest SHAP value being the
394 most influential on the transcript's classification as circadian. Comparison of these profiles allows us
395 to compare and subdivide the transcripts within the binary class circadian, using DNA sequence
396 composition related to gene regulation, rather than transcriptomic profile.

397

398 To investigate this, after deriving local explanations, we filtered the most circadian transcripts
399 according to their SHAP explanation ("most positive cumulative SHAP value", Figure 4a, see methods,
400 Glossary). Then we focused on known circadian genes that were within this set i.e., experimentally
401 validated and widely known true positive genes from previous studies. We clustered the derivative
402 transcripts of these genes based on the similarity of their SHAP value profiles, which represent the
403 relative impact of the *k*-mers on their classification as circadian (Figure 4b). In groups to the right of
404 the dendrogram (purple), 85% of transcripts peak in their expression in the morning/day, whereas in
405 groups to the left, 77% of transcripts peak in the evening/night (phases determined by MetaCycle).
406 Therefore, circadian transcripts with more similar *k*-mer SHAP value profiles also had similar
407 expression phases, thus dividing our circadian class into sub-classes representing phases of
408 rhythmicity using *k*-mer information. For example, *PRR3* and *LUX* were found to have similar SHAP
409 value profiles and we validated this by observing their similar transcriptomic expression profiles, with
410 evening phases of expression of ZT15 and ZT13 respectively. Notable exceptions include the two *LNK*
411 genes which have a transcript expression profile which peaks in the morning but have SHAP profiles
412 similar to evening and night expressed genes, with *LNK1* most closely linked to *TOC1*. This suggests
413 that *LNK1/LNK2* may be regulated by a separate mechanism to that regulating other dawn expressed
414 genes. In the morning/day cluster we also see the gene *TIC* which peaks at dusk in the transcriptomic
415 data; previously, rhythmicity of *TIC* was not detected in whole seedlings whereas here, we confidently
416 classify this transcript as circadian from aerial tissue (MetaCycle $q=0.004$). Previous work concluded

417 that *TIC* functions in the late evening [55] but plays a role regulating *LHY* that is in the same
418 morning/day cluster as *TIC*, this may explain its appearance here [56]. Finally, we also see the night
419 gene *PHYB* in the morning/day cluster, this may be due to the additional presence of the closely
420 related *PHYA* in this cluster [57].

421



422

423

424 **Figure 4. Investigating *Arabidopsis* circadian true positive transcripts after ML binary k -mer DNA**
425 **sequence-based classification analysis.** For our best performing classifier LightGBM. **(a)** Box plot to
426 show the range of SHAP values across all true positive transcripts (correctly predicted as circadian).
427 A positive SHAP value for a k -mer, for a specific transcript, indicates that the k -mer is driving the
428 prediction of circadian, while a negative SHAP value indicates that the k -mer is driving the prediction
429 of non-circadian for that transcript. SHAP values are summed for each transcript and the sum is
430 defined here as the cumulative SHAP value. **(b)** Dendrogram produced by clustering known core
431 circadian transcripts according to their profiles of SHAP values if the transcripts were also present in
432 Q1-3 of **(a)**. We clustered transcripts using hierarchical clustering with average linkage and
433 Euclidean distance (see Methods). Dendrogram labels coloured according to peak phases of
434 expression; morning (0-6 hours), day (7-12 hours), evening (13-18 hours) and night (19-24 hours) as
435 determined by **(i)** MetaCycle or **(ii)** the module of origin of the transcript from our 8 WGCNA generated
436 modules. **(c-d)** Box plot to show the range of SHAP values across all true positive transcripts in groups

437 morning day evening night for the specific *k*-mers **(c)** GATATT (Evening element) and **(d)** AAACCC
438 (Telo-box).

439

440

441 We noted from our transcript SHAP value profile clustering (Figure 4b), that for sub-classes of
442 transcripts with similar expression phases, the most impactful *k*-mers per sub-class could represent
443 sequences that are regulating time-of-day specific expression. Identifying these using model
444 explanation could facilitate the estimation of circadian expression phase without the need for a
445 transcriptomic time course. To test this hypothesis, we split the transcripts into morning, day, evening
446 and night and investigated which *k*-mers differentiated the groups. We identified the top 30 most
447 variable *k*-mers between the four groups' consensus SHAP explanations, these *k*-mers should
448 therefore vary most in their impact between the groups (see Methods) (Table S6). Since we are
449 comparing the *k*-mers that differentiate groups of transcripts that are separated by their phase of
450 expression, we validated our hypothesis by matching the *k*-mers to binding sites that have been
451 experimentally associated with specific times of day. For example, the late-night specific telo box [58],
452 a G-box related sequence thought to associate with late night and dawn genes [59] and the Evening
453 Element (EE) that appeared twice in the top 30 with two *k*-mers matching it. When we compared the
454 importance of these *k*-mers between the morning, day, evening and night groups, the EE had a higher
455 impact on model prediction in the evening group than in the other three groups and this difference
456 was statistically significant compared to both morning and night (Figure 4c, Table S7). Additionally,
457 the Telo-box had a higher impact on model prediction when observed in the night group compared to
458 all other groups and this difference was statistically significant compared to day and evening, fitting
459 with its late-night specificity (Figure 4d, Table S7).

460

461 **Case study: transcript-specific explanation for PHYA-E guides re-classification of PHYC**

462 The PHYTOCHROME (*PHY*) genes encode red and far-red photoreceptors directly involved in setting
463 the clock. Previous studies have identified circadian regulation of *PHY* A-E as rhythmic. [60]. However,
464 *PHYC/PHYD/PHYE* were all called non-circadian by MetaCycle with *q*-values of 0.99, 0.60 and 0.13
465 respectively. These genes should be rhythmic, but this may not be clearly reflected in the
466 transcriptomic data, likely due to their low amplitude expression patterns (Figure S3a). As a result,
467 these genes were missing from downstream analysis and can be used as a case study of unseen test
468 datapoints (Glossary) for the ML models. For the *PHYA-E* primary transcripts, Table S8 highlights
469 MetaCycle's 40% accuracy, only classifying *PHYA-B* as circadian, compared to our ML (12 timepoint)
470 model's 80% accuracy since we additionally classify *PHYD-E* as circadian. This is supported by
471 visually evident rhythmic expression in the transcriptomic data, particularly for *PHYE* and to a lesser

472 extent for PHYD (Figure 2a). We maintain our 80% accuracy when we generate k -mer profiles for the
473 PHYA-E transcripts and use our DNA sequence or k -mer based ML model to predict circadian/non-
474 circadian. Both of our ML models (transcriptomic and DNA-sequence-based) classify PHYC as non-
475 circadian with the other primary PHY transcripts predicted circadian. Even the DNA sequence-based
476 ML model discriminated PHYC from the other PHY transcripts despite sequence similarity between
477 them. Moreover, the transcriptomic expression profile for PHYC provides an unconvincing circadian
478 rhythm, with an amplitude tending towards zero (0.02), compared to the other transcripts (Figure
479 S3a). Here, we assumed that all of the PHYA-E primary transcripts were circadian. This may reflect
480 previous work that concluded a weak rhythmic association of PHYC potentially due to post-
481 transcriptional circadian regulation not promoter regulated expression [60,61].

482

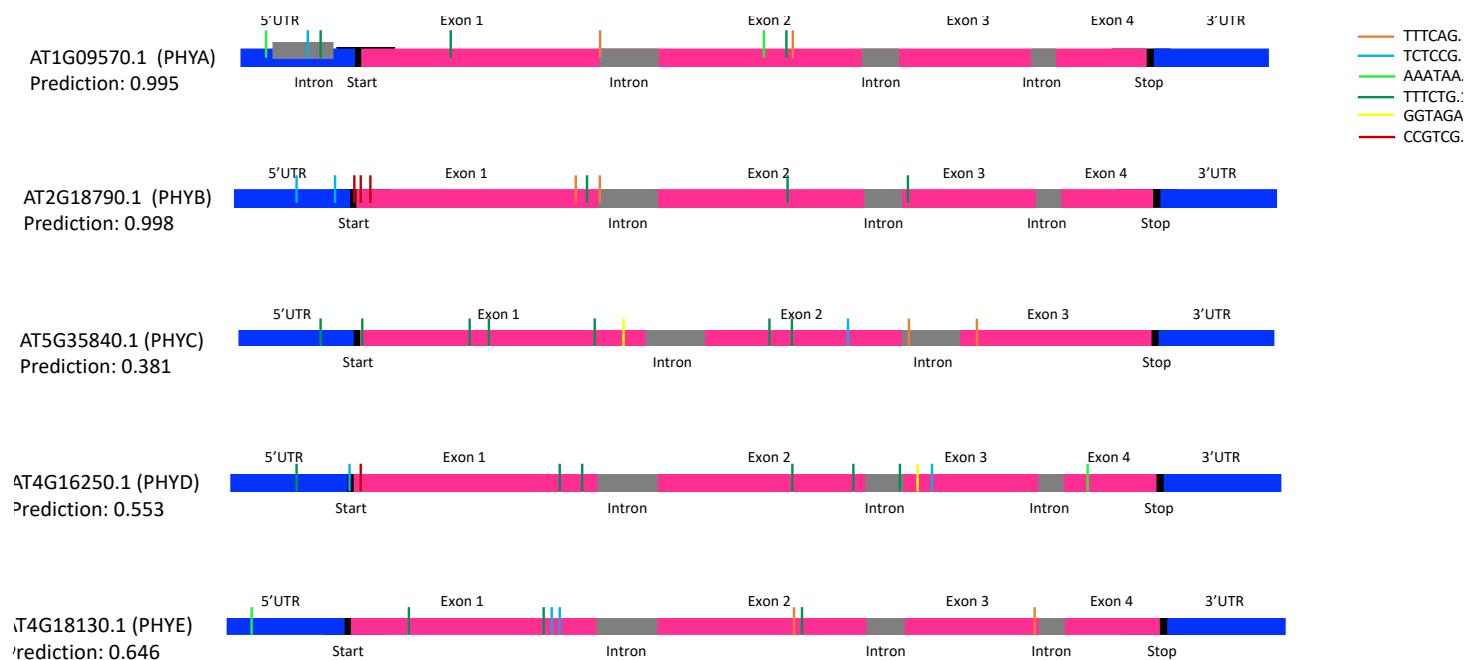
483 We used the SHAP explanations for the PHYA-E transcripts to identify the regulatory elements that
484 were most impactful in guiding their classifications, using the DNA sequence-based model. We
485 compared the SHAP impact values between each of the PHY transcripts A/B/D/E (circadian) and PHYC
486 (non-circadian) to identify those k -mers or regulatory elements that are most impactful in predicting
487 PHYA/B/D/E to be circadian but also in predicting PHYC to be non-circadian (six identified in Table
488 S9). The change in frequency of these k -mers is most likely to be responsible for the circadian/non-
489 circadian predictive differences between the transcripts according to our model (Supplementary Note
490 3; Figure 5). To investigate if altering any of the six identified k -mers (Table S9) had the potential to
491 induce rhythmicity in PHYC, we sequentially evolved the spectrum of PHYC, one k -mer at a time, to
492 mimic the robustly rhythmic PHYA/B transcripts more and more with each iteration. We used our DNA
493 sequence-based ML model to classify the evolved transcripts. Firstly, removing k -mers GGTAGA then
494 TTTCTG sites, resulted in predictive probabilities for the circadian class of 0.42 and 0.48 respectively
495 (increasing from 0.38). Secondly, adding AAATAA increased the predictive probability of circadian
496 class membership further to 0.58. Finally, adding TCTCCG resulted in a circadian class predictive
497 probability of 0.75 and placed this transcript's classification now confidently as circadian. We noted
498 that some potential regulatory elements are more important than others, having a larger effect on the
499 classification of the transcript; for example, k -mers in the 5'UTR had a larger effect on classification.
500 Additionally, we show that multiple elements combine to have a greater impact on transcript
501 classification and potentially regulation.

502

503 We aligned known *Arabidopsis* TFBSs to the UTR-based k -mers from PHYA/B that most positively
504 impacted PHYC's circadian re-classification during our evolution to suggest biological reasons why
505 these sites may be having such a large effect. Firstly, AAATAA aligned to the TFBS of MYB56 that is
506 involved in the regulation of anthocyanin levels in response to circadian rhythms [62] (Table S5).

507 Secondly, TCTCCG matched TFBS of AT3G58630 that has a protein-protein interaction with LIP1 a
508 gene known to function in the clock regulating light input downstream of photoreceptors such as PHYB
509 [63].

510



512

513 **Figure 5. Investigating Arabidopsis PHYA-E transcripts after ML binary k -mer classification**
514 **analysis.** We compared the SHAP explanations between each of the primary PHY transcripts A/B/D/E
515 and PHYC. Here a high comparative number translates to regulatory elements being more impactful
516 in predicting PHY A/B/D/E to be circadian but also typically more impactful in predicting PHYC to be
517 non-circadian. Schematics of the transcript sequences for PHYA-E and the associated start positions
518 of the 6bp k -mers TTTCTG, TCTCCG, AAATAA, TTTCTG, GGTAGA and CCGTCG, that were identified as
519 in the top three highest values per comparison (PHYA versus PHYC, PHYB versus PHYC, PHYD versus
520 PHYC and PHYE versus PHYC) with the largest differences in SHAP values (Table S9; Supplementary
521 Note 3).

522

523

524 To extend this analysis beyond the well-known PHYA-E genes, we collated a further 41 known key
525 circadian genes, with published evidence of rhythmic expression from across the literature and
526 compared the classification accuracy of their associated primary transcripts between MetaCycle, our
527 ML model using 12 timepoints and our ML model using DNA sequence (Table S10). MetaCycle shows
528 an overall accuracy of 80.49% classifying the 41 transcripts as circadian compared to 95.12% with
529 the ML transcriptomic model (Table S11). We tested 10 of the 41 genes that were not used to train
530 either of our ML models and were therefore unseen datapoints, mainly due to MetaCycle not assigning

531 a highly confident classification to their transcripts ($q < 0.01$) due to low amplitude expression profiles.
532 These are problematic transcripts for classification and can be used as a measure of the worst-case
533 scenario for predictions. Using 12 timepoints our ML model was much more accurate at correctly
534 classifying these transcripts as circadian despite their problematic low amplitude rhythms (80%
535 accuracy versus 20% for MetaCycle). This suggests that our model has the potential to generalize well
536 to unseen transcripts. Interestingly, our model that used DNA sequence alone achieved a higher
537 accuracy of 90% on the unseen datapoints, which was much closer to its recorded accuracy on all 41
538 genes (92.68%) sidestepping the problems associated with low recorded amplitudes using genetic
539 sequence features.

540

541 **Predictions using DNA sequence generalize to other *Arabidopsis* ecotypes**

542 We previously ascertained that our ML model (using DNA sequence) can accurately make predictions
543 on unseen datapoints. We assessed this in both our initial testing (with held out test data; Glossary)
544 and in our case study analysis of known circadian genes. We next want to assess how well our model
545 performs on unseen DNA from a different source to that used for model training (Col-0). We selected
546 the *Arabidopsis* ecotype Ws-2 for this test, generating k -mer spectra for related transcripts and using
547 the transcriptomic dataset generated by [10] to label Ws-2 transcripts circadian/non-circadian to
548 gauge accuracy (Table S1; Supplementary Note 4; Figure S4). From this analysis, 71.4% of Ws-2 DNA
549 sequence-based classifications matched their labels derived from [10] transcriptomic data. This is
550 only ~5% lower than the accuracy given by the DNA sequence-based model using Col-0 (mean F1
551 score of 0.766 on cross validation) and therefore, we see only a minimal decrease in accuracy applying
552 our model to a new ecotype (Supplementary Note 5).

553 We next wanted to use our DNA sequence-based model to identify transcripts that differentiated in
554 rhythmicity between *Arabidopsis* ecotypes. Then we use model explanation to explain which
555 regulatory elements influence this and can validate findings. Such functionality gives tremendous
556 power for downstream gene expression manipulation. We identified 12 transcripts that were
557 classified as circadian for Col-0 but non-circadian for Ws-2 by the DNA sequence-based model (both
558 with a predictive probability > 0.8) (Table S12). We ranked the transcripts according to the predictive
559 probability of them being circadian for Col-0 and the corresponding predictive probability of them
560 being non-circadian for Ws-2. Our most confident or top ranked transcript was AT1G58602.1-
561 RECOGNITION OF PERONOSPORA PARASITICA 7 (*RPP7*) i.e. the most probable circadian transcript
562 in Col-0 (probability 0.999) and the most probable non-circadian in Ws-2 (probability 0.991). *RPP*
563 genes have been previously reported to confer resistance to races of *P. parasitica* in an ecotype
564 specific manner. A functional copy of *RPP7* is thought to mediate resistance to infection by the
565 *Peronospora* isolate Hiks1. Work by [64] found that while Col-0 has a functional *RPP7* and is resistant

566 to Hiks1, Ws-2 is susceptible to attack by this pathogen. This coincides with our DNA-sequence
567 predictions suggesting that the circadian behaviour of RPP7 is important for defence functionality.
568 This conclusion is also supported in the experimental transcriptomic data where *RPP7* in Ws-2 shows
569 consistent low expression but in Col-0 it is expressed at higher levels with a circadian rhythm (Figure
570 S5a) [64]. RPP7 has been linked to circadian regulation; firstly, because resistance (R)-genes in the
571 RPP family were reported to be under CCA1 control [65], and secondly, via RPP7's required interactor
572 EDM2 that is involved in the promotion of floral transition by regulating the floral repressor *FLC* [66].

573 Previous evidence supports our observed differentiation in rhythmicity of RPP7 between Col-0 and
574 Ws-2. However, our advantage would be to use model explanation to understand which elements
575 differ between Col-0 and Ws-2; in this example in Ws-2, this could represent which elements to
576 change to render it resistant to Hiks2. As such, for each k-mer, we compared the SHAP impact values
577 from the DNA sequence-based model between the Col-0 and Ws-2 homologs of AT1G58602.1
578 (*RPP7*). We ranked the *k*-mers in ascending order as the difference in SHAP impact values between
579 the homologs increased, to highlight the regulatory elements that were most impactful in guiding the
580 differential circadian/non-circadian predictions (Figure S5). The top 5 ranked *k*-mers, according to
581 differences in SHAP impact, closely linked either to the circadian clock or to disease resistance
582 mechanisms, or both (Supplementary Note 6). We then sequentially evolved the *k*-mer spectrum for
583 AT1G58602.1 in Ws-2, a *k*-mer at a time to match Col-0 more and more with each iteration. Each
584 iterative evolved transcript was classified using the DNA sequence-based model, where we observed
585 that the predictive probability of the circadian class for each evolved gene quickly increased (Figure
586 S5b). Adaptation of 26 Ws-2 *k*-mers to match Col-0 was needed to change the prediction for Ws-2
587 from non-circadian to circadian and adaptation of 124 Ws-2 *k*-mers was needed to reach the
588 maximum predictive probability of 0.999. We noted that the predictive probability of the circadian
589 class for Ws-2 was highly positively correlated (0.676) with the difference in SHAP values between
590 the Col-0 and Ws-2 *k*-mers (Figure S5c). Our analysis shows that some regulatory elements have a
591 larger effect on the classification of the transcript than others and that this effect is quantifiable using
592 model explanation. We also show the potential for large combinations of regulatory elements to work
593 together, potentially each contributing a small amount, to result in a large overall impact on gene
594 classification and potentially regulation e.g., the 26 *k*-mers that we changed here to convert Ws-2 to
595 be classified as circadian.

596 **Identifying a set of transcriptional biomarkers that predict internal circadian time**

597 To complete our suite of circadian resources, here, as opposed to identifying transcript rhythmicity,
598 we consider the experiment as a whole, using ML to determine the circadian time of sampling i.e.
599 predicting the phase of the endogenous circadian clock, using a set of transcriptional biomarkers from

600 any single transcriptomic timepoint. Previous studies have developed such models for human and
601 mammalian transcriptome data sets [32,33,34,67,68]. However, we develop a new method that we
602 apply to plant data that innovatively uses model interpretation to identify a set of new *Arabidopsis*
603 biomarker transcripts to guide our predictions. This incorporates, biomarker selection from across
604 circadian phases to increase accuracy and robustness.

605

606 To train our model we used the TPM normalised circadian dataset described earlier [8] and the two
607 further transcriptomic datasets [9,10] for validation and testing (see methods; Glossary). Firstly, we
608 aggregated a selection of metrics to rank and select transcript subsets from [8] according to their
609 confidence of rhythmicity for model training. Table S13 highlights the mean absolute errors (MAE) of
610 the predictions of circadian time without hyperparameter optimization (Glossary) on the three
611 temporal transcriptomic datasets, using different sized subsets of the highest ranked rhythmic genes.
612 The lowest MAE, based on the [10] test dataset, was 104 minutes and was observed with a selected
613 subset of 50 transcripts. Using confidence of rhythmicity for transcript prioritization, we noted that
614 the representation of our subsets of transcripts across the 8 co-expression modules generated by the
615 WGCNA gene co-expression network analysis was not uniform (Figure S6a; Glossary). This reflects an
616 uneven representation across the phases of rhythmic expression. Therefore, secondly, we prioritized
617 selection of transcripts using model interpretation in the form of feature selection to make the
618 frequency distribution across the modules more uniform (see Methods; Glossary). Optimizing
619 performance based on the validation dataset, our best performing model overall used a final subset
620 of 15 transcripts (Table S14) and had a MAE of 21 minutes on the training data, 56 minutes on the [9]
621 validation data and 46 minutes on the test data from [10]. Figure S6b and S6c also highlight that after
622 such feature selection there was a decrease in the generalisation error on average across the [10] test
623 dataset with the improvements in MAE decreasing as the number of genes increased. This supports
624 the theory that features containing different temporal patterns of varying strengths outperform
625 features containing strong but highly correlated patterns.

626

627 The performance of our best model (15 transcripts with a MAE of 46 minutes on the test data) is in
628 line with the ~1-hour test error reported by [67] using their state-of-the-art method ZeitZeiger. As
629 such, we applied ZeitZeiger to our datasets [8,9,10], to compare directly with our model. To reflect
630 our previous approach, firstly, dataset [8] was used to fit ZeitZeiger, with predictions then being
631 generated on the validation [9] and testing [10] datasets to compare with the predictions generated
632 by our method. Our approach significantly outperformed ZeitZeiger on the test dataset (MAE of 46
633 compared to 143 minutes, Figure S7) demonstrating our efficacy at generating highly accurate
634 predictions for circadian time. We also noted a large disparity in training, validation and test errors by

635 ZeitZeiger (MAE of 6 minutes on training, 119 on validation and 143 on test) that suggests overfitting
636 (Glossary). We hypothesized that our selection of biomarker transcripts to ensure even representation
637 across the phases of rhythmic expression, would yield a more robust or generalizable mapping from
638 expression data to internal circadian time i.e., less overfitting; this analysis supports this hypothesis.

639

640 The 15 transcripts in our final subset act as a small subgroup of biomarker transcripts that are
641 sufficient to allow prediction of the circadian time (Table S14). Interestingly, the 15 transcripts did not
642 include any core clock genes. This analysis was conducted using the ecotype Col-0. However, using
643 the Ws-2 data [10] a MAE on this ecotype of only 53 minutes was observed (5 minutes lower than for
644 Col-0 on which the model was trained). Generally, we observed no relationship between circadian
645 time and prediction error except for in the training dataset where errors at the 20-hour timepoint were
646 significantly larger than the other times (Figure S6d). However, variation in error across the timepoints
647 typically stayed under 90 minutes allowing sufficient resolution of circadian time given that typical
648 sampling strategies are between 2-4 hourly.

649

650

651 **Conclusions**

652 We describe a series of ML based approaches that enable cost-effective analysis and insight into
653 circadian regulation in *Arabidopsis*. One of the drawbacks of ML is a lack of clarity as to why it makes
654 specific predictions. We focus on illuminating what is inside the ‘black box’ via explanation or
655 interpretation of predictive ML models. Although we demonstrate this for circadian rhythms, this
656 approach has widespread implications for other complex or temporal gene expression patterns.

657

658 When we predict circadian transcripts using low numbers of mRNA-seq timepoints, not only do we
659 improve accuracy compared to existing methods, but we also use model interpretation to optimize
660 sampling strategies. Some of the most accurate reduced sampling strategies that we identify align
661 with existing approaches e.g., timepoints spaced evenly across a day. However, other identified
662 strategies were unexpected e.g., consecutive timepoints or those across the intersect of day 1 and 2.

663

664 Most significantly, we use *only* DNA sequence features for accurate circadian classification,
665 requiring no prior knowledge of regulatory elements or transcriptomic data. This offers advantages
666 over existing methods to not only predict expression but to decipher regulation at the same time since,
667 using an explainable AI algorithm, we define regulatory elements on the fly as we make predictions.
668 Automated definition and prioritization of these feature profiles for transcripts, *de novo*, using AI, has
669 the potential to support functional annotation of genomes and precision agriculture. This application

670 could re-define how we generate testable hypotheses to understand gene expression control. Our
671 predictive accuracy is possibly higher than our current estimates as our DNA based approach scores
672 the potential of a gene to be circadian regulated. However, it is possible that this regulation may be
673 restricted to specific tissue types or developmental stages. Therefore, our experimental generated
674 labels may be underestimating the number of rhythmic genes. We propose incorporating both DNA
675 sequence features with epigenetic or additional biological features into predictive models to refine
676 predictions, since epigenetic modifications are thought to effect tissue-specific gene expression.

677

678 Finally, we predict circadian time while using model interpretation to derive novel *Arabidopsis* marker
679 transcripts. These selected transcripts could be used to test single datapoints in existing and emerging
680 *Arabidopsis* datasets to investigate how genotypes, treatments and environmental conditions affect
681 circadian clock function.

682

683

684 **Glossary**

685 **Machine Learning (ML):** A branch of artificial intelligence based on the idea that systems can learn
686 from data, identify patterns and make decisions with minimal human intervention.

687 **Model interpretation/explanation/explainable AI:** A set of methods and algorithms that help us to
688 understand and interpret the predictions made by ML models.

689 **Features e.g. DNA sequence features:** Input variables into ML models, a feature is a measurable
690 property or characteristic related to the phenotype being observed/predicted.

691 **ML classifiers:** A ML classifier is an algorithm that predicts the class (e.g., circadian or non-circadian)
692 of given data points (e.g., transcripts). A ML classifier utilizes training data to understand how given
693 input variables or features of a data point relate to a specific class or classes. Once the classifier is
694 trained, it can predict the class for unseen data points in the test data.

695 **Binary classification system:** Classification is a supervised learning approach in which the ML model
696 learns from the input data or feature set and then uses this learning to classify new observations into
697 one of two possible classes (e.g., circadian or non-circadian).

698 **Training data:** The data used to train a ML algorithm or model e.g., a table where the rows are the
699 data points such as transcripts and the columns are the features describing the data points.

700 **Test data (held out):** A dataset (e.g., a table transcripts x features) that is independent of the training
701 dataset, the model has not seen this data during training-it is “held out”. If a ML model has been fitted
702 to the training dataset and then also fits the test dataset well (shows accurate predictive performance
703 on the test dataset) then we would say that minimal overfitting has taken place.

704 **Model validation:** An independent dataset (e.g., a table transcripts x features) that is specifically used
705 to tune the parameters of a ML classifier i.e. used to measure performance and guide model training.
706 **LightGBM:** Short for Light Gradient Boosting Machine, is a distributed gradient boosting framework
707 for ML. It is based on decision tree algorithms and used for ranking, classification and other ML tasks
708 e.g., the LightGBM classifier is used for classification tasks.
709 **Cross Validation (CV):** Cross Validation is a technique that is used to evaluate ML models. It involves
710 training several ML models on subsets of the available input data (also known as folds) and evaluating
711 them on the remaining (held out) subset of the data. For example, in k-fold cross-validation, you split
712 the input data into k subsets or folds of data specifically.
713 **Parameters or Hyper-parameters:** The part of the ML model (e.g., LightGBM) that is learned from the
714 training data. If the ML model is the hypothesis then the parameters are used to tailor the hypothesis
715 to the training data.
716 **Fine tuning:** Making small adjustments to the hyper-parameters of a ML model using the training data
717 while performing CV to achieve the desired output or optimized performance (here higher accuracy).
718 **True positive (TP):** The model correctly predicts the positive class or class 1 (e.g., circadian)
719 **True negative (TN):** The model correctly predicts the negative class or class 0 (e.g., non-circadian).
720 **False positive (FP):** The model incorrectly predicts the positive class (e.g., predicts circadian but the
721 true class is non-circadian).
722 **False negative (FN):** The model incorrectly predicts the negative class (e.g., predicts non-circadian
723 but the true class is circadian).
724 **Confusion Matrix:** A table/matrix with two rows and two columns that reports the number of false
725 positives, false negatives, true positives, and true negatives computed from a ML model's prediction
726 on a subset of data e.g. test, training or both.
727 **Precision (P):** The ratio of correctly predicted positive observations (true positives) to the total
728 predicted positive observation. $P=TP/(TP+FP)$. Precision answers the question “Of all the predicted
729 positive observations (e.g., correctly predicted circadian), how many were actually positives (e.g., true
730 circadian)?”. High precision score relates to low false positive rates.
731 **Recall (R):** The ratio of the correctly predicted positive observations to the total of observations in the
732 positive class. $R=TP/(TP+FN)$. Recall answers the question “Of all the true positive observations (e.g.,
733 true circadian), how many were correctly predicted as positive (e.g., circadian) by the model?”
734 **F1 score:** The F1-score is a measure of the accuracy of a ML model. More precisely, the F1-score is
735 the weighted average (harmonic mean) of calculated from the precision and recall. Note that usually
736 when precision increases, recall decreases and vice versa. The highest possible F1 score is 1,
737 indicating perfect precision and recall, and the lowest possible value is 0.

738 **Feature selection:** These methods are used to reduce the number of input variables or features to
739 those that are thought to be most useful to a ML model in order to predict the target variable (here
740 circadian/non-circadian class).

741 **Eli5 Feature selection:** Computes feature importance for any ML model by measuring how, in this
742 case, the F1 accuracy score decreases when a feature is not available. This method is also known as
743 “permutation importance” or “Mean Decrease Accuracy (MDA)”.

744 **Chi2 Feature selection:** Can be used to measure the dependence between input features to the ML
745 model and class. This score can be used to select the features with the highest values for the test chi-
746 squared statistic, relative to the classes. Using this function “weeds out” the features that are the
747 most likely to be independent of class and therefore irrelevant for classification.

748 **Generalizable:** The ability of a ML model to maintain its accuracy across a range of different datasets
749 e.g., here we apply a model trained on *Arabidopsis* to the divergent species wheat.

750 **k-mer profiles:** Sub-sequences of length k , composed of nucleotides (A, T, G, and C) and contained
751 within a biological DNA sequence. Our selected k -mer length of 6 yields 4^6 (4096) possible k -mers
752 from the 4 nucleotides in the DNA alphabet. Every possible k -mer is counted in each transcript and
753 promoter (separate counts) generating a k -mer count numerical profile of $4096*2 = 8192$ features.

754 **Oversampling:** Involves randomly selecting samples from the minority class (class with lower
755 numbers of training samples), typically replicating them and adding them to the training dataset to
756 even the number of samples between the classes. Rather than replicating the minority
757 observations/samples it is alternatively possible to create synthetic observations based upon the
758 existing minority observations.

759 **SHAP:** An explainable AI algorithm, called Shapley Additive exPlanations - SHAP. SHAP combines
760 game theory with local explanation enabling accurate interpretations on why and how a ML model
761 predicted a particular value (in our case a binary class) for a given sample.

762 **SHAP impact values:** For binary classification using our DNA sequence-based model, the SHAP
763 explainer returns two SHAP value tables (transcripts x k -mer-based features), one for the class 0 (non-
764 circadian) and one for the class 1 (circadian). These SHAP values represent the contribution of each
765 feature to that prediction i.e. ranked feature impact on the transcript classification distinguishing class
766 1 (circadian) from class 0 (non-circadian).

767 **Global explanation:** Looking at the most impactful features across all of the transcripts for
768 distinguishing class 1 (circadian) from class 0 (non-circadian).

769 **Co-expression modules:** Correspond to clusters of genes that have a similar shape expression profile
770 across the transcriptomic time series. They are likely to have similar functions or involve common
771 biological processes.

772 **Local explanation:** Rather than identifying the most impactful features in general (global explanation)
773 for predicting class 1 (circadian) across all of the transcripts, distinctly, local explanation relates to
774 the identification of the most impactful features for the classification of each circadian transcript
775 individually i.e., transcript-specific explanations. A positive SHAP value for a feature, for a specific
776 transcript, indicates that the feature is driving the prediction of circadian, while a negative SHAP value
777 indicates that the feature is driving the prediction of non-circadian for that transcript.

778 **Cumulative SHAP value:** SHAP values are summed for each transcript and the sum is defined here
779 as the cumulative SHAP value.

780

781

782 **Methods**

783

784 **Data generation**

785 The datasets used in this analysis are detailed in Table S1. All previously published datasets have
786 details for data generation in the relevant associated publication. For the wheat time course: Cadenza
787 seedlings were grown under 12:12 light:dark cycles at 22C for 14 days before transfer to constant
788 light. After 24 hours under constant conditions, whole aerial tissue samples were taken every 2 hours
789 for 3 days starting at perceived dawn (ZT=0). Total RNA was extracted using Qiagen RNeasy plant
790 mini kits. Illumina TruSeq strand specific libraries and mRNA-seq was carried out by Novogene Co.
791 Ltd. 150bp PE reads were generated from each library to an average depth of 70M reads.

792 **Bioinformatic analysis of transcriptomic information**

793 *Arabidopsis*: Raw reads were obtained in FASTQ format for each *Arabidopsis* dataset [8,9,10]. These
794 reads were filtered for quality, and any remaining adaptor sequence trimmed with Trimmomatic [69].
795 Surviving reads were aligned to the *Arabidopsis thaliana* genome (TAIR 10) using HISAT2 [70] with
796 default parameters, except for maximum intron length, which was set at 5000nt. Uniquely mapped
797 transcripts were quantified using StringTie [71] and the raw expression counts per transcript, for each
798 replicate were subsequently normalised using DESeq2 [72]. A custom Perl script was also used to
799 extract the TPM values from StringTie quantifications.

800 *Wheat*: The wheat mRNA-seq samples, of 150bp PE reads were aligned, quantified and normalised as
801 described above, except that HISAT2 was used with default parameters and reads were mapped to
802 the Chinese Spring RefSeq v1.0 wheat genome [73].

803 **Defining circadian genes using MetaCycle**

804 Initially, Metacycle [13] was implemented on the [8] *Arabidopsis* DESeq2 normalized gene expression
805 counts (average expression count across two biological replicates, per transcript) to classify rhythmic
806 expression using the 12 timepoints. This analysis included 44,963 transcripts. Metacycle (meta2d)

807 was run with the following parameters on each of the normalized and non-normalized datasets;
808 minimum period length of 18, maximum period length of 30, ARSER/JTK-CYCLE/Lomb-Scargle
809 methods used [35-37], phase adjustment with predicted period length and the Fishers method was
810 used to integrate multiple P-values. The output of this analysis includes a measure of period (the
811 integrated period from MetaCycle is an arithmetic mean value of multiple periods from the
812 implemented methods), phase (phase integration is based on the mean of circular quantities) and
813 amplitude (amplitude is associated with general expression level and relative amplitude is used to
814 compare amplitudes of genes with different expression levels). Finally, Benjamini-Hochberg q-values
815 (BH.Q) were reported. Typically, significantly rhythmic gene expression profiles are defined at values
816 $q < 0.05$, we also use $q < 0.02$ to limit selections based on the highest confidence.
817 MetaCycle was also implemented on wheat (variety Cadenza) transcriptomic timepoints (Table S1).
818 Here, we also used DESeq2 normalized gene expression counts (average expression count across four
819 biological replicates, per transcript) to classify rhythmic expression using the 24 timepoints.
820 MetaCycle was used to detect rhythmicity in the normalized time course dataset with the same
821 parameters used previously for *Arabidopsis*. MetaCycle classified 30,065 out of 112,955 analysed
822 high confidence transcripts as circadian using a maximum q-value of 0.05. To select wheat transcripts
823 as a test dataset for the *Arabidopsis* Col-0 trained transcriptomic ML model, we focused on 25,000
824 transcripts that MetaCycle classified (labelled) as highly circadian i.e. with high confidence ($q < 0.015$)
825 and 25,000 of the least likely candidates to be circadian genes ($q > 0.99$) identified by MetaCycle with
826 24 timepoints.

827 **Clustering circadian transcripts according to transcriptomic profiles**

828 Gene co-expression analysis was carried out using the R package WGCNA [54]. The 9,394 transcripts
829 identified by MetaCycle as significantly rhythmic (q -value < 0.05) were filtered to remove transcripts
830 where the sum of normalised expression counts across 21 or more replicates was less than 10. The
831 remaining 8,136 transcripts were used to construct signed hybrid networks on a replicate basis using
832 the blockwiseModules() function. The soft power threshold was calculated as 16, and the following
833 parameters were used; minModuleSize = 30, corType = bicor, maxPOutliers = 0.05, mergeCutHeight
834 = 0.15. Highly connected hub genes were identified for each of the eight co-expression modules using
835 the function chooseTopHubInEachModule().

836 **Binary classification: ML model training and tuning**

837 We used Scikit Learn (v3.7) for the ML binary classification analysis to predict if a gene was circadian
838 or not with either transcriptomic or DNA sequence-based feature sets [74]. Unless otherwise stated,
839 the MinMaxScaler was used to scale the features from 0 to 1, 90% of the data was used for training
840 and the remaining 10% was held out for testing. 5-fold cross validation was performed on the training
841 data. We used K-folds for cross validation ($n_splits=5$). The methods' hyperparameters were

842 optimized using a grid search to test a range of parameters (Table S15) for the following classifiers:
843 Logistic Regression, Gaussian process, Random Forest, XGBoost, LightGBM, Support Vector Machine
844 (SVM) (linear kernel), Decision Tree and K nearest neighbours (KNN). We selected the best ML model
845 for each use-case (using best parameters after fine tuning), according to the highest F1-score on test
846 set and cross validation.

847 The features used to train our initial transcriptomic (12 timepoint) ML model were the normalized
848 averaged expression profiles for each *Arabidopsis* Col-0 transcript [8] and the “baseline gold-
849 standard” circadian/non-circadian labels as defined by MetaCycle using 12 timepoints and stated in
850 the main text and methods (Supplementary Note 1). We trained ML classifiers to predict if a transcript
851 was circadian or non-circadian in a binary classification system using 7,734 of the least likely
852 candidates to be circadian ($q>0.99$) labelled by MetaCycle alongside the 7,734 highly circadian
853 transcripts ($q<0.02$). Additional transcriptomic models developed downstream, were trained using
854 reduced numbers of timepoints either from the same [8] dataset or from a different data source
855 (*Arabidopsis* Col-0 from [10]) with the same “baseline gold-standard” labels as previously. All
856 transcriptomic models use normalized averaged expression profiles for each transcript.

857 To test the accuracy of our best trained transcriptomic ML binary classification model that uses 3
858 timepoints; for *Arabidopsis* Col-0 [9] test data, we assessed all predictions with a prediction
859 probability or confidence of 95% or more and expressed those classed correctly as a proportion of the
860 correct plus incorrect predictions to gain an overall accuracy percentage (for *Arabidopsis* this
861 encompassed 14,652 predictions). Since the [9] test data is derived from *Arabidopsis* Col-0 we used
862 the original [8] MetaCycle derived “baseline gold-standard” Col-0 labels to calculate accuracy. For
863 wheat, we tested accuracy using the 50,000 genes (25,000 circadian and 25,000 non-circadian
864 labelled by MetaCycle) that have already been filtered to encompass highly circadian and non-
865 circadian representative genes, therefore, here we use the overall F1 score for our predictions directly.

866 The features/attributes used to train our DNA sequence-based ML model were the k -mer profiles for
867 each transcript (*Arabidopsis* Col-0) and circadian/non-circadian “baseline gold-standard” labels as
868 defined by MetaCycle. To train our initial model, we generated k -mer profiles *de-novo* for the mRNA
869 and promoter sequences associated with each transcript. We trained a series of ML classifiers to
870 predict if a transcript was circadian or non-circadian in a binary classification system using 6,907 of
871 the least likely candidates to be circadian alongside the 7,481 of the highly circadian transcripts used
872 previously. However, these numbers were reduced from the 7,734 used previously due to our focus
873 on mRNA only (removing ncRNA, snoRNA and lncRNA’s). To develop our feature sets we trialled k -
874 mers from 4-7bp in length to encompass a range from smaller k -mers that we expect to see by chance
875 to larger k -mers that we would not expect to see by chance in a promoter (1,500bp) or mRNA region
876 (average length 2069bp); k -mers of 4, 5, 6, 7bp occur by chance every 256, 1024, 4096 and 16,384bp

877 respectively, given equal frequency of the four nucleotides. Since we trialled k -mers ranging from 4-
878 7bp in length, our feature numbers varied from 256-16,384 to reflect the numbers of possible k -mers
879 (4^k) from the 4 nucleotides in the DNA alphabet. Every possible k -mer of length k , e.g. 6bp, is counted
880 in each transcript and promoter (separate counts) defined as 1500bp upstream of the TSS, meaning
881 that no prior knowledge of regulatory elements or detailed gene annotation is required. Although we
882 tested combining k -mer counts for mRNA and promoter regions, predictions were consistently more
883 accurate generating separate feature sets for the promoter and mRNA regions (e.g., for 6bp k -mers
884 resulting in 4^6 or $4,096 * 2 = 8,192$ features) that were both inputted into the model.

885 **Binary classification: Model explanation**

886 Explainable AI was used to rank and select omic features as suggested by [75,76] and we investigated
887 the explanations of the predictions for the DNA sequence-based ML model. Firstly, based on the best
888 LightGBM model for the *Arabidopsis* Col-0 dataset from [8] on which the model was trained (i.e.
889 $6,907+7,481 = 14,388$ transcripts and 8192 k -mer-based features). We applied the hyper-tuned
890 LightGBM coupled up with an explainable AI algorithm, called Shapley Additive exPlanations - SHAP
891 [38], as to predict and explain the class (circadian or non-circadian) of each transcript across the entire
892 dataset. SHAP combines game theory with local explanation enabling accurate interpretations on why
893 and how the model predicted a particular value (in our case a binary value) for a given instance. We
894 used the python implementation of SHAP, version 0.35.0, available via the conda-forge channel
895 (<https://anaconda.org/conda-forge/shap>). To obtain the appropriate SHAP explainer we combined
896 `shap.TreeExplainer` with the hyper-tuned LightGBM model detailed in Table S2. Finally, we used the
897 obtained SHAP explainer to compute SHAP values for the entire set of transcripts and k -mers. As we
898 are performing a binary classification task, the SHAP explainer returned two SHAP values tables of the
899 same dimension (number of transcripts x number of k -mer-based features), respectively for the class
900 0 (non-circadian) and the class 1 (circadian). In this manuscript we focus on the SHAP values for the
901 class 1 – circadian. We used the SHAP summary plot function to produce Figure 3c that provides a
902 global view of the local explanations when predicting class 1 (circadian) considering all samples in the
903 dataset (training and test). Figure 3c shows the top 30 most impactful features/ k -mers. Finally, we
904 used the SHAP explainer to provides SHAP values, therefore explanations, for unseen transcripts from
905 PHYA-E and the Col-0 and Ws-2 homologs of AT1G78040.3.

906 **Association of k -mers with TFBSs, RNA binding motifs and miRNAs**

907 We detail the closest matches of the k -mer's to known TFBSs with $p < 0.05$ as defined using Tomtom
908 motif comparison with otherwise default settings [77]. The TFBSs used were *Arabidopsis* DAP-seq
909 derived motifs [78]. We also detail the closest matches of the k -mer's to known RNA binding motifs
910 with $p < 0.05$ as defined using Tomtom motif comparison with otherwise default settings [77]. Here,
911 the RNA binding motifs used were from a systematic analysis of the RNA motifs recognized by RNA-

912 binding proteins conducted by [79]. The position of the *k*-mer is described as promoter or mRNA; if
913 mRNA we express the percentage of mRNAs with the *k*-mer in their UTR region as a proportion of all
914 genes with a UTR *k*-mer.

915 For each occurrence of the *k*-mer across the true positive circadian transcripts, 27nt sequence
916 upstream and downstream of the 6-mer was extracted. These were then collated into a bwa-index for
917 each 6-mer and 428 mature ath-miRNA sequences [80] were aligned to these indices using bwa-align
918 (maximum edit distance of 1, no gap opens or extensions allowed, seed sequence of 8nt, no edit
919 distance permitted in seed sequence). SAM files were filtered to retain only those matches where the
920 Arabidopsis query transcript was in the opposite orientation to the miRNA, included the *k*-mer and
921 exhibited a maximum of 3 mismatches between putative target and miRNA. Candidate transcript/*k*-
922 mer combinations were then tabulated with corresponding transcript information from Ensembl and
923 miRNA annotation from miRBase [80].

924 **Filtering transcripts with most positive cumulative SHAP value**

925 We summed the SHAP values individually for each transcript that our DNA sequence-based model
926 accurately identified as circadian (true positives). The distribution of these cumulative SHAP values
927 ranged from -0.27 to 9.61 with an average of 6.44 (Figure 4a). We filtered the circadian calls that were
928 made with the most certainty according to the SHAP explanation (“most positive cumulative SHAP
929 value”), removing those in the lower quartile Q1 i.e. those transcripts with a value lower than 6.29,
930 leaving 5,536 of the transcripts where the most *k*-mers drive the prediction of circadian.

931 **Clustering genes using SHAP values**

932 Clustering of genes based on SHAP values; for each gene we selected the top 5 most influential
933 features or *k*-mers to its classification as circadian i.e., the 5 highest SHAP values. We then clustered
934 the genes according to these profiles using hierarchical clustering with average linkage and
935 Euclidean distance.

936 **Comparing morning/day/night/evening genes**

937 We selected representative morning (phase 2-4 hours), day (phase 9-11 hours), evening (phase 15-
938 17 hours) and night (phase 21-23 hours) genes, by selecting those phases central to each of the
939 groups as detailed since we define phase 0-6.99999 as morning, 7-12.999999 as day, 13-
940 18.999999 as evening, 19-24.999999 hours as night. For each group, across all genes we calculated
941 the average SHAP value for each *k*-mer. We compared groups calculating the standard deviation
942 between the groups for each *k*-mer. We ranked *k*-mers according to increasing variation between the
943 four groups i.e. higher standard deviation or variability of *k*-mer importance.

944 **Identifying marker genes to tell the circadian time using a single transcriptomic timepoint**

945 We developed a ML based pipeline to predict the circadian time (phase) at any single transcriptomic
946 sampling timepoint using gene expression data from a set of marker genes. Here superior accuracy

947 was achieved with an artificial neural network, it also allowed the simplistic implementation of a
948 custom multioutput loss function, as such, we implemented this rather than the traditional ML
949 methods used previously in this study. We note that this approach is more complex than our previous
950 models, requiring custom code, as such we provide the code in a Jupyter Notebook and instructions
951 to run this code at: <https://github.com/JoshuaColmer/HallCircadian/>. The three transcriptomic
952 datasets used previously (Table S1) from [8], [9], and [10] were used for training, validation and testing
953 respectively. The training dataset was used to learn the circadian time in hours, from the expression
954 data from each transcriptomic timepoint individually, whilst the validation set was utilised for
955 adjusting hyperparameters to reduce overfitting. The test set was used to estimate the error on
956 unseen data for two different ecotypes Col-0 and Ws-2. Here, expression data was normalised by
957 calculating transcripts per million (TPM) for increased uniformity between datasets, as in this
958 experiment they were being directly compared. We removed genes whose expression distributions
959 were too different between datasets based on the two-sample Kolmogorov-Smirnov test ($q < 0.05$) and
960 their minimum and maximum values, as well as removing low variance genes, using a threshold of 5,
961 which was adjusted to minimise validation error. Since here, calculation of phase was critical to our
962 predictions we extended our previous approach to quantify this more robustly; MetaCycle was used
963 alongside cross-correlation with circadian time and autocorrelation, to quantify gene expression
964 rhythmicity in the training dataset. The scores for each metric were combined using a Gaussian copula
965 yielding one score per gene. The top-ranking n genes were taken forward for model training and
966 further feature selection where n was adjusted to minimise validation error. As previously
967 MinMaxScaler was used to scale the features from 0 to 1, fitted on the training set and applied to
968 validation and test sets.
969 We created a shallow neural network using TensorFlow (v2.0.0) [81] comprising three fully connected
970 layers with ReLU activation functions and 32, 128, 512 and 2 neurons respectively followed by a 2
971 neuron softmax layer. The learning rate, number of training epochs and architecture of the network
972 were optimised using the hyperas (v0.4.1) package to minimise the loss for the validation dataset.
973 Due to the cyclical nature of the target (time 0-24 hours), standard regression loss functions were not
974 suitable for this task. To quantify the error in the predictions, we defined the loss function as the
975 squared angle between actual circadian time and predicted circadian time after being transformed
976 onto a unit circle.
977 We used feature selection as previously to select n circadian genes for model training, prioritizing
978 weighted representation of genes from each of the 8 expression sub-clusters generated by the
979 WGCNA gene co-expression network analysis [54]. We hoped this would improve generalisation and
980 robustness of the model as the similarity between features would be reduced and the diversity of

981 features should enable the neural network to engineer more complex representations of the
982 expression data compared to if all features belonged to the same phase cluster.

983

984

985 **Declarations**

986

987 **Ethics approval and consent to participate**

988 Not Applicable

989 **Consent for publication**

990 Not Applicable

991 **Availability of data and materials**

992 All of the datasets used in this analysis are detailed in Table S1. All previously published datasets have
993 details for data generation in the relevant associated publication. For the wheat time course: reads
994 are available from the NCBI Sequence Read archive under project name PRJEB40948 at
995 <https://www.ebi.ac.uk/ena/browser/view/PRJEB40948>. The algorithms and hyperparameters used
996 for the detailed ML models are stated in Table S2.

997 **Code availability**

998 For our circadian time prediction custom code is required, as such we provide the code in a Jupyter
999 Notebook and instructions to run this code at: <https://github.com/JoshuaColmer/HallCircadian/>.

1000 **Competing interests**

1001 LJG, RK, APC and EPK. are listed as co-inventors on a patent application that has been filed. All of the
1002 other authors declare that they have no competing interests with regard to this publication.

1003 **Funding**

1004 This work was supported by the STFC Hartree Centre's Innovation Return on Research programme,
1005 funded by the Department for Business, Energy & Industrial Strategy.

1006 **Authors' contributions**

1007 This work was conceived by LJG, AH, RK with additional ideation from EPK. LJG led the analyses with
1008 assistance from RRP (bioinformatics analyses), JMC (timepoint reduction and *k*-mer spectra ML), JC
1009 (clock function ML), HR (investigation and interpretation of results) and APC (ML guidance and SHAP
1010 analysis). Laboratory work for the wheat dataset was carried out by SD with assistance from HR. LJG
1011 wrote the manuscript with guidance from AH and HR, a section written by JC plus methods sections
1012 written by RRP and APC and general assistance from all other authors. All authors read and approved
1013 the final manuscript.

1014 **Acknowledgements**

1015 Not Applicable

1016

1017

1018

1019 **References**

1020 [1] Dodd, A. N., Salathia, N., Hall, A., Kévei, E., Tóth, R., Nagy, F., Hibberd, J. M., Millar, A. J., & Webb,
1021 A. A. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.
1022 *Science*, **309**(5734), 630–633. (2005)

1023

1024 [2] Michael, T. P., Salomé, P. A., Yu, H. J., Spencer, T. R., Sharp, E. L., McPeek, M. A., Alonso, J. M.,
1025 Ecker, J. R., & McClung, C. R. Enhanced fitness conferred by naturally occurring variation in the
1026 circadian clock. *Science*, **302**(5647), 1049–1053. (2003)

1027

1028 [3] Covington, M. F., Maloof, J. N., Straume, M., Kay, S. A., & Harmer, S. L. Global transcriptome analysis
1029 reveals circadian regulation of key pathways in plant growth and development. *Genome biology*, **9**(8),
1030 R130. (2008)

1031

1032 [4] Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H. S., Han, B., Zhu, T., Wang, X., Kreps, J. A.,
1033 & Kay, S. A. Orchestrated transcription of key pathways in *Arabidopsis* by the circadian clock. *Science*,
1034 **290**(5499), 2110–2113. (2000)

1035

1036 [5] The *Arabidopsis* Genome Initiative. Analysis of the genome sequence of the flowering plant
1037 *Arabidopsis thaliana*. *Nature*, **408**(6814), 796–815. (2000)

1038

1039 [6] 1001 Genomes Consortium. 1,135 Genomes Reveal the Global Pattern of Polymorphism in
1040 *Arabidopsis thaliana*. *Cell*, **166**(2), 481-491. (2016)

1041

1042 [7] Athar, A., Füllgrabe, A., George, N., Iqbal, H., Huerta, L., Ali, A., Snow, C., Fonseca, N. A., Petryszak,
1043 R., Papatheodorou, I., Sarkans, U., & Brazma, A. ArrayExpress update - from bulk to single-cell
1044 expression data. *Nucleic acids research*, **47**(D1), D711–D715. (2019)

1045

1046 [8] Romanowski, A., Schlaen, R. G., Perez-Santangelo, S., Mancini, E., & Yanovsky, M. J. Global
1047 transcriptome analysis reveals circadian control of splicing events in *Arabidopsis thaliana*. *The Plant
1048 journal*, **103**(2), 889–902. (2020)

1049

1050 [9] Yang, Y., Li, Y., Sancar, A., & Oztas, O. The circadian clock shapes the *Arabidopsis* transcriptome
1051 by regulating alternative splicing and alternative polyadenylation. *The Journal of biological chemistry*,
1052 **295**(22), 7608–7619. (2020)

1053

1054 [10] Graf, A., Coman, D., Uhrig, R. G., Walsh, S., Flis, A., Stitt, M., & Gruissem, W. Parallel analysis of
1055 *Arabidopsis* circadian clock mutants reveals different scales of transcriptome and proteome
1056 regulation. *Open biology*, **7**(3), 160333. (2017)

1057

1058 [11] Mockler, T. C., Michael, T. P., Priest, H. D., Shen, R., Sullivan, C. M., Givan, S. A., McEntee, C., Kay,
1059 S. A., & Chory, J. The DIURNAL project: DIURNAL and circadian expression profiling, model-based
1060 pattern matching, and promoter analysis. *Cold Spring Harbor symposia on quantitative biology*, **72**,
1061 353–363. (2007)

1062

1063 [12] Spörl, F., Korge, S., Jürchott, K., Wunderskirchner, M., Schellenberg, K., Heins, S., Specht, A., Stoll,
1064 C., Klemz, R., Maier, B., Wenck, H., Schrader, A., Kunz, D., Blatt, T., Kramer, A. Krüppel-like factor 9 is
1065 a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. *Proc
1066 Natl Acad Sci U S A*. **109**(27):10903-8 (2012)

1067
1068 [13] Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K., & Hogenesch, J. B. MetaCycle: an integrated R
1069 package to evaluate periodicity in large scale data. *Bioinformatics*, **32(21)**, 3351–3353. (2016)
1070
1071 [14] Zielinski, T., Moore, A. M., Troup, E., Halliday, K. J., & Millar, A. J. Strengths and limitations of
1072 period estimation methods for circadian data. *PLoS one*, **9(5)**, e96462. (2014)
1073
1074 [15] Yu, C. P., Lin, J. J., & Li, W. H. Positional distribution of transcription factor binding sites in
1075 *Arabidopsis thaliana*. *Scientific reports*, **6**, 25164. (2016)
1076
1077 [16] Borges, F., & Martienssen, R. A. The expanding world of small RNAs in plants. *Nature reviews.*
1078 *Molecular cell biology*, **16(12)**, 727–741. (2015)
1079
1080 [17] Ding, J., Zhou, S., & Guan, J. Finding microRNA targets in plants: current status and perspectives.
1081 *Genomics, proteomics & bioinformatics*, **10(5)**, 264–275. (2012)
1082
1083 [18] Hausser, J., Syed, A. P., Bilen, B., & Zavolan, M. Analysis of CDS-located miRNA target sites
1084 suggests that they can effectively inhibit translation. *Genome research*, **23(4)**, 604–615. (2013)
1085
1086 [19] Dvir, S., Velten, L., Sharon, E., Zeevi, D., Carey, L. B., Weinberger, A., & Segal, E. Deciphering the
1087 rules by which 5'-UTR sequences affect protein expression in yeast. *PNAS*, **110(30)**, E2792–E2801.
1088 (2013)
1089
1090 [20] Narlikar, L., & Ovcharenko, I. Identifying regulatory elements in eukaryotic genomes. *Briefings in*
1091 *functional genomics & proteomics*, **8(4)**, 215–230. (2009)
1092
1093 [21] Roth, F. P., Hughes, J. D., Estep, P. W., & Church, G. M. Finding DNA regulatory motifs within
1094 unaligned noncoding sequences clustered by whole-genome mRNA quantitation. *Nature*
1095 *biotechnology*, **16(10)**, 939–945. (1998)
1096
1097 [22] Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouzé, P., & Moreau, Y. A higher-
1098 order background model improves the detection of promoter regulatory elements by Gibbs sampling.
1099 *Bioinformatics*, **17(12)**, 1113–1122. (2001).
1100
1101 [23] Thompson, W., Palumbo, M. J., Wasserman, W. W., Liu, J. S., & Lawrence, C. E. Decoding human
1102 regulatory circuits. *Genome research*, **14(10A)**, 1967–1974. (2004)
1103
1104 [24] Jensen, S., Liu, J. BioOptimizer: a Bayesian scoring function approach to motif discovery,
1105 *Bioinformatics*, **20(10)**, 1557–1564. (2004)
1106
1107 [25] Liu, X., Brutlag, D. L., & Liu, J. S. BioProspector: discovering conserved DNA motifs in upstream
1108 regulatory regions of co-expressed genes. *Pacific Symposium on Biocomputing*, 127–138. (2001)
1109
1110 [26] Agarwal, V., & Shendure, J. Predicting mRNA Abundance Directly from Genomic Sequence Using
1111 Deep Convolutional Neural Networks. *Cell reports*, **31(7)**, 107663. (2020)
1112
1113 [27] Beer, M. A., & Tavazoie, S. Predicting gene expression from sequence. *Cell*, **117(2)**, 185–198.
1114 (2004)
1115
1116 [28] Hafez, D., Karabacak, A., Krueger, S., Hwang, Y. C., Wang, L. S., Zinzen, R. P., & Ohler, U.
1117 McEnhancer: predicting gene expression via semi-supervised assignment of enhancers to target
1118 genes. *Genome biology*, **18(1)**, 199. (2017)
1119

1120 [29] Singh, R., Lanchantin, J., Robins, G., & Qi, Y. DeepChrome: deep-learning for predicting gene
1121 expression from histone modifications. *Bioinformatics*, **32(17)**, i639–i648. (2016)

1122

1123 [30] Natarajan, A., Yardimci, G. G., Sheffield, N. C., Crawford, G. E., & Ohler, U. Predicting cell-type-
1124 specific gene expression from regions of open chromatin. *Genome research*, **22(9)**, 1711–1722.
1125 (2012)

1126

1127 [31] Ghorbani, A., Abid, A., Zou, J. Interpretation of neural networks is fragile. *Proceedings of the AAAI
1128 Conference on Artificial Intelligence*. <https://doi.org/10.1609/aaai.v33i01.33013681> (2017)

1129

1130 [32] Hughey, J.J. Machine learning identifies a compact gene set for monitoring the circadian clock in
1131 human blood. *Genome Med*, **9**, 19. (2017)

1132

1133 [33] Braun, R., Kath, W. L., Iwanaszko, M., Kula-Eversole, E., Abbott, S. M., Reid, K. J., Zee, P. C., &
1134 Allada, R. Universal method for robust detection of circadian state from gene expression. *PNAS*,
1135 **115(39)**, E9247–E9256. (2018)

1136

1137 [34] Agostinelli, F., Ceglia, N., Shahbaba, B., Sassone-Corsi, P., Baldi, P. What time is it? Deep learning
1138 approaches for circadian rhythms *Bioinformatics*. **32(19)**:3051 (2016)

1139

1140 [35] Yang, R., & Su, Z. Analyzing circadian expression data by harmonic regression based on
1141 autoregressive spectral estimation. *Bioinformatics*, **26(12)**, i168–i174. (2010)

1142

1143 [36] Hughes, M. E., Hogenesch, J. B., & Kornacker, K. JTK_CYCLE: an efficient nonparametric
1144 algorithm for detecting rhythmic components in genome-scale data sets. *Journal of biological
1145 rhythms*, **25(5)**, 372–380. (2010)

1146

1147 [37] Glynn, E. F., Chen, J., & Mushegian, A. R. Detecting periodic patterns in unevenly spaced gene
1148 expression time series using Lomb-Scargle periodograms. *Bioinformatics*, **22(3)**, 310–316. (2006).

1149

1150 [38] Lundberg, S., & Lee, S. I. A Unified Approach to Interpreting Model Predictions. *NeurIPS
1151 Proceedings; Advances in Neural Information Processing Systems*, **30**, 4765–4774. (2017)

1152

1153 [39] Samach, A., & Gover, A. Photoperiodism: The consistent use of CONSTANS. *Current Biology*,
1154 **11(16)**, PR651-PR654. (2001)

1155

1156 [40] Nakamichi, N. Molecular Mechanisms Underlying the Arabidopsis Circadian Clock, *Plant and Cell
1157 Physiology*, **52(10)**, 1709–1718. (2011)

1158

1159 [41] Grundy, J., Stoker, C., & Carré, I. A. Circadian regulation of abiotic stress tolerance in plants.
1160 *Frontiers in plant science*, **6**, 648. (2015).

1161

1162 [42] Moffat, C. S., Ingle, R. A., Wathugala, D. L., Saunders, N. J., Knight, H., & Knight, M. R. ERF5 and
1163 ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against *Botrytis cinerea*
1164 in Arabidopsis. *PLoS one*, **7(4)**, e35995. (2012)

1165

1166 [43] Silva, C. S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J. H., López-Vidriero, I., Franco-
1167 Zorrilla, J. M., Panigrahi, K., Nanao, M. H., Wigge, P. A., & Zubieta, C. Molecular mechanisms of Evening
1168 Complex activity in Arabidopsis. *PNAS*, **117(12)**, 6901–6909. (2020)

1169

1170 [44] Green, R. M., & Tobin, E. M. The Role of CCA1 and LHY in the Plant Circadian Clock. *Developmental
1171 Cell*, **2(5)**, 516–518. (2002)

1172

1173 [45] Rawat, R., Takahashi, N., Hsu, P. Y., Jones, M. A., Schwartz, J., Salemi, M. R., Phinney, B. S., &
1174 Harmer, S. L. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within
1175 the Arabidopsis circadian clock. *PLoS genetics*, **7(3)**, e1001350. (2011)

1176

1177 [46] Prabu, G. R., & Mandal, A.K. Computational identification of miRNAs and their target genes from
1178 expressed sequence tags of tea (*Camellia sinensis*). *Genomics Proteomics Bioinformatics*. **8(2)**, 113-
1179 121. (2010)

1180

1181 [47] Borges, F., Pereira, P. A., Slotkin, R. K., Martienssen, R. A., & Becker, J. D. MicroRNA activity in the
1182 Arabidopsis male germline. *Journal of experimental botany*, **62(5)**, 1611–1620. (2011)

1183

1184 [48] Wu, G., Park, M. Y., Conway, S. R., Wang, J. W., Weigel, D., & Poethig, R. S. The sequential action
1185 of miR156 and miR172 regulates developmental timing in Arabidopsis. *Cell*, **138(4)**, 750–759. (2009)

1186

1187 [49] Anna, B. B., Grzegorz, B., Marek, K., Piotr, G., & Marcin, F. Exposure to High-Intensity Light
1188 Systemically Induces Micro-Transcriptomic Changes in *Arabidopsis thaliana* Roots. *International*
1189 *journal of molecular sciences*, **20(20)**, 5131. (2019)

1190

1191 [50] Preußner, M., Goldammer, G., Neumann, A., Haltenhof, T., Rautenstrauch, P., Müller-McNicoll,
1192 M., & Heyd, F. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals. *Molecular*
1193 *cell*, **67(3)**, 433–446. (2017)

1194

1195 [51] Reddy, A. S., & Shad Ali, G. Plant serine/arginine-rich proteins: roles in precursor messenger RNA
1196 splicing, plant development, and stress responses. *Wiley Interdiscip Rev RNA*. **2(6)**, 875-889. (2011)

1197

1198 [52] Li, C., Sako, Y., Imai, A., Nishiyama, T., Thompson, K., Kubo, M., Hiwatashi, Y., Kabeya, Y., Karlson,
1199 D., Wu, S. H., Ishikawa, M., Murata, T., Benfey, P. N., Sato, Y., Tamada, Y., & Hasebe, M. A Lin28
1200 homologue reprograms differentiated cells to stem cells in the moss *Physcomitrella patens*. *Nature*
1201 *communications*, **8**, 14242. (2017)

1202

1203 [53] Sasaki, K., Kim, M.H., Imai, R. *Arabidopsis COLD SHOCK DOMAIN PROTEIN 2* is a negative
1204 regulator of cold acclimation. *New Phytol.* **198(1)**, 95-102. (2013)

1205

1206 [54] Langfelder, P., & Horvath, S. WGCNA: an R package for weighted correlation network analysis.
1207 *BMC Bioinformatics*, **9**, 559. (2008).

1208

1209 [55] Hall, A., Bastow, R. M., Davis, S. J., Hanano, S., McWatters, H. G., Hibberd, V., Doyle, M. R., Sung,
1210 S., Halliday, K. J., Amasino, R. M., & Millar, A. J. The TIME FOR COFFEE gene maintains the amplitude
1211 and timing of *Arabidopsis* circadian clocks. *The Plant cell*, **15(11)**, 2719–2729. (2003)

1212

1213 [56] Ding, Z., Millar, A. J., Davis, A. M., Davis, S. J. TIME FOR COFFEE encodes a nuclear regulator in
1214 the *Arabidopsis thaliana* circadian clock. *Plant Cell*. **19(5)**, 1522-1536. (2007)

1215

1216 [57] Lim, J., Park, J. H., Jung, S., Hwang, D., Nam, H. G., Hong, S. Antagonistic Roles of PhyA and PhyB
1217 in Far-Red Light-Dependent Leaf Senescence in *Arabidopsis thaliana*. *Plant Cell Physiol.* **59(9)**, 1753-
1218 1764. (2018)

1219

1220 [58] Spensley, M., Kim, J. Y., Picot, E., Reid, J., Ott, S., Helliwell, C., & Carré, I. A. Evolutionarily
1221 conserved regulatory motifs in the promoter of the *Arabidopsis* clock gene LATE ELONGATED
1222 HYPOCOTYL. *The Plant cell*, **21(9)**, 2606–2623. (2009)

1223

1224 [59] Ezer, D., Shepherd, S., Brestovitsky, A., Dickinson, P., Cortijo, S., Charoensawan, V., Box, M. S.,
1225 Biswas, S., Jaeger, K. E., & Wigge, P. A. The G-Box Transcriptional Regulatory Code in Arabidopsis.
1226 *Plant physiology*, **175(2)**, 628–640. (2017)

1227 [60] Tóth, R., Kevei, E., Hall, A., Millar, A. J., Nagy, F., & Kozma-Bognár, L. Circadian clock-regulated
1228 expression of phytochrome and cryptochrome genes in Arabidopsis. *Plant physiology*, **127(4)**, 1607–
1229 1616. (2001)

1230 [61] Clack, T., Mathews, S., Sharrock, R. A. The phytochrome apoprotein family in Arabidopsis is
1231 encoded by five genes: the sequences and expression of PHYD and PHYE. *Plant Mol Biol.* **25(3)**, 413–
1232 427 (1994)

1233 [62] Jeong, C. Y., Kim, J. H., Lee, W. J., Jin, J. Y., Kim, J., Hong, S. W., & Lee, H. AtMyb56 Regulates
1234 Anthocyanin Levels via the Modulation of AtGPT2Expression in Response to Sucrose in Arabidopsis.
1235 *Molecules and cells*, **41(4)**, 351–361. (2018)

1236 [63] Terecskei, K., Tóth, R., Gyula, P., Kevei, E., Bindics, J., Coupland, G., Nagy, F., & Kozma-Bognár,
1237 L. The circadian clock-associated small GTPase LIGHT INSENSITIVE PERIOD1 suppresses light-
1238 controlled endoreplication and affects tolerance to salt stress in Arabidopsis. *Plant physiology*, **161(1)**,
1239 278–290. (2013).

1240 [64] Nemri, A., Atwell, S., Tarone, A. M., Huang, Y. S., Zhao, K., Studholme, D. J., Nordborg, M., & Jones,
1241 J. D. Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using
1242 combined association and linkage mapping. *PNAS*, **107(22)**, 10302–10307. (2010).

1243 [65] Wang, W., Barnaby, J. Y., Tada, Y., Li, H., Tör, M., Caldelari, D., Lee, D. U., Fu, X. D., & Dong, X.
1244 Timing of plant immune responses by a central circadian regulator. *Nature*, **470(7332)**, 110–114.
1245 (2011)

1246 [66] Tsuchiya, T., & Eulgem, T. The Arabidopsis defense component EDM2 affects the floral transition
1247 in an FLC-dependent manner. *The Plant Journal*, **62**, 518–528. (2010)

1248 [67] Hughey, J.J., Hastie, T., Butte, A.J. ZeitZeiger: supervised learning for high-dimensional data from
1249 an oscillatory system. *Nucleic Acids Res.* **44(8)**:e80. (2016)

1250 [68] Wittenbrink, N., Ananthasubramaniam, B., Münch, M., et al. High-accuracy determination of
1251 internal circadian time from a single blood sample. *J Clin Invest.* **128(9)**:3826–3839. (2018)

1252 [69] Bolger, A. M., Lohse, M., & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.
1253 *Bioinformatics*, **30(15)**, 2114–2120. (2014).

1254 [70] Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. Graph-based genome alignment and
1255 genotyping with HISAT2 and HISAT-genotype. *Nature biotechnology*, **37(8)**, 907–915. (2019)

1256 [71] Pertea, M., Kim, D., Pertea, G.M., Leek, J.T., Salzberg, S.L. Transcript-level expression analysis of
1257 RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc.* **11(9)**, 1650–1667. (2016)

1258 [72] Love, M. I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-
1259 seq data with DESeq2. *Genome Biology*, **15**, 550. (2014)

1260 [73] The International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat
1261 research and breeding using a fully annotated reference genome. *Science*, **361(6403)**, eaar7191.
1262 (2018)

1277
1278 [74] Pedregosa, F., Variqueux, C., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. Scikit-learn:
1279 Machine Learning in Python. *Journal of Machine Learning Research*, **12**, 2825-2830 (2011)
1280
1281 [75] Carrieri, A. P., Haiminen, N., Maudsley-Barton, S., Gardiner, L.J., Murphy, B., Mayes, A.,
1282 Paterson, S., Grimshaw, S., Winn, M., Shand, C., Hadjidoukas, P., Rowe, W., Hawkins, S., MacGuire-
1283 Flanagan, A., Tazzioli, J., Kenny, J., Parida, L., Hoptroff, M., Pyzer-Knapp, E. O. Explainable AI reveals
1284 key changes in skin microbiome compositions linked to phenotypic differences.
1285 bioRxiv 2020.07.02.184713 (2020)
1286
1287 [76] Gardiner, L.J., Carrieri, A.P., Wilshaw, J., Checkley, S., Pyzer-Knapp, E.O., Krishna, R. Using human
1288 in vitro transcriptome analysis to build trustworthy machine learning models for prediction of animal
1289 drug toxicity. *Scientific Reports*. **10**:9522. (2020)
1290
1291 [77] Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L., Noble, W.S. Quantifying similarity between
1292 motifs. *Genome Biol.* **8(2)**, R24. (2007)
1293
1294 [78] O'Malley, R. C., Huang, S. C., Song, L., Lewsey, M. G., Bartlett, A., Nery, J. R., Galli, M., Gallavotti,
1295 A., & Ecker, J. R. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. *Cell*,
1296 **165(5)**, 1280–1292. (2016)
1297
1298 [79] Ray, D., Kazan, H., Cook, K. B., Weirauch, M. T., Najafabadi, H. S., Li, X., Gueroussov, S., Albu, M.,
1299 Zheng, H., Yang, A., Na, H., Irimia, M., Matzat, L. H., Dale, R. K., Smith, S. A., Yarosh, C. A., Kelly, S. M.,
1300 Nabet, B., Mecenas, D., Li, W., ... Hughes, T. R. A compendium of RNA-binding motifs for decoding gene
1301 regulation. *Nature*, **499(7457)**, 172–177. (2013)
1302
1303 [80] Kozomara, A., Birgaoanu, M., Griffiths-Jones, S. miRBase: from microRNA sequences to function.
1304 *Nucleic Acids Res.* **47(D1)**, D155-D162. (2019)
1305
1306 [81] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., et al. TensorFlow: Large-Scale Machine
1307 Learning on Heterogeneous Distributed Systems. tensorflow.org (2015)
1308
1309
1310
1311
1312
1313
1314 **Supplementary Information**
1315
1316 Supplementary Notes 1-6
1317
1318 Supplementary Figures 1-7
1319
1320 Supplementary Tables 1-15
1321
1322 Supplementary References 1-36