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Abstract

Community detection on graphs constructed from functional magnetic resonance imaging
(fMRI) data has led to important insights into brain functional organization. Large studies
of brain community structure often include images acquired on multiple scanners across
different studies. Differences in scanner can introduce variability into the downstream results,
and these differences are often referred to as scanner effects. Such effects have been previously
shown to significantly impact common network metrics. In this study, we identify scanner
effects in data-driven community detection results and related network metrics. We assess a
commonly employed harmonization method and propose new methodology for harmonizing
functional connectivity that leverage existing knowledge about network structure as well as
patterns of covariance in the data. Finally, we demonstrate that our new methods reduce
scanner effects in community structure and network metrics. Our results highlight scanner
effects in studies of brain functional organization and provide additional tools to address these
unwanted effects. These findings and methods can be incorporated into future functional
connectivity studies, potentially preventing spurious findings and improving reliability of
results.
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1 Introduction

To better understand the functional organization of the brain, researchers have used
functional imaging to observe task-associated and resting-state brain activity at high tem-
poral resolutions. These measurements can be used to construct brain networks, which
describe groups of regions that are strongly linked and are jointly associated with unique
neurophysiological functions (Salvador et al., 2005). Community detection methods provide
a data-driven approach to examine these brain networks by identifying groups of tightly
coupled regions called communities. Abnormalities in specific brain communities have been
associated with Alzheimer’s disease and major depressive disorder among other illnesses
(Dragomir et al., 2019; He et al., 2018). Owing to their contributions to significant clini-
cal findings, functional imaging and community detection metrics have been considered for
their suitability as potential biomarkers for neurological and psychiatric disorders (Gallen &
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D’Esposito, 2019; Hohenfeld et al., 2018; Parkes et al., 2020). Understanding confounding
factors that can impact community detection results is thus a particularly urgent task.

Functional imaging studies have sought larger sample sizes by collecting data across
multiple institutions and scanners, which potentially introduces variation due to scanner
referred to as scanner effects. Several studies have characterized and attempted to address
these effects, but do not examine how scanner effects can influence brain network organization
and relevant metrics (Dansereau et al., 2017; Feis et al., 2015; Friedman et al., 2006). To
the best of our knowledge, only one study has investigated the influence of scanner effects
on brain network constructed using resting-state functional magnetic resonance imaging
(rsfMRI) data and proposed a method for harmonization by adapting ComBat (Yu et al.,
2018), a method initially proposed in gene expression studies for batch effect correction and
adapted in neuroimaging to effectively mitigate scanner effects (Johnson et al., 2007; Fortin
et al., 2017, 2018). To our knowledge, no study has investigated how community detection
could be influenced by differences in scanners.

In this study, we assess whether scanner effects can drive differences in estimated com-
munities using data from two large-scale multi-site rsfMRI studies. We first determine that
scanner can strongly influence community detection results in both population-representative
networks and subject-specific networks. We then examine community metrics and identify
notable scanner effects. To address these issues, we propose new methodology and compare
these two methods with the existing rsfMRI harmonization method and find that all meth-
ods reduce scanner effects, but our proposed methods provide the best results in several
evaluations. Our results highlight the need to consider scanner effects in rsfMRI studies of
brain functional organization and provide insight into mitigating these issues.

2 Methods

2.1 Image acquisition and processing

Our sample consists of fMRI scans from the iSTAGING consortium (Habes et al., 2021),
which includes data from eleven different studies. For this study, we examine a subset
of fMRI data from the Baltimore Longitudinal Study of Aging (BLSA; Shock, 1984) and
the Coronary Artery Risk Development in Young Adults (CARDIA; Friedman et al., 1988)
study. Through its extensive multimodal analysis, the BLSA study has provided marked
insight into the physical and cognitive effects of aging. The fMRI data from BLSA are
particularly suited to our analysis since all images were acquired on a single scanner (see
Table 1), allowing for direct comparison with CARDIA scanners. The CARDIA study aims
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to identify risk factors for cardiovascular disease and collected rsfMRI scans as part of its
assessment of neurological outcomes. The CARDIA study has four scanners, but one scanner
is excluded from our analysis since only four subjects are acquired on it.

The resting state fMRI images for BLSA are acquired using Philips Achieva 3T scanner
with repetition time (TR) of 2 seconds and echo time (TE) of 30 ms, with a total duration
per scan of 6 minutes. Other parameters include a field of view (FOV) of 80 × 80mm, 37
axial slices, 3 × 3mm voxel resolution, and 180 time frames. CARDIA scans are acquired
across four different sites using similar protocols, with a TR of 2 seconds, TE of 25 ms,
FOV of 224 × 224 mm, 64 axial slices, slice thickness of 3.5 mm, and 120 time frames. All
the functional images are slice time-corrected. MCFLIRT (Jenkinson et al., 2002) is used
to realign all volumes the selected reference volume. Time series are band-pass filtered to
retain frequencies between 0.01 – 0.08 Hz. All pre-processing steps were carried out using
FSL FEAT (www.fmrib.ox.ac.uk/fsl).

Besides band-pass filtering and usual motion correction, mean relative displacement, rel-
ative voxel-wise motion displacement and DVARS (Derivative of rms VARiance over voxelS)
are calculated to summarize whole brain signal change. We apply a confound regression
procedure with scrubbing (Power et al., 2012) using a 36-parameter model including motion,
white matter, cerebrospinal fluid (CSF), global signal time courses, and temporal deriva-
tives of these regressors. Subjects whose mean relative displacement greater than 0.2 mm
are flagged and excluded. Filtered cleaned time series are then co-registered with structural
MRI using DRAMMS (Deformable Registration via Attribute Matching and Mutual-Saliency
Weighting; Ou et al., 2011) affine-only and then transformed to standard MNI space with
2×2×2mm resolution by combining warps from structural to Montreal Neurological Institute
(MNI) space.

Following all pre-processing steps, functional connectivity matrices of dimension 264×264
were obtained by calculating Pearson correlations between the filtered, cleaned time courses
extracted from each pair of ROIs defined by the Power atlas (Power et al., 2011). These 264
ROIs are grouped into 14 distinct subnetworks based on communities derived using Infomap
(Power et al., 2011).

2.2 Functional connectivity ComBat

Across gene expression data and several imaging modalities, ComBat has proven to be
an effective harmonization method which uses empirical Bayes to leverage batch effect in-
formation across features (Johnson et al., 2007; Fortin et al., 2017, 2018). ComBat has been
applied to functional connectivity (FC) and shown to substantially reduce scanner effects
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in several network metrics including global efficiency, local efficiency, and within-community
mean edge weights (Yu et al., 2018). Following a standard network model (Bassett et al.,
2018), we first compute connectivity matrices from ROI-level time series using Pearson cor-
relation between each time series. The correlation values are Fisher-transformed to range
across all real numbers, which are subsequently used as edge weights in constructing net-
works from the connectivity matrices (Bassett et al., 2018). Let yij = (yij1, yij2, . . . , yijv)T ,
i = 1, 2, . . . , K, j = 1, 2, . . . , ni denote the v-dimensional Fisher-transformed edge weights
where i indexes scanner, j indexes subjects within scanners, ni is the number of subjects
acquired on scanner i, and V is the number of features. We aim to harmonize the data from
these N = ∑K

i=1 ni subjects across the K scanners. FC-ComBat (Yu et al., 2018) assumes
that the V edges v = 1, 2, . . . , V follow

yijv = αv + xT
ijβv + γiv + δiveijv. (1)

Using least-squares estimates for the regression coefficients, we first standardize the data as

zijv = yijv − α̂v −Xijβ̂v

σ̂v

. (2)

Then, we obtain empirical Bayes estimates for the scanner parameters, to yield harmonized
edges as

yComBat
ijv = σ̂v

δ∗
iv

(zijv − γ̂∗
iv) + α̂v +Xijβ̂v. (3)

These harmonized edge weights can be used to construct adjacency matrices for downstream
network analyses.

2.3 Proposed methodologies

FC-ComBat assumes that scanner effects influence all edges similarly and uses empirical
Bayes to borrow information across all edges. However, prior network analyses may indicate
distinct scanner effects within-network and between-network edges. By assuming scanner
effects are shared across all edges, FC-ComBat may not adequately reduce network-specific
scanner differences.

We propose and compare two novel methods that harmonizes functional connectivity data
by utilizing correlations within and between networks. The first method is Block-ComBat
(Bl-ComBat), which uses information across within-network edges by specifying subnetworks
prior to harmonization. Our method first applies FC-ComBat followed by additional ComBat
steps within each block. Our harmonization selectively borrows within-network information
to address scanner effects that may not feature prominently in the first ComBat step. These
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blocks can be derived from prior knowledge of brain subnetworks, often obtained through
structural and functional brain parcellation or clustering.

Community detection algorithms leverage patterns among groups of edges, which tend to
be stronger within the same community and weaker between distinct communities (Newman,
2006). Scanner effects in groups of edges could thus impact community detection algorithms.
ComBat harmonizes the mean and variance of each edge separately, and does not directly
address effects in a group of edges. However, our recent harmonization method called CovBat
addresses scanner effects in covariance by simultaneously harmonizing groups of features in
principal component directions and may be well-suited to addressing these scanner effects
(Chen et al., 2021).

Our second method is functional connectivity CovBat (FC-CovBat), which utilizes Cov-
Bat as the primary harmonization step. Our method uses the same Fisher-transformation
and vectorization of edges as in FC-ComBat. We again assume that the Fisher-transformed
edges follow

yijv = αv + xT
ijβv + γiv + δiveijv. (1)

However, the error vectors eij = (eij1, eij2, . . . , eijp)T ∼ N(0,Σi) may be spatially correlated
and differ in covariance across scanner. We first perform ComBat to remove the mean
and variance shifts in the marginal distributions of the cortical thickness measures. Then,
we additionally residualize with respect to the intercept and covariates to obtain ComBat-
adjusted residuals denoted eComBat

ij = (eComBat
ij1 , eComBat

ij2 , . . . , eComBat
ijp )T where p is the number

of features. We define these residuals using previous notation as

eComBat
ijv =

yijv − α̂v − xT
ijβ̂v − γ∗

iv

δ∗
iv

, (4)

where i = 1, 2, . . . ,M , j = 1, 2, . . . , ni, M is the number of scanners, and ni is the number
of subjects acquired at scanner i, and the variables α̂v, xT

ij, β̂v, γ∗
iv, and δ∗

iv are the same as
in FC-ComBat.

The eComBat
ij are assumed to have mean 0 and their covariance matrices which we denote

by Σi may differ across sites. CovBat performs principal components analysis (PCA) on the
full data residuals and represents the full data covariance matrix as Σ = ∑q

k=1 λkφkφ
T
k where

the rank q = min(∑M
i=1 ni, p), λk are the eigenvalues of Σ, and φk are the principal compo-

nents obtained as the eigenvectors of Σ. PCA is performed on the sample covariance matrix
Σ̂ to obtain estimated eigenvalues λ̂k and eigenvectors φ̂k. The ComBat-adjusted residuals
can then be expressed as eComBat

ij = ∑q
k=1 ξijkφ̂k where ξijk are the principal component

scores.
We approximate the within-site covariance matrices as Σ̂i = ∑q

k=1 λ̂ikφ̂kφ̂
T

k where λ̂ik are
within-site eigenvalues estimated as the sample variance of the principal component scores
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λ̂ik = ∑ni
j=1(ξijk −∑ni

j=1 ξijk/ni)2/(ni−1). The φ̂k are estimated from the full data covariance.
Then, we model scanner effects in the principal component scores as

ξijk = µik + ρikεijk, (5)

where εijk ∼ N(0, τ 2
k ), τk is the standard deviation of the error, and µik, ρik are the center

and scale parameters corresponding to principal components k = 1, 2, . . . K where K ≤
q is a tuning parameter chosen to capture the desired proportion of the variation in the
observations. If K is chosen such that K = q, then all principal components are harmonized.
We can then estimate each of the K pairs of center and scale parameters by finding the
values that bring each site’s mean and variance in scores to the pooled mean and variance,
which we denote µ̂ik) and ρ̂ik. We then remove the site effect in the scores by subtracting
out the estimated center parameter and dividing out the estimated scale parameter via
ξCovBat

ijk = (ξijk − µ̂ik)/ρ̂ik.
We obtain CovBat-adjusted residuals eCovBat

ij = (eCovBat
ij1 , eCovBat

ij2 , . . . , eCovBat
ijp )T by pro-

jecting the adjusted scores back into the residual space via

eCovBat
ij =

K∑
k=1

ξCovBat
ijk φ̂k +

q∑
l=K+1

ξijlφ̂l. (6)

We then add the intercepts and covariates effects to obtain CovBat-adjusted edges

yCovBat
ijv = eCovBat

ijv + α̂v + xT
ijβ̂v. (7)

The CovBat methodology requires selection of the number of principal components to
harmonize. Based on previous investigations, we choose to include principal components
that explain 95% of the variation (Chen et al., 2021).

2.4 Evaluation of functional connectivity harmonization

Previous investigations on FC-ComBat examine the impact of harmonization on network
metrics including mean edge weight within subnetworks, efficiency, and nodal strength (Yu
et al., 2018). We extend these evaluations and propose four analyses that inform how harmo-
nization can influence scanner effects in community detection. First, we regress edge weights
and mean edge weights within and between subnetworks to determine how scanner effects
influence the construction of networks. Second, we average functional connectivities acquired
on the same scanner to determine how scanner effects influence communities derived from
these population-average networks. Third, we find communities for each subject and use
distance-based regression to assess scanner effects in subject-specific communities. Fourth,
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we compute network metrics related to community structure and examine associations with
scanner and clinical variables. All four analyses are performed before and after harmoniza-
tion using FC-ComBat, Bl-ComBat, and FC-CovBat to compare these three harmonization
methods on their removal of scanner effects.

2.4.1 Scanner effects in edge weights

Following previous investigations on FC-ComBat, we inspect the edge weights before
and after harmonization to assess general changes in the raw values, removal of scanner
effects, and preservation of biological variability. Scanner effects in these edge weights are
likely to impact the downstream weighted networks. We first inspect the 34716-dimensional
edge vectors using t-SNE (van der Maaten & Hinton, 2008) with a perplexity value of 30,
which provides a low-dimensional visualization of the data that captures dominant patterns
of variability. We then compare t-SNE plots before and after harmonization to visualize
changes in the functional connectivity matrices.

To further assess the extent of scanner effects in the connectivity values, we perform
linear regression for scanner and biological covariates on two scales and compare results
before and after harmonization. First, we regress each edge separately on scanner, age, and
sex to determine if scanner effects exist in individual edges. Second, we average within atlas
subnetworks to obtain 14 within-network mean edge weight values and 91 between-network
mean edge weights. Then, we perform regression on these mean edge weights, which are
often used as outcomes in studies of functional connectivity (Yu et al., 2018; Varangis et al.,
2019). We assess statistical significance controlling the false discovery rate at 5% (Benjamini
& Hochberg, 1995).

2.4.2 Population-average community detection

We next compare population-average community structure within each scanner to de-
termine overall differences in community structure, similar to several studies contrasting
communities between patient groups (Dragomir et al., 2019; He et al., 2018; Varangis et al.,
2019). Our analysis of community structure utilizes two prominent algorithms that leverage
both positive and negative edge weights. Following previous studies (Alexander-Bloch et al.,
2012; Betzel et al., 2013; Varangis et al., 2019), we first average functional connectivities
within each scanner then employ a version of the Louvain method (Blondel et al., 2008)
adapted for signed networks using an asymmetric measure of modularity with positive and
negative weights (Rubinov & Sporns, 2011), implemented in the Brain Connectivity Toolbox
(BCT version 2019-03-03; Rubinov & Sporns (2010)). We repeat the algorithm 100 times
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and derive a consensus partition by applying the Louvain method to a consensus matrix
constructed across partitions from the 100 runs, which reduces variability introduced by the
algorithm (Lancichinetti & Fortunato, 2012). For all signed Louvain runs, we choose a tun-
ing parameter λ to yield median 14 communities per scanner to approximate the number of
communities in the atlas (Power et al., 2011). To evaluate community structure differences
before and after harmonization, we inspect these scanner-average communities visually. For
a quantitative evaluation, we also compute the adjusted Rand index (ARI; Hubert & Ara-
bie, 1985)) for all pairwise comparisons between scanners and average within harmonization
method to yield a mean ARI value that is lower if communities are more similar among
scanners.

To assess whether scanner effects are present across multiple community detection meth-
ods, we also obtain communities using a weighted stochastic block model (WSBM; Aicher
et al., 2013), which has found notable results applied to brain functional networks (Betzel
et al., 2018). Since our networks are fully-connected, we assume that all edges exist and that
the that edge weights are normally distributed with parameters varying across different pairs
of nodal communities. We fix the number of communities at K = 14 for comparison with the
atlas and implement the WSBM using code available online (aaronclauset.github.io/wsbm;
version 1.3). Similar to our signed Louvain evaluation, we compare community partitions
across scanners visually and by examining the mean ARI among pairwise comparisons.

2.4.3 Subject-specific communities

Examining communities determined via the average connectivity matrix within each scan-
ner does not capture subject-to-subject variability in community structure, which may be
influenced by scanner. To assess the existence of scanner effects on a subject level and deter-
mine if harmonization is adequate to address these, we use the signed Louvain algorithm to
obtain subject-specific communities. First, we construct signed subject-level networks using
the Fisher-transformed edge weights. For each subject, we then obtain a consensus partition
across 100 runs of the signed Louvain algorithm, choosing a tuning parameter λ to yield a
median of 14 communities across subjects.

To detect associations of these community partitions with scanner and biological vari-
ables, we use distance-based approaches that enable analysis of variance (ANOVA) and
regression with an appropriate choice of distance measure. Previous studies have taken a sim-
ilar approach by performing an ANOVA-like analysis with a similarity measure (Alexander-
Bloch et al., 2012). We instead compute variation of information (VI) for each pair of
subjects, which is a proper distance measure on the space of clusterings (Meilă, 2007). Sub-
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sequently, we perform permutational analysis of variance (PERMANOVA) to test for group
differences and multivariate distance matrix regression (MDMR) to test for associations with
covariates. We first apply PERMANOVA twice to first determine if communities differ across
all scanner groups and then assess if differences exist among CARDIA scanners. The two
studies included have considerably different age distributions (Table 1), which may confound
our detection of scanner effects. To control for age and sex while evaluating associations with
scanner, we apply MDMR while including scanner, age, and sex in the model.

2.4.4 Computation of network metrics

ComBat has previously been shown to remove scanner effects in common network metrics
including default mode network connectivity and efficiency values while preserving biological
signals (Yu et al., 2018). We examine additional metrics that describe the community struc-
ture of signed networks. All metrics are calculated using the Brain Connectivity Toolbox
(BCT) version 2019-03-03 (Rubinov & Sporns, 2010).

Modularity captures the extent to which a network segregates into a given community
partition (Newman, 2006). Our experiment involves both communities derived from their
brain atlas and from the signed Louvain algorithm. We compute modularity for both par-
titions and use linear regression to assess whether the Power atlas modularity (A. Mod.)
and signed Louvain-derived community partition modularity (C. Mod.) are associated with
scanner or age. Scanner effects in either case would demonstrate that the goodness-of-fit for
relevant partitions could be confounded by scanner differences.

Clustering coefficient (CC) similarly captures the tendency for a network to form commu-
nities, but provides distinct information from modularity. CC operates on triplets of nodes
and does not rely on a community partition, instead measuring local density in connectivity
(Watts & Strogatz, 1998). Generalizations of the clustering coefficient have been developed
for weighted (Onnela et al., 2005) and signed networks (Costantini & Perugini, 2014). We
compute the signed clustering coefficient for each subject’s brain network and regress on
scanner and age before and after harmonization.

A network metric that captures interrelatedness among nodes with respect to commu-
nity assignments is the participation coefficient, which measures the relative strength of
connections within network compared to outside the network (Guimerà & Amaral, 2005). A
previous study revealed that the average participation coefficient can be influenced by age
(Varangis et al., 2019). Following previous work (Zamani Esfahlani et al., 2020), we compute
participation coefficient separately for positive edges (positive PC) and negative edges (neg-
ative PC). As previously noted, positive PC has a more direct interpretation as the relative
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strength of positive correlations with subnetworks (Zamani Esfahlani et al., 2020), so we use
positive PC as the primary outcome. For each subnetwork, we summarize the positive and
negative PCs by averaging across nodes within the subnetwork. As with other metrics, we
assess scanner and age effects using linear regression.

3 Results

3.1 Subject characteristics

Our final dataset includes imaging data from 357 BLSA participants and 381 CARDIA
participants. Table 1 shows the demographics by scanner, showing that BLSA and CARDIA
1 both are Philips Achieva 3T scanners while CARDIA 3 and 4 are Siemens Trio 3T scan-
ners. There is a significant difference in age among participants across scanners (analysis
of variance, p < 0.01), which is driven by the considerably older BLSA subjects with fMRI
data. No significant differences are found in the sex proportion across scanners.

BLSA CARDIA 1 CARDIA 3 CARDIA 4 p

Scanner Philips Achieva 3T Philips Achieva 3T Siemens Trio 3T Siemens Trio 3T
Number of Subjects 357 57 185 139
Age (mean (SD)) 65.42 (15.25) 50.12 (3.42) 50.30 (3.31) 50.12 (3.64) <0.01
Male (%) 161 (45.1) 22 (38.6) 79 (42.7) 55 (39.6) 0.62

Table 1: Demographics by scanner for the four scanners across the two included
studies. The study sample consists of subjects from the Baltimore Longitudinal Study of
Aging (BLSA) and the Coronary Artery Risk Development in Young Adults (CARDIA)
studies. We include the one scanner from the BLSA study and three scanners from the
CARDIA study in our analyses. ANOVA p-values for testing differences in the mean of
continuous variables and Chi-squared test p-values for testing the differences in categorical
variables are reported in the rightmost column.

3.2 Functional connectivity associated with scanner

Inspection of the functional connectivity via t-SNE indicates that there is considerable
separation across studies, with CARDIA observations staying roughly grouped together
(Fig. 1). However, these visual differences could be the driven by differences in the age
distribution (see Table 1 for details). We isolate associations with scanner by controlling
for age and sex in our edge-wise regression and show scanner effects across a large por-
tion of the within-network and between-network edges (Fig. 2). Fig. 3 displays results for
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within-network and between-network mean edge weights, further highlighting significant as-
sociations with scanner.

Figure 1: t-SNE visualization of functional connectivity matrices before and after
harmonization. t-SNE is used to show segregation of unharmonized functional connectiv-
ity matrices into scanner-specific clusters. The matrices are shown to be more integrated
after harmonization. t-SNE is performed using Frobenius distances between functional con-
nectivity matrices as inputs. The perplexity value was chosen at 30.

The tested harmonization methods all reduce separation of functional connectivity matri-
ces across studies visualized through t-SNE in Fig. 1. The harmonization methods all remove
scanner associations in both edges and mean edge weights while retaining associations with
age (Fig. 2 and Fig. 3). Among the harmonization methods, Fig. 4 shows that Bl-ComBat
provides the greatest reduction of the log-p values for within-network mean edge weights
(Wilcoxon rank-sum test against FC-ComBat, p < 0.001; Wilcoxon rank-sum test against
FC-CovBat p < 0.001) while FC-CovBat shows the best performance for between-network
mean edge weights (Wilcoxon rank-sum test against FC-ComBat, p < 0.001; Wilcoxon rank-
sum test against Bl-ComBat p < 0.001). For age associations, FC-ComBat and FC-CovBat
both retain unharmonized associations while Bl-ComBat recovers additional age associations
for some within-network edges.

3.3 Differences in scanner-average communities

In the unharmonized scanner-average communities, we find substantial differences across
scanners (Fig. 5, mean pairwise ARI of 0.48). CARDIA-1 shows particularly notable differ-
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Figure 2: Edge-wise regression of functional connectivity before and after harmo-
nization. Effects of harmonization on associations of edge weights with scanner and age
are shown. Linear models are fit to each edge including scanner, age, and sex as covariates.
Negative log p-values are shown where red and blue highlighting indicate significant edges
for scanner and age respectively after false discovery rate control at the 0.05 level.
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Figure 3: Regression of within-network and between-network mean edge weights.
Significant associations of mean edge weights with scanner and age are shown before and
after harmonization. Linear models are fit to each within and between connectivity value
while including scanner, age, and sex as covariates. Negative log p-values are shown where
red and blue highlighting indicate significant associations with scanner and age after false
discovery rate control at the 0.05 level.
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Figure 4: Scanner associations of within-network and between-network mean edge
weights across subnetworks. Harmonization methods are compared in their reduction
of scanner effects in within-network and between-network mean edge weights. Negative log
p-values are shown for unharmonized and harmonized connectivities. The blue dotted line
denotes the 0.05 significance threshold, where values higher than the line are considered
significant.
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ences, with the default mode network and sensory/somatomotor hand ROIs being distributed
across more networks than other scanners. After any of the three harmonization methods
though, these differences are substantially reduced, with FC-CovBat showing the greatest
coherence across scanners (mean ARI of 0.74). We observe more severe scanner effects among
WSBM-derived communities (mean ARI of 0.37; Supplementary Figure 1) with improved
coherence after FC-ComBat (0.44), Bl-ComBat (0.47), and FC-CovBat (0.47).

Figure 5: Signed Louvain communities in scanner-average networks before and
after harmonization. Differences in scanner-specific communities are visualized across
harmonization methods. The Louvain algorithm is used to derive communities from networks
obtained by averaging the functional connectivity matrices across subjects acquired on each
scanner. For numerical comparison, the adjusted Rand index is calculated between each
partition and averaged to yield a measure of overall coherence.
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3.4 Scanner effects in subject-specific communities

Communities at the subject level show notable scanner effects both within and across the
two studies. PERMANOVA shows significant differences both for all scanners and limited
to CARDIA scanners, with the latter being addressed by any of the harmonization methods
(Fig. 6a). The remaining difference among all scanners after harmonization may be partially
explained by demographic differences between the two studies (see Table 1). Distance-based
regression via MDMR reveals that scanner influences subject-level communities, even while
controlling for age and sex. While all harmonization methods reduce this scanner effect, only
communities derived from FC-CovBat-adjusted data shows no significant effect of scanner
(Fig. 6b).

Figure 6: Assessment of scanner effects in subject-specific communities. Negative
log p-values are displayed for permutational analysis of variance (PERMANOVA) in a and
multivariate distance matrix regression (MDMR) in b. Both analyses compute distances
as variation of information between subjects’ community partitions. Two separate PER-
MANOVAs test for group differences across all scanners and across CARDIA scanners only
(CARDIA only). MDMR is performed once while including scanner, age, and sex in the
model. The blue dotted line denotes the 0.05 significance threshold, where values higher
than the line are considered significant.
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3.5 Metrics of community structure

Across all network metrics considered, we find significant associations with scanner prior
to harmonization (Table 2, Supplementary Table 1, and Supplementary Table 2)).
Significant scanner associations with A. Mod., C. Mod., and CC are no longer present af-
ter any of the harmonization methods. The scanner effects on positive PC are significant
for 7 of the subnetworks but no longer significant after any of the harmonization methods
considered. Scanner effects in negative PC are similarly reduced (Supplementary Table
2). Significant age associations with both positive and negative PC are maintained after all
of the harmonization methods considered (Supplementary Table 1 and Supplementary
Table 2). We also find a significant age association in A. Mod. which is maintained after
harmonization, but no association was found with C. Mod. or CC (Table 2).

Scanner Age

C. Mod. A. Mod. CC C. Mod. A. Mod. CC

Unharmonized < 0.01 < 0.01 < 0.01 0.37 < 0.01 0.54
FC-ComBat 0.76 0.86 0.13 0.44 < 0.01 0.55
Bl-ComBat 0.69 1 0.1 0.32 < 0.01 0.56
FC-CovBat 0.69 1 0.14 0.31 < 0.01 0.52

Table 2: Associations of network metrics with scanner and age before and after
harmonization. Results from linear regression of metrics on scanner and age are displayed.
p-values are shown for signed Louvain community modularity (C. Mod.), atlas modularity
(A. Mod.), and clustering coefficient (CC)

4 Discussion

The increasing scale of rsfMRI studies merits particular consideration of scanner effects
and their influence on studies of brain functional organization. We show considerable scanner
effects throughout all of our evaluations, which include edge weights, community detection
on multiple scales, and several metrics of network organization. We then demonstrate that
several harmonization methods reduce scanner effects across our analyses, but Bl-CovBat
further addresses scanner effects in edge weights and FC-CovBat is uniquely able to remove
scanner effects in subject-specific communities.

Our discovery of scanner effects in community detection highlight additional concerns
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for future studies. For studies that derive networks from averaged connectivity matrices,
our results suggest that community detection results could be influenced by the scanner
used. When comparing community detection results across groups, researchers should be
aware that differences could be driven by imbalance in subject demographics across scanners.
For studies focused more on subject-level analyses, our findings suggest that each subject’s
community detection results may be partially driven by scanner, which again may confound
study results.

Our analyses of network metrics replicate previous findings while finding novel scanner
effects. We again identify major scanner effects in within and between-network connectivity
values, which are largely addressed through harmonization (Yu et al., 2018). We find age
associations in within-subnetwork mean edge weights and average positive participation co-
efficient, both consistent with previous studies (Yu et al., 2018; Varangis et al., 2019). We
identify scanner effects in metrics of network organization that have previously not been
considered, including maximum modularity from the Louvain method, modularity with re-
spect to the atlas, clustering coefficient, and participation coefficient. Scanner effects in
maximum modularity achieved through the Louvain method suggest community detection
algorithms may vary in performance depending on the scanners used. Furthermore, scan-
ner differences in modularity could suggest that the fit of functional atlases may depend on
scanner properties of studies using these atlases.

The harmonization methods generally perform well on all evaluations, but Bl-ComBat
and FC-CovBat outperform FC-ComBat in certain scenarios. FC-ComBat performs well
on harmonizing the subject-average networks since it removes scanner effects in the mean
of edge weights. However, FC-CovBat is necessary to fully address effects in the subject-
specific networks, where scanner effects in groups of edges may drive differences in each
individual’s community structures. Compared to the other methods, Bl-ComBat performs
best for removing within-network scanner effects owing to its additional ComBat steps within
each specified block. However, Bl-ComBat may not be applicable in some studies since
blocks must be specified a priori, which is not feasible if the ROIs are not defined based on
previous network analyses. FC-CovBat does not require any prior information and provides
the greatest removal of scanner effects in between-network connectivities and subject-specific
community structures.

There are several limitations with the current study that worth future investigation and
extensions. Our proposed harmonization methods build on the ComBat framework that
treats edges as individual features and may not preserve the positive semidefinite property
of the functional connectivity matrices. While lacking this positive semidefinite property
does not prevent construction of networks from the matrices, several analyses are no longer
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possible after application of our harmonization methods. For instance, both covariance
regression techniques (Chiu et al., 1996; Hoff & Niu, 2012; Zhao et al., 2019; Zou et al.,
2017) and analyses on the Riemannian space of positive semidefinite matrices (You & Park,
2021) cannot be applied after our harmonization procedures. To enable those analyses on
harmonized data, future studies could investigate removal of scanner effects through spectral
models (Flury, 1984; Zhao et al., 2019) or transformations (Chiu et al., 1996), which would
both preserve the positive semidefinite property.

Since we employ network analysis methods that are prevalent throughout the literature
and relevant to our aims, our evaluations do not reflect some recent advances in network
methodologies. We define ROIs and subnetworks using the Power atlas (Power et al., 2011)
but more recent atlases might provide different parcellations and could capture different infor-
mation from the functional imaging (Eickhoff et al., 2018). In examining population-average
communities, we construct our weighted networks using the arithmetic mean of functional
connectivity matrices after Fisher-transformation of the entries. However, a previous study
has shown that this averaged functional connectivity matrix may not retain properties of the
individual matrices and proposes exponential random graph model to yield a group-based
network that better preserves individual properties (Simpson et al., 2012). In applying the
Louvain method and the WSBM, we choose algorithm parameters to match the number of
subnetworks in the atlas. However, methods exist to find parameters that optimally fit the
networks, including CHAMP (Convex Hull of Admissible Modularity Partitions; Weir et al.,
2017) for modularity maximization algorithms and Bayes factors for WSBMs (Aicher et al.,
2015). Future studies could investigate scanner effects using these data-adaptive network
analysis techniques.

In our study, we examine a single study design for deriving networks and communities
from rsfMRI observations and future studies could test different study designs. Instead of
using correlation values to construct edge weights, studies could examine how partial corre-
lations could influence downstream scanner effects (Marrelec et al., 2006). Estimating sparse
networks (Friedman et al., 2008) could also aid in reducing scanner effects, but this direc-
tion has yet to be explored. While we considered communities obtained via the Louvain
algorithm and WSBMs, many other algorithms could also be considered (Leskovec et al.,
2010; Traag et al., 2019). The choice of atlas has previously been demonstrated to influence
scanner effects in network metrics (Yu et al., 2018), but this could be extended to examine
how scanner effects in communities could also be affected. While different network construc-
tion methods may have varying dependence on scanner, our study suggests that studies of
brain functional organization should consider scanner as a potential confound and follow-up
studies could further reveal the breadth of this issue.
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