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Abstract

Population receptive field (pRF) models fit to fMRI data are used to non-invasively
measure retinotopic maps in human visual cortex, and these maps are a
fundamental component of visual neuroscience experiments. Here, we examined
the reproducibility of retinotopic maps across two datasets: a newly acquired
retinotopy dataset from New York University (NYU) (n=44) and a public dataset
from the Human Connectome Project (HCP) (n=181). Our goal was to assess the
degree to which pRF properties are similar across datasets, despite substantial
differences in their experimental protocols. The two datasets simultaneously differ
in their stimulus apertures, participant pool, fMRI protocol, MRl field strength, and
preprocessing pipeline. We assessed the cross-dataset reproducibility of the two
datasets in terms of the similarity of vertex-wise pRF estimates and in terms of
large-scale polar angle asymmetries in cortical magnification. Within V1, V2, V3,
and hV4, the group-median NYU and HCP vertex-wise polar angle estimates were
nearly identical. Both eccentricity and pRF size estimates were also strongly
correlated between the two datasets, but with a slope different from 1; the
eccentricity and pRF size estimates were systematically greater in the NYU data.
Next, to compare large-scale map properties, we quantified two polar angle
asymmetries in V1 cortical magnification previously identified in the HCP data.
The NYU dataset confirms earlier reports that more cortical surface area
represents horizontal than vertical visual field meridian, and lower than upper
vertical visual field meridian. Together, our findings show that the retinotopic
properties of V1, V2, V3, and hV4 can be reliably measured across two datasets,
despite numerous differences in their experimental design. fMRI-derived
retinotopic maps are reproducible because they rely on an explicit computational
model of the fMRI response. In the case of pRF mapping, the model is grounded
in physiological evidence of how visual receptive fields are organized, allowing
one to quantitatively characterize the BOLD signal in terms of stimulus properties
(i.e., location and size). The new NYU Retinotopy Dataset will serve as a useful
benchmark for testing hypotheses about the organization of visual areas and for
comparison to the HCP 7T Retinotopy Dataset.
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1. Introduction

The human visual system preserves image structure in cortical maps of the visual
field. These retinotopic maps are the basis by which measurements across labs,
populations, and tasks are compared. Functional magnetic resonance imaging
(fMRI) has made it possible to non-invasively measure retinotopic maps from
visually evoked activity in human cortex (DeYoe et al., 1994; Engel et al., 1994;
Sereno et al., 1995). Methodological advances have led to sophisticated
computational models such as population receptive field (pRF) modeling
(Dumoulin & Wandell, 2008), which has become a core component of experiments
investigating human visual cortex (reviewed by Wandell & Winawer, 2015).

Recently, the Human Connectome Project (HCP) 7 Tesla Retinotopy Dataset has
been made available for public use (Benson et al., 2018; Van Essen et al., 2012).
This dataset contains high-quality retinotopy data from 181 participants, collected
with 7T magnetic resonance imaging (MRI), with 30 minutes of data per
participant. The high quality and large size of the dataset make it an attractive
resource for researchers to address a wide variety of questions. It has been used
to investigate retinotopic organization in visual cortex, including the organization
of core pRF parameters (Benson et al., 2018), the organization of white matter
connections between thalamus and foveal and peripheral representations of
extrastriate cortex (Kurzawski et al., 2020), the identification new retinotopic maps
in the cerebellum (van Es et al., 2019), hippocampus (Silson et al., 2021), the visual
organization in the default network (Szinte & Knapen, 2020), and polar angle
meridian asymmetries in cortical magnification in primary visual cortex (V1)
(Benson et al., 2021). One benefit of the HCP dataset is that its large size permits
researchers to conduct checks of internal reliability. For example, if a finding is
observed in one half of the participant sample, is it also observed in the other
half? However, these internal checks rely on data that have been collected using
the same MRI scanner, preprocessed via the same pipeline, and analyzed using
the same pRF software. Therefore, systematic biases affecting a full dataset could
make the data internally reliable, but not generalizable.

Visual neuroscientists assume that retinotopic organization is broadly consistent
across the healthy human population. For example, there is no uncertainty about
V1’s localization in the calcarine sulcus or that receptive field sizes increase with
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eccentricity. Previous studies have quantified the reliability of retinotopic
properties within their own datasets (Benson et al., 2018; Binda et al., 20183;
Senden et al., 2014; van Dijk et al., 2016; Zeidman et al., 2018; Zuiderbaan et al.,
2012). However, it is important to validate scientific findings relating to retinotopic
organization by testing the extent to which they can be reproduced in
independent datasets, especially in an age of open science and data-sharing,
where visual neuroscientists are granted access to an increasing number of large,
public datasets that differ in many ways. One robust assessment of the validity of
such findings is via their reproduction in a retinotopy dataset that uses a different
MRI scanner, fMRI protocol, stimulus aperture, and preprocessing pipeline. Such
differences are typical in neuroimaging studies across labs. An explicit test of the
reproducibility of retinotopic maps between large datasets that simultaneously
differ in many aspects has not been conducted. To measure the reliability of
retinotopic maps across independent datasets, we have acquired, and made
publicly available, a large new set of retinotopic data — the New York University
(NYU) Retinotopy Dataset — that differs from the HCP 7T Retinotopy Dataset in
many ways.

This paper has three goals. The first is to describe and provide a public release of
a high-quality retinotopy dataset that can be used by other researchers to address
open questions about the organization of retinotopic maps in the human brain.
The second is to quantify the cross-dataset reproducibility of pRF estimates at
the vertex scale, after cross-subject alignment of cortical surfaces. The third is to
quantify the cross-dataset reproducibility of polar angle asymmetries in V1
surface area.

First, we present visualizations and a description of the new NYU Retinotopy
Dataset at the individual and group level. Retinotopic maps are differentiated
based on polar angle and eccentricity representations of the visual field (Dumoulin
& Wandell, 2008; Wandell et al., 2007). Thus, we second consider the cross-
dataset reproducibility of vertex-wise pRF estimates (polar angle, eccentricity,
and pRF size) between the NYU and HCP data. We do so in four visual areas: V1,
V2, V3, and hV4. To make vertex-wise comparisons between the two datasets, all
individual cortical surfaces are aligned to a standardized, common template
surface so that the datasets can be compared at the mm scale, and the native
geometry of the individuals is discarded. We then compare pRF parameters at
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each vertex between the two datasets. Third, we examine large scale properties
of the maps in terms of cortical surface area. Findings from a subset of data from
the full HCP dataset (n=163 of 181) show large-scale polar angle asymmetries in
V1 cortical magnification: substantially more cortical surface area is dedicated to
processing the horizontal than the vertical visual field meridian (the horizontal-
vertical anisotropy; HVA), and more cortical surface area is dedicated to the lower
than the upper vertical visual field meridian (the vertical meridian asymmetry;
VMA) (Benson et al., 2021). These cortical magnification asymmetries are derived
from both pRF estimates and surface area measurements. Here, we assess the
HVA and VMA in V1 cortical surface area in our new (NYU) dataset. The cortical
magnification measures reflect the relation between retinotopic coordinates and
cortical geometry (local surface area) and therefore, unlike the vertex-wise
comparisons, require analysis on each participant's native cortical surface.

2. Methods
2.1 Participants

Forty-four participants (25 females, 19 males, mean age=28.8 years) were
recruited from New York University (NYU). All participants had normal or
corrected-to-normal vision and completed a 1 — 1.5-hour scanning session. All
participants provided written informed consent and approved the public release
of anonymized data. The experiment was conducted in accordance with the
Declaration of Helsinki and was approved by the NYU ethics committee on
activities involving human participants.

2.2 fMRI stimulus display

Participants viewed the pRF stimulus in the MRI scanner using a ProPixx DLP
LED projector (VPixx Technologies Inc., Saint-Bruno-de-Montarville, QC,
Canada). The stimulus image was projected onto an acrylic back-projection
screen (60 cm x 36.2 cm) in the scanner bore. The projected image had a
resolution of 1920 x 1080 and a refresh rate of 60 Hz. The display was calibrated
using a linearized lookup table and the display luminance was 500 cd/mZ.
Participants viewed the screen at a distance of 83.5 cm (from eyes to the screen)
using an angled mirror that was mounted on the head coil.
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2.3 PRF Stimulus

The pRF stimulus was generated in MATLAB 2017a and was presented using the
Psychophysics Toolbox v3 (Kleiner et al., 2007) and custom vistadisp software
(https://github.com/WinawerLab/vistadisp) on an iMac computer. Stimulus image
patterns were shown within a bar aperture that swept across the screen
throughout each scan. There were 100 stimulus image patterns. The stimulus
image patterns were identical to those used in the HCP 7T Retinotopy Dataset,
except for rescaling to the size of our display. Each image pattern was composed
of colorful objects, faces, and scenes at multiple scales (Kriegeskorte, 2008) that
were superimposed on an achromatic pink-noise (1/f) background (see Figure 1A
for example of the pRF stimulus). The stimulus image pattern was windowed
within a circular aperture (12.4° radius) and was revealed through the bar aperture
that swept across the screen in 24 equal steps, once per second, synchronized
to the MR image acquisition (TR 1 second). The bar aperture was superimposed
on a polar fixation grid placed upon a uniform gray background, with a red or
green dot at the center (3 pixels, or 0.07°). The polar grid and small fixation point
were used to encourage good fixation behavior, as previously described (Schira
et al., 2009). The bar aperture was 3.1° in width, which was 's-th of the full
stimulus extent (24.8° diameter). The bar aperture swept across the screen in 8
directions (see Figure 1B for sweep direction order and timings). Each sweep
began at the edge of the circular aperture. Horizontal and vertical sweeps
traversed the entire diameter of the aperture. Diagonal sweeps only traversed half
of the aperture (the second half of the sweep was replaced with a blank gray
screen, other than the fixation dot and grid). The blank periods help discriminate
between nonvisual responses and responses from populations of neurons with
exceptionally large receptive field sizes (Dumoulin & Wandell, 2008).

Each directional sweep lasted 24 s, with the full stimulus run lasting 192 s. The
stimulus image updated 3 times per second without intermediate blanks, thus the
three images were shown for 0.333 s at each aperture position. Participants
completed a fixation task to ensure that they were maintaining central fixation and
remained alert throughout the scan. Participants were required to respond, via
button press, when the central fixation dot changed from green to red, or vice
versa. The full stimulus sequence was completed once per scan, and 4 to 12
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scans were collected per participant, with the identical aperture sequence in each
of the repeated scans.
A . 12.4°

24 s 12s +
12 s blank

192s

Figure 1. Example of the pRF stimulus and experimental design. (A) The pRF stimulus at a single
time point. The bar aperture reveals the stimulus image pattern composed of colorful objects,
faces, and scenes at different scales, randomly placed across an achromatic pink noise
background. The fixation point at the center of the fixation grid changes from green to red and
red to green at random times. (B) Experimental design for a single scan across 192 s — the pRF
bar is swept across the screen in the eight cardinal directions, with each directional sweep lasting
24 s. Gray triangles indicate blank periods. Black regions correspond to the visual field covered
by the sweeping bar (excluding the stimulus aperture).

2.4 Structural and functional data acquisition

Structural and functional data were acquired on a 3T Siemens MAGNETOM
Prisma MRI scanner (Siemens Medical Solutions, Erlangen, Germany) at the
Center for Brain Imaging at NYU. Both the structural and functional images were
acquired using a Siemens 64-channel head coil. Between 1 and 2 full brain T1-
weighted (T1w) MPRAGE anatomical images were acquired for each participant
(TR, 2400 ms; TE, 2.4 ms; voxel size, 0.8mm? isotropic; flip angle, 8°), and were
auto-aligned to a template to ensure a similar slice prescription for all participants.
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For a subset of participants (n=11) for whom there was sufficient time in the
scanning session, a full brain T2-weighted (T2w) anatomical image was obtained
to aid in automatic segmentation (TR, 3200 ms; TE, 564 ms; voxel size, 0.9mm?
isotropic; flip angle, 120°). Between 4 and 12 functional echo-planar images (EPIs)
were acquired for each participant using a T2*-weighted multiband EPI sequence
(TR, 1000 ms; TE, 37 ms; voxel size, 2mm?; flip angle, 68°; multiband acceleration
factor, 6; phase-encoding, posterior-anterior) (Feinberg et al., 2010; Xu et al.,
2013). Additionally, two distortion maps were acquired to correct susceptibility
distortions in the functional images: one spin-echo image with anterior-posterior
(AP) and one with posterior-anterior (PA) phase encoding.

2.5 Preprocessing of structural and functional data using fMRIPrep

Anatomical and functional preprocessing was performed using fMRIPrep v.20.0.1
(Esteban et al., 2019; Gorgolewski et al., 2011). Each T1w anatomical image was
corrected for intensity inhomogeneity and was skull-stripped. Automatic brain
segmentation of cerebrospinal fluid, white-matter, and gray-matter was
performed on the skull-stripped T1w image using fast (Zhang et al., 2001). If
acquired, the T2w image was included as an additional input for brain
segmentation.  Cortical surfaces were then reconstructed using
Freesurfer’s recon-all (Dale et al., 1999) and an estimated brain mask was refined
using a custom variation of the method.

For each participant's functional images, the following preprocessing was
performed. A reference volume and its skull-stripped version were created using
the custom methodology from fMRIPrep. A BO-nonuniformity map was estimated
based on the two spin-echo images with opposing phase-encoding directions
(i.e., the AP and PA distortion maps). Using the estimated distortion, a corrected
functional reference image was calculated to ensure accurate co-registration with
the anatomical reference. The functional reference was co-registered to the T1w
anatomical reference. Co-registration was configured with six degrees of
freedom.

Head-motion parameters with respect to the functional reference (transformation
matrices) were estimated first. The functional images were then slice-time
corrected in which all slices were realigned in time to the middle of each TR. The
resampling of the slice-time corrected functional data to the T1w anatomical
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space was performed in a one-shot interpolation by composing all the pertinent
transformations (i.e., head-motion transform matrices, susceptibility distortion
correction, and coregistration to the T1w anatomical space). The single
interpolation step reduces the effect of blurring the signal multiple times across
multiple transformations.

Finally, these pre-processed time-series data were resampled onto the fsnative
surface using Freesurfer's mri_surf2vol by averaging across the cortical ribbon.

2.6 Population receptive field model

PRF analysis was conducted using vistasoft
(https://vistalab.stanford.edu/software/, Vista Lab, Stanford University). Here, a
pRF is modelled as a circular 2D-Gaussian, as described in Dumoulin and Wandell
(2008). The Gaussian is parameterized by values at each vertex for x, y, and o.
The x and y parameters specify the center position of the 2D-Gaussian in the
visual field. The o parameter, the standard deviation of the 2D-Gaussian, specifies
the size (or spread) of the receptive field. The 2D-Gaussian is multiplied pointwise
by the stimulus contrast aperture, and then convolved with a hemodynamic
response function (HRF) to predict the BOLD percent signal change (or 'BOLD
signal'). The HRF is parameterized by 5 values, describing a difference of two
gamma functions, as used previously (Dumoulin & Wandell, 2008; Friston et al.,
1998; Harvey & Dumoulin, 2011; Worsley et al., 2002). The HRF was assumed to
be the same across vertices within a participant but differed among participants.

The vistasoft pRF model was implemented using the prf-analyze-vista docker
container (https://github.com/vistalab/prfmodel; (Lerma-Usabiaga et al., 2020).
The software finds the optimal pRF parameters for each vertex, and the optimal
HRF parameters averaged across vertices, by minimizing the residual sum of
squares between the predicted time-series and the BOLD signal. This is
completed using a multi-stage coarse-to-fine approach. The basic two-stage
coarse-to-fine component is described in detail by Dumoulin and Wandell (2008),
and the addition of the HRF fit is described in detail by Harvey and Dumoulin
(2011). In brief, in the first stage, the data were temporally decimated by a factor
of two to remove high frequency noise and the pRF parameters (x, y, and o) were
fit using a brute force grid search. The results of this fit were taken as the starting
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point of a second-stage search fit for these parameters using the full time-series.
The pRF parameters were then held fixed and the HRF parameters were fit by a
search, choosing the parameters that minimize the squared error between data
and prediction averaged across vertices. Finally, the HRF parameters were held
fixed and the pRF parameters were refit to the data.

We implemented the pRF model on three formats of data. First, we solved the
pRF model for each vertex on individual participant data to produce pRF maps
on fsnative surfaces. Second, for each participant, we interpolated the pRF maps
by nearest neighbor from the fsnative space to the fsaverage space. This
interpolation puts the pRF model solutions for all participants in the same brain
space, enabling us to derive the vertex-wise median parameters across all
participants. Third, we interpolated each participant's average time-series from
the fsnative to the fsaverage surface, and then solved pRF models for each vertex
on the time-series averaged across all participants to compute group-average
pRF maps on the fsaverage surface. The second and third methods differ in the
order of operations: the second computes median parameters from all individual
participants' time series, and the third computes a single set of parameters on the
averaged time series. These three implementations are described in detail below.

2.6.1 Implementing the pRF model: Individual participants and the parameter-
median data

First, we solved the pRF model for individual participants on their fsnative surface.
For each participant, the time-series data across multiple preprocessed scans
with the same stimulus were averaged to create a participant-averaged time-
series. The participant-averaged time-series was then transformed to BOLD
percent signal change (i.e., percent change at each TR from the mean signal
across all TRs). We fit the pRF model to this BOLD signal in fsnative space. An
example of the pRF model fit to an individual participant’s BOLD signal from a V1
and a V2 vertex is shown in Figure 2A and B.
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Figure 2. Examples of the pRF model fit to an individual participant's (wlsubj126) and the group-
average BOLD percent signal change for two example fsaverage vertices in V1 and V2. (A-B)
The BOLD signal and pRF model fit for a V1 and V2 vertex for an individual participant. (C-D)
The BOLD signal and pRF model fit for a V1 and V2 vertex for the group-average time-series
data. (E) Visual field representation with pRFs plotted for V1 and V2. The inset text lists the
predicted x and y values, representing the pRF center coordinates (in degrees), and the ¢ value,
representing the pRF size (in degrees), and the R? which is the variance explained of the pRF
model fit to the BOLD signal.

Next, we computed parameter-median pRF maps. We computed the median
(rather than the mean) as pRF estimates vary substantially across individuals
(Harvey & Dumoulin, 2011; Song et al., 2015) and are not normally distributed (size
and eccentricity are truncated at 0, and polar angle may be truncated near the
vertical meridians). These parameter-median maps were used to complete vertex-
wise comparisons between the NYU and HCP data. We used the FreeSurfer
function mri_surf2surf to interpolate the pRF parameters by nearest neighbor from
each participant's fsnative surface onto the fsaverage surface. To generate the
parameter-median polar angle and eccentricity maps, we calculated the median
X, ¥, and o values for each fsaverage vertex across all participants and converted
these values to polar angle, eccentricity, and pRF size parameters.
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2.6.2 Implementing the pRF model: The group-average time-series data

We implemented the pRF model on group-averaged time-series data for map
visualization and for visual comparison with the HCP data, which also include
group-average time series and pRF model solutions (Benson et al, 2018).

We generated the group-average time-series as the vertex-wise average of each
participants' average time-series on the fsaverage surface. To do so, we averaged
each participants' time-series across runs (number of runs varied between 4 and
12) on the fsnative surface. The participant average time-series was then
resampled onto the fsaverage surface using nearest neighbor interpolation. Each
of the participant-average time-series (n=44) were then averaged together to
create a group-average time-series. The group-average time-series at each vertex
was transformed into a group-average BOLD signal. The pRF model was then fit
to the group-average BOLD signal to compute group-average pRF maps on the
fsaverage surface. An example of the pRF model fit to the group-average BOLD
signal from a V1 and a V2 vertex is shown in Figure 2C and D.

2.7 HCP 7T Retinotopy Dataset

The HCP 7T Retinotopy Dataset, as described by Benson et al. (2018), contains
pRF model solutions for 181 participants. The methods for acquisition and
analysis of these data are described in detail in the prior paper. We summarize a
few key features here, particularly those that differ from the NYU data. The HCP
data were collected at the Center for Magnetic Resonance Research at the
University of Minnesota, using a Siemens 7T Magnetom scanner (1.6mm isotropic
voxel size) and a 32-channel head coil. The data were processed using specific
HCP pipelines, including multimodal surface matching (‘MSMall') for surface
registration, as described by (Glasser et al., 2016). Notably, the publicly available
HCP pRF estimates (https://osf.io/bw9ec/) were computed using the analyzePRF
algorithm (Kay et al., 2013). Here, we recomputed the pRF estimates using
vistasoft to remove any differences that might arise from differences in pRF
software (see (Lage-Castellanos et al., 2020; Lerma-Usabiaga et al., 2020). We
make these vistasoft pRF estimates publicly available via our OSF (Open Science
Framework) repository (link to be made available with publication). These and
other differences are summarized in Table 1.
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NYU HCP
Participants 44 181
MRI Strength 3 Tesla 7 Tesla
Voxel Size 2mm isotropic 1.6mm isotropic
Stimulus Aperture Bars Bars, wedges, and rings
Stimulus Extent 12.4° (radius) 8° (radius)
Stimulus Width 3.1° 2°
Stimulus Update 3 Hz 15 Hz
Stimulus Motion Discrete steps Continuous drift
Pre-processing fMRIPrep HCP Pipeline
pRF Model vistasoft analyzePRF for prior public release

(reanalyzed with vistasoft here)

Table 1. Key differences between the NYU and HCP Retinotopy Datasets.

We implemented the vistasoft pRF model on two formats of HCP data. First, we
implemented the pRF model on individual participants on the fsaverage surface.
Using these data, we then computed HCP parameter-median pRF maps. Second,
we implemented the pRF model on the group-average time-series on the
fsaverage surface.

To implement the pRF model on individual HCP participants, we included six
scans (2x bar runs, 2x wedge runs, and 2x expanding/contracting ring runs, at 5
mins each; see Benson et al. (2018) for examples of these stimuli). The time-series
from these scans were then transformed to BOLD percent signal change and then
concatenated together. The vistasoft pRF model was fit to this BOLD signal. We
then computed HCP parmeter-median pRF maps to complete vertex-wise pRF
comparisons with the NYU data; we calculated the median x, y, and o values
across all HCP participants and converted these values to polar angle,
eccentricity, and pRF size parameters, for each fsaverage vertex.

To estimate the HCP group-average pRF maps, all 181 of the participants' time-
series on the fsaverage surface were averaged together at each vertex
independently for each stimulus type (bar, wedge, and ring) to create group-
average time-series. These were transformed to BOLD percent signal change at
each vertex. We implemented the vistasoft pRF model on these HCP group-
averaged BOLD signals to produce group-average pRF maps.
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2.8 Defining visual area regions of interest

Regions of interest (ROIs) were defined using the Wang Maximum Probability
Atlas (Wang et al., 2015). We identified V1, V2, V3, and hV4. The atlas defined
ROIs were used for vertex-wise comparisons between the NYU and HCP
Datasets. Additionally, we defined these ROIs by hand on the fsnative flatmaps
for individual NYU participants using Neuropythy v0.11.9
(https://github.com/noahbenson/neuropythy; (Benson & Winawer, 2018),
following the nomenclature of Wandell, Dumoulin, and Brewer (2007), and of
Winawer & Witthoft (2015, 2017) for hV4. The ROI label files, and the code used
to draw the ROls, are made publicly available via the NYU Retinotopy Dataset
OSF (link to be made available with publication). The hand-labeled V1 ROI was
used to compute cortical magnification within the retinotopic maps.

2.9 Defining wedge-ROQls to measure polar-angle meridian asymmetries in cortical
magnification

Recently, polar angle meridian asymmetries in V1 cortical magnification have
been identified as retinotopic features in the HCP data (Benson et al., 2021). We
tested whether these cortical magnification asymmetries are also found in the
NYU Retinotopy Dataset. We defined a number of ROIs in V1 corresponding to
wedges in the visual field. The wedges were defined using a combination of
Neuropythy and custom MATLAB code.

The wedges varied in their polar angle center. They were centered on either the
left or right horizontal meridian, the upper vertical meridian, or the lower vertical
meridian. The polar angle extent of the wedge-width also varied. We tested a
range of wedge widths: +15°, £25°, +35°, £45°, and +55°. The surface area of the
vertices within these wedge-ROIs was summed to find the amount of cortical
surface dedicated to processing visual space within these wedges.

PRF polar angle estimates contain measurement noise. Thus, a wedge in the
visual field does not typically project to a single enclosed region on the cortex,
but rather to a patchy and dispersed set of regions (see Figure 8B in Benson &
Winawer, 2018). This complicates the computation of surface area. It is likely that
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absent measurement noise, the ground truth retinotopic projection of a wedge in
the visual field is a single, enclosed region on the cortical surface. Our goal in
defining wedge-ROIs was to make reasonable estimates of the surface area of
these cortical regions. To do so, we used a procedure similar to that described
by (Benson et al., 2021). In brief, we define a cortical ROl corresponding to a
wedge in visual space. We do so by generating several sub-ROls, each of which
is constrained to a narrow eccentricity band, and each of which has a width in the
polar angle direction derived from the average location of a pool of vertices whose
pRF coordinates lie near the wedge boundary in visual space. The eccentricity
defined sub-ROls are then concatenated to yield one full wedge. We describe the
specific implementation in more detail below and provide a visualization of the
process to define the iso-angle boundary of a 15° wedge extending from the
upper vertical meridian in Figure 3.
A Left hemishpere V1 B  Right visual field

15° iso-angle boundary
(m mm distance)

1-8°

Figure 3. Defining wedge-ROls and eccentricity band sub-ROls. The wedge-ROI on the cortex
(A) is defined as a wedge in the visual field (B). As there is measurement noise in the retinotopy
data, the visual field wedge will not project to a single, enclosed region on the cortex. To
circumvent this, we find all vertices in the V1 map which lie between 0 and m mm distance from
the appropriate meridian. The vertices along the hand-drawn meridian are by definition at 0 mm
from the meridian. To identify the distance m; of the +15° iso-angle boundary line from the upper
vertical meridian in the i™ eccentricity bin, we calculate the average cortical distance of the
vertices that fall +8° around the 15° polar angle data. The +8° boundaries are represented by the
dashed black lines in (A) and (B). The average cortical distance of the +15° iso-angle boundary
from the UVM is calculated separately for each of 10 log spaced bins (pink lines in A and B). We
then define the wedge-ROI mask on the cortex (the blue data in A) as all the vertices between 0
mm distance and m; mm for each eccentricity sub-region. The cortical surface area within the
wedge-ROI mask is summed across the 10 sub-regions. This is repeated for the right
hemisphere (left visual field) to define the opposite portion of the UVM wedge.
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2.9.1 Cortical distances

First, we computed the shortest distance on the cortical surface between each
pair of vertices (using Dijkstra’s algorithm - the same algorithm that powers point-
to-point navigation on google maps; (Dijkstra, 1959); and the appropriate cardinal
meridian. For each participant and each hemisphere, we manually defined three
line-ROls in V1, for the horizontal, upper, and lower vertical meridians. The cortical
representation of the horizontal meridian runs through the approximate middle of
V1, the upper vertical meridian representation follows the V1/2 ventral boundary,
and the lower vertical meridian representation follows the V1/2 dorsal boundary.
The line-ROls were drawn on the flattened cortical surface using Neuropythy. The
manual definitions were informed by anatomy (curvature map) and pRF maps
(polar angle and eccentricity). These line-ROls were used to generate three
cortical distance maps for each hemisphere. These cortical distance maps specify
the distance of each vertex from each meridian.

2.9.2 Eccentricity boundaries for sub-ROlIs

Next, we divided the V1 map into 10 eccentricity bands, log spaced between 1°
and 8° of eccentricity. These eccentricity bands were used as sub-ROls. To
ensure that each eccentricity band was a contiguous region, the bands were
defined using the retinotopic maps generated by Bayesian inference (Benson &
Winawer, 2018), which combines the participant's vertex-wise pRF estimates with
a previously defined retinotopic template to produce a denoised estimate of the
visual field. The eccentricity bands were log-spaced in the visual field so that they
would be approximately equally spaced in the cortex, as in Benson et al. (2021).
The question we addressed here concerns asymmetries in surface area with
respect to polar angle, thus, we did not rely on the Bayesian estimates of polar
angle. The Bayesian optimization does not explicitly model cortical magnification
and thus can induce noise in calculations of an ROl's surface area. Instead, we
used Neuropythy to implement an optimization that 'cleaned' polar angle pRF fits
in V1 for each participant. This minimization seeks to adjust the pRF centers of
the vertices as little as possible in order to simultaneously enforce a smooth
cortical magnification map, as measured at the individual surface vertices, and
correct the field-sign values across V1. Note that these Bayesian eccentricity
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estimates were used only for this ROl method, not for any comparisons of the
pRF properties between datasets.

2.9.3 Polar angle boundaries for sub-ROls

Next, within each eccentricity band, we used the cortical distance maps to
compute the average distance of an iso-angle line, representing the outer
boundary of the wedge in the visual field, from the center of the wedge (and thus
one of the visual field meridians). The iso-angle line was identified by calculating
the average distance of the vertices, that had an R? above 15%, in the region of
cortex 'around' the iso-angle boundary at the defining polar angle value for the
wedge-width (i.e., for a 15° wide wedge, this outer iso-angle boundary occurs at
15° in visual space). The vertices 'around' the iso-angle boundary were identified
using the cleaned polar angle maps, and were defined as the vertices that fell +8°
polar angle from the iso-angle boundary. We identified the average cortical
distance of these vertices to calculate the average cortical distance for the iso-
angle line. This was repeated for each eccentricity band.

2.9.4 Closing the sub-ROI

For each eccentricity band, we identified the vertices with a cortical distance
between Omm (i.e., those that fall along a meridian) and the average cortical
distance of the iso-angle line. This process is repeated to create a mask for each
eccentricity band, for each side of the wedge, and each meridian.

2.9.5 Wedge-ROI

In the final step, we overlay the wedge mask on cortical surface area maps. These
cortical surface area maps were generated for each participant using Neuropythy
and specify the cortical surface area (in mm?) of each vertex on the fsnative
surface. The cortical surface area is calculated by summing the surface area of
the vertices within the wedge mask. The output value is the total surface area of
the wedge. For each wedge, the surface areas from the left and right hemisphere
are summed together to calculate the surface area for the full horizontal meridian,
upper vertical meridian, and lower vertical meridian. The upper and lower vertical
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meridian surface areas are summed to find the surface area of the full vertical
meridian.

2.10 Data visualization

To visualize individual participant retinotopic maps, we mapped each
participant's pRF data onto their inflated fsnative surface. The fsnative surface
was then transformed into a sphere, and orthographically projected to a flatmap
with pRF data rotated so that the occipital pole aligned to the center of the map
(see Figure 4 for these transformations). To visualize group-average time-series
and parameter-average retinotopic maps, this process was repeated however the
pRF data was mapped onto the fsaverage surface, rather than an fsnative surface.

White Inflated Sphere Orthographic projection

Figure 4. Transform of a left hemisphere cortical surface from white matter mesh through to
orthographic projection on a flatmap. The pRF data (in this example, subj004's eccentricity map)
are projected onto the fsnative surface. The surface is then inflated and smoothed, warped into
a sphere, and then rendered as a flatmap with the occipital pole rotated to be at the center of
the map.

3. Results

We present our results across three sections. First, because the NYU Retinotopy
Dataset is new and publicly available (access via: link to be made available with
publication), we provide a description, including visualizations of pRF maps
computed from individual participants and the group-average time-series. This
communicates the quality and consistency of the data, similarities and differences
among individual maps and group-average maps, the effect of how the average
is computed, and the agreement of our data to a previously published atlas. In
addition, we provide publicly available Jupyter Notebook code to visualize
individual retinotopic maps, via cortical flatmap or inflated mesh, for all of the NYU
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and HCP data. Second, we quantify the similarity of NYU and HCP vertex-wise
pRF estimates (polar angle, eccentricity, and pRF size) in V1, V2, V3, and hV4.
Third, we report whether the polar angle asymmetries in V1 cortical magnification
previously reported in the HCP data (Benson et al., 2021) can be generalized to
the NYU data.

3.1 NYU Retinotopy Dataset: Individual participants

PRF model solutions were computed for each of the 44 individual participants on
the fsnative surface. Examples of polar angle, eccentricity, and pRF size maps for
three example participants (subj004, subj014, and subj042) are illustrated in
Figure 5. The data are plotted similar to Figure 7 in Benson et al. (2018) for ease
of comparison to the HCP retinotopy single-participant data. V1, V2, V3, and hV4
ROls are drawn in black along the polar angle boundaries. The same pRF maps
on inflated meshes are available in Supplementary Materials Figure S1. The
retinotopic maps are visualized out to 20° eccentricity to show the full data
available; it is possible to find pRFs centered outside the maximum stimulus
extent (12.4°), as some portion of the neural receptive fields will overlap the pRF
stimulus, thereby allowing one to estimate their pRF parameters. We do not
include the pRFs beyond the stimulus extent in our analyses as they may be
biased towards lower eccentricities as the same response might be explained by
either a small pRF close to the stimulus edge or a large pRF far from it.

The individual participant maps show clear polar angle, eccentricity, and pRF size
representations, and for each participant the maps follow the same broad
retinotopic organization, though they differ in detail. For example, the location and
size of dorsal V3 are quite different between subj004 and subj014. In addition, the
representation of the lower visual field in hV4 differs, with subj004 but not the
other two subjects showing representation all the way to the lower vertical
meridian (red) (Figure 5).

18


https://doi.org/10.1101/2021.04.12.439348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.12.439348; this version posted September 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Polar Angle Eccentricity pRF size

[ ——
0 4 8 12 16
pRF size [deg]

subjo04

subjo14

subjo42

Figure 5. Examples of polar angle, eccentricity, and pRF size maps for three individual
participants (subj004, subj014, and subj042). The maps are presented on cortical flat maps on
the fsnative surface of the left hemisphere. V1, V2, V3, and hV4 ROI boundaries are defined in
black. R*threshold = > .12.

3.2 NYU Retinotopy Dataset: Group-average time-series data
We averaged across 44 participant-averaged time-series on the fsaverage surface

to create a group-average time-series. The group-average time-series will blur out
some features of the fMRI response, particularly in higher-level visual areas where
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the topography of the maps might not be closely linked to the sulcal patterning.
In V1, V2, and V3, many features of the retinotopic maps are preserved after
averaging, and the time-averaged data offer a succinct summary of the dataset
with a high signal-to-noise ratio. The HCP Retinotopy Dataset also includes the
group-averaged time-series data, and hence doing so makes for a useful
comparison.

The group-average time-series was transformed to BOLD signal and pRF model
solutions were calculated. In Figure 6, we present retinotopic maps of the group-
averaged data projected onto the inflated fsaverage surface for the left and right
hemispheres. The visual field representations are located across the occipital
cortex and extend along dorsal and ventral regions, as well as frontoparietal
cortex (Mackey et al., 2017). These visualizations highlight large-scale structure
across cortex, such as the continuous parafoveal representation (magenta) from
the parietal lobe to the occipital lobe to the ventral surface. However, the inflated
surfaces self-occlude, so we next show flattened views of the two hemispheres
separately.

Polar angle Eccentricity pRF size

7 g \' ‘
| ——
0 4 8 12 16
PRF size [deg]
0° 20°

Figure 6. Group-average time-series polar angle, eccentricity, and pRF size maps shown on the
left and right hemisphere fsaverage inflated surface.

In Figure 7 we present the group-average polar angle, eccentricity, and pRF size
maps for the left and right hemispheres on an fsaverage flatmaps, with the
occipital pole aligned at the center of the flatmap. The Wang Maximum Probability
Atlas (Wang et al., 2015) is overlaid on the retinotopic maps. The ROI borders
from the Wang Atlas are well-aligned to the polar angle reversals. However, the
V1/V2 dorsal boundary appears to be slightly misaligned, falling slightly superior
to the red polar angle data. This is common in both the left and right hemisphere.
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Thus, we suspect that the vertices falling within the Wang V1d ROI contain a small
number of vertices from the V2d ROI.
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Figure 7. Group-average NYU retinotopic maps shown on the fsaverage flatmaps for the left and
right hemisphere. The top row presents flatmaps of the left hemisphere (representing the right
visual hemifield) and the bottom row presents flatmaps from the right hemisphere (representing
the left visual hemifield). Black boundaries are ROI definitions derived from the Wang Maximum
Probability Atlas (Wang, Mruczek, Arcaro, & Kastner, 2015).

The maps show the expected retinotopic organization, particularly in the early
visual areas; there is a clear polar angle representation with reversals occurring at
the ROI boundaries, eccentricity estimates increase with distance from the foveal
representation, and pRF sizes increase with eccentricity while scaling to be larger
in higher-order areas.

There is an artifact in polar angle estimates around the occipital pole, representing
the most foveal region of the visual field. These regions show anomalous polar
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angle representations of the ipsilateral visual field. For example, in Figure 7, there
is a patch of purple and blue polar angle data around the fovea of the left
hemisphere, and there is a patch of yellow and green polar angle data for the right
hemisphere. A similar effect was found for individual participants (see Figure 5);
however, it was not found in the HCP group-average time-series data, perhaps
due to the inclusion of rotating wedge stimuli in the HCP experiments. (See
Supplementary Materials S2 for HCP group-average time-series pRF maps from
vistasoft).

3.3 Vertex-wise reproducibility of pRF parameters between the NYU and HCP
retinotopy data: eccentricity, polar angle, and pRF size

We tested the similarity of polar angle, eccentricity, and pRF size estimates
between the NYU and the HCP Retinotopy Datasets. To compare the two
datasets, we identified the median pRF parameters at each vertex on the
fsaverage surface separately for the two datasets. This puts both datasets on a
standardized and common surface, making it possible to complete vertex-wise
comparisons. For comparison, we group the vertices using V1, V2, V3, and hV4
ROIs from the Wang Atlas. The Wang Atlas contains ROls that are originally
defined on neither the HCP or the NYU data. This provides an automated,
reproducible way to bin data in the same manner for the two datasets, even
though the atlas-based ROIls only approximately match the visual field maps
defined at the level of individual participants. Visualizations of the NYU and HCP
parameter-median pRF maps, including variance explained maps, are presented
Figure 8.
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Figure 8. Median-parameter retinotopic maps for the NYU and HCP data shown on fsaverage
flatmaps for the left and right hemisphere. The top two rows present the median-parameter maps
for the NYU data, and the bottom two rows present the median-parameter maps for the HCP
data. Black boundaries are ROI definitions derived from the Wang Maximum Probability Atlas
(Wang, Mruczek, Arcaro, & Kastner, 2015). Note that pRF sizes are larger in the group-average
time-series maps in Figure 7 than the parameter-average maps shown here; this is due to
blurring of the fMRI signal during time-series averaging, resulting in larger pRF size estimates.
Likewise, eccentricity estimates appear greater in the Figure 7 group-average time series maps;
this is because of individual variation in the anterior V1 border across participants in the
parameter-median data.
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We compared pRF estimates for vertices that passed inclusion criteria within each
ROI (V1, V2, V3, and hV4). Data close to the fovea are challenging to measure,
especially for the NYU data which show ipsilateral polar angle representations
around the fovea. Conversely, potential edge effects occur at higher eccentricities
in the HCP data, where pRF size begins to decrease with increasing eccentricity
beyond 6°. Thus, we retained vertices that fell between 0.2° and 6° of eccentricity
and survived a 40% variance explained threshold. A vertex was required to meet
these criteria for both the NYU and HCP parameter-median data to be included
in the analysis. The variance explained threshold removed 14.4% of the vertices
within this eccentricity range in the V1 to hV4 maps. In Figure 9, we present
scatterplots comparing vertex-wise NYU and HCP pRF estimates for vertices
within V1, V2, V3, and hV4.
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Figure 9. Scatterplots comparing vertex-wise pRF estimates from the NYU and HCP parameter-
median data (visualized in Figure 8) within V1, V2, V3, and hV4. Each data point represents an
fsaverage vertex that has survived a double mask. (A) Vertex-wise comparison of polar angle

estimates. 0° to +180° polar angle represents the right visual hemifield (with 0° at the upper

vertical meridian and -180° the lower vertical meridian), and 0° to -180° polar angle represents
the left visual hemifield. (B) Vertex-wise comparison of NYU and HCP eccentricity estimates. (C)
Vertex-wise comparison of NYU and HCP pRF size estimates. Note the different values of the X
and Y axis for the hV4 plot in panel C. The black dashed line represents y = x. All reported r
values are highly significant (o < .001) and m represents slope.

The polar angle estimates fall close to the identity line and are highly correlated in
V1 (circular correlations (Fisher & Lee, 1983); r*™® = .98), V2 (" = .97), V3 (r°"® =
.96), and hV4 (r°* = .95), indicating a close match between NYU and HCP polar
angle data (Figure 9A). Notably, there are gaps in the data along the polar angle
reversals for each visual field map (0° and +180° for V1 and hV4, and 0°, +90, and
+180° for V2 and V3). This is likely due to averaging effects, both at the level of
individual participants, because voxels pool signals from many neurons, and at
the group level, because the borders between visual areas are not in perfect
register across participants.
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The eccentricity estimates are also highly correlated in V1 (linear correlations; r =
.96), V2 (r =.93), V3 (r = .94), and hV4 (r = .90) (Figure 9B). However, unlike polar
angle estimates, there are systematic biases in eccentricity. The NYU eccentricity
estimates are generally greater than those from the HCP data in all ROls. The
slopes of the data were similar in V1 (m = .75), V2 (m = .73), V3 (m = .70), and
lower in hV4 (m = .38). Thus, in V1 to V3, for every 1° change in NYU eccentricity,
the HCP eccentricity estimate changes by ~0.70°. The larger disagreement
between the two datasets in hV4 is addressed in the Discussion. Comparisons of
NYU and HCP cortical magnification plotted as a function of eccentricity (V1-V3)
are available in Figure S3.

The pRF size estimates are well correlated in V1 (linear correlations; r = .76), V2 (r
= .87), V3 (r = .86), and hV4 (r = .78) (Figure 9C). Similar to the eccentricity
estimates, there are systematic biases in pRF size: the NYU pRF size estimates
are typically larger than those derived from the HCP data. The slopes of the data
are similar in V1 (m = .78), V2 (m = .91), V3 (m = .79), and as with eccentricity,
lower in hV4 (m = .37).

Typically, fMRI studies use far fewer participants than either of these two
datasets. An important question is how reproducible the data would be for smaller
datasets. To answer this, we repeated the correlation analyses for small
subsamples (20 participants from each dataset, with replacement), repeated 500
times (Figure S4). The correlations remain high, even with a reduction in sample
size.

3.4 PRF size vs eccentricity

The previous analysis showed differences between the two datasets in pRF size
and eccentricity for the vertex-wise comparisons. Rather than comparing
parameters matched by cortical location, we compared parameters matched by
eccentricity. Here, we plot the NYU and HCP pRF sizes as a function of
eccentricity for V1, V2, V3, and hV4, and fit a linear function through the data. The
NYU data (solid lines) and HCP data (dotted lines) show an increase in pRF size
as a function of eccentricity and the pRF sizes scale to be larger in sequentially
higher order visual areas for each dataset (Figure 10). When plotting the pRF sizes
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relative to eccentricity, the pRF sizes appear more similar between the two
datasets than they do when comparing the datasets aligned by location (Figure
9C). This is particularly so for V1 to V3. Nonetheless, even when plotted as a
function of eccentricity, some differences between the two datasets remain.
Specifically, the HCP data converge closer to the origin than the NYU data, and
the HCP hV4 data are generally smaller than NYU hV4 data. See Supplementary
Materials Figures S6 and S9 for analysis comparing parameter-median pRF
estimates for the HCP all stimuli data against the HCP bar only data, and
Supplementary Materials Figures S7 and S8 for analysis comparing parameter-
median pRF estimates for the NYU data against HCP bar only data.

8 -
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2L —NYUV2 HCP V2
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Figure 10. PRF sizes as a function of eccentricity for the NYU (solid lines) and HCP (dashed
lines) parameter-median data for V1, V2, V3, and hV4. pRF sizes are binned into 1° eccentricity
bins and a linear function is fit to the mean sizes. The NYU data are plotted to 0.5°-9.5°
eccentricity, whereas the HCP data are plotted out to 0.5°-6.5° eccentricity due to differences in
maximum stimulus extent. Note that the lines do not converge to the origin. If they are extended,
then the x-axis intercepts for the NYU fits are: V1: -3.5°, V2: -2.6°, V3: -4.2°, and hV4: -2.6°. The
x-axis intercepts for the HCP fits are: V1: -1.1°, V2: -1.7°, V3: -1.5°, and hV4: -1.0°. Error bars
are +1 SEM (vertices per bin), R? threshold => .40.

3.5 How accurately do the NYU pRF parameters predict the HCP BOLD signal?

One advantage of the pRF model is that it is generative. Once the pRF parameters
for a vertex are estimated, one can predict the complete time-series to other
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stimuli and experiments. The stimulus sequence of the NYU experiment differed
from the stimulus sequence used in the HCP experiment in many ways. The HCP
experiments included wedges and rings, which the NYU experiments did not;
there were numerous differences just for the bar stimuli alone used in both
experiments, including the maximal stimulus extent, discrete steps vs continuous
motion, the speed of the stimulus sweeps across the visual field, whether diagonal
sweeps were included, etc. A good and reliable computational model should be
able to predict fMRI responses to other stimuli in other circumstances. One test
of the quality of the NYU Retinotopy data, and of the pRF model itself, is how well
the NYU pRF models can explain the BOLD time-series from a separate dataset
that uses different stimulus types and has been collected under different
circumstances, such as the HCP Retinotopy data. Further, there is a non-linear
relation between predicted pRF parameters and the BOLD signal. A small change
in a pRF parameter can cause a large change in the predicted time-series, and
vice versa. Thus, one cannot directly infer how well the time-series (or predicted
time-series) will match based on comparing the pRF parameters alone.

Thus, we tested how accurately the NYU pRF estimates, together with the HPC
stimulus, can predict the HCP BOLD time-series. Specifically, we multiplied the
NYU pRFs by the HCP stimulus aperture sequence at each time point (after
convolving the stimulus with an HRF derived from the HCP data). For each vertex,
given that the gain differs due to field strength and other factors, we then applied
a multiplicative and additive term to best fit the HCP BOLD signal. From this we
calculated the variance explained value, which provides a quantification of how
well a predicted time-series derived from the NYU pRF parameters can explain
the HCP BOLD signal. This measure has the merit of reducing a multiple
parameter comparison (polar angle, eccentricity, and pRF size) to a single
summary value per vertex.

In Figure 11A we present variance explained maps on the left and right
hemispheres across the full surface of the brain. These maps show how well the
predicted time-series generated from NYU pRF parameters can be fit to the HCP
BOLD signal, thus the pRF parameters are fit to different data than they are
evaluated on (except for the different scale factors of the time-series). The
variance explained of the fits is high (above 70%) within V1-hV4 and remains high
in extended ventral and dorsal regions of visual cortex.
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Figure 11. Variance explained maps of the NYU-derived predicted time-series fit to the HCP
BOLD signal for the full left and right hemisphere, and histograms of the variance explained of
the NYU-derived predicted time-series fits in V1, V2, V3, and hV4. (A) Fsaverage flatmaps
illustrating the variance explained of the recreated NYU-derived model predictions fit to the HCP
BOLD signal. (B-E) Histograms of the vertex-wise variance explained (%) of the NYU-derived
model fits for V1 to hV4. The median variance explained of the fits are shown as a dotted colored

vertical line. Data are restricted to V1 to hV4 defined by the Wang atlas and between 0.2 - 6°
eccentricity.
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The median variance explained of NYU-derived predicted time-series fit to the
HCP BOLD signal was: 80% for V1 vertices, 82% for V2 vertices, 84% for V3
vertices, and 72% for hV4 vertices (Figure 11B-E). The NYU-derived predicted
time-series can be used to explain the HCP BOLD signal, even though the
parameters used to build the recreated NYU predicted time-series come from a
different experiment that includes only bar stimuli (whereas the HCP BOLD signal
is elicited from bars, wedges, and rings).

3.6 Polar-angle meridian asymmetries in V1 cortical magnification

Recent work has identified polar angle asymmetries in V1 cortical magnification
using the HCP 7T Retinotopy Dataset. More cortical surface area is dedicated to
processing the horizontal than vertical visual field meridian (a cortical HVA), and
to the lower vertical than the upper vertical meridian (a cortical VMA) (Benson et
al., 2021; Silva et al., 2018). The surface area as a function of polar angle aligns
with performance on psychophysical tasks (Benson et al., 2021). Here, we tested
whether these cortical surface area asymmetries generalize to the NYU
Retinotopy Dataset.

For each participant, we calculated the cortical surface area of wedges that were
centered on the horizontal, upper vertical, and lower vertical visual field meridians
(see Figure 12A for an example). The wedges increased in width, from £15° to
+55°, and spanned 1° to 8° of eccentricity.

We were able to confirm the cortical HVA and VMA in our data. In Figure 12B and
12C, we present the mean V1 surface area measurements for the wedges. In
agreement with a recent study (Benson et al., 2021), there is more cortical surface
dedicated to processing the horizontal than the vertical meridian (Figure 12B).
Similarly, there is more cortical surface area dedicated to processing the lower
vertical than the upper vertical meridian (Figure 12C).
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Figure 12. Examples of wedges in the visual field and their representation on the cortical surface
of V1, and group-mean cortical surface area measurements plotted as a function of wedge width.
(A) An inflated left hemisphere. The black borders show the boundaries of V1. The right visual
field is mapped onto the left hemisphere of V1, and the wedges are centered on the upper vertical
meridian, right horizontal meridian, and lower vertical meridian. We sum the cortical surface area
of the vertices within each colored wedge to find the total surface area of each wedge. The
horizontal meridian wedge is +15° whereas the upper vertical meridian and lower vertical
meridian are +15° and -15° because the full upper vertical meridian and lower vertical meridian
wedge is formed by summing cortical space from the left and right hemisphere. (B) Cortical
surface area measurements for wedges centered on the horizontal and vertical meridians,
plotted as a function of wedge-width. (C) Cortical surface area measurements for wedges
centered on the upper and lower vertical meridians, plotted as a function of wedge-width.
Colored lines represent the average of 1000 bootstrapped linear fits to the data (colored data
points). The shaded error bar represents the 68% bootstrapped CI of the linear fit to the data.
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Next, we calculated HVA and VMA asymmetry indices for each participant and
each wedge. The HVA asymmetry index was calculated as the difference in
surface area between the vertical meridian and the horizontal meridian, divided
by the mean of the two, multiplied by 100. The VMA asymmetry index was
calculated as the difference in surface area between the upper vertical meridian
and the lower vertical meridian, divided by the mean of the two, multiplied by 100.
Thus, a positive HVA or VMA asymmetry indicates an effect in line with the
behavioral HVA or VMA and a larger index represents a stronger asymmetry.

The HVA asymmetry (Figure 13A) was around 65% for a +15° wedge and the
asymmetry decreased with increasing wedge-width. Thus, near the meridians,
there is almost twice as much surface area dedicated to processing the horizontal
compared to the vertical visual field meridian. The VMA (Figure 13B) was smaller,
though still substantial, with around a 30% asymmetry for a +15° wedge, and
again, the asymmetry decreased with increasing wedge-width. For both the HVA
and VMA, as the wedge width increases and the asymmetry decreases, the
confidence interval increases. Hence, the most robust asymmetries for wedge-
ROls are close to the meridians. HVA and VMA asymmetries for incremental +5°
wedge are reported in Supplementary Materials Figure S5.
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Figure 13. Group-mean HVA and VMA indices plotted as a function of wedge width. Green and
orange lines represent the average of 1000 bootstrapped linear fits to the mean values (colored
data points) at each wedge width. The light shaded error bar represents the 95% bootstrapped
Cl and the dark shaded error bar represents the 68% bootstrapped CI.
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4. Discussion

Here, we have described a new, publicly available dataset; the NYU Retinotopy
Dataset. We then tested the cross-dataset reproducibility between the NYU and
HCP Retinotopy Datasets. Although these two datasets differ in many aspects,
our goal was to examine how similar they are in terms of the retinotopic properties
of human V1 through to hV4. First, we tested the reproducibility of vertex-wise
pRF estimates in V1, V2, V3, and hV4. We found them to be strongly correlated
between the two datasets, but with systematically larger eccentricities and pRF
sizes in the NYU data. Second, we tested how well a predicted time-series
derived from the NYU pRF parameters fits the HCP data and found that these
NYU predictions explained above 70% of variance in the HCP BOLD signal. Third,
we compared the two datasets in terms of polar angle meridian asymmetries in
V1 cortical magnification. The NYU data showed the same pattern previously
reported for the HCP data (Benson et al., 2021): more cortical surface area was
dedicated to the horizontal than the vertical visual field meridian, and to the lower
than the upper vertical visual field meridian.

4.1 Benefits of the NYU Retinotopy Dataset and Data Availability

The NYU Retinotopy Dataset described and visualized here consists of a large set
of publicly available retinotopy data and can serve as a complement to the HCP
7T Retinotopy Dataset. All of the HCP data were acquired and processed in the
same manner, thus any potential limits or biases in one participant’s data may
apply to all of them. The same is true for the NYU data. For this reason, no matter
how large one dataset is, it is important to have multiple, independent datasets
to validate findings.

The NYU Retinotopy Dataset is publicly available for download (to be made
available with publication) and contains comprehensive data for all 44
participants. The dataset includes anatomical images, raw and preprocessed
functional images on the fsnative and fsaverage surfaces, vistasoft pRF model
outputs on fsnative and fsaverage surfaces, and hand drawn V1, V2, V3, and hV4
ROls for individual participants. Further, the organization and structure of the
dataset adheres to BIDS (Brain Imaging Data Structure ((K. J. Gorgolewski et al.,
2016). This means that the dataset is accessible, follows a clear and intuitive
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structure, and can be readily reanalyzed by others using scripts in which the
inputs adhere to BIDS conventions. For example, it should be relatively simple to
reanalyze the NYU Retinotopy Dataset with a different version of fMRIPrep or
implement a different pRF model.

Next, we provide hand-drawn ROI labels for V1, V2, V3, and hV4 for each
participant, facilitating further analyses of these areas by other researchers. We
do not provide explicit ROIs for other regions, instead we provide Jupyter
Notebook code and instructions for users to hand-define additional ROls in this
or other datasets using Neuropythy. The data were acquired for the whole brain,
enabling investigation of maps in a variety of findings outside occipital cortex,
such as the recent studies of retinotopy in hippocampus (Silson et al., 2021),
thalamus (Arcaro et al., 2015), cerebellum (van Es et al., 2019), and parietal and
frontal cortices (Mackey et al., 2017). Individual participant maps in the NYU
Retinotopy Dataset extend well beyond hV4 into higher-order field maps. There
are a number of competing hypotheses regarding the organization of higher-order
visual areas that remain unresolved. The NYU Retinotopy dataset can be used as
an additional dataset to help address competing hypotheses. For example these
data may enable neuroscientists to resolve disagreements in regards to the
retinotopic organization of maps in lateral occipital cortex (Amano et al., 2009;
Kolster et al., 2010; Larsson & Heeger, 2006), and anterior ventral maps (Arcaro
et al., 2009; Hansen et al., 2007; McKeefry & Zeki, 1997; Sereno et al., 1995; Wade
et al., 2002; Winawer & Witthoft, 2015). Currently, two widely used atlases, Wang
et. al. (2015) and Glasser et. al. (2016), have quite different parcellations of lateral
and ventral occipital areas of visual cortex. Finally, the data could also be used to
address questions of pRF shape, such as center surround organization
(Zuiderbaan et al., 2012), ellipticity (Silson et al., 2018), or possibly validate
recently identified areas in visual cortex (Elshout et al., 2018; Mikellidou et al.,
2017).

As we have implemented the vistasoft pRF model on the HCP data, we also
provide a new release of the vistasoft pRF model solutions for all 181 HCP
participants on the fsaverage surface (to be released with publication). This
complements the published pRF solutions from the same data using different
software.
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4.2 Vertex-wise polar angle, eccentricity, and pRF size estimates are well-
correlated between datasets

First, we tested the vertex-wise similarity of NYU and HCP polar angle,
eccentricity, and pRF size estimates using the parameter-median data. Overall,
the pRF estimates were strongly correlated between the two datasets.

Vertex-wise polar angle estimates were almost perfectly correlated between the
two datasets. Both the NYU and HCP data produced similar polar angle estimates
at each vertex, and this was consistent across visual areas. Previously, a within-
session split-half analysis of the HCP 7T Retinotopy Dataset identified polar angle
estimates as the most internally reliable pRF parameter (Benson et al., 2018).
Other work has shown that the polar angle estimates are consistent for the same
participants across sessions and across aperture types (van Dijk et al., 2016).
Here, we extend these analyses by showing that at the group level, the polar angle
maps are highly similar between datasets.

Similarly, vertex-wise eccentricity estimates were strongly correlated, however,
the two sets of estimates differed by a scale factor (~.75 in V1 to V3 and ~0.4 in
hV4), with the NYU eccentricity estimates higher than those derived from the HCP
data.

A scale factor difference in eccentricity between the datasets could arise for
multiple reasons. First, it could be due to an anatomical shift of one dataset
relative to the other. Specifically, one could account for the observed 3:4 ratio in
eccentricity estimates by a translation along the posterior-anterior axis of about 4
mm, assuming the cortical magnification function of (Horton & Hoyt, 1991).
Differences in the registration methods used during preprocessing might result in
such a small, but systematic, shift in alignment: A cortical curvature-based
alignment is used for the NYU data whereas a multimodal “MSMAII” alignment is
used for the HCP data (Glasser et al., 2016). The MSMAII alignment includes a
de-drifting relative to the MSMSulc algorithm, making a simple large-scale
translation unlikely. Nonetheless, the differences in methods are likely to produce
some differences in alignment. A second possibility is calibration errors in the
stimulus size. In each dataset, it was assumed that all participants viewed the
stimulus from a fixed distance (83.5 cm for NYU experiment and 101.5 cm for
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HCP experiment). Inevitably, there are small variations in the viewing distance,
and thus stimulus size, due to differences in the positioning of each participant in
the scanner. This has previously been noted in the methods of the HCP retinotopy
study (Benson et al., 2018). Errors in stimulus size estimation would result in a
scale factor difference in the eccentricity but not polar angle data, as is observed
in our data. Third, differences in eccentricity estimates might be linked to
differences in the pRF stimuli. The stimuli differed in temporal frequency (3 vs 15
Hz stimulus image update), width (3.1° vs 2°), and maximal extent (12.4° vs 8°
radius). Differences in estimated eccentricity possibly arise from non-linearities in
the neural response that are not modeled in the 2-D Gaussian pRF model. Finally,
any of these three factors might combine to give rise to the observed differences.

Like eccentricity, pRF sizes were well-correlated between the two datasets, with
a systematic bias towards larger pRFs in the NYU data. This bias was found in
V1, V2, V3, and hV4. The simplest explanation is that the pRF size difference is
caused by the same factors that cause the eccentricity difference. Supporting
this, when pRF size is compared to eccentricity within a dataset, the differences
between datasets are greatly reduced. For example, in both datasets, at 4°
eccentricity, the pRF sizes are about 1° in V1 and are about 2° in V3. Nonetheless,
some differences remain. In particular, the NYU pRF sizes were larger than the
HCP sizes at central eccentricities (below 3°) but the pRF sizes were relatively
similar in both datasets at more peripheral eccentricities (beyond 3° eccentricity).
In accordance with a previous report (Linhardt et al., 2021), differences in pRF
size may arise from the rotating wedge and expanding ring stimuli used in the
HCP experiments, but not the NYU experiments. This is because the wedge and
ring stimuli scale in size with eccentricity and may be useful for estimating small
pRF sizes near the fovea.

In a supplemental analysis, we tested whether restricting the HCP data to bar
scans alone would result in larger foveal pRF sizes. In V1 - hV4, HCP bar only pRF
sizes were larger around foveal eccentricities when compared to HCP pRF sizes
computed from the bar, wedge, and ring stimuli. We then tested whether using
HCP bar only data could account for differences in pRF size between the NYU
and HCP datasets. We found that V1 and V2 foveal HCP pRF sizes computed
from HCP bar only data were larger than the NYU pRF sizes. The HCP pRF sizes
in V3 were similar (although marginally smaller) than those in the NYU data, and
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this marginal difference was consistent across eccentricity. The HCP pRF sizes
remained smaller in hV4 when compared to the NYU data, and this was also
consistent at all eccentricities. These supplementary analyses show that using a
bar stimulus increases pRF sizes around the fovea relative to using wedges, rings,
and bars, and this suggests that there must be additional contributors (beyond
the inclusion of the rotating wedge and expanding/contract ring stimuli) to the
differences between NYU and HCP pRF sizes.

4.3 Differences between the NYU and HCP datasets in hV4

The hV4 map properties differ more between the two datasets than the V1, V2,
and V3 map properties. Several factors may contribute to this difference. First,
because the two datasets were aligned to the template surface using different
algorithms, there is likely to be some degree of systematic spatial warping
between the two datasets. A spatial warping will cause a relatively larger
misalignment between small visual areas than large visual areas. This could
explain the shallow slope in the hV4 vertex-wise scatter plots of both eccentricity
and pRF size. Second, we compared map properties between the two datasets
using visual field map ROIs defined by an anatomical template, rather than ROls
identified in individual participants based on functional data. Anatomical atlases
tend to be most accurate for early visual areas, especially V1 (Benson et al., 2012),
but also V2 and V3 (Benson et al., 2014; Benson & Winawer, 2018). They tend to
be less accurate for higher visual areas such as hV4 (Wang et al., 2015). As a
result, the hV4 comparisons are likely to include more data from other neighboring
areas than the V1, V2, and V3 comparisons. Third, the two datasets differ in voxel
size. The NYU voxels at acquisition are about two times greater in volume than
the HCP voxels. Greater volume could result in larger pRF sizes, as PRF size
depends on both neural receptive field size and the scatter of neural receptive
field centers across the visual field (Dumoulin & Wandell, 2008). At acquisition,
larger voxels contain more neurons and hence more scatter. Neural receptive field
scatter will likely have a large effect on estimated pRF size for voxels in small
visual areas. If a visual area is small (such as hV4, which is about half the size of
the V1 to V3 maps) then the neurons within a single voxel will sample a relatively
large portion of the visual field, hence there will be more scatter per voxel. The
effect of voxel size on pRF size, however, is potentially complicated by pre-
processing procedures, especially the spatial resampling of the fMRI data to the
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surface. For example, the HCP pRF analyses were conducted on a spatially
downsampled mesh, which could blur the time series and affect pRF size.

4.4 Fitting predicted time-series based on the NYU pRF parameter estimates to
the HCP BOLD percent signal change

We assessed cross-dataset reproducibility by comparing vertex-wise pRF
parameters between the NYU and HCP datasets. A good model should also be
able to predict the time-series data, in addition to the estimated parameters. If the
estimated parameters were identical, then it would trivially follow that the
predicted time-series would also match. However, the relation between pRF
parameters and the time-series is non-linear. Thus, the similarity of the time-series
between the datasets is not directly inferred from the similarity of the pRF
parameters. We showed that indeed, the NYU pRF dataset could be used to
predict the HCP BOLD signal of the vertices within the V1-hV4 maps, with high
variance explained (more than 70%). This is a strong test of generalization, as
there are many differences between the datasets, such as wedge and ring stimuli
in the HPC data, and only bar stimuli in the NYU data.

Finally, the variance explained metric provides a condensed overview of the
cross-dataset reproducibility. This metric takes three parameter comparisons
(polar angle, eccentricity, and size) and reduces it to one (variance explained, R?).
This single metric is easily visualized as an overview map, which shows high
variance explained in visual cortex, especially V1-hV4, but also nearby lateral,
temporal, and dorsal regions, suggesting that cross-dataset reproducibility
extends outside the regions tested here.

4.5 Implications of the similarities and differences between the NYU and HCP
Datasets

The pattern of similarities and differences between the two datasets is important
for quantitative interpretation of retinotopic data, especially with respect to
comparisons among data from different sites. The polar angle data are highly
consistent between the NYU and HCP experiments, with circular correlation
coefficients above 95% in each of V1, V2, V3, and hV4. Polar angle is especially
important for identification of visual area boundaries, thus different studies are
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likely to be able to achieve close agreement in delineation of visual field maps.
Why do the polar angle estimates show such close agreement? First, polar angle
estimates are immune to differences in scale of stimulus coordinates. Second,
they are likely to be insensitive to differences in voxel size. Third, pRF model
predictions, given typical stimulation sequences, are sharply tuned to polar angle,
enabling precise estimates of this parameter (Lage-Castellanos et al., 2020;
Lerma-Usabiaga et al., 2020).

The small but systematic differences in eccentricity and pRF size indicate that a
measure of tolerance is required when generalizing from one dataset to another.
For example, the anatomically defined retinotopic template from Benson and
Winawer (2018) was generated using the HCP data. If the template is applied to
a different dataset without constraints from functional measures, there might be
a small-scale factor error in the eccentricity estimates in V1, V2, and V3, and a
larger error in hV4 and other higher visual areas. The fact that the parameter
estimates are so strongly correlated between the datasets indicates that random
noise plays a minimal role in generating the differences in eccentricity and pRF
size seen here. In turn, this suggests that it should be feasible to resolve the
modest between-dataset differences, for example, with a corrective spatial
warping or a calibration using a standardized stimulus and anatomical landmarks.
However, we do not currently know where ground truth lies relative to either
dataset, thus it is not prudent to warp one dataset to match the other.

4.6 What is ground truth?

Discrepancies between the NYU and HCP data should not be taken as proof that
either of the datasets is the more precise one. There are multiple possible reasons
for discrepancies in pRF estimates when comparing between two datasets that
differ in so many ways.

First, a pRF is a population measure. If the underlying neural populations differ,
their receptive fields should differ as well. For example, a larger voxel is expected
to have a larger pRF; this is not a measurement error, but rather an inherent
property of population measures. Likewise, larger voxels are unlikely to have pRF
centers at extreme values, such as those along vertical meridian, because any
pooling will tend to push the measure toward the population average. This too is

39


https://doi.org/10.1101/2021.04.12.439348
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.12.439348; this version posted September 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

not a measurement error, but rather a property of population measures. Second,
pRF models (like all models) are approximations of more complex underlying
systems. The pRF models used here, and in the HCP paper (Benson et al., 2018),
make predictions based on the stimulus apertures, and do not account for either
the spatial or temporal properties of the stimulus carrier, nor the task the
participant performs, both of which are known to influence the neural responses
(Le et al., 2017; Wandell & Winawer, 2015). Whereas retinotopic maps are not very
flexible (Liu et al., 2006), pRF parameters do depend upon a variety of factors that
are frequently not modeled (Fang et al., 2008). Even at the level of individual V1
neurons, when a linear receptive field is fit to neural data, the shape differs
depending on the mapping stimuli (Victor et al., 2006). Thus, it is reasonable to
expect experimental differences to result in differences in pRF parameters. By
quantifying pRF similarity across two retinotopy datasets that were acquired using
different methods, our work provides a reasonable estimate of how similar pRF
parameters are likely to be when experiments differ across many dimensions.

Finally, we note that we do not have access to ground truth (i.e. the underlying
true retinotopic arrangement in each participant's visual cortex). Some systematic
differences in pRF results are expected due to the nature of population measures
and the simplifying assumptions of the models. Other differences may arise from
preprocessing differences (e.g., registration methods). In principle, it may be
possible to assess which preprocessing method better represents the ground
truth data, however, this is only possible given access to ground truth data. This
may be possible through simulation methods such as those used to validate pRF
software (Lerma-Usabiaga et al., 2020), but such methods do not yet exist for
assessing retinotopic maps themselves.

4.7 Polar angle meridian asymmetries in V1 cortical magnification are reproducible
across datasets

Reports of performance fields show that visual performance on a range of tasks
changes as a function of polar angle (Abrams et al., 2012; Baldwin et al., 2012;
Barbot et al., 2021; Cameron et al., 2002; Carrasco et al., 2001; Carrasco et al.,
2002; Corbett & Carrasco, 2011; Fortenbaugh et al., 2015; Fuller et al., 2008;
Greenwood et al., 2017; Himmelberg et al., 2020; Kurzawski et al., 2021; Levine
& McAnany, 2005; Lundh et al., 1983; Montaser-Kouhsari & Carrasco, 2009;
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Pointer & Hess, 1989; Regan & Beverley, 1983; Rijsdijk et al., 1980; Robson &
Graham, 1981; Silva et al., 2008; Talgar & Carrasco, 2002; Virsu & Rovamo, 1979).
Previous fMRI studies have reported similar polar angle asymmetries in V1 BOLD
amplitude (Liu et al., 2006; O’Connell et al., 2016), cortical magnification (Benson
et al., 2021; Silva et al., 2018), and pRF sizes (Silva et al., 2018). In parallel to
behavior, more cortical space is dedicated to processing the horizontal than
vertical visual field meridian (i.e., a cortical HVA). Likewise, there is more cortical
space dedicated to the lower vertical than upper vertical visual field meridian (i.e.,
a cortical VMA). We tested whether these polar angle asymmetries in V1 surface
area are also found in the NYU data.

The HVA was identified in the NYU data; around a 65% HVA asymmetry index for
a +15° wedge. Thus, there is almost twice as much cortical space along the
horizontal than the vertical visual field meridian. The HVA became progressively
weaker with increasing wedge-width. Thus, the cortical HVA is strongest along
the meridians themselves. This measurement qualitatively and quantitatively
corresponds to the cortical HVA identified by Benson et al. (2021) in the HCP data.
Likewise, the VMA was identified in the NYU data; around a 30% VMA asymmetry
index for a +15° wedge. Thus, there is more surface area dedicated to the lower
than upper visual field meridian. This is similar to the cortical VMA identified by
Benson et al. (2021), however, one discrepancy is that in the NYU data, the VMA
asymmetry decreased with wedge-width more gradually than in the HCP data.

Notably, our cortical HVA and VMA measurements are commensurate with recent
psychophysical data, both of which show a larger HVA than VMA. For contrast
sensitivity, the HVA is approximately 60% (similar to the ~65% cortical HVA
reported here) whereas the VMA is weaker at approximately 20% (similar to the
~30% cortical HVA reported here) (Himmelberg et al., 2020). For acuity, the HVA
is approximately 40% and the VMA is approximately 20% (Barbot et al., 2021).
Our cortical magnification measurements match these perceptual measurements;
in fact, the contrast sensitivity measurements from Himmelberg et al. (2020) come
from a subsample of the participants included in the present study. Recent
implementations of computational models have shown that polar angle
asymmetries in photoreceptor and retinal ganglion cell sampling density only
account for a small portion of performance field asymmetries, and that the
sampling of the visual field as a function of polar angle is more asymmetric in
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cortex than in the retina (Kupers et al., 2019, 2020). We are currently developing
a computational model to assess the extent to which these cortical asymmetries
can account for perceptual performance field asymmetries in contrast sensitivity.

Overall, the HVA is strong and clear, and these asymmetries in cortical geometry
can be measured robustly in independent datasets. Qualitatively, the VMA was
also reproduced between the two datasets, corroborating that this cortical
asymmetry exists. However, there were small differences in the detailed
characterization of the VMA between the two datasets. The asymmetry between
the upper and lower meridian declined faster with angular distance from the
vertical meridian in the HCP dataset than in the NYU dataset. Such differences
may arise from subtle differences in our analysis compared to Benson et al.
(2021). In this study, we examined the surface area within V1 only, whereas
Benson et al. (2021) accounted for vertical meridian surface area in both V1 and
V2. Additionally, the methods used to define the wedge, and the sizes of the
wedges themselves, differed between the two studies. Further, the NYU data
used cleaned polar angle data (see 2.9.2 Eccentricity boundaries for sub-ROIs),
whereas Benson et al. (2021) used raw polar angle data. Thus, it is not surprising
that small differences in results arise from small differences in analysis.
Nonetheless, despite some quantitative differences, the overall pattern of more
surface area for the horizontal than the vertical visual field meridian
representation, and for the lower than the upper vertical visual field meridian
representation, holds across datasets and analysis methods.

4.8 Retinotopic maps are reproducible

Identifying and understanding retinotopic maps is a central aim of visual
neuroscience. We endeavor to understand how the visual brain is organized into
multiple visual areas, identify the functional roles of these areas, and understand
how they unite to make sense of the influx of sensory information that ultimately
gives rise to visual perception. This is no small feat, and if newly identified
retinotopic areas and features are to be considered generalizable across the
human population, they must be subject to tests of validity and reliability to ensure
that findings are robust and generalizable across independent datasets.
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Previous studies have assessed reproducibility of retinotopic maps via different
tests of validity. PRF estimates are reported to have good intersession reliability.
Specifically, they are consistent across time in the same observers who were
measured twice in the same scanner (Lage-Castellanos et al., 2020; van Dijk et
al., 2016). This is supported by split-half analysis in the HCP retinotopy data, in
which each participant's functional scans were split into first and second halves,
and pRF parameters were estimated twice (Benson et al., 2018). Likewise, pRF
estimates have been shown to be similar across participants when measured with
the same stimuli, in the same scanner, and analyzed from the same data; the HCP
data analyzed as split half by participants showed that each subgroup of half the
participants had similar average pRF maps (Benson et al., 2018). Furthermore, it
has been shown that pRFs are reproducible when the same participants are
tested with different stimulus apertures and carrier images, using the same
scanner and same software (van Dijk et al., 2016). Finally, computational validity
is the ability of software to reproduce the correct result for simulated ground truth
test data (irrespective of whether it is the same answer), and this has been
assessed using a recent validation framework tested against different pRF
modelling software (Lerma-Usabiaga et al., 2020). These studies have addressed
the reproducibility of retinotopic maps within their own datasets. Here, we have
assessed retinotopic reproducibility in a different way from these prior studies.
We assessed reliability of retinotopic maps at the group level, by comparing two
independent datasets that differed in their stimulus apertures, participants, MRI
hardware, fMRI protocol, and preprocessing pipeline. Many experimental
differences are typical for retinotopy data collected from different labs or sites,
and up to now it was unknown how similar pRF estimates were when many
elements of experimental design were simultaneously altered. Here, we have
shown that fundamental retinotopic properties in human V1 to hV4 can be reliably
reproduced in independent datasets that simultaneously differ in many aspects.

There is much considerable interest in the reproducibility of scientific results in
the biomedical sciences (loannidis, 2005), with attention drawn to results in
psychology (Open Science Collaboration, 2015) and neuroimaging (Poldrack et
al., 2017). For example, the same data analyzed by different groups often led to
different results and conclusions (Botvinik-Nezer et al., 2020). Similarly, reports
show that reproducibility is poor for many task-based fMRI experiments (Elliott et
al., 2020). However, this may reflect limitations in the kind of experiments tested,
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as some studies show higher reproducibility than others (Kragel et al., 2021), and
differences in analysis, as surface-based cognitive neuroscience studies of
cerebral cortex (such as the current study) perform well with regards to
reproducibility (Assem et al., 2021).

Our data show that human retinotopic maps are reliable and reproducible
between independent datasets that have been acquired using different fMRI
protocols, measured using different stimuli, and have undergone different
preprocessing. This is likely because the method underlying the measurement of
retinotopic maps circumvents many of the issues involved in irreproducibility (see
Poldrack et al. (2017) for review). PRF estimates are computed using an explicit
computational model of the fMRI response and this model is defined in terms of
input parameters (Dumoulin & Wandell, 2008; Wandell & Winawer, 2015). These
input parameters are grounded in solid theory of neural visual receptive fields; a
pRF is formalized as a 2D-Gaussian and this is based on the established
physiological structure of neural receptive fields in the visual cortex (Hubel &
Wiesel, 1968). Thus, the fMRI response is modelled using a quantitative
characterization of neural activity. Using this powerful computational modeling
approach, retinotopic maps can be reliably measured, and integrated, across
different neural measurements (Wandell, 1995; Wandell et al., 2015).

5. Conclusion

We have tested the cross-dataset reproducibility of retinotopic properties by
comparing two independent datasets that differ in many aspects. We have
reported that polar angle, eccentricity, and pRF size estimates are well-correlated
between the two datasets, albeit with systematically greater eccentricity and pRF
size estimates in the NYU data. These systematic differences in eccentricity and
pRF size might be linked to small differences in anatomical alignment methods or
viewing distance. Differences in pRF size may also arise from differences in voxel
size and stimulus aperture. Next, we identified polar angle asymmetries in V1
cortical magnification similar to those found in the HCP data. There was more
cortical surface area dedicated to the horizontal than vertical visual field meridian,
and to the lower than upper vertical visual field meridian, and these asymmetries
decreased gradually with increasing angular distance from the meridians. The
pattern and strength of these asymmetries was similar to those reported from
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previous behavioral measurements, supporting a link between brain and behavior.
Overall, we have shown that we can reliably describe retinotopic properties in
human V1 to hV4 from two datasets that differ in many ways, and we highlight the
importance of the cross-dataset validation of new retinotopic findings to ensure
that they can be generalized across the human population. The NYU Retinotopy
Dataset can serve as a benchmark for testing hypotheses about the organization
of human visual cortex and for comparison to the HCP 7T Retinotopy Dataset.
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Supplementary Materials
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Figure S1. Examples of retinotopic maps for three individual participants (subj004, subj014, and subj042)
projected onto their inflated fsnative surfaces.
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Figure S2. Retinotopic maps for the HCP group-average time-series data projected on fsaverage flatmaps
for the left and right hemisphere. White boundaries specify ROIls derived from the Wang Maximum
Probability Atlas.
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Figure S3. Areal cortical magnification plotted as a function of eccentricity, averaged across individual
participants for the NYU (dark lines) and HCP (light lines) datasets, in V1, V2, and V3. Cortical magnification
is calculated on the fsnative surface for each participant. The black dashed line in V1 represents the
cortical magnification function for V1 as reported by Horton and Hoyt (1991). Error bars are +1 SEM.
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Figure S4. Histograms of 500 subsampled correlations for V1 to hV4, for polar angle, eccentricity, and
pRF size estimates. Each iteration draws 20 participants from the NYU and 20 participants from the HCP
dataset (with replacement), computes median-parameter maps for the subsampled NYU and HCP data,
yielding a single r value per iteration for each parameter (polar angle, eccentricity, size) and for each visual
field map. The dotted lines represent median r value across the 500 iterations.
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Figure S5. Incremental HVA and VMA asymmetries for a +5° wedge centered at 5 different locations from
the visual field meridians. The HVA and VMA decrease with increasing distance from a cardinal meridian.
The incremental HVA becomes inverted because a +5° wedge centered 50° from the horizontal meridian
is closer to the vertical than the horizontal meridian (i.e., beyond 45°). This is the same for a +5° wedge

centered 50° from the vertical meridian; It will be closer to the horizontal than the vertical meridian, so the
flip is expected.
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Figure S6. Parameter-median PRF sizes as a function of eccentricity for the HCP data using bars, wedges,
and rings (solid lines) and the HCP data using bars alone (dashed lines) for V1, V2, V3, and hV4. pRF sizes
are binned into 1° eccentricity bins and a linear function is fit to the mean sizes. Error bars are +1 SEM

(vertices per bin), R?threshold >= 0.4.
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Figure S7. Parameter-median PRF sizes as a function of eccentricity for the NYU data and the HCP data
using bars alone (dashed lines) for V1, V2, V3, and hV4. pRF sizes are binned into 1° eccentricity bins and
a linear function is fit to the mean sizes. Error bars are +1 SEM (vertices per bin), R? threshold >= 0.4.
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Figure S8. Scatterplots comparing vertex-wise parameter-median pRF estimates from the NYU data and
the HCP bar only data within V1, V2, V3, and hV4. Each datapoint represents an fsaverage vertex. The
black dashed line represents y = x. All reported r values are highly significant (o < .001) except for V1 pRF
size (p > .05). m represents slope.
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Figure S9. Scatterplots comparing the vertex-wise parameter-median pRF estimates from the HCP bars,
wedges, and rings data, and the HCP bar only data, within V1, V2, V3, and hV4. Each datapoint represents
an fsaverage vertex. The black dashed line represents y = x. All reported r values are highly significant (p
< .001). m represents slope.
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