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Abstract

During metastasis, cancer cells must adapt to survive a loss of anchorage and evade anoikis. An
important pro-survival adaptation is the ability of metastatic tumor cells to increase their
antioxidant capacity and restore cellular redox balance. Although much is known about the
transcriptional regulation of antioxidant enzymes in response to stress, how cells rapidly adapt to
alter antioxidant enzyme levels is less well understood. Using ovarian cancer cells as a model,
we demonstrate that an increase in protein expression of the mitochondrial superoxide dismutase
SOD?2 is a very early event initiated in response to cellular detachment. SOD2 protein synthesis
is rapidly induced within 0.5-2 hours of matrix detachment, and polyribosome profiling
demonstrates an increase in the number of ribosomes bound to SOD2 mRNA, indicating an
increase in SOD2 translation in response to anchorage-independence. Mechanistically, we find
that anchorage-independence specifically induces cytosolic accumulation of the RNA binding
protein HUR/ELAVL1 and leads to increased HuR binding to SOD2 mRNA. Using HuR siRNA-
mediated knock-down, we show that the presence of HuR is necessary for the increase in SOD2
mMRNA association with the heavy polyribosome fraction and SOD2 protein synthesis observed in
anchorage-independence. Cellular detachment activates the stress-response protein kinase p38
MAPK, which is necessary for HUR-SOD2 mRNA binding and optimal increases in SOD2 protein
expression. These findings illustrate a novel post-transcriptional regulatory mechanisms of SOD2,
enabling cells to rapidly increase their mitochondrial antioxidant capacity as an acute response to

anchorage-independence.
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49 Introduction

50 In vivo studies have demonstrated that increased antioxidant enzyme expression and
51  small molecule antioxidant treatment promote the metastatic spread of melanoma and breast
52  cancer cells [1, 2], suggesting that the maintenance of redox homeostasis is a key adaptation
53 during metastasis. Manganese superoxide dismutase (SOD2) is an important mitochondrial
54  antioxidant enzyme that resides in the mitochondrial matrix and is responsible for scavenging the
55  majority of superoxide produced as a biproduct of respiration. SOD2 is often upregulated during
56  tumor progression and it's expression is important for successful metastasis of cancer cells [3-8].
57 A key step during metastasis is a tumor cell’s ability to survive in non-adherent conditions and to
58 evade anchorage-independent cell death, known as anoikis. This process has been associated
59  with an increased capacity of tumor cells to scavenge reactive oxygen species that are elevated
60 in response to detachment [9, 10]. We previously demonstrated that epithelial ovarian cancer
61  cells increase their mitochondrial antioxidant capacity after matrix detachment, by upregulating
62 the transcription and activity of the deacetylase sirtuin 3 (SIRT3), and it’s target protein SOD2 [6].
63  Both proteins conferred anoikis resistance and promoted transcoelomic spread of ovarian cancer

64 cells in vivo [6].

65 SOD2 is a nuclear encoded protein responsive to stress-activated transcriptional
66  regulation [7]. Nrf2 (encoded by NFE2L 2), a major transcription factor responsive to oxidants, has
67  beenimplicated in regulating increased SOD2 expression in tumor cells including breast and clear
68  cell ovarian carcinomas [4, 11]. SOD2 transcription can also be induced by the sirtuin regulated
69 transcription factor Foxo3A [12], and by NF-kB, which has been shown to induce SOD2
70  transcription in response to breast cancer cell matrix detachment [13]. Although much emphasis
71 has been placed on the transcriptional mechanisms of SOD2 expression, the impact of SOD2

72  translational regulation remains less well established in tumor cells.

73 Posttranscriptional and translational regulatory mechanisms are crucial for fine-tuning of
74  gene expression, and enabling rapid protein synthesis in response to specific cues. In particular,
75  the interplay between mRNAs, miRNAs, and RNA-binding proteins has been implicated in the
76  regulation of protein expression during cancer development and metastasis [14-16]. HuR
77  (encoded by ELAVL1) is one RNA-binding protein that has been implicated in the regulation of
78  mRNAs that encode proteins involved in oncogenic signaling [17-19], anti-apoptotic mechanisms
79  [20], cell cycle regulation [21, 22], and chemoresistance [23]. By binding to the AU- and U-rich
80 elements (AREs) in the 3’ UTR of target mRNAs, HuR exerts multiple functions, including RNA
81 splicing, regulation of mRNA stability and translation [24]. Importantly, HuR cytoplasmic
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translocation and mRNA binding is induced upon genotoxic or extracellular stress stimuli [21, 25],
which suggests that HuR-dependent translation may be a critical stress adaptation utilized by
cancer cells. HUR expression analyses across different malignancies, including ovarian cancer,
shows that its expression and cytoplasmic accumulation correlates with advanced tumor stage

and poor patient prognosis [26-29].

Using ovarian cancer cells as a model, we observed that SOD2 protein levels rapidly rise
in response to matrix detachment, which preceded increases SOD2 transcript expression. A
transcriptome-wide RNA-binding analysis identified multiple HuR binding sites in the 3’ UTR of
SOD2 mRNA [30]. However, the functional consequences of these sites and potential regulatory
role of HUR in regulating SOD2 mRNA translation in cancer cells have not been investigated. In
the present work, we show that SOD2 mRNA is a target of HUR binding and that the interaction
of HUR with SOD2 mRNA is enhanced and required for rapid de novo SOD2 protein synthesis
after matrix detachment. Our study provides evidence for a novel mechanism of rapid SOD2

regulation in response to acute stress associated with anchorage-independence.
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97 Results
98 SOD2 protein expression increases rapidly in response to anchorage independence.

99 To further assess the regulation of SOD2 in conditions of anchorage independence, we
100 used ovarian cancer cell lines, as these tumor cells are prone to adapt to matrix detachment for
101  transcoelomic metastasis in the peritoneal cavity and anchorage independent survival in ascites.
102 SOD2 protein expression was assessed using ultra low attachment cell culture conditions, which
103 revealed that SOD2 protein levels rapidly increase within 0.5 and 2 hours following cellular
104  detachment of OVCA433 and OVCAR10 ovarian cancer cells, respectively (Fig 1A). Treatment
105  with the protein synthesis inhibitor cycloheximide demonstrated that these increases in SOD2
106 likely represent newly synthesized SOD2 protein pools under anchorage independent culture
107  conditions (Fig 1A). **S-Met/Cys incorporation assays showed global increases in protein
108 synthesis immediately following detachment (Suppl. Fig 1A), and subsequent
109  immunoprecipitation of SOD2 demonstrated 1.8-fold (OVCA433) and 2.4-fold (OVCAR10)
110  increases in *S-Met/Cys incorporation into the SOD2 protein compared to attached conditions
111 (Fig 1B, Suppl. Fig 1B-C). These changes were again abrogated by cycloheximide treatment,
112 verifying increased SOD2 protein synthesis in short-term anchorage independent conditions. To
113  focus on the newly synthesized pool of SOD2, we further assessed changes in SOD2 levels within
114  the cytosolic fraction of cells following matrix detachment. Subcellular fractionation demonstrated
115 an average 4.7-fold increase in OVCA433 cytosolic SOD2 expression after 0.5 hour of
116  detachment compared to attached cells, while a 1.5-fold increase was observed after 2 hours in
117  anchorage-independent conditions in OVCAR10 cells (Fig 1C). Increases in SOD2 mRNA levels
118  trailed the surges in SOD2 protein expression in OVCA433 cells, suggesting that the rapid rise in
119  SOD2 protein levels following detachment is likely independent of increases in transcription in this
120  cell line (Fig 1D).
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Figure 1.

A. Total SOD2 protein levels were assessed by immunoblotting in response to culture in
anchorage-independent conditions and protein synthesis inhibited by cycloheximide (CHX, 20
pug/mL; n=4, one-way ANOVA, P<0.0001, Tukey’s multiple comparison test *P<0.05;
**P<0.01).

35S-Met/Cys incorporation assay followed by SOD2 IP (Suppl. Fig 1B&C), demonstrates

increased 35S-Met/Cys incorporation into SOD2 under anchorage independence compared to
attached cells, which is abrogated in the presence of cycloheximide (n=4, one-way ANOVA,
OVCA433 P<0.0001, OVCAR10 P=0.0057, Tukey’s multiple comparison test **P<0.01;
****P<0.0001).

The cytosolic SOD2 protein pool increases rapidly in response to anchorage-independence
(a-i), compared to attached culture conditions (A). Cells were maintained for indicated times in
ULA plates and SOD2 protein expression assessed following cellular fractionation and
immunoblotting. Fold change in SOD2 cytosolic protein expression in response to anchorage-
independent (a-i) culture was quantified using densitometry, normalized to B-tubulin loading
control and expressed relative to attached (A) culture conditions (n=4, one-way ANOVA,
OVCA433 P=0.0015, OVCAR10 P=0.0744, Dunnett’s multiple comparison test *P<0.05;
**P<0.01).

Fold change in SOD2 mRNA in response to short term anchorage-independent culture was
assessed using semi-quantitative real time RT-PCR (n=3-4, one-way ANOVA, OVCA433

122 P=0.0069, OVCAR10 P=0.2946, Dunnett’'s multiple comparison test *P<0.05; **P<0.01).
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123 To confirm that the increase in SOD2 expression is due to de novo protein synthesis in
124  OVCAA433 cells, ribosome-mediated mRNA translation was assessed using polyribosome
125  profiling. Following centrifugation, sucrose gradients were separated into four fractions and RNA
126  was isolated from each fraction. Fraction 1 contains mRNAs not associated with ribosomes,
127  fraction 2 contains mMRNAs associated with one or two ribosomes, fraction 3 contains mRNAs
128  associated with 3-6 ribosomes (referred to hereafter as ‘light polysomes’), and fraction 4 contains
129 mRNAs associated with >6 ribosomes (referred to as ‘heavy polysomes’; Fig 2A). In attached
130 conditions, SOD2 mRNA was primarily found in fractions 2 and 3 (Fig 2B&C), suggesting that
131 SOD2 is translated at a constitutive level in this condition, which is evident by ready detection of
132  SOD2 protein by western blotting. In anchorage independent conditions the relative proportion of
133  SOD2 mRNA shifted to fractions 3 and 4. In particular, anchorage independent cells showed a
134  significant shift towards an enrichment of SOD2 mRNA in the heavy polyribosome fraction 4 (Fig
135 2B&C), demonstrating a larger number of ribosomal units associated with SOD2 mRNA and an
136 increase in SOD2 mRNA translation in anchorage independent conditions. As a point of
137  comparison, the mMRNA of the nutrient stress response protein ATF4 also shifted into fraction 4 in

138 response to anchorage-independence (Supp Fig 2).
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Figure 2.
A. Polyribosome profiling was carried out after OVCA433 cells were cultured in attached (A) and

anchorage independent (a-i) conditions (0.5 h) and analyzed by sucrose density gradient
centrifugation. Four fractions were collected as indicated, and RNA extracted.

B. Polyribosome profiling demonstrates an increase in the percentage of SOD2 mRNA in the
heavy polysomal fraction 4 in response to anchorage independence. Representative image of
SOD2 RT-PCR from RNA isolated from each polysomal fraction.

C. Quantification of relative SOD2 mRNA levels in each fraction demonstrates increased
proportion of SOD2 in fraction 4 following culture in anchorage independent conditions (n=3; t-

141 test, **P<0.01).
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142 HuR accumulates in the cytosol and binds SOD2 mRNA in response to anchorage-

143  independence

144 Regulation of gene expression at the translational level is mediated by the interplay
145  between mRNAs and RNA binding proteins. HuUR (encoded by the gene ELAVL1) is a major RNA
146  binding protein that has been implicated with alternative splicing, mRNA stability, and translation
147  during stress conditions [21, 25, 31]. HUR recognizes and binds to AU-/ U-rich elements in target
148 mRNA transcripts. Analysis of HUR RNA binding by screening of publicly available RNA
149  immunoprecipitation sequencing (RIP-seq; ENCODE: ENCSR0O00CWW, ENCSR0O00CW2Z) [32,
150  33] and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-
151  CLIP; GSE29943) [30] transcriptome-wide data sets revealed that the SOD2 mRNA contains
152  multiple binding sites for HUR within 3.5 kb downstream of the STOP codon in the SOD2 3' UTR
153  (Fig 3A, Supp Fig 3A). While the 5’ UTR of SOD2 is less than 75 bp in length, the complete SOD2
154 3’ UTR spans 13,424 bp (Fig 3A, Variant 1: NM_000636). SOD2 transcripts with variable 3’ UTR
155 lengths have previously been reported (Suppl Fig 3A) (Chaudhuri et al, 2012; Church, 1990).
156  Using RT-PCR we confirmed that OVCA433 and OVCAR10 cells express the longer 3.4 kb 3’
157  UTR containing the majority of HUR sites identified (Suppl Fig 3B).

158 To examine if HUR regulates SOD2 protein expression in response to anchorage
159 independence, cytosolic translocation of HuR in response to culture in ULA plates was first
160 determined. Concurrent with the increases in SOD2 protein expression, HUR cytosolic protein
161 levels increased significantly in OVCA433 within 0.5 hours of anchorage independence and within
162 2 hours in OVCAR10 cells (Fig 3B). We next investigated if HUR binds to SOD2 mRNA in
163  anchorage independent conditions using ribonucleoprotein immunoprecipitation to capture the
164 HuR-bound mRNAs (Fig 3C, Supp Fig 3C). SOD2 mRNA was more readily detected by PCR in
165 HuR immunoprecipitates from OVCA433 and OVCAR10 cells cultured under anchorage
166 independence compared to attached conditions (Fig 3C), indicating that matrix detachment
167  causes the binding of HUR to SOD2 mRNA.
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Figure 3.
A. HuR/ELAVL1 binding profiles on the SOD2 mRNA was assessed using ENCODE RIP-seq

B.

data sets ENCSR0O00CWW and ENCSR0O00CWZ, and PAR-CLIP data set GSE29943.
HuR accumulates in the cytosol in response to anchorage-independence (n=4, one-way
ANOVA, OVCA433 P<0.0001, OVCAR10 P=0.0248, Dunnett’'s multiple comparison test
**P<0.01; ***P<0.001).

Anchorage-independence induces HuR binding to SOD2 mRNA, as assessed by
Ribonucleoprotein Immunoprecipitation and SOD2 RT-PCR following OVCA433 culture in
attached or anchorage independent conditions (a-i, OVCA433: 0.5h; OVCAR10: 2h).

10
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170 Since HuR binds to SOD2 mRNA shortly after matrix detachment, we investigated the
171 functional consequences of the HUR-SOD2 mRNA interaction using siRNA mediated knockdown
172  of HUR/ELAVL1. An established function of HuR as a stress response RNA binding protein is its
173  role in mRNA stabilization within the cytosol [20, 34]. To determine if HuR has an effect on SOD2
174  mRNA stability, we treated ovarian cancer cells with the transcription inhibitor actinomycin D.
175 Compared to attached conditions, anchorage independence did not significantly alter SOD2
176  mRNA stability in OVCA433 cells (Fig 4A), while decreased SOD2 mRNA stability in anchorage
177  independence was observed in OVCAR10 cells compared to attached conditions (Fig 4B, two-
178  way ANOVA, P=0.0104), indicating that these cells differ in mechanisms regulating SOD2 mRNA
179  stability. However, HUR knockdown did not significantly alter SOD2 mRNA levels in response to
180 actinomycin D treatment in anchorage independent or attached culture conditions (Fig 4),
181  suggesting that increased binding of HUR to SOD2 mRNA does not influence SOD2 mRNA
182  stability.
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Figure 4.
HuR knock-down does not affect SOD2 mRNA stability in attached or anchorage-independent
conditions, as determined by Actinomycin D treatment (n=4; two-way ANOVA: ns). HUR knock-down
was assessed by semi quantitative real time RT-PCR (t-test, ****P<0.0001). A: OVCA433 B:
OVCAR10.
184
185
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186 HuR enhances SOD2 mRNA translation under anchorage independence

187 We next tested if HuUR is necessary for enhanced SOD2 mRNA translation in anchorage
188 independence. Following siRNA-mediated HuR (ELAVL1) knockdown, matrix detachment-
189 induced increases in SOD2 cytosolic protein levels were significantly abrogated (Fig 5A). To
190 further demonstrate that increased SOD2 protein synthesis in anchorage independent cells is
191 HuR-dependent, polyribosome profiling following siRNA mediated HuR knock-down was carried
192  out (Fig 5B). In response to culture in anchorage independent conditions, SOD2 mRNA shifted
193 towards the heavy polyribosome fraction (fraction 4) in OVCA433 cells transfected with a
194  scramble control siRNA (Fig 5C), as demonstrated above in un-transfected cells (Fig 2). HuR
195  knockdown abrogated this shift of SOD2 mRNA to the heavy polyribosomal fraction, and
196  anchorage independent cultured cells lacking HuR displayed a similar distribution of SOD2 mRNA
197 in polysomal fractions compared to attached cells (Fig 5C). There was no difference in SOD2
198 mRNA abundance in the subpolysome fractions (fractions 1 & 2) following HuR knock-down,
199 indicating that a loss of HUR does not lead to a complete loss of SOD2 mRNA translation. This
200 suggests that the primary function of HuR is to enhance SOD2 translation in response to

201  anchorage independence, boosting SOD2 protein levels under these conditions.

12
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Figure 5.
A. HuR/ELAVL1 knock-down abrogates increases in cytosolic SOD2 expression in short term
anchorage-independence (a-i, OVCA433 0.5 h; OVCAR10 2 h) compared to attached cultures
(A; n=3-4, one-way ANOVA, OVCA433 P=0.012, OVCAR10 P=0.0001; Tukey’s multiple
comparison test *P<0.05, **P<0.01, ****P<0.0001).
B. Polysome profiles of OVCA433 cells cultured in attached (A) and anchorage independent (a-i,
0.5 h) conditions following siRNA-mediated HUR/ELAVL1 knockdown.
C. HuR knock-down abrogates a shift of SOD2 mRNA into fraction 4 in response to anchorage
independence (a-i). Representative image of SOD2 RT-PCR from polyribosome fractions and
203 quantification of relative SOD2 mRNA levels in each fraction shown (n=3; t-test, *P<0.05).
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204 Inhibition of p38 MAPK activation in response to anchorage independence abrogates

205 increases in SOD2 protein expression and HUR-SOD2 mRNA binding.

206 HuR can be activated in response to cellular stress via the p38 MAPK kinase signaling
207  pathway [35, 36]. p38 MAP kinase signaling is frequently activated and uncoupled from pro-
208 apoptotic pathways in cancer cells to ensure cell survival under stress conditions and during
209 metastatic progression [37-39]. An increase in p38 MAPK phosphorylation was previously
210  reported in ovarian cancer cell lines cultured in long-term anchorage independence (24-48 h) [40].
211 We were able to show that short-term anchorage independence (0.5-2 h) was sufficient to also
212 increase p38 MAPK phosphorylation in OVCA433 and OVCAR10 cell lines (Fig 6A). To determine
213  if the p38 MAPK pathway is involved in the observed increases in cytosolic SOD2 protein
214  expression during this time, cells were treated with the p38 MAPK inhibitor, SB203580. SB203580
215 inhibited the phosphorylation of the p38 target MAPKAPK2 and abrogated the increases in SOD2
216  protein expression observed in anchorage independent conditions (Fig 6B). In addition, the
217  formation of the HUR-SOD2 mRNA complex was monitored in the presence of p38 MAPK
218 inhibition. Similar to Fig 3, anchorage independent conditions increased SOD2 mRNA binding to
219  HuR, while treatment with SB203580 decreased this interaction (Fig. 6C). The above
220 demonstrates a link between p38 MAPK signaling, HuR binding to the SOD2 mRNA and SOD2
221  expression in response to cellular detachment. p38 MAPK has previously been shown to
222  phosphorylate Thr 118 of HuR [25, 41]. In the absence of a commercially available phospho-
223 Thr118 HuR specific antibody we were unable to successfully demonstrate that anchorage
224  independence or p38 MAPK inhibition influences phosphorylation of HUR using HUR IP and a pan
225  phospho-Thrantibody (data not shown). In OVCAR10 cells, p38 MAPK inhibition resulted in slight
226  decreases in cytosolic HUR accumulation in response to anchorage-independence, while this
227  could not be consistently observed in OVCA433 cells (Fig. 6D). The above data suggest that p38
228  signaling primarily regulates HUR SOD2 mRNA binding rather than HuR cellular localization.
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Figure 6.

A. p38 MAPK (Thr180/Tyr182) phosphorylation is induced in response to culture in anchorage-
independent culture conditions (a-i OVCA433 0.5 h, OVCAR10 2 h; n=4, T-test, **P<0.01,
****P<0.0001).

B. p38 MAPK inhibition abrogates a-i induced increases in SOD2 expression (n=3, one-way ANOVA
P<0.0001, Tukey’s multiple comparison test **P<0.01, ****P<0.0001).

C. p38 MAPK inhibition abrogates HuR binding to SOD2 mRNA in anchorage-independence, as
assessed by RNA immunoprecipitation.

D.

Effects of p38 MAPK inhibition on cytosolic HuR levels (n=4-5, one-way ANOVA, OVCA433
P=0.0053, OVCAR10 P=0.0221, Tukey’s multiple comparison test **P<0.01, ****P<0.0001).
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231 Discussion

232 Recent studies have highlighted that tumor cells need an adequate antioxidant system to
233  deal with intrinsic and extrinsic increases in ROS associated with metastatic progression [1, 2, 6].
234  Tumor cells must therefore readily adapt to increase their antioxidant capacity at the
235 transcriptional and post-transcriptional levels. In line with these findings, we previously showed
236 that SIRT3-mediated deacetylation of SOD2 drives transcoelomic metastasis by increasing
237  mitochondrial antioxidant capacity in anchorage-independent ovarian cancer cells [6]. The
238 present work demonstrates that translation contributes to the regulation of SOD2 during early-
239 stage anchorage independence. We found that detachment induces SOD2 mRNA translation in
240 a HuR-dependent manner, and that the p38 pathway contributes to HUR-SOD2 mRNA binding.

241 Aberrant HUR expression has been reported in several malignancies, including ovarian
242  cancer [26-28]. HuR’s pro-tumorigenic function involves selective mRNA binding, mRNA
243  stabilization and/or increased translation of target mRNAs. Previously identified HuR targets
244  include mRNAs encoding pro-survival and anti-apoptotic proteins, such as Bcl-2 , proteins that
245  supportinvasion and metastasis, and angiogenic factors, such as VEGF [20, 22, 35, 42, 43]. HUR
246  knock-down decreased glioma cell survival in anchorage independence, and it was found that
247 HuR knock-down increased apoptosis and decreased Bcl-2 mRNA stability and protein
248  expression [20]. Moreover, HuR regulation can interplay with miRNAs to further fine tune
249  expression in cancer, as has been demonstrated in ovarian cancer with miR-200c [44]. This
250  growing repertoire of cancer-related mRNAs regulated by HuR suggests a critical role of this RNA
251  binding protein in cancer cells. Our data identify SOD2, an important antioxidant enzyme for the
252  maintenance of mitochondrial redox homeostasis, as a novel HuR target during early-stages of

253 anchorage-independence.

254 HuR is a predominantly nuclear protein which translocates to the cytoplasm upon extrinsic
255  or intrinsic stimuli and stress signals. Depending on the location of target HUR aminoa acid
256  residues, posttranslational modifications of HuR by different signaling pathways have been shown
257  to affect its RNA binding affinity, nucleo-cytoplasmic shuttling, and HuR protein stability [24].
258 Among different kinases activated during stress, p38 MAPK-dependent phosphorylation on
259 Thr118 induces cytoplasmic accumulation of HUR and increased p21 mRNA binding after
260 exposure to ionizing radiation [25] and enhanced mRNA binding upon IL-13 treatment [41].
261 Consistent with these previous findings, we found that stress associated with matrix detachment
262  activated p38 MAPK (Fig 6). Importantly, activation of the p38 MAPK pathway increased SOD2

263  cytosolic protein expression under anchorage independence and we found that the association
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264  of HUR with SOD2 mRNA was also p38 MAPK-dependent (Fig 6). It remains to be determined
265 whether HuR is phosphorylated on Thr118 in anchorage independent cells, or if p38 MAPK
266 indirectly activates HuR to bind SOD2 mRNA. Although p38 has previously been implicated in
267  cytosolic shuttling of HUR in response to stress [35, 36, 45], cytosolic HUR accumulation was not
268 greatly affected by the p38 MAPK inhibition in anchorage independence, unlike SOD2 mRNA
269 binding (Fig 6). This raises the possibility that additional stress signaling pathways could
270  contribute to the HUR nucleo-cytoplasmic shuttling observed following matrix detachment, and
271 points to the previously reported multifaceted and context dependent regulation of HuR. For
272  example, post-translational modifications of residues within HUR’s RNA recognition motifs leads
273  primarily to changes in HUR RNA binding, while phosphorylation of the hinge region affects
274  nuclear to cytoplasmic shuttling [46, 47]. Threonine 118, the target of p38 signaling, is located in
275 one of the RNA recognition motifs [25], which may explain why the activation of p38 signaling in
276  anchorage-independence primary affects HUR Sod2 mRNA binding. The exploration of additional
277  HuR mRNA targets following matrix detachment and mechanisms linking the p38 MAPK pathway
278 to HuR activation require further investigation to unveil novel stress response translational

279  pathways under conditions of anchorage independence.

280 While the transcriptional regulation of antioxidant enzymes has been studied widely in the
281 context of antioxidant response elements and stress response transcription factors, such as Nrf2,
282  fewer studies have focused on translational regulation of these enzymes. In earlier work, the
283  presence of an un-identified redox-sensitive SOD2 mRNA binding protein was reported in rat lung
284  extracts [48]. Further analysis identified that RNA binding occurred at a cis-regulatory region
285 located 111 bp downstream of the stop codon in the rat SOD2 mRNA [49]. The 3’ UTR of human
286  SOD2 mRNA shares ~75% homology with the rat 3’ UTR. Based on sequence comparison, the
287  previously identified rat RNA protein binding region partially overlaps with the first HUR binding
288  sites from PAR-CLIP analysis (Fig 3A) [30, 49], suggesting that this region could be an important
289  RNA regulatory domain of SOD2 mRNA. Among the different SOD2 mRNA splice variants,
290 different 3’ UTRs have been reported (Supp Fig 3A). Variant 2 (NM_001024465) has a short 3’
291  UTR composed of a spliced region that excludes the majority of the HuR sites identified. Variant
292 1 (NM_000636) has been annotated to contain a 13.4 kb 3’ UTR. However, past studies have
293  shown that the two most common SOD?2 transcripts contain either a short 240 bp or a 3,439 bp
294  segment of this 3’ UTR, which arise from use of a proximal and distal polyadenylation site,
295  respectively (Supp Fig 3A) [50, 51]. Interestingly, Chaudhuri et al. reported that the expression of
296 these two SOD2 transcripts is altered between quiescent and proliferating cells, with the shorter

297  transcript being associated with quiescence and increased protein expression [50]. Moreover,
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298 radiation increased levels of the shorter SOD2 transcript levels of the 1.5 kb MnSOD transcript,
299  with expression of the longer form remaining unaltered [50]. The mechanisms for this radiation
300 induced increase in the short 3’ UTR transcript remain unclear. However, we predict that it is likely
301  not HuR-dependent, as only the longer 3.4 kb 3’ UTR contains the majority of identified HuR
302 binding sites. We verified that ovarian cancer cells used in the present work express the transcript
303 containing the longer 3' UTR (Supp Fig 3B). Further studies are needed to determined if and how
304 these alternate 3' UTR SOD2 transcripts are regulated in response to different sources of stress,
305 and how their transcription co-operates with translational regulation through the activation of cell-
306  specific RNA binding proteins, as well as the interplay with non-coding RNAs, such as miRNAs.
307 A screen for miRNA binding reveals that the SOD2 mRNA contains potential binding sites for
308 miRNAs throughout the length of the 3° UTR. While most are located toward the far upstream
309 region, several overlap with identified HuR binding sites. Several studies have investigated the
310 role of miRNAs in regulating SOD2 expression and miRNAs identified that either positively or
311 negatively regulate SOD2 levels in cancer (reviewed in [7]). It remains to be investigated if
312  changes in miRNA binding further influence the regulation of SOD2 mRNA translation in

313  anchorage-independence, and if this interplays with the regulation by HuR.

314 In conclusion, we show for the first time that SOD2 mRNA is an HuR target in anchorage-
315  independent ovarian cancer cells. The present findings uncover a novel post-transcriptional stress
316  response mechanism by which tumor cells are able to rapidly increase the expression of SOD2

317  in response to anchorage-independence.
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318 Materials and Methods:
319  Cell Culture and Reagents

320 OVCA433 and OVCAR10 cells were provided by Dr. Susan K. Murphy (Duke University) and Dr.
321 Katherine Aird (Penn State University & University of Pittsburgh), respectively. OVCA433 and
322 OVCAR10 were grown in RPMI1640 supplemented with 10% FBS at 37 °C with 5% CO,. STR
323  profiling is carried out routinely to validate cell identity, which revealed at the commencement of
324  this work that OVCAR10 cells share the same STR profile as NIH-OVCARS cells. It is unclear if
325 the OVCAR10 cell line was initially derived from the same patient as OVCARS, or if OVCAR10
326 cells represent a sub-line derived from OVCAR3 cells. The protein synthesis inhibitor
327  cycloheximide (Sigma) was added at a concentration of 20 ug/mL in fully supplemented growth
328 media. For mRNA stability assays, actinomycin D (Sigma) was added at 10 yg/mL. The p38
329 MAPK inhibitor SB203580 was used at a final concentration of 20 uM.

330
331  Cell culture in adherent and ultra-low attachment (ULA) conditions

332  For attached conditions, cells were plated in 150-mm dishes and grown to ~80% confluency. For
333  anchorage independent cell culture, cells were trypsinized and seeded at a density (300,000
334  cells/2 mL media/well) in 6-well ULA (ultra-low attachment) plates (Corning: 3471) and collected

335  atdifferent time points for downstream analyses.
336
337  siRNA-mediated HUR/ELAVL1 knock-down

338  Cells were transfected with scramble non-targeting SMARTpool control (Dharmacon: D-001810-
339  10-05) or HuR (ELAVL1)-specific SMARTpool siRNA oligonucleotides (Dharmacon: L-003773-
340 00-0005) using Lipofectamine RNAIMAX (Invitrogen), and knock-down confirmed by western
341  blotting.

342
343  Subcellular Fractionation

344  Cells in adherent and ULA plates were collected and the cell pellets were washed with ice-cold
345 PBS. The cell pellets were processed as described in Sugiura et al. [52]. Briefly, cells were
346  centrifuged and resuspended in 200-500 pl of ice-cold homogenization buffer (10 mM HEPES pH

347  7.4,220 mM mannitol, 70 mM sucrose, Roche protease and phosphatase inhibitor cocktails). The
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348 lysates were homogenized by several passages through 27-G needles. Lysates were centrifuged
349  at 800 g for 10 min, followed by centrifugation of the supernatants at 2,500 g for 15 min at 4 °C.
350  The mitochondrial pellets were resuspended in homogenization buffer and the supernatants were
351  centrifuged at 100,000g for 1 h at 4 °C using a Beckman Coulter Optima MAX Ultracentrifuge.
352  Post-centrifugation supernatants containing cytosolic fractions were transferred to new tubes and

353  used for immunoblotting.
354
355  Immunoblotting

356  Protein concentrations were measured using the Pierce BCA protein assay kit. An equal amount
357  of protein lysates was loaded onto 4-20% SDS-PAGE gels. Following electrophoresis, proteins
358  were transferred to PVDF membranes. For detection of proteins, the membranes were incubated
359  with the following antibodies overnight at 4 °C: SOD2 (A-2, Santa Cruz: sc-133134, 1:500 dilution);
360  B-tubulin (9F3, Cell Signaling Technology: 2128, 1:1,000 dilution), ATP5A (Abcam: ab14748,
361 1:1000 dilution), B-actin (Thermo: AM4302, 1:10,000 dilution), HUR/ELAVL1 (3A2, Santa Cruz:
362  sc-5261, 1:500 dilution), Phospho-p38 MAPK (Thr180/Tyr182, Cell Signaling Technology: 9211,
363 1:1000 dilution), p38 MAPK (A-12, Santa Cruz Biotechnology: sc-7972,
364  1:1000 dilution), MAPKAPK-2 (Cell signaling technology: 3042, 1:1000 dilution). The blots were
365  developed using SuperSignal West Femto Maximum Sensitivity Substrate (Thermo: 34096) after
366 incubation with horseradish peroxidase (HRP)-conjugated secondary antibodies (Amersham
367  Biosciences) for 1 h at RT.

368
369  Immunoprecipitation (IP)

370  1-1.5 mg of cell lysates were pre-cleared by incubating with 2 ug normal rabbit IgG (Cell Signaling
371  Technology: 2729S) or normal mouse IgG (Millipore: 12-371) on a rotator for 1 h at 4 °C followed
372 by an additional 1 h incubation with protein A- (Thermo: 20333) or protein G- agarose beads (50
373 uL; Thermo: 20399) at 4 °C. Following centrifugation at 3000g for 10 min supernatants were
374  transferred to clean tubes and incubated with either IgG or primary antibodies overnight at 4 °C.
375 50 pL of agarose beads were added to the lysates for 1-2 h at 4 °C and the antibody-bead
376  complexes were washed three times in IP lysis buffer and further processed for downstream

377  assays.

378
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379  *S Protein Radiolabeling

380 Cells in adherent and ULA plates were treated with EasyTag Express®*S Protein Labeling Mix
381  (Perkin Elmer: NEG772), using 40 pl **S (440 uCi) per 20 mL media in 150-mm dish, 4 ul *°*S (44
382  uCi) /2 mL media/ well in ULA plates, according to a protocol adapted from Gallagher et al.
383  (Gallagher et al, 2008). Following 2 h incubation in the presence of *S-L-methionine and *S-L-
384  cysteine (**S-Met/Cys), cells were collected, washed with ice-cold PBS, and harvested using
385 RIPA buffer supplemented with protease and phosphatase inhibitors. The cell lysates were
386 rotated for 30 min at 4 °C, centrifuged at 12,000 rpm for 30 min at 4 °C and supernatants
387  transferred to new tubes. After pre-clearing, the lysates were incubated overnight with 2 ug of
388 normal rabbit IgG or SOD2 antibody (Abcam: Ab13533). Following SOD2 IP, the lysates were
389  resolved in SDS-PAGE gels. The SOD2 band in each lane was cut with a razor blade and weighed.
390 The bands were dissolved in 1 mL of 1X TGS running buffer overnight on a rocker at 4 °C. Next
391  day, dissolved gel pieces were further heated for 20 min at 60 °C. The dissolved radioactive
392 sample solutions were transferred to glass vials containing 10 mL of Opti-Fluor (Perkin Elmer) in
393  duplicate (500 pl per vial). Liquid scintillation counting was performed using a Beckman Coulter

394  Scintillation Counter. The readouts were normalized against the values from untreated samples.
395
396 Ribonucleoprotein Immunoprecipitation & RT-PCR

397 Cells were cultured in attached and anchorage independent conditions as described above.
398 Before harvesting cells, 0.3% formaldehyde was added for 10 min at 37 °C for crosslinking
399 followed by addition of glycine (final concentration 0.25 M) for 5 min for quenching. RNP-IP was
400 performed as described in [23, 53] with modifications. Briefly, crosslinked cells were lysed in 500-
401 1,000 pl NT1 buffer (100 mM KCI, 5 mM MgCl;, 10 mM HEPES, [pH 7.0], 0.5% Nonidet P40
402 [NP40], 1 mM dithiothreitol [DTT], 100 units/mL SUPERase-In RNase Inhibitor [Invitrogen:
403 AM2694], protease inhibitors [Thermo: 78429], 0.2% vanadyl ribonucleoside complexes [New
404 England Biolabs: S14028S]). After centrifugation of lysates at 16,000 g for 15 min, the supernatants
405 were used for IP with normal mouse IgG or HuR antibody. The antibody-bead mixtures were
406  washed several times with NT2 buffer (50 mM Tris-HCI [pH 7.4], 150 mM NaCl, 1 mM MgCly,
407  0.05% NP40, RNAse inhibitor, protease inhibitor). IP samples for RNA elution were incubated
408  with proteinase K (30 ug/100 ul NT2 buffer with 0.1% SDS) for 30 min at 60 °C. RNA was extracted
409 using TRIzol, followed by cDNA synthesis (Quantabio: 95047) and SOD2 RT-PCR using the
410 PrimeSTAR polymerase (Takara: RO10A) with the following cycles: 98°C for 10 sec, 98°C for 10
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411  sec +60°C for 10 sec + 72°C for 20 sec X 35-38 cycles, followed by a final extension step at 72°C

412  for 2 min. PCR products were analyzed by 2% agarose gel electrophoresis.
413
414  Polysome Profiling by Sucrose Density Gradient Centrifugation

415  Cells in adherent and ULA plates were incubated with cycloheximide (100 pg/mL) for 10 min at
416 37 °C before harvesting and were washed twice with ice cold 1X PBS containing cycloheximide.
417  The cells were homogenized in 500 pl lysis buffer (50 mM HEPES, 75 mM KCI, 5 mM MgCl,, 250
418 mM sucrose, 100 ug/mL cycloheximide, 2mM DTT, 20 U/ul SUPERase-:In RNase Inhibitor
419  [Invitrogen: AM2694], 10% Triton X-100, 13% NaDOC) and polysome profiling carried out as
420  previously described [54]. Lysates were placed on ice for 10 min and centrifuged at 3000 g for 15
421 min at 4 °C. 500 pl supernatants were loaded on linear sucrose gradients ranging from 20% to
422  47% (10 mM HEPES, KCI 75 mM, 5 mM MgCl;, 0.5 mM EDTA) and were separated by
423  ultracentrifugation in a SW41 rotor at 34,000 rpm for 4 h 15 min at 4 °C (Beckman Coulter).
424  Subsequently, four sucrose fractions were collected using a UV/VIS absorbance detector. TRIzol
425 reagent (Invitrogen) was added to each fraction for RNA isolation. Briefly, post-centrifugation at
426  3,200g for 20 min after addition of 1/5 volume of chloroform, the aqueous layer was transferred,
427  and 1/2 volume of isopropanol was added for overnight precipitation at -20 °C. RNA was pelleted
428 by centrifugation at 4,640 rpm for 55 min at 4 °C. RNA pellets were washed with 70% ethanol
429 twice and dissolved in RNAse-free water. After cDNA synthesis and qPCR reactions, final PCR

430 products were analyzed on 2% agarose gels.
431
432  Semi-quantitative real-time PCR

433 Total RNA was isolated by RNA isolation kit (Zymo Research: R2052) and used for cDNA
434  synthesis (Quantabio: 95047) according to the manufacturer’s instruction. cDNA was mixed with
435 iTaq™ Universal SYBR® Green Supermix (BioRad) and the primers listed in Table 1. Semi-
436  quantitative real time RT-PCR was carried out using a BioRad gRT-PCR machine (BioRad), data
437 normalized to the geometric mean of four housekeeping genes (Table 1), and expressed as fold-

438  change in expression using the 2"22°T formula.
439
440

441
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442  Table1: Primers used for RT-PCR and semi-quantitative real time PCR.

Primer Sense Antisense

SOD2 CDS 5-TCCACTGCAAGGAACAACAG-3 5-CGTGGTTTACTTTTTGCAAGC-3’
SOD2 3UTR-A | 5-ATAATGCTGGGGTGAGCAAC-3’ 5-GCTGAGGTGGGACAATCACT-3
SOD2 3UTR-B | 5-TGTGTATGCATGCTTGTGGA-3’ 5CCACCTTGCCCGTCTATTTA-3’
ATF4 5- TGTCCTCCACTCCAGATCAT 5-GGCTCATACAGATGCCACTATC-3'
ELAVLA 5-CGCAGAGATTCAGGTTCTCC-3’ 5-CCAAACCCTTTGCACTTGTT-3’
Housekeeping genes:

GAPDH 5-GAGTCAACGGATTTGGTCGT-3 5-TTGATTTTGGAGGGATCTCG-3’
18S 5-AGAAACGGCTACCACATCCA-3’ 5- CACCAGACTTGCCCTCCA-3
HPRT1 5-TGACCTTGATTTATTTTGCATACC-3 | 5-CGAGCAAGACGTTCAGTCCT-3’
TBP 5-TTGGGTTTTCCAGCTAAGTTCT-3’' 5-CCAGGAAATAACTCTGGCTCA-3’

443
444  Live/dead staining

445 Live and dead cell fractions of cells cultured for 2 h in anchorage independence was assessed
446 Dby staining with 4 uM Calcein AM and 4 uM ethidium homodimer (in PBS; Sigma) to visualize

447 live and dead cells, respectively. Cells were exposed to both dyes for 30 min at 37 °C, followed
448 by imaging on a Keyence BZ-X700 fluorescence microscope. The percentage of live and dead

449  cells were quantified using Image J.
450
451  Statistical Analysis

452  All data are representatives of at least three independent experiments. Data are presented as
453 mean £ SEM with individual replicate values superimposed. Statistical analysis was performed
454  using GraphPad Prism Software v9, with statistical tests chosen based on experimental design,

455  as described in figure legends.
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