

1 **Article - Method**

2 **Title**

3 SHOOT: phylogenetic gene search and ortholog inference

4 **Authors**

5 Emms, D.M.¹ and Kelly, S.^{1*}

6 **Affiliations**

7 1) Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB,
8 UK.

9 **Corresponding Author**

10 Name: Steven Kelly

11 Email: steven.kelly@plants.ox.ac.uk

12 Name: David Emms

13 Email: david.emms@plants.ox.ac.uk

14 **Keywords**

15 Phylogenetic tree inference; sequence similarity search; orthology inference

16 **Abstract**

17 Determining the evolutionary relationships between genes is fundamental to comparative
18 biological research. Here we present the phylogenetic search, SHOOT. SHOOT searches
19 a user query sequence against a database of phylogenetic trees and returns a tree with the
20 query sequence correctly placed within it. We show that SHOOT performs this analysis with
21 comparable speed to a BLAST search. We demonstrate that SHOOT phylogenetic
22 placements are as accurate as conventional tree inference and it can identify orthologs with

23 high accuracy. In summary, SHOOT is a fast and accurate tool for phylogenetic analyses of
24 novel query sequences. It is available online at www.shoot.bio.

25 **Background**

26 Resolving the phylogenetic relationships between biological sequences provides a
27 framework for inferring sequence function, and a basis for understanding the diversity and
28 evolution of life on Earth. The entry point to such phylogenetic analyses is provided by
29 algorithms that either align or identify regions of local similarity between pairs of biological
30 sequences. The first implementations of such algorithms utilised global alignments to
31 provide a basis to score similarity between sequences [1]. Later, faster local alignment
32 methods were developed [2], followed by the FASTA heuristic database search [3] and
33 culminating with the development of the BLAST algorithm and statistical methods for
34 homology testing [4] in the 1990s. Since then, BLAST and other local alignment methods
35 [5-7] have provided a critical foundation of biological science research and form the entry
36 point to the majority of biological sequence analyses.

37 One feature of the problem that is under-utilised in BLAST and related local alignment
38 search tools is the transitive nature of homology. Because local alignment searching
39 methods do not store the relationships between sequences, a search of a query gene
40 against a large database will involve carrying out many needless pairwise local alignments
41 against numerous closely related homologs. An alternative approach would be to infer the
42 relationships between all database sequences ahead of time using phylogenetic inference
43 methods. These phylogenetic relationships can then be stored as part of the database,
44 facilitating the use of lighter-weight search approaches or sparse reference databases with
45 relationships already computed. Existing methods that take these kind of approaches
46 include TreeFam for genes within the Metazoa [8] and TreeGrafter for annotating protein
47 sequences using annotated phylogenetic trees [9].

48 Although local similarity searches such as BLAST are the primary entry point to the
49 sequence analysis, a frequent end-goal of such analyses is to identify orthologs of the query
50 sequence in other species. The use of phylogenetic methods is the canonical method for
51 assessing gene relationships. Phylogenetic methods for estimating sequence similarity are
52 more accurate than using local pairwise alignments, and critically they provide contextual
53 information about the place of the query gene within its gene family. This includes the
54 identification of orthologs, paralogs, and gene gain and loss within each clade in of the
55 resultant phylogenetic tree. Although the similarity scores returned by local alignment
56 methods can be used to approximate phylogenetic trees [10], they are not accurate and can
57 be limited by only having alignments against a single query gene rather than alignments
58 between sequences already in the database [11]. Moreover, even when all pairwise
59 similarity scores are calculated the accuracy of phylogenetic trees inferred from these scores
60 is limited [10]

61 Here we present SHOOT, a software tool for rapidly searching a phylogenetically partitioned
62 and structured database of biological sequences. There are a number of advantages to
63 taking a phylogenetic approach to sequence searching. We show that by grouping
64 homologous genes in the database, a gene can then be rapidly assigned to its homology
65 group, irrespective of the number of homologous genes. Further, false negatives are unlikely
66 since complete homology groups can be identified securely ahead of time. This helps avoid
67 the reduced sensitivity that results from local sequence similarity database search algorithm
68 heuristics used to determine which sequences to consider aligning [6]. Phylogenetic
69 inference methods can then be used to rapidly and accurately assign the gene to its correct
70 position within the otherwise pre-computed gene tree for its homology group [12]. This
71 avoids the need to evaluate gene-relatedness using e-values, which are a measure of the
72 certainty that a pair of genes are homologous, rather than a direct evaluation of the
73 phylogenetic relationship between genes [13]. In summary, SHOOT efficiently and

74 accurately places query sequences directly into phylogenetic trees. In this way the
75 phylogenetic history of the query sequence and its orthologs can be immediately visualised,
76 interpreted, and retrieved. SHOOT is provided for use at www.shoot.bio.

77 **Results**

78 ***Pre-computed databases of phylogenetic trees allow ultra-fast phylogenetic
79 orthology analysis of novel gene sequences***

80 The conventional procedure for sequence orthology analysis is to first assemble a group of
81 gene sequences which share similarity and then perform phylogenetic tree inference on this
82 group to infer the relationships between those genes. The SHOOT algorithm was designed
83 to make such a phylogenetic analysis feasible as a real-time search using a two-stage
84 approach. The first stage comprises the ahead-of-time construction of a SHOOT
85 phylogenetic database and the second stage implements the SHOOT search for a query
86 sequence (Figure 1). The database preparation phase includes multiple automated steps
87 including homology group inference, multiple sequence alignment, phylogenetic tree
88 inference, and homology group profiling (see Methods). Thus, prior to database searching
89 the phylogenetic relationships between all genes in the database are already established.
90 Subsequent SHOOT searches exploit the fact that the alignments and trees have already
91 been computed to enable the use of accurate phylogenetic methods for placement of query
92 genes within pre-computed gene trees with little extra computation required.

93 The median time for a complete a SHOOT search of a database containing 984,137 protein
94 sequences from 78 species was 5.5 seconds using 16 cores of an Intel Xeon E5-2683 CPU
95 for (Figure 2A). This compared with 1.19 seconds for a conventional BLAST search of the
96 same sequence set (Figure 2A). However, unlike BLAST (or similar) sequence search
97 methods, the output of a SHOOT search is not an ordered list of similar sequences but is
98 instead a maximum likelihood phylogenetic tree with bootstrap support values inferred from

99 a multiple sequence alignment with the query gene embedded within it. SHOOT also
100 computes the orthologs of the query gene using phylogenetic methods.

101 ***SHOOT is more accurate than BLAST in identifying the closest related gene sequence***

102 A leave-one-out analysis was conducted to test SHOOT's ability to find the most closely
103 related gene sequence in a given database. Here a set of 1000 test cases was randomly
104 sampled from the UniProt Reference Proteomes database. Each test case consisted of a
105 pair of genes sister to each other with at least 95% bootstrap support in a maximum
106 likelihood gene tree. One member of the test pair was arbitrarily designated the "query
107 sequence" and the other gene was designated "the expected closest gene" i.e. the gene
108 that should be identified by a search method as the most similar gene in the database. To
109 provide a comparison, BLAST [11] was also tested on the same dataset. The set of query
110 genes were searched against the database and each method was scored on whether or not
111 the closest/best scoring gene in each search result was "the expected closest gene". The
112 tests showed that SHOOT identified "the expected closest gene" as the most closely related
113 gene in 94.2% of cases (Figure 2A). For comparison, BLAST correctly identified the "the
114 expected closest gene" as the most similar gene sequence in 88.4% of cases. To put this in
115 context, there is a 1 in 9 chance that the top hit returned by BLAST is not the most closely
116 related sequence in the database while there is a 1 in 17 chance that the same is true for
117 SHOOT. Thus, SHOOT is better able to identify the closest related gene to a given query
118 gene in a given database and can be used as an alternative to BLAST for this purpose.

119 ***SHOOT gives evolutionary context of a query gene's position within its gene family***

120 Although for many users knowledge of the closest related gene as described above may be
121 sufficient, in many instances there will be more than one gene that is equally closely related
122 to the query gene in a given species. Thus, to generalise the "best hit" analysis above for
123 larger gene sets the "Mean Average Precision at k" score [14] was calculated, to quantify
124 the precision at which the k closest homologs identified by SHOOT or BLAST correspond to

125 the k expected closest homologs in maximum likelihood gene trees. This analysis was
126 conducted for values of k between 1 (equivalent to the “best hit” analysis above) and 50
127 (Figure 2B). As k increased, MAP@k for BLAST fell to 71.8%. i.e. there was a 71.8%
128 agreement between the closest homologs identified using BLAST and those identified using
129 phylogenetic methods. In contrast, the use of phylogenetic methods in the database
130 construction stage of SHOOT coupled with the accurate placement of genes within the
131 database trees (Figure 2A), resulted in MAP@50 for SHOOT of 90.3%. Thus, both the list
132 of most closely related genes and their rank order of relationship to the query gene is
133 substantially more accurate for SHOOT than for BLAST.

134 ***SHOOT has high accuracy in identifying orthologs of the query gene***

135 A frequent goal of sequence similarity searches is to identify orthologs of the query gene in
136 other species. As stated above, local similarity search tools such as BLAST do not do this.
137 Instead, they return a list of genes that should be subject to multiple sequence alignment
138 and phylogenetic inference in order to infer the orthology relationships between genes. The
139 phylogenetic tree returned by SHOOT provides the evolutionary relationships between
140 genes inferred from multiple sequence alignment and maximum likelihood tree inference
141 allowing orthologs and paralogs to be identified. SHOOT also automatically identifies
142 orthologs and colours the genes in the tree according to whether they are orthologs or
143 paralogs (Supplementary Figure 1), as identified using the species overlap method [15, 16],
144 which has been shown to be an accurate method for automated orthology inference [17].
145 The tree viewer also supports a zoom functionality to view a progressively larger or smaller
146 clade of genes around the query gene. An image of the tree can be downloaded, the tree
147 can also be exported in Newick format, and the FASTA file of protein sequences in the tree
148 can be downloaded to support further downstream analyses.

149 To evaluate the accuracy of ortholog inference 6 species were chosen at increasing time
150 since divergence from human. These query species comprised Mouse, Chicken, Zebrafish,

151 the Tunicate *Ciona intestinalis*, fruit fly, and the yeast *Saccharomyces cerevisiae* (Figure
152 3A). Orthologs between these species and Human were determined from OrthoFinder on
153 the 2020 Quest for Orthologs benchmark dataset [13, 17]. For each query species 100 query
154 genes were selected, creating a test set of 600 genes in total. For these 600 genes SHOOT
155 was evaluated on its accuracy in identifying the orthologs in human. For comparison BLAST
156 best hit (BH) and reciprocal best hit (RBH) were likewise evaluated (Figure 3B). SHOOT
157 was between 11% (Mouse) and 47% (*S. cerevisiae*) more accurate than either method using
158 BLAST and the difference was greatest for more diverged species (Figure 3B). The greatest
159 difference between SHOOT and BLAST was in the percentage of orthologs that were
160 recovered (Recall, Figure 3C). For all species, the ortholog recall for SHOOT was >79%.
161 Whereas the ortholog recall for BLAST RBH was for 37% for *S. cerevisiae*, the most distant
162 species from human in the analysis (Figure 3C). The precision of SHOOT orthologs was
163 intermediate between BLAST RBH and BH (Figure 3D). Thus, SHOOT ortholog
164 assignments are more accurate than performing a “top hit” or “reciprocal best BLAST hit”
165 analysis for identification of orthologs.

166 ***Curated databases place the gene in the context of model species and key events in***
167 ***the gene’s evolution***

168 The initial release of SHOOT includes phylogenetic databases for Metazoa, Fungi, Plants,
169 Bacteria & Archaea, and also the UniProt Quest for Orthologs (QfO) reference proteomes,
170 which cover all domains of cellular life (Supplementary Tables 1-5). To maximise the utility
171 of the gene trees to a wide range of researchers, the species within the databases have
172 been chosen to contain model species, species of economic or scientific importance, and
173 species selected because of their key location within the evolutionary history covered by the
174 database. Each database also contains multiple outgroup species to allow robust rooting of
175 the set of gene trees. As an example, Supplementary Figure 2 shows the phylogeny for the
176 metazoan database, highlighting the taxonomic groups of the included species. Although a

177 number of databases are provided on the SHOOT webserver, the SHOOT command line
178 tool has been designed so that databases can be compiled from any species set.

179 ***Discussion and Conclusions***

180 SHOOT is a phylogenetic search engine for analysis of biological sequences. It has been
181 designed to take a user-provided query sequence and return a phylogenetic analysis of that
182 sequence using a database of reference organisms. We show that SHOOT can perform this
183 search and analysis with comparable speed to a typical sequence similarity search and thus
184 SHOOT is provided as a phylogenetically informative alternative to BLAST, and as a
185 general-purpose sequence search algorithm for analysis and retrieval of related biological
186 sequences.

187 Local similarity or profile-based search methods such as BLAST [11], DIAMOND [5] or
188 MMseqs [18] have a wide range of uses across the biological and biomedical sciences. The
189 near-ubiquitous utility of these methods has led to them being referred to as the Google of
190 biological research. However, one of the most frequent use cases of these searches is to
191 identify orthologs of a given query sequence. Due to the frequent occurrence of gene
192 duplication and loss, orthologs are often indistinguishable from paralogs in the results of
193 local similarity searches. This is because a given query sequence can have none, one, or
194 many orthologs in a related species. Accordingly, the sequences identified by local similarity
195 searching methods will be an unknown mixture of orthologs and paralogs [19]. The problem
196 of distinguishing orthologs from paralogs can be partially mitigated by a reciprocal best hit
197 search, but with low recall [19]. Phylogenetic methods are required to correctly distinguish
198 orthologs from paralogs as they are readily able to distinguish sequence similarity (branch
199 length) and evolutionary relationships (the topology of the tree).

200 SHOOT was designed to provide the accuracy and information of a phylogenetic analysis
201 with the speed and simplicity of a local sequence similarity search. By pre-computing the

202 within-database sequence relationships, SHOOT can perform an individual search in a
203 comparable time to BLAST. However, instead of returning a list of similar sequences
204 SHOOT provides a full maximum-likelihood phylogenetic tree as a result enabling immediate
205 phylogenetic interrogation of the sequence search results. A phylogenetic tree provides the
206 best representation available of the evolutionary history of a gene family. The tree allows
207 the identification of speciation and gene duplication events and thus the identification of
208 orthologs and paralogs. While, SHOOT identifies orthologs and paralogs algorithmically the
209 phylogenetic tree can and should also be examined by a user to gain an understanding of
210 how the gene family has evolved, using the orthology assignment by SHOOT as a guide.

211 A standard phylogenetic approach to identifying orthologs of a query gene is to begin a local
212 sequence similarity search or profile search (HMMER [20], MMseqs [18]). Frequently, an e-
213 value cut-off is applied to identify a set of similar sequences for subsequent phylogenetic
214 analysis. Because e-values (and their constituent bit-scores) are imperfectly correlated with
215 evolutionary relatedness, the set of similar sequences meeting the search threshold will
216 often be missing some genes as well as often including genes that should not be present. A
217 systematic study using HMMER found that for all n genes from an orthogroup clade to pass
218 an e-value threshold, on average the threshold would have to be set such that $1.8n$ genes
219 in total met the threshold [21]. i.e. an additional 80% of genes needed to be included, on
220 average, to ensure the orthogroup was complete [21]. Thus, unless a very lenient search is
221 used, genes will be incorrectly absent from the final tree. This can lead to incorrect rooting
222 and subsequent mis-interpretation even by phylogenetic experts [21]. Thus, even for
223 bespoke phylogenetic analyses, it is better to use phylogenetic methods to first select the
224 clade of genes of interest. SHOOT supports this by inferring the tree for the entire family of
225 detectable homologs. The use of trees for complete sets of homologs, together with the use
226 of OrthoFinder's robust tree-rooting algorithm [13], avoids the problem of mis-rooting and
227 misinterpretation of a tree inferred for a more limited set of genes. Also, by using OrthoFinder

228 clustering approach [13, 22], hits missed for a single sequence are also corrected by multiple
229 hits identified for its homologs. This “phylogenetic gene selection workflow” is supported by
230 SHOOT’s web interface, which allows a clade of genes to be selected and the protein
231 sequences for just this clade to be downloaded for downstream user analyses.

232 In summary, SHOOT was designed to be as easy to use as BLAST, but to provide
233 phylogenetically resolved results in which the query sequence is correctly placed in a
234 phylogenetic tree. In this way the phylogenetic history of the query sequence and its
235 orthologs can be immediately visualised, interpreted, and retrieved.

236 **Materials and Methods**

237 ***Database preparation***

238 SHOOT consists of a database preparation program and a database search program. The
239 database preparation program takes as input the results of an OrthoFinder [13] analysis of
240 a set of proteomes.

241 To prepare phylogenetic databases for the SHOOT website, the OrthoFinder version 3.0
242 option, “-c1”, was used to cluster genes into groups consisting of all homologs, rather than
243 the default behaviour which is to split homologous groups at the level of orthogroups. The
244 advantage of the creating complete homologous groups is that their gene trees show an
245 expanded evolutionary history of those genes, including ancient gene duplication events
246 linking gene families, rather than only reaching back to the last common ancestor of the
247 included species. This differs from a default OrthoFinder orthogroup analysis, for which the
248 partitioning of genes into taxonomically comparable orthogroups groups is the priority.
249 OrthoFinder-inferred rooted gene trees for these homolog groups are computed using
250 MAFFT [23] and IQ-TREE [24] by using the additional options “-M msa -A mafft -T iqtree -s
251 species_tree.nwk”, where “species_tree.nwk” was the rooted species tree for the included

252 species. For IQ-TREE, the best fitting evolutionary model was tested for using “-m TEST”
253 and bootstrap replicates performed using “-bb 1000”.

254 The OrthoFinder results were converted to a SHOOT database in two steps: splitting of large
255 trees and creation of the DIAMOND profiles database for assigning novel sequences to their
256 correct gene tree. Large trees are split since the time requirements for adding a sequence
257 to an MSA for a homologous group and for adding a sequence to its tree can grow super-
258 linearly in the size of the group, leading to needlessly long runtimes. It was found that
259 DIAMOND could instead be used to assign a gene to its correct subtree and then
260 phylogenetic placement could be applied to assign the gene to its correct position within the
261 subtree (Figure 4).

262 The script “split_large_tree.py” was used to split any tree larger than 2500 genes into
263 subtrees of no more than 2500 genes each. Each subtree tree also contained an outgroup
264 gene, from outside the clade in the tree for that subtree, which was required for the later
265 sequence search stage. For each tree that was split into subtrees, a super-tree was also
266 created by the script of the phylogenetic relationships linking the subtrees. For each subtree,
267 the script extracted the sub-MSA for later use. This subtree size of 2500 genes was chosen
268 as it is the approximate upper limit tree size for which SHOOT could place a novel query
269 gene in the tree in 15 seconds. This was judged to be a reasonable wait for users of the
270 website to receive the tree for their query sequence. For the databases provided by the
271 SHOOT website, between 2 and 40 of the largest trees were split into subtrees.

272 The script “create_shoot_db.py” was used to create a DIAMOND database of “profiles” for
273 each unsplit tree or each subtree. A profile here refers to a set of representative sequences
274 that best describe the sequence variability within a homologous group. These profiles are
275 used to assign a novel query sequence to the correct tree or subtree. The representative
276 sequences for a gene tree are selected using k-means clustering applied to the MSA
277 corresponding to that (sub)tree using the python library Scikit-learn [25]. For each cluster,

278 the sequence closest to the centroid is chosen as a representative. For a homologous group
279 of size N genes, $k=N/10$ representative sequences are used, with a minimum of $\min(20, N)$
280 representative sequences. This ensures that large and diverse homologous groups have
281 sufficient representative sequences in the assignment database.

282 ***Database search***

283 A query sequence is searched against the profiles database using DIAMOND [5] with default
284 sensitivity and an e-value cut-off of 10^{-3} . If no hit is found, a second search is performed with
285 the "--ultra-sensitive" setting. The top hitting sequence is used to assign the gene to the
286 correct tree or subtree. The query gene is added to the pre-computed alignment using the
287 MAFFT “--add” option and a phylogenetic tree is computed from this alignment using the
288 precomputed tree for the reference alignment using EPA-ng [12] and gappa [26].

289 If the gene is added to a subtree then the tree is rooted on the outgroup sequence for that
290 subtree. The outgroup is then removed from the subtree and the subtree is grafted back into
291 the original larger tree, using the supertree to determine the overall topology. This method
292 provides the accuracy of phylogenetic analysis to place the gene in its correct position within
293 the subtree while at the same time providing the user with the full gene history for the
294 complete homologous group given by the supertree, which was calculated in full in the
295 earlier database construction phase. All tree manipulations by SHOOT are performed using
296 the ETE Toolkit [27].

297 ***Curated databases***

298 For the Plants database, the protein sequences derived from primary transcripts were
299 downloaded from Phytozome [28]. The Uniport Reference Proteomes database was
300 constructed using the 2020 Reference Proteomes [17]. For the Fungi and Metazoa
301 databases the proteomes were downloaded from Ensembl [29] and the longest transcript
302 variant of each gene was selected as a representative of that gene using OrthoFinder’s
303 “primary_transcripts.py” script [13]. The Bacterial and Archaeal database proteomes were

304 downloaded from UniProt [30]. The parallelisation of tasks in the preparation of the
305 databases was performed using GNU parallel [31].

306 ***Accuracy validation & performance***

307 The UniProt Reference Proteomes database was used for validation of the SHOOT
308 phylogenetic placements using a leave-one-out test. As this database covers the greatest
309 phylogenetic range (covering all domains of life), its homologous groups contain the greatest
310 sequence variability, and it provides the severest test of the accuracy of SHOOT. Test cases
311 were constructed by selecting 1000 'cherries' (pairs of genes sister to one another) with 95%
312 bootstrap support from gene trees with median bootstrap support of at least 95%. The use
313 of cherries allowed BLAST to be tested alongside SHOOT. This test was possible for BLAST
314 since it would only have to identify a single closest gene, rather than having to identify a
315 gene as the sister gene to a whole clade of genes (as SHOOT is designed to be able to do).
316 The bootstrap support criteria ensured that the correct result was known with high
317 confidence so that both methods could be assessed accurately. To ensure an even sampling
318 of test cases, at most one test case was extracted from any one gene tree. Both the BLAST
319 and SHOOT databases were completely pruned of the 1000 test cases. Each of the 1000
320 test cases was run using 16 cores of an Intel Xeon E5-2683 CPU and the runtime recorded
321 (Figure 2).

322 To calculate the Mean Average Precision at k score, the expected trees were re-inferred
323 using RAxML with the best-fitting model [32] so that a different method were used to that
324 used in the SHOOT database construction. For each test gene the ordered list of closest
325 homologs was calculated using branch length distance in the SHOOT results trees and e-
326 values (with ties broken by bit score) for the BLAST results. These ordered homologs were
327 compared to the expected ordered list of closest homologs from the expected RAxML trees
328 to calculate the precision at each value of k from 1 to 50 and these precision scores were
329 averaged over the 1000 test cases.

330 The ortholog prediction accuracy tests calculated the precision, recall and F-score for
331 identifying orthologs in *Homo sapiens* for genes from *Mus musculus*, *Gallus gallus*, *Danio*
332 *rerio*, *Ciona intestinalis*, *Drosophila melanogaster* and *Saccharomyces cerevisiae*. For each
333 of these 6 species 100 genes were sampled at random. The expected orthologs were
334 obtained from OrthoFinder 2020 Quest for Orthologs benchmark results, obtained from the
335 benchmarking server: <https://orthology.benchmarkservice.org>. . For SHOOT, the orthologs
336 were inferred using the species-overlap method [15] on the SHOOT results trees. For
337 BLAST orthologs were predicted using the best hit (BH) method and the reciprocal best hit
338 (RBH) method using the e-value scores.

339 ***SHOOT website***

340 The tree visualisation is provided by the phylotree.js library [33]. The SHOOT website is
341 implemented in JavaScript and Bootstrap and using the Flask web framework.

342 ***Declarations***

343 ***Ethics approval and consent to participate***

344 Not applicable

345 ***Consent for publication***

346 Not applicable

347 ***Availability of data and material***

348 The SHOOT source code is available at <https://github.com/davidemms/SHOOT>. The code
349 for the SHOOT webserver is available at
350 https://github.com/davidemms/SHOOT_webserver. A compressed archive of all data is
351 available at the Zenodo research data archive at <https://doi.org/10.5281/zenodo.5602736>
352 [34]. A webserver running SHOOT is available at <https://shoot.bio>.

353 ***Competing interests***

354 The authors declare that they have no competing interests.

355 **Funding**

356 This work was supported by the European Union's Horizon 2020 research and innovation
357 program under grant agreement number 637765. SK is a Royal Society University Research
358 Fellow.

359 **Authors' contributions**

360 DE and SK conceived and designed the project. DE developed the algorithms. DE and SK
361 discussed the results and wrote the manuscript. All authors read and approved the final
362 manuscript.

363 **Acknowledgements**

364 The authors would like to thank the members of the Department of Plant Sciences at the
365 University of Oxford and the SHOOT user community for their feedback on the initial
366 versions of the method and webserver.

367 **References**

- 368 1. Needleman SB, Wunsch CD: **A general method applicable to the search for**
369 **similarities in the amino acid sequence of two proteins.** *Journal of molecular*
370 *biology* 1970, **48**:443-453.
- 371 2. Smith TF, Waterman MS: **Identification of Common Molecular Subsequences.**
372 *Journal of Molecular Biology* 1981, **147**:195-197.
- 373 3. Lipman DJ, Pearson WR: **Rapid and sensitive protein similarity searches.**
374 *Science* 1985, **227**:1435-1441.
- 375 4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: **Basic Local Alignment**
376 **Search Tool.** *Journal of Molecular Biology* 1990, **215**:403-410.
- 377 5. Buchfink B, Reuter K, Drost HG: **Sensitive protein alignments at tree-of-life scale**
378 **using DIAMOND.** *Nat Methods* 2021, **18**:366-368.
- 379 6. Mirdita M, Steinegger M, Soding J: **MMseqs2 desktop and local web server app**
380 **for fast, interactive sequence searches.** *Bioinformatics* 2019, **35**:2856-2858.
- 381 7. Edgar RC: **Search and clustering orders of magnitude faster than BLAST.**
382 *Bioinformatics* 2010, **26**:2460-2461.
- 383 8. Schreiber F, Patricio M, Muffato M, Pignatelli M, Bateman A: **TreeFam v9: a new**
384 **website, more species and orthology-on-the-fly.** *Nucleic Acids Research* 2014,
385 **42**:D922-D925.
- 386 9. Tang H, Finn RD, Thomas PD: **TreeGrafter: phylogenetic tree-based annotation**
387 **of proteins with Gene Ontology terms and other annotations.** *Bioinformatics*
388 2019, **35**:518-520.
- 389 10. Kelly S, Maini PK: **DendroBLAST: Approximate Phylogenetic Trees in the**
390 **Absence of Multiple Sequence Alignments.** *Plos One* 2013, **8**.

391 11. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL:
392 **BLAST+: architecture and applications.** *BMC Bioinformatics* 2009, **10**:421.

393 12. Barbera P, Kozlov AM, Czech L, Morel B, Darriba D, Flouri T, Stamatakis A: **EPA-**
394 **ng: Massively Parallel Evolutionary Placement of Genetic Sequences.** *Syst Biol*
395 2019, **68**:365-369.

396 13. Emms DM, Kelly S: **OrthoFinder: phylogenetic orthology inference for**
397 **comparative genomics.** *Genome Biology* 2019, **20**.

398 14. Manning CD, Raghavan P, Schütze H: *Introduction to information retrieval.* New York:
399 Cambridge University Press; 2008.

400 15. Huerta-Cepas J, Bueno A, Dopazo JQ, Gabaldon T: **PhylomeDB: a database for**
401 **genome-wide collections of gene phylogenies.** *Nucleic Acids Research* 2008,
402 **36**:D491-D496.

403 16. Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD: **PANTHER version**
404 **7: improved phylogenetic trees, orthologs and collaboration with the Gene**
405 **Ontology Consortium.** *Nucleic Acids Res* 2010, **38**:D204-210.

406 17. Altenhoff AM, Garrido-Ventas J, Cosentino S, Emms D, Glover NM, Hernandez-
407 Plaza A, Nevers Y, Sundesha V, Szklarczyk D, Fernandez JM, et al: **The Quest for**
408 **Orthologs benchmark service and consensus calls in 2020.** *Nucleic Acids Res*
409 2020, **48**:W538-W545.

410 18. Steinegger M, Soding J: **MMseqs2 enables sensitive protein sequence searching**
411 **for the analysis of massive data sets.** *Nat Biotechnol* 2017, **35**:1026-1028.

412 19. Dalquen DA, Dessimoz C: **Bidirectional Best Hits Miss Many Orthologs in**
413 **Duplication-Rich Clades such as Plants and Animals.** *Genome Biology and*
414 *Evolution* 2013, **5**:1800-1806.

415 20. Eddy SR: **Accelerated Profile HMM Searches.** *Plos Computational Biology* 2011,
416 **7**.

417 21. Emms DM, Kelly S: **Benchmarking Orthogroup Inference Accuracy: Revisiting**
418 **Orthobench.** *Genome Biol Evol* 2020, **12**:2258-2266.

419 22. Emms DM, Kelly S: **OrthoFinder: solving fundamental biases in whole genome**
420 **comparisons dramatically improves orthogroup inference accuracy.** *Genome*
421 *Biology* 2015, **16**.

422 23. Nakamura T, Yamada KD, Tomii K, Katoh K: **Parallelization of MAFFT for large-**
423 **scale multiple sequence alignments.** *Bioinformatics* 2018, **34**:2490-2492.

424 24. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A,
425 Lanfear R: **IQ-TREE 2: New Models and Efficient Methods for Phylogenetic**
426 **Inference in the Genomic Era.** *Mol Biol Evol* 2020, **37**:1530-1534.

427 25. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
428 Prettenhofer P, Weiss R, Dubourg V: **Scikit-learn: Machine learning in Python.** *the*
429 *Journal of machine Learning research* 2011, **12**:2825-2830.

430 26. Czech L, Barbera P, Stamatakis A: **Methods for automatic reference trees and**
431 **multilevel phylogenetic placement.** *Bioinformatics* 2019, **35**:1151-1158.

432 27. Huerta-Cepas J, Serra F, Bork P: **ETE 3: Reconstruction, Analysis, and**
433 **Visualization of Phylogenomic Data.** *Molecular Biology and Evolution* 2016,
434 **33**:1635-1638.

435 28. Goodstein DM, Shu SQ, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks
436 W, Hellsten U, Putnam N, Rokhsar DS: **Phytozome: a comparative platform for**
437 **green plant genomics.** *Nucleic Acids Research* 2012, **40**:D1178-D1186.

438 29. Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM,
439 Azov AG, Bennett R, Bhai J, et al: **Ensembl 2021.** *Nucleic Acids Res* 2021, **49**:D884-
440 D891.

441 30. UniProt C: **UniProt: the universal protein knowledgebase in 2021.** *Nucleic Acids*
442 *Res* 2021, **49**:D480-D489.

443 31. Tange O: **GNU Parallel - The Command-Line Power Tool.** ;*login: The USENIX Magazine* 2011, **36**:42-47.

444 32. Stamatakis A: **RAxML version 8: a tool for phylogenetic analysis and post-**
446 analysis of large phylogenies. *Bioinformatics* 2014, **30**:1312-1313.

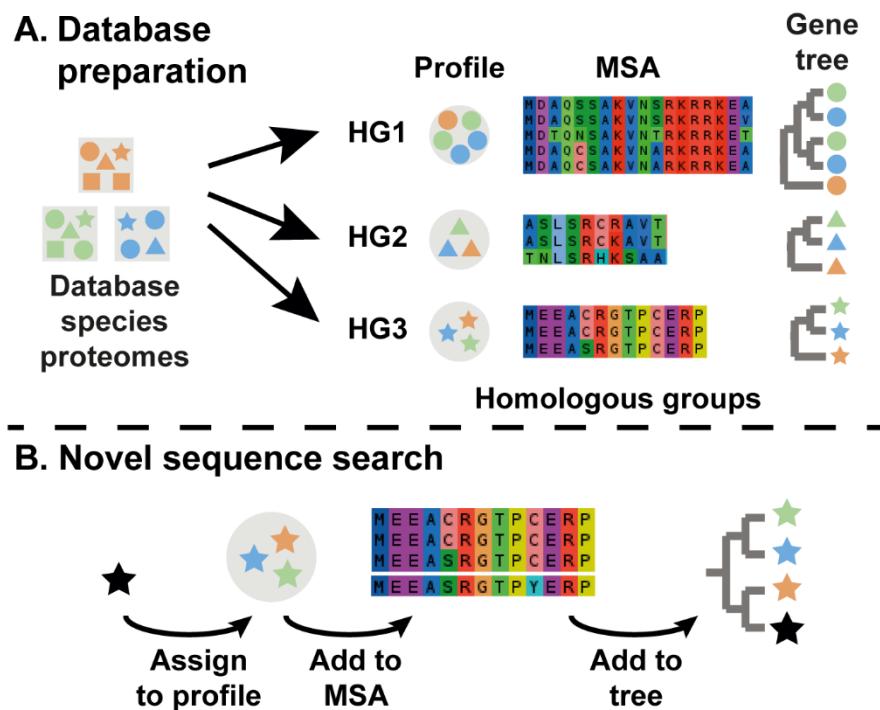
447 33. Shank SD, Weaver S, Kosakovsky Pond SL: **phylotree.js - a JavaScript library for**
448 application development and interactive data visualization in phylogenetics. *BMC Bioinformatics* 2018, **19**:276.

449 34. Emms D, Kelly S: **Dataset for, "SHOOT: phylogenetic gene search and ortholog**
451 inference". 2021.

452

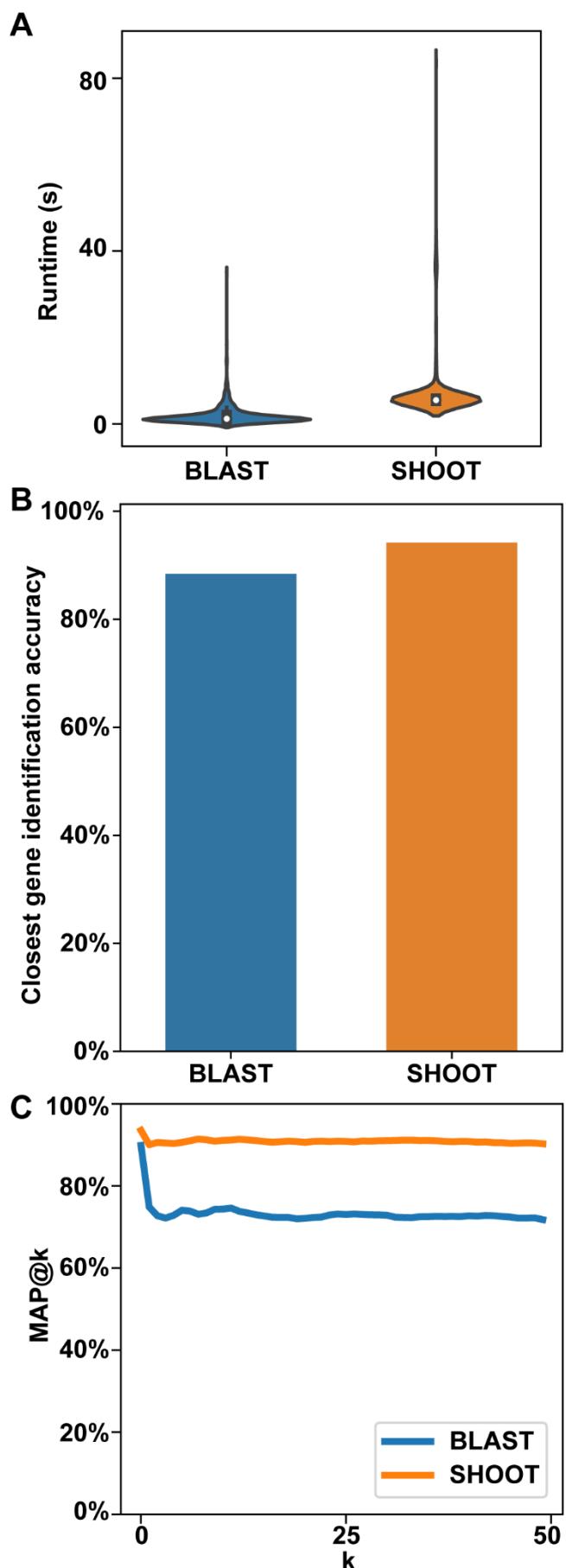
453 **Figure Legends**

454 **Figure 1.** The workflow for the two separate stages of SHOOT: **A)** The database preparation
455 stage. **B)** The sequence search stage. MSA, multiple sequence alignment. HG, homologous
456 group. Individual shapes represent individual protein sequences.

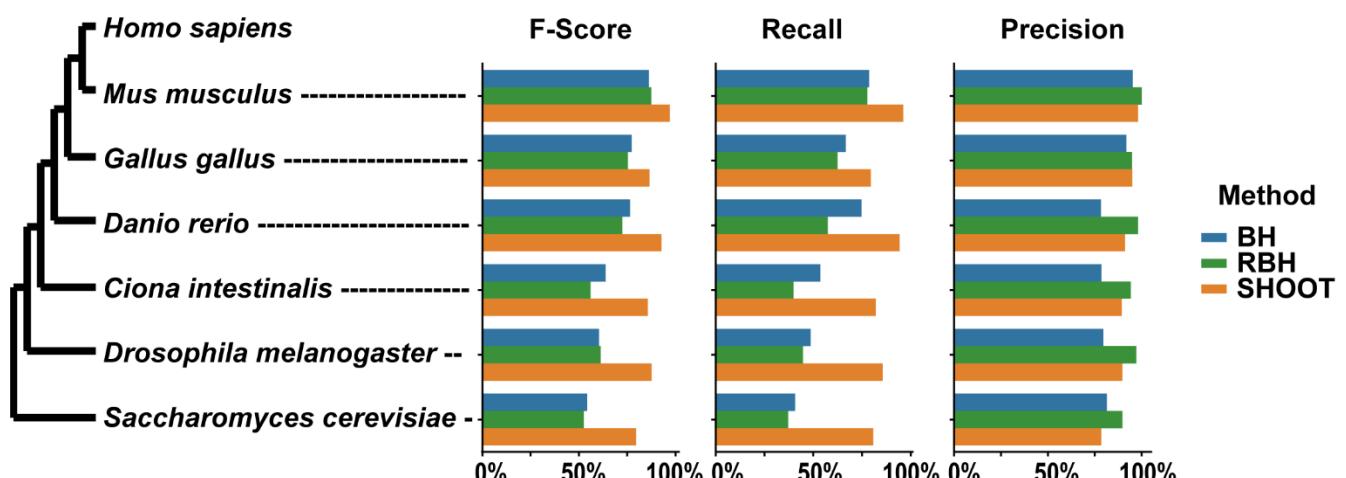

457 **Figure 2.** Runtime and closest homologs identification accuracy for SHOOT and BLAST..
458 A) Violin plot of runtimes for 1000 searches of randomly sampled sequences against the
459 same database of 984,137 protein sequences from 78 species. B) Accuracy at identifying
460 the closest related database gene to a randomly selected query sequence. C) Mean
461 Average Precision at k (MAP@k).

462 **Figure 3.** F-score, precision and recall at identifying orthologs in *Homo sapiens* for 100
463 query genes in each of *Mus musculus*, *Gallus gallus*, *Danio rerio*, *Ciona intestinalis*,
464 *Drosophila melanogaster* and *Saccharomyces cerevisiae* for BLAST best hit (BH), BLAST
465 reciprocal best hit (RBH) and SHOOT.

466


467 **Figures**

468 **Figure 1**


469

470 **Figure 2**

471

472 **Figure 3**

473

474

475 **Supplementary Table 1: UniProt 2020 Reference Proteomes – Species list**

Domain	Species
Archaea	<i>Halobacterium salinarum</i>
Archaea	<i>Korarchaeum cryptofilum</i>
Archaea	<i>Methanocaldococcus jannaschii</i>
Archaea	<i>Methanosarcina acetivorans</i>
Archaea	<i>Nitrosopumilus maritimus</i>
Archaea	<i>Saccharolobus solfataricus</i>
Archaea	<i>Thermococcus kodakarensis</i>
Bacteria	<i>Aquifex aeolicus</i>
Bacteria	<i>Bacillus subtilis</i>
Bacteria	<i>Bacteroides thetaiotaomicron</i>
Bacteria	<i>Bradyrhizobium diazoefficiens</i>
Bacteria	<i>Chlamydia trachomatis</i>
Bacteria	<i>Chloroflexus aurantiacus</i>
Bacteria	<i>Deinococcus radiodurans</i>
Bacteria	<i>Dictyoglomus turgidum</i>
Bacteria	<i>Escherichia coli</i>
Bacteria	<i>Fusobacterium nucleatum</i>
Bacteria	<i>Geobacter sulfurreducens</i>
Bacteria	<i>Gloeobacter violaceus</i>
Bacteria	<i>Helicobacter pylori</i>
Bacteria	<i>Leptospira interrogans</i>
Bacteria	<i>Mycobacterium tuberculosis</i>
Bacteria	<i>Mycoplasma genitalium</i>
Bacteria	<i>Neisseria meningitidis</i>
Bacteria	<i>Pseudomonas aeruginosa</i>
Bacteria	<i>Rhodopirellula baltica</i>
Bacteria	<i>Streptomyces coelicolor</i>
Bacteria	<i>Synechocystis sp.</i>
Bacteria	<i>Thermodesulfovibrio yellowstonii</i>
Bacteria	<i>Thermotoga maritima</i>
Eukaryota	<i>Anopheles gambiae</i>
Eukaryota	<i>Arabidopsis thaliana</i>
Eukaryota	<i>Batrachochytrium dendrobatidis</i>
Eukaryota	<i>Bos taurus</i>
Eukaryota	<i>Branchiostoma floridae</i>
Eukaryota	<i>Caenorhabditis elegans</i>
Eukaryota	<i>Candida albicans</i>
Eukaryota	<i>Canis lupus familiaris</i>
Eukaryota	<i>Chlamydomonas reinhardtii</i>
Eukaryota	<i>Ciona intestinalis</i>
Eukaryota	<i>Cryptococcus neoformans</i>
Eukaryota	<i>Danio rerio</i>
Eukaryota	<i>Dictyostelium discoideum</i>
Eukaryota	<i>Drosophila melanogaster</i>
Eukaryota	<i>Gallus gallus</i>
Eukaryota	<i>Giardia intestinalis</i>
Eukaryota	<i>Gorilla gorilla gorilla</i>

Eukaryota	<i>Helobdella robusta</i>
Eukaryota	<i>Homo sapiens</i>
Eukaryota	<i>Ixodes scapularis</i>
Eukaryota	<i>Leishmania major</i>
Eukaryota	<i>Lepisosteus oculatus</i>
Eukaryota	<i>Monodelphis domestica</i>
Eukaryota	<i>Monosiga brevicollis</i>
Eukaryota	<i>Mus musculus</i>
Eukaryota	<i>Nematostella vectensis</i>
Eukaryota	<i>Neosartorya fumigata</i>
Eukaryota	<i>Neurospora crassa</i>
Eukaryota	<i>Oryza sativa subsp. japonica</i>
Eukaryota	<i>Oryzias latipes</i>
Eukaryota	<i>Pan troglodytes</i>
Eukaryota	<i>Paramecium tetraurelia</i>
Eukaryota	<i>Phaeosphaeria nodorum</i>
Eukaryota	<i>Physcomitrella patens</i>
Eukaryota	<i>Phytophthora ramorum</i>
Eukaryota	<i>Plasmodium falciparum</i>
Eukaryota	<i>Puccinia graminis</i>
Eukaryota	<i>Rattus norvegicus</i>
Eukaryota	<i>Saccharomyces cerevisiae</i>
Eukaryota	<i>Schizosaccharomyces pombe</i>
Eukaryota	<i>Sclerotinia sclerotiorum</i>
Eukaryota	<i>Thalassiosira pseudonana</i>
Eukaryota	<i>Tribolium castaneum</i>
Eukaryota	<i>Trichomonas vaginalis</i>
Eukaryota	<i>Ustilago maydis</i>
Eukaryota	<i>Xenopus tropicalis</i>
Eukaryota	<i>Yarrowia lipolytica</i>
Eukaryota	<i>Zea mays</i>

476

477

478 **Supplementary Table 2: Fungi species list**

<i>Agaricus bisporus</i>	<i>Cryptococcus neoformans</i>	<i>Rhizoctonia solani</i>
<i>Amanita muscaria</i>	<i>Encephalitozoon intestinalis</i>	<i>Rhizopus delemar</i>
<i>Aspergillus fumigatus</i>	<i>Enterocytozoon bieneusi</i>	<i>Saccharomyces cerevisiae</i>
<i>Aspergillus nidulans</i>	<i>Fusarium oxysporum</i>	<i>Schizosaccharomyces pombe</i>
<i>Batrachochytrium salamandrivorans</i>	<i>Magnaporthe oryzae</i>	<i>Sclerotinia sclerotiorum</i>
<i>Blumeria graminis</i>	<i>Mortierella elongata</i>	<i>Spizellomyces punctatus</i>
<i>Botrytis cinerea</i>	<i>Neurospora crassa</i>	<i>Ustilago maydis</i>
<i>Candida albicans</i>	<i>Phaeosphaeria nodorum</i>	<i>Yarrowia lipolytica</i>
<i>Colletotrichum graminicola</i>	<i>Puccinia graminis</i>	<i>Zymoseptoria tritici</i>

479

480 **Outgroup**

<i>Caenorhabditis elegans</i>	<i>Homo sapiens</i>	<i>Dictyostelium discoideum</i>
<i>Drosophila melanogaster</i>	<i>Monosiga brevicollis</i>	

481

482

483 **Supplementary Table 3: Metazoan species list**

<i>Amphimedon queenslandica</i>	<i>Danio rerio</i>	<i>Octopus bimaculoides</i>
<i>Anolis carolinensis</i>	<i>Daphnia magna</i>	<i>Oncorhynchus mykiss</i>
<i>Anopheles gambiae</i>	<i>Drosophila melanogaster</i>	<i>Ornithorhynchus anatinus</i>
<i>Apis mellifera</i>	<i>Gadus morhua</i>	<i>Oryzias latipes</i>
<i>Astatotilapia calliptera</i>	<i>Gallus gallus</i>	<i>Pan troglodytes</i>
<i>Bombyx mori</i>	<i>Glossina morsitans</i>	<i>Petromyzon marinus</i>
<i>Bos taurus</i>	<i>Helobdella robusta</i>	<i>Phascolarctos cinereus</i>
<i>Branchiostoma lanceolatum</i>	<i>Homo sapiens</i>	<i>Poecilia formosa</i>
<i>Bubo bubo</i>	<i>Ixodes scapularis</i>	<i>Rattus norvegicus</i>
<i>Caenorhabditis elegans</i>	<i>Latimeria chalumnae</i>	<i>Schistosoma mansoni</i>
<i>Callithrix jacchus</i>	<i>Lepisosteus oculatus</i>	<i>Strongylocentrotus purpuratus</i>
<i>Callorhinchus milii</i>	<i>Leptobrachium leishanense</i>	<i>Tetraodon nigroviridis</i>
<i>Canis familiaris</i>	<i>Mnemiopsis leidyi</i>	<i>Thelohanellus kitauei</i>
<i>Chrysemys picta</i>	<i>Monodelphis domestica</i>	<i>Trichinella spiralis</i>
<i>Ciona intestinalis</i>	<i>Mus musculus</i>	<i>Trichoplax adhaerens</i>
<i>Corvus monedula</i>	<i>Nematostella vectensis</i>	<i>Xenopus tropicalis</i>
<i>Amphimedon queenslandica</i>	<i>Danio rerio</i>	<i>Octopus bimaculoides</i>

484

485 **Outgroup**

<i>Dictyostelium discoideum</i>	<i>Phaeosphaeria nodorum</i>	<i>Schizosaccharomyces pombe</i>
<i>Monosiga brevicollis</i>	<i>Saccharomyces cerevisiae</i>	

486

487

488 **Supplementary Table 4: Plants species list**

<i>Amborella trichopoda</i>	<i>Glycine max</i>	<i>Picea glauca</i>
<i>Anthoceros punctatus</i>	<i>Gossypium raimondii</i>	<i>Pinus sylvestris</i>
<i>Aquilegia coerulea</i>	<i>Hordeum vulgare</i>	<i>Prunus persica</i>
<i>Arabidopsis thaliana</i>	<i>Manihot esculenta</i>	<i>Selaginella moellendorffii</i>
<i>Azolla filiculoides</i>	<i>Marchantia polymorpha</i>	<i>Setaria italica</i>
<i>Brassica oleracea</i>	<i>Micromonas spRCC299</i>	<i>Solanum lycopersicum</i>
<i>Chara braunii</i>	<i>Musa acuminata</i>	<i>Spirodela polyrhiza</i>
<i>Chlamydomonas reinhardtii</i>	<i>Oryza sativa</i>	<i>Triticum aestivum</i>
<i>Eucalyptus grandis</i>	<i>Ostreococcus lucimarinus</i>	<i>Volvox carteri</i>
<i>Gingko biloba</i>	<i>Physcomitrella patens</i>	<i>Zea mays</i>

489

490 **Outgroup**

<i>Chondrus crispus</i>	<i>Chondrus crispus</i>	<i>Chondrus crispus</i>
-------------------------	-------------------------	-------------------------

491

492

493 **Supplementary Table 5: Bacterial & Archaeal strains list**

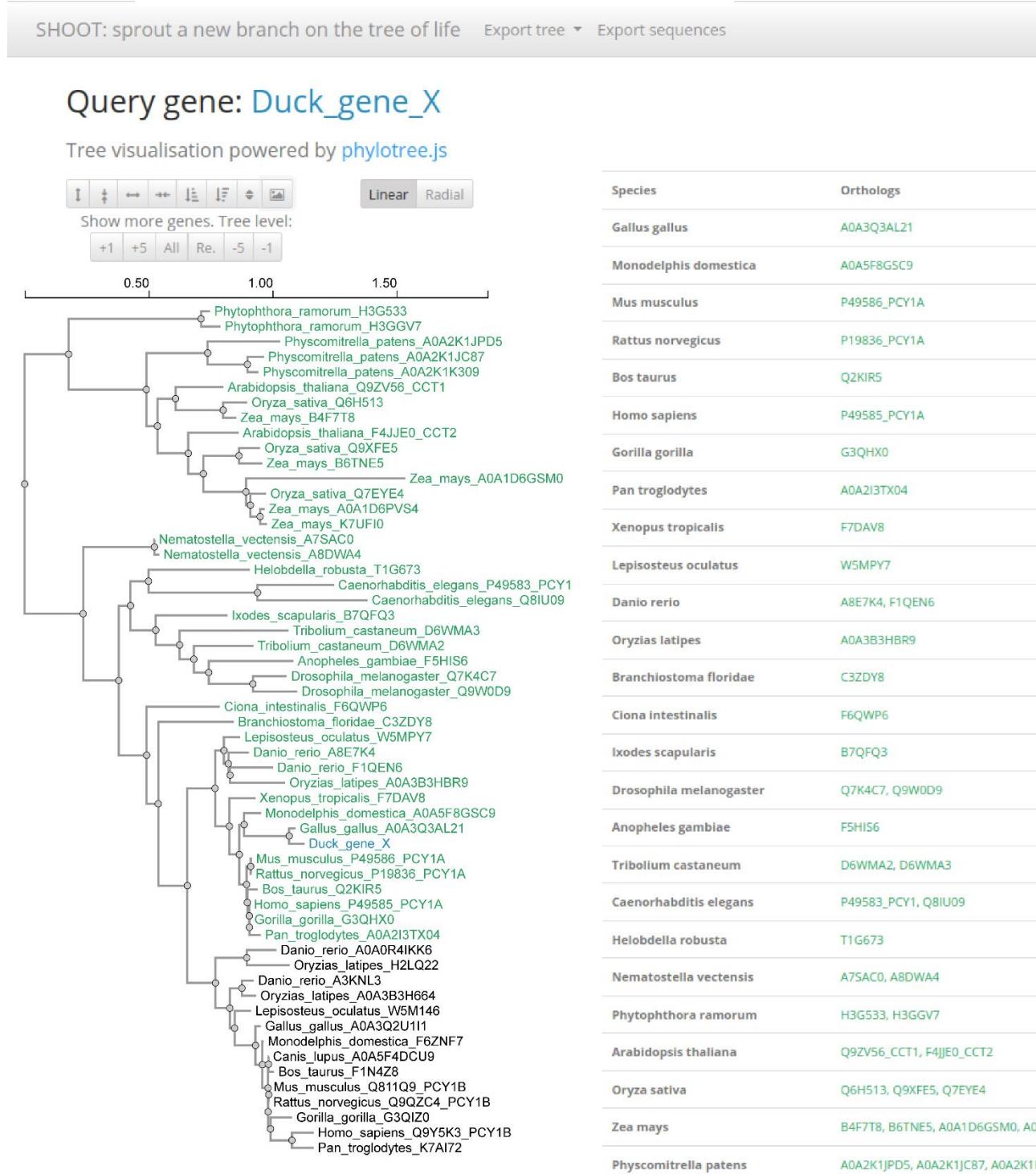
UniProt proteome	NCBI taxon	Name in SHOOT	Selection
UP000000425	122586	<i>Neisseria_meningitidis</i>	QfO UniProt ref. prot.
UP000000429	85962	<i>Helicobacter_pylori</i>	QfO UniProt ref. prot.
UP000000431	272561	<i>Chlamydia_trachomatis</i>	QfO UniProt ref. prot.
UP000000536	69014	<i>Thermococcus_kodakarensis</i>	QfO UniProt ref. prot.
UP000000554	64091	<i>Halobacterium_salinarum</i>	QfO UniProt ref. prot.
UP000000557	251221	<i>Gloeobacter_violaceus</i>	QfO UniProt ref. prot.
UP000000577	243231	<i>Geobacter_sulfurreducens</i>	QfO UniProt ref. prot.
UP000000625	83333	<i>Escherichia_coli</i>	QfO UniProt ref. prot.
UP000000718	289376	<i>Thermodesulfovibrio_yellowstonii</i>	QfO UniProt ref. prot.
UP000000792	436308	<i>Nitrosopumilus_maritimus</i>	QfO UniProt ref. prot.
UP000000798	224324	<i>Aquifex_aeolicus</i>	QfO UniProt ref. prot.
UP000000805	243232	<i>Methanocaldococcus_jannaschii</i>	QfO UniProt ref. prot.
UP000000807	243273	<i>Mycoplasma_genitalium</i>	QfO UniProt ref. prot.
UP000001025	243090	<i>Rhodopirellula_baltica</i>	QfO UniProt ref. prot.
UP000001408	189518	<i>Leptospira_interrogans</i>	QfO UniProt ref. prot.
UP000001414	226186	<i>Bacteroides_thetaiotaomicron</i>	QfO UniProt ref. prot.
UP000001425	1111708	<i>Synechocystis_kazusa</i>	QfO UniProt ref. prot.
UP000001570	224308	<i>Bacillus_subtilis</i>	QfO UniProt ref. prot.
UP000001584	83332	<i>Mycobacterium_tuberculosis</i>	QfO UniProt ref. prot.
UP000001686	374847	<i>Korarchaeum_cryptofilum</i>	QfO UniProt ref. prot.
UP000001973	100226	<i>Streptomyces_coelicolor</i>	QfO UniProt ref. prot.
UP000001974	273057	<i>Saccharolobus_solfataricus</i>	QfO UniProt ref. prot.
UP000002008	324602	<i>Chloroflexus_aurantiacus</i>	QfO UniProt ref. prot.
UP000002438	208964	<i>Pseudomonas_aeruginosa</i>	QfO UniProt ref. prot.
UP000002487	188937	<i>Methanosarcina_acetivorans</i>	QfO UniProt ref. prot.
UP000002521	190304	<i>Fusobacterium_nucleatum</i>	QfO UniProt ref. prot.
UP000002524	243230	<i>Deinococcus_radiodurans</i>	QfO UniProt ref. prot.
UP000002526	224911	<i>Bradyrhizobium_diazoefficiens</i>	QfO UniProt ref. prot.
UP000007719	515635	<i>Dictyoglomus_turgidum</i>	QfO UniProt ref. prot.
UP000008183	243274	<i>Thermotoga_maritima</i>	QfO UniProt ref. prot.
UP000000265	272620	<i>Klebsiella_pneumoniae</i>	Highly cited
UP000000579	71421	<i>Haemophilus_influenzae</i>	Highly cited
UP000000580	262316	<i>Mycobacterium_paratuberculosis</i>	Highly cited
UP000000584	243277	<i>Vibrio_cholerae</i>	Highly cited
UP000000586	171101	<i>Streptococcus_pneumoniae</i>	Highly cited
UP000000588	242619	<i>Porphyromonas_gingivalis</i>	Highly cited
UP000000609	272624	<i>Legionella_pneumophila</i>	Highly cited
UP000000799	192222	<i>Campylobacter jejuni</i>	Highly cited
UP000000813	176299	<i>Agrobacterium_fabrum</i>	Highly cited
UP000000815	632	<i>Yersinia_pestis</i>	Highly cited
UP000000817	169963	<i>Listeria_monocytogenes</i>	Highly cited
UP000000818	195102	<i>Clostridium_perfringens</i>	Highly cited
UP000001006	623	<i>Shigella_flexneri</i>	Highly cited
UP000001014	99287	<i>Salmonella_typhimurium</i>	Highly cited
UP000001978	272563	<i>Clostridioides_difficile</i>	Highly cited
UP000002196	272623	<i>Lactococcus_lactis</i>	Highly cited
UP000002256	395491	<i>Rhizobium_leguminosarum</i>	Highly cited

UP000006381	272621	<i>Lactobacillus_acidophilus</i>	Highly cited
UP000007477	871585	<i>Acinetobacter_calcoaceticus</i>	Highly cited
UP000008319	529507	<i>Proteus_mirabilis</i>	Highly cited
UP000008816	93061	<i>Staphylococcus_aureus</i>	Highly cited
UP000014594	1260356	<i>Enterococcus_faecalis</i>	Highly cited
UP000075229	140	<i>Borrelia_hermsii</i>	Highly cited
UP000198289	615	<i>Serratia_marcescens</i>	Highly cited
UP00028936	1528098	<i>Rickettsiales_bacterium</i>	Mitochondrion relative
UP000180235	1188229	<i>Gloeomargarita_lithophora</i>	Chloroplast relative
UP000000543	279808	<i>Staphylococcus_haemolyticus</i>	Phylo. sampling
UP000000547	167879	<i>Colwellia_psychrerythraea</i>	Phylo. sampling
UP000000645	232721	<i>Acidovorax_JS42</i>	Phylo. sampling
UP000001169	272569	<i>Haloarcula_marismortui</i>	Phylo. sampling
UP000001361	883	<i>Desulfovibrio_vulgaris</i>	Phylo. sampling
UP000001362	243159	<i>Acidithiobacillus_ferrooxidans</i>	Phylo. sampling
UP000001961	64471	<i>Synechococcus_CC9311</i>	Phylo. sampling
UP000002011	471854	<i>Dyadobacter_fermentans</i>	Phylo. sampling
UP000002139	448385	<i>Sorangium_cellulosum</i>	Phylo. sampling
UP000002145	203119	<i>Hungateiclostridium_thermocellum</i>	Phylo. sampling
UP000002148	388919	<i>Streptococcus_sanguinis</i>	Phylo. sampling
UP000002208	546414	<i>Deinococcus_deserti</i>	Phylo. sampling
UP000002257	395965	<i>Methylocella_silvestris</i>	Phylo. sampling
UP000002386	471223	<i>Geobacillus_WCH70</i>	Phylo. sampling
UP000002457	521011	<i>Methanospaerula_palustris</i>	Phylo. sampling
UP000002495	235279	<i>Helicobacter_hepaticus</i>	Phylo. sampling
UP000003277	742743	<i>Dialister_succinatiphilus</i>	Phylo. sampling
UP000003415	469616	<i>Fusobacterium_mortiferum</i>	Phylo. sampling
UP000003446	661087	<i>Olsenella_F0356</i>	Phylo. sampling
UP000003855	665956	<i>Subdoligranulum_4-3-54A2FAA</i>	Phylo. sampling
UP000003981	621372	<i>Paenibacillus_D14</i>	Phylo. sampling
UP000004073	1105031	<i>Clostridium_MSTE9</i>	Phylo. sampling
UP000004090	428127	<i>Absiella_dolichum</i>	Phylo. sampling
UP000004259	246199	<i>Ruminococcus_albus</i>	Phylo. sampling
UP000004478	1225176	<i>Cecembia_ionarensis</i>	Phylo. sampling
UP000004870	638300	<i>Cardiobacterium_hominis</i>	Phylo. sampling
UP000005262	768704	<i>Desulfosporosinus_meridiei</i>	Phylo. sampling
UP000006229	1131455	<i>Mycoplasma_canis</i>	Phylo. sampling
UP000006415	857290	<i>Scardovia_wiggiae</i>	Phylo. sampling
UP000006556	370438	<i>Pelotomaculum_thermopropionicum</i>	Phylo. sampling
UP000006743	557723	<i>Haemophilus_parasuis</i>	Phylo. sampling
UP000007271	1185325	<i>Lactobacillus_coryniformis</i>	Phylo. sampling
UP000007753	452662	<i>Sphingobium_japonicum</i>	Phylo. sampling
UP000007995	997888	<i>Bacteroides_finegoldii</i>	Phylo. sampling
UP000008204	41431	<i>Rippkaea_orientalis</i>	Phylo. sampling
UP000008212	243275	<i>Treponema_denticola</i>	Phylo. sampling
UP000008308	263358	<i>Micromonospora_maris</i>	Phylo. sampling
UP000008701	290317	<i>Chlorobium_phaeobacteroides</i>	Phylo. sampling
UP000009044	634177	<i>Komagataeibacter_medellinensis</i>	Phylo. sampling
UP000009154	1112204	<i>Gordonia_polyisoprenivorans</i>	Phylo. sampling
UP000011615	1230457	<i>Haloterrigena_limicola</i>	Phylo. sampling
UP000011728	931276	<i>Clostridium_saccharoperbutylacetonicum</i>	Phylo. sampling

UP000013232	1123367	Thauera_linaloolentis	Phylo. sampling
UP000017993	1262970	Subdoligranulum_CAG314	Phylo. sampling
UP000018014	1262708	Bacillus_CAG988	Phylo. sampling
UP000018042	1262875	Eggerthella_CAG209	Phylo. sampling
UP000018237	1262989	Firmicutes_bacterium	Phylo. sampling
UP000018329	1262693	Alistipes_CAG268	Phylo. sampling
UP000018361	1263102	Prevotella_copri	Phylo. sampling
UP000018415	1341679	Acinetobacter_indicus	Phylo. sampling
UP000019028	1239307	Sodalis_praecaptivus	Phylo. sampling
UP000019082	1302241	Cutibacterium_acnes	Phylo. sampling
UP000019222	1224164	Corynebacterium_vitaeruminis	Phylo. sampling
UP000019267	1276246	Spiroplasma_culicicola	Phylo. sampling
UP000020878	1454005	Candidatus_Accumulibacter	Phylo. sampling
UP000028780	156978	Corynebacterium_imitans	Phylo. sampling
UP000028875	1462526	Virgibacillus_massiliensis	Phylo. sampling
UP000029622	1156417	Caloranaerobacter_azorensis	Phylo. sampling
UP000030960	561184	Mameliella_alba	Phylo. sampling
UP000031057	1348853	Novosphingobium_malaysiense	Phylo. sampling
UP000031627	1410383	Candidatus_Tachikawaea	Phylo. sampling
UP000032279	1335616	Paucilactobacillus_wasatchensis	Phylo. sampling
UP000032287	137591	Weissella_cibaria	Phylo. sampling
UP000033511	43662	Pseudoalteromonas_piscicida	Phylo. sampling
UP000036114	1628212	Chromobacterium_LK11	Phylo. sampling
UP000036921	1581033	Bacillus_FJAT-21945	Phylo. sampling
UP000037530	171383	Vibrio_hepatarius	Phylo. sampling
UP000037870	1592329	Actinobacteria_bacterium	Phylo. sampling
UP000044377	1109412	Brenneria_goodwinii	Phylo. sampling
UP000050971	1736540	Aeromicrobium_Root472D3	Phylo. sampling
UP000051467	1736232	Arthrobacter_Leaf69	Phylo. sampling
UP000051585	1736381	Aureimonas_Leaf454	Phylo. sampling
UP000051643	270918	Salegentibacter_mishustinae	Phylo. sampling
UP000051802	676599	Stenotrophomonas_panacium	Phylo. sampling
UP000053086	1700846	Lysinibacillus_F5	Phylo. sampling
UP000054024	146536	Streptomyces_curacoi	Phylo. sampling
UP000054457	1685377	Microbulbifer_ZGT114	Phylo. sampling
UP000057134	1766	Mycolicibacterium_fortuitum	Phylo. sampling
UP000058305	412690	Microterricola_viridarii	Phylo. sampling
UP000061489	1420916	Marinobacter_similis	Phylo. sampling
UP000065824	1702325	Chelatococcus_CO-6	Phylo. sampling
UP000070463	1698267	Candidate_MSBL1-archaeon	Phylo. sampling
UP000077018	683316	Frankia_EI5c	Phylo. sampling
UP000077275	47311	Methanobrevibacter_cuticularis	Phylo. sampling
UP000077319	1822215	Erythrobacter_HI00D59	Phylo. sampling
UP000093220	189873	Bradyrhizobium_LMTRsp-3	Phylo. sampling
UP000093585	319501	Brevibacillus_WF146	Phylo. sampling
UP000094329	1891921	Piscirickettsia_litoralis	Phylo. sampling
UP000094487	1888892	Sphingomonas_turrisvirgatae	Phylo. sampling
UP000094689	1842539	Bosea_RAC05	Phylo. sampling
UP000095256	762845	Enterococcus_rivorum	Phylo. sampling
UP000176615	1739315	Globicatella_HMSC072A10	Phylo. sampling
UP000182624	43305	Butyrivibrio_proteoelasticus	Phylo. sampling

UP000184455	1855338	<i>Nitrosospira_Nsp11</i>	Phylo. sampling
UP000184520	634436	<i>Marisediminitalea_aggregata</i>	Phylo. sampling
UP000186096	58117	<i>Microbispora_rosea</i>	Phylo. sampling
UP000186602	1261634	<i>Roseburia_sp499</i>	Phylo. sampling
UP000187327	1883416	<i>Halomonas_sp1513</i>	Phylo. sampling
UP000187995	1805827	<i>Rhodococcus_MTM3W5</i>	Phylo. sampling
UP000190286	745368	<i>Gemmiger_formicilis</i>	Phylo. sampling
UP000191905	1873176	<i>Pseudaminobacter_manganicus</i>	Phylo. sampling
UP000192042	1325564	<i>Nitrospira_japonica</i>	Phylo. sampling
UP000193006	199441	<i>Alkalihalobacillus_krulwichiae</i>	Phylo. sampling
UP000193136	1969733	<i>Geothermobacter_EPR-M</i>	Phylo. sampling
UP000194216	1985172	<i>Sphingomonas_IBVSS2</i>	Phylo. sampling
UP000194221	1635173	<i>Tenacibaculum_holothuriorum</i>	Phylo. sampling
UP000195076	1932621	<i>Nostoc_T09</i>	Phylo. sampling
UP000195161	1929267	<i>Flavobacterium_FPG59</i>	Phylo. sampling
UP000195529	1965622	<i>Megasphaera_An286</i>	Phylo. sampling
UP000195781	1232426	<i>Collinsella_massiliensis</i>	Phylo. sampling
UP000197446	431059	<i>Pelomonas_puraquae</i>	Phylo. sampling
UP000198589	1798228	<i>Blastococcus_DSMsp-46838</i>	Phylo. sampling
UP000198953	46177	<i>Nonomuraea_pusilla</i>	Phylo. sampling
UP000199067	1780377	<i>Coriobacteriaceae_bacterium</i>	Phylo. sampling
UP000199242	1141221	<i>Chryseobacterium_taihuense</i>	Phylo. sampling
UP000199432	1882749	<i>Opitutus_GAS368</i>	Phylo. sampling
UP000199671	332524	<i>Actinomyces_ruminicola</i>	Phylo. sampling
UP000199705	551996	<i>Mucilaginibacter_gossypii</i>	Phylo. sampling
UP000199768	1881066	<i>Phyllobacterium_YR620</i>	Phylo. sampling
UP000199802	1965654	<i>Lachnoclostridium_An76</i>	Phylo. sampling
UP000202922	1524263	<i>Confluentimicrobium_lipolyticum</i>	Phylo. sampling
UP000215509	554312	<i>Paenibacillus_rigui</i>	Phylo. sampling
UP000216308	1383851	<i>Halorubrum_halodurans</i>	Phylo. sampling
UP000217076	83401	<i>Roseospirillum_parvum</i>	Phylo. sampling
UP000217289	1294270	<i>Melittangium_boletus</i>	Phylo. sampling
UP000221394	442709	<i>Flavimobilis_soli</i>	Phylo. sampling
UP000222106	638953	<i>Georgenia_soli</i>	Phylo. sampling
UP000230810	2049589	<i>Pseudomonas_HLS-6</i>	Phylo. sampling
UP000232878	2058137	<i>Polaribacter_ALD11</i>	Phylo. sampling
UP000232889	1250229	<i>Ulvibacter_MAR-2010-11</i>	Phylo. sampling
UP000235352	2029108	<i>Bacillus_UMB0899</i>	Phylo. sampling
UP000236356	2067550	<i>Clostridium_chh4-2</i>	Phylo. sampling
UP000236731	797291	<i>Sphingobacterium_lactis</i>	Phylo. sampling
UP000238164	75385	<i>Micropruina_glycogenica</i>	Phylo. sampling
UP000238375	1469603	<i>Spirosoma_oryzae</i>	Phylo. sampling
UP000243063	1245526	<i>Pseudomonas_guangdongensis</i>	Phylo. sampling
UP000243494	2020948	<i>Romboutsia_maritimum</i>	Phylo. sampling
UP000244224	589035	<i>Gemmobacter_caeni</i>	Phylo. sampling
UP000245108	2108523	<i>Lawsonibacter_asaccharolyticus</i>	Phylo. sampling
UP000245507	2201891	<i>Nocardioides_silvaticus</i>	Phylo. sampling
UP000245623	2173179	<i>Microbacterium_4-13</i>	Phylo. sampling
UP000245926	2202825	<i>Methylobacterium_durans</i>	Phylo. sampling
UP000247832	670078	<i>Arthrobacter_livingstonensis</i>	Phylo. sampling
UP000249065	2230885	<i>Roseicella_frigidaeris</i>	Phylo. sampling

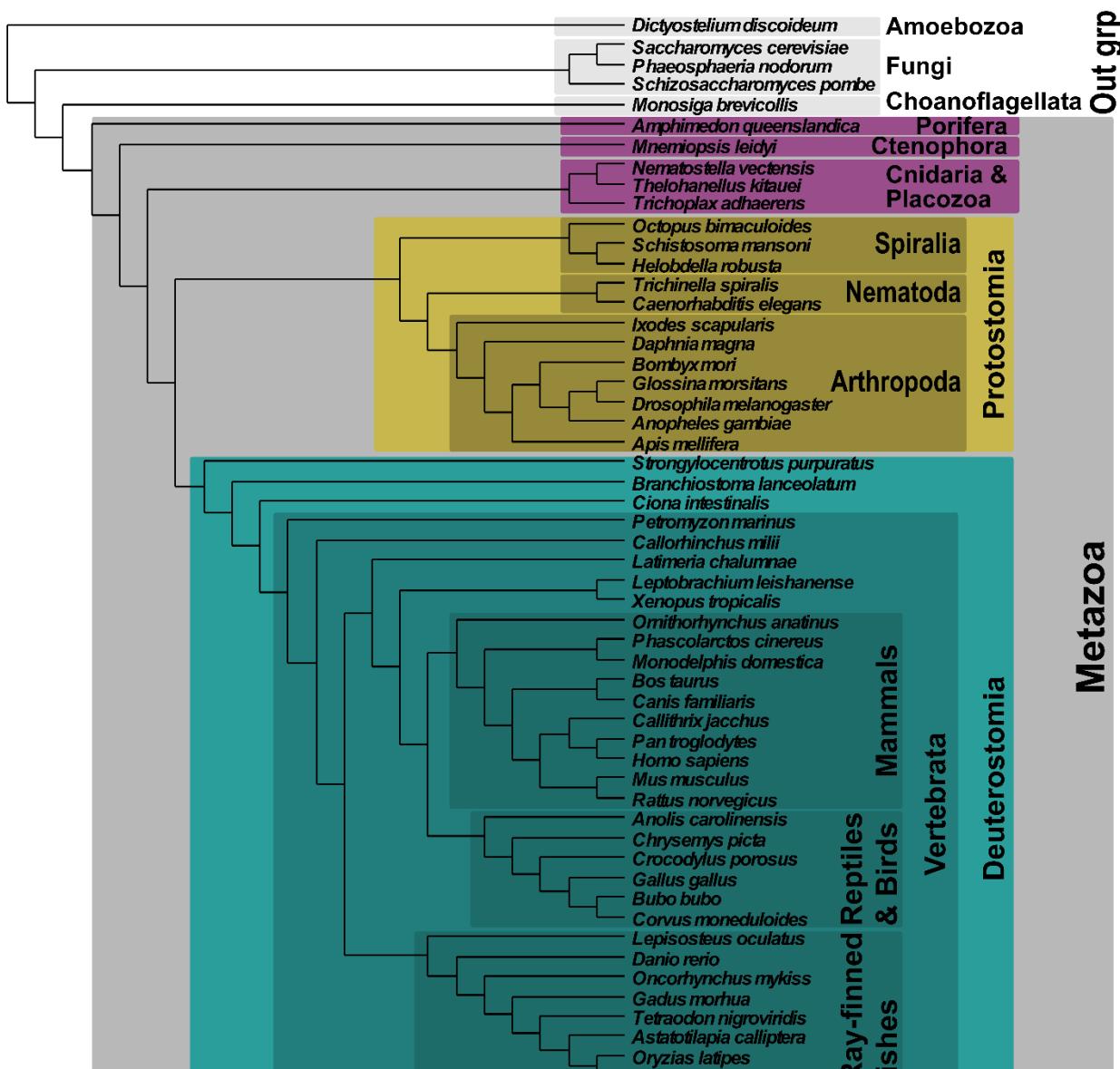
UP000250434	1804986	<i>Amycolatopsis albispora</i>	Phylo. sampling
UP000252733	989	<i>Marinilabilia salmonicolor</i>	Phylo. sampling
UP000253318	1931232	<i>Marinitenerispora sediminis</i>	Phylo. sampling
UP000254875	2211104	<i>Paraburkholderia lacunae</i>	Phylo. sampling
UP000260665	2184758	<i>Rhodoferax IMCC26218</i>	Phylo. sampling
UP000265971	1825976	<i>Neorhizobium NCHU2750</i>	Phylo. sampling
UP000266860	1630648	<i>Novosphingobium MD-1</i>	Phylo. sampling
UP000269803	2485200	<i>Frondihabitans PhB188</i>	Phylo. sampling
UP000273083	1329262	<i>Mobilisporobacter senegalensis</i>	Phylo. sampling
UP000275325	2495580	<i>Sphingomonas TF3</i>	Phylo. sampling
UP000276437	1930071	<i>Methylomusa anaerophila</i>	Phylo. sampling
UP000279089	1647451	<i>Chitinophaga barathri</i>	Phylo. sampling
UP000282084	2072	<i>Saccharothrix australiensis</i>	Phylo. sampling
UP000287188	2014872	<i>Dictyobacter kobayashii</i>	Phylo. sampling
UP000287890	2507159	<i>Clostridium JN-9</i>	Phylo. sampling
UP000288096	45657	<i>Desulfonema ishimotonii</i>	Phylo. sampling
UP000288291	2495899	<i>Lactobacillus xuijanguonis</i>	Phylo. sampling
UP000288967	2501295	<i>Dyella M7H15-1</i>	Phylo. sampling
UP000289784	2137479	<i>Pseudoxanthomonas composti</i>	Phylo. sampling
UP000292120	2528630	<i>Aquabacterium KMB7</i>	Phylo. sampling
UP000294096	2510646	<i>Loktanella IMCC34160</i>	Phylo. sampling
UP000294498	1539049	<i>Dinghuibacter silviterrae</i>	Phylo. sampling
UP000295707	1537524	<i>Thiogramnum longum</i>	Phylo. sampling
UP000297351	2561925	<i>Brevundimonas S30B</i>	Phylo. sampling
UP000306069	2040651	<i>Campylobacter 12-5580</i>	Phylo. sampling
UP000307244	2571272	<i>Pedobacter RP-3-15</i>	Phylo. sampling
UP000307467	343240	<i>Thiotrophic endosymbiont</i>	Phylo. sampling
UP000307507	2565924	<i>Flavobacterium CC-CTC003</i>	Phylo. sampling
UP000307657	2565367	<i>Lacinutrix CAUsp-1491</i>	Phylo. sampling
UP000315440	2527991	<i>Pseudobythopirellula maris</i>	Phylo. sampling
UP000316225	384678	<i>Paracoccus sulfuroxidans</i>	Phylo. sampling
UP000316304	2528004	<i>Novipirellula galeiformis</i>	Phylo. sampling
UP000318165	92402	<i>Mycoplasma equirhinis</i>	Phylo. sampling
UP000318431	1036180	<i>Massilia lurida</i>	Phylo. sampling
UP000318566	2768454	<i>Streptomyces SLBN-118</i>	Phylo. sampling
UP000319173	713054	<i>TM7 phylum</i>	Phylo. sampling
UP000322791	2606448	<i>Hymenobacter KIGAM108</i>	Phylo. sampling
UP000324880	1948890	<i>Rhodobacterales bacterium</i>	Phylo. sampling
UP000325372	2613842	<i>Wenzhouxiangella W260</i>	Phylo. sampling
UP000326711	2487892	<i>Corynebacterium LMM-1652</i>	Phylo. sampling
UP000326944	2590022	<i>Sulfurimonas GYSZ1</i>	Phylo. sampling
UP000437955	2653936	<i>Tetrasphaera F2B08</i>	Phylo. sampling
UP000441772	2650774	<i>Bifidobacterium LMGsp-31471</i>	Phylo. sampling
UP000462055	2650748	<i>Actinomadura LD22</i>	Phylo. sampling
UP000474632	2710884	<i>Parapusillimonas SGNA-6</i>	Phylo. sampling
UP000476210	343235	<i>Methanotrophic endosymbiont</i>	Phylo. sampling
UP000477884	2703788	<i>Edaphobacter 12200R-103</i>	Phylo. sampling
UP000481552	2706104	<i>Streptomyces SID8455</i>	Phylo. sampling
UP000500686	754515	<i>Mycoplasma ES2806-GEN</i>	Phylo. sampling
UP000502894	2708020	<i>Legionella TUM19329</i>	Phylo. sampling
UP000503441	2714933	<i>Leucobacter HDW9A</i>	Phylo. sampling


UP000505377	2736640	Pseudonocardia_broussonetiae	Phylo. sampling
-------------	---------	------------------------------	-----------------

494

495

496 **Supplementary Figures**


497 **Supplementary Figure 1**

498

499

500 Supplementary Figure 2

503 ***Supplementary Figure Legends***

504 **Supplementary Figure 1.** An example gene tree and orthologs table returned by SHOOT.

505 Here, the UniProt Reference Proteomes database was searched using a for a query gene

506 sequence labelled “Duck_gene_X”. This corresponds to the Duck protein

507 ENSAPLP00000002788, which is not included in the database.

508

509 **Supplementary Figure 2.** Phylogeny for the species in the Metazoan dataset.