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Abstract 

Cancer metastasis remains a primary cause of cancer related mortality. Recent in vitro and in vivo 
data has indicated the high metastatic fitness of hybrid epithelial/mesenchymal (E/M) states, i.e. 
their enhanced abilities to initiate tumours at secondary tumour site. Mechanistic details about how 
such hybrid E/M cells survive the metastatic cascade remain unclear. Here, Univwe investigate 
immune-evasive strategies of hybrid E/M states, an issue that to date has been largely unexplored. 
We construct a minimalistic regulatory network that captures known associations between 
regulators of EMT (the epithelial mesenchymal transition) and levels of PD-L1, an established 
suppressor of immune response, and simulated the network’s emergent dynamics. Our model 
recapitulates observations that cells undergoing EMT have increased PD-L1 levels, while reverting 
EMT can decrease these levels, indicative of a causal link between EMT drivers and PD-L1. 
Further, we show that hybrid E/M cells can have high levels of PD-L1, similar to those seen in cells 
with a full EMT phenotype, thus obviating the need for cancer cells to undergo a full EMT to evade 
the immune system. Finally, we identify various signalling pathways and cellular processes that 
can independently or in concert affect PD-L1 levels and EMT status. For instance, hybrid E/M cells 
can gain both immune-evasion and stemness through largely independent paths. Our results 
underscore another underlying reason for the high metastatic ability of hybrid E/M cells. 
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Introduction 

The progression of cancer relies on a complex interplay of various cell autonomous and non-cell 
autonomous phenomena. Cancer cells can proactively create a microenvironment that aids their 
own survival. One of the strategies employed is to suppress various arms of immune system that 
can lead to cancer cell elimination (1). For instance, some tumor cells can inhibit the functions of 
effector T (Teff) cells and/or induce a population of tolerogenic cells that ultimately result in the 
immune escape of the tumor. They can also facilitate accumulation of immune suppressive cells 
such as regulatory T (Treg) cells, myeloid derived suppressor cells (MDSCs) and M2 macrophages/ 
tumor-associated macrophages (TAMs), leading to tumor growth (1). Understanding these 
strategies of tumor-driven reprogramming of the microenvironment would be a major step towards 
more effective guiding of various therapeutic interventions. 

In addition to reprogramming the immune cells in the stroma, tumors employ cell autonomous 
mechanisms that help them directly evade cytotoxic CD8 T cells. A key mechanism via which tumor 
cells achieve this evasion is via the expression of programmed death-ligand 1 transmembrane 
protein (PD-L1) on their cell membranes (2). The binding of PD-L1 to PD-1 receptor on activated 
T cells drives the exhaustion of these T cells, reducing their cytotoxic abilities (3). In cancer cells, 
a multitude of molecular players modulate PD-L1 levels at various regulatory stages (2). Of interest 
here is the finding that PD-L1 levels can be increased as cells go through Epithelial-Mesenchymal 
Transition (EMT) and consequently gain the ability to migrate and invade (4–6). The process of 
EMT, however, is not typically a binary switch, as had been tacitly assumed in these earlier works. 
Instead, cells can stably maintain one or more hybrid epithelial/mesenchymal (E/M) phenotypes 
that can be much more metastatic than cells in a ‘full EMT’ or ‘extremely mesenchymal’ state (7). 
Besides, hybrid E/M phenotypes can be resilient to various therapies across cancers (7). However, 
the immune evasive properties of the hybrid E/M states are relatively poorly understood.  

In this study, we identify a core regulatory network that helps us elucidate the immune evasive 
properties of different phenotypes along the epithelial-hybrid-mesenchymal spectrum. Our 
simulations indicate that hybrid E/M phenotypes are extremely likely to exhibit high PD-L1 levels, 
similar to mesenchymal cells, thus obviating the need to undergo a full EMT to display 
immunosuppression. Moreover, the switch from an epithelial/low-PDL1 state to hybrid/high-PDL1 
or mesenchymal/high-PDL1 state is reversible, i.e., while EMT can induce PD-L1 levels, MET can 
reduce them. Our model predictions are consistent with extensive analysis of transcriptomic 
datasets across cancers. 

 

Results  

Hybrid E/M and Mesenchymal cell states are more likely to exhibit high PD-L1 levels 

Capturing the essence of biological processes via mechanism-based mathematical modelling can 
be a daunting task given the vast complexity of biological systems. Identifying an appropriately 
sized gene regulatory network that incorporates the essential features of the underlying biological 
mechanism at hand in a minimalistic, yet informative manner is a key first step. To that extent, we 
started out with a core set of four well-reported biomolecules and their interactions that can capture 
the non-binary nature of the EMP spectrum and the ability of different phenotypes to modulate PD-
L1 levels: ZEB1, miR-200, CDH1 (E-cadherin) and SLUG (Fig. 1A). Mutual inhibition between 
ZEB1 and miR-200, together with ZEB1 self-activation can enable epithelial, mesenchymal and 
hybrid epithelial/mesenchymal (E/M) phenotypes (8). SLUG has been reported to associate with 
hybrid E/M phenotype specifically both in experimental and computational analysis (9,10).  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449285
http://creativecommons.org/licenses/by-nc-nd/4.0/


High levels of ZEB1 and SLUG with low levels of CDH1 and miR-200 are frequently attributed to 
a mesenchymal phenotype, while high levels of CDH1 and miR-200 with a concurrent reduced 
level of ZEB1 and SLUG usually associates with an epithelial phenotype (11). Interactions between 
ZEB1, miR-200, CDH1, and SLUG have been extensively studied (10–13). Furthermore, miR-200 
has been known to directly inhibit PD-L1 by binding to 3’ untranslated region of its mRNA (4). PD-
L1 can, in turn, repress the levels of CDH1 via indirect mechanisms (14) (Fig 1A).   

We used RACIPE (15) to generate in-silico steady state gene expression values enabled by this 
gene regulatory network (Methods). RACIPE simulates a given gene regulatory network as a set 
of coupled ordinary differential equations (ODEs), with parameters being sampled from biologically 
relevant ranges. The ensemble of resultant steady states is indicative of the possibility space 
allowed by the network topology. To quantify the cellular E/M phenotype of given steady state 
solution, we defined an EM score from z-normalised expression values of ZEB1, SLUG, miR-200, 
and CDH1. The higher the EM score, the more mesenchymal is the corresponding phenotype. A 
histogram of these scores showed a clear trimodal distribution, which can be construed as 
epithelial, hybrid E/M, and mesenchymal phenotypes; these assignments can be confirmed by 
PCA plots (Fig 1B, S1A-B). Subsequently, we also observed a bimodal distribution of PD-L1 levels 
(Fig S1C) where high levels of PD-L1 can be viewed as an immune-evasive state while low PD-
L1 denotes an immune-sensitive tumor cell state (16). 

Next, we investigated the association between the EM scores and PD-L1 levels and observed a  
strong positive correlation between them (ρ = 0.745; p-value < 0.01) (Fig 1C). Conditional 
probability analysis shows that only a small percentage (~15%) of epithelial cells were PD-L1+. In 
contrast, a much larger percentage of hybrid E/M (~70%) and mesenchymal (~90%) cells were 
PD-L1+ (Fig. 1D, S1D). Consistently, PD-L1 was found to negatively correlate with CDH1 but 
positively with ZEB1 and SLUG (Fig S1E). Further, ZEB1, SLUG, and PD-L1 all had intermediate 
levels in hybrid E/M state compared to extreme states – epithelial and mesenchymal (Fig. S1F). 
Together, these results suggest that cells undergoing either a partial or full EMT can upregulate 
their levels of PD-L1 and consequently can exhibit immune evasion. 
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Fig. 1. Dynamics of regulatory network coupling EMT with PD-L1. A) Regulatory network 
(GRN) interplay of EMT regulators coupled with PD-L1. Blue arrows stand for activation links, red 
hammers for inhibitory links. B) Density histogram of EM Score fitted with kernel density estimate 
showing a trimodal distribution. Red lines show the partition between phenotypes: Epithelial, 
Hybrid, and Mesenchymal. C) Scatter plot of PD-L1 expression and EM score. Horizontal red line 
shows the partition between PDL1 expression level being high vs. low. Vertical red lines show the 
partition between phenotypes: Epithelial, Hybrid, and Mesenchymal based on EM score. 
Spearman’s correlation coefficient (ρ) and corresponding p-value (p-val) have been reported. D) 
Bar plot representing conditional probability of a phenotype being PD-L1 high given that it belongs 
to a given EMT phenotype. E) Scatter plot showing correlation between PD-L1 levels and the 
Hallmark EMT signature in cell lines from CCLE. Spearman’s correlation coefficient (ρ) and 
corresponding p-value (p-val) are reported (left). Splitting CCLE cell lines reveals tissues that show 
a strong significant correlation (ρ > 0.3 and p-val < 0.01) (right) right panel. F) Activity levels of 
Hallmark EMT and PD-L1 expression levels in 3 breast cancer cell lines (GSE75168). G) 
Activity/Expression levels of Hallmark EMT and PD-L1 levels in MCF10A breast cancer cells 
treated with or without growth factors (GSE85857). H) Activity/Expression levels of Hallmark EMT 
and PD-L1 levels in two prostate cancer sub-lines of PC3 with different EMT status (GSE24868). 
I) Heatmap showing the Spearman’s correlation coefficients between the different EM metrics and 
EMT associated genes and PD-L1 levels across 32 different cancer types in TCGA. * denotes a 
statistically significant difference (p-val < 0.05) between the represented groups assessed by a 
two-tailed Students t-test assuming unequal variances. 

 

To validate these model predictions,  we analysed pan-cancer gene expression datasets such as 
CCLE (Cancer Cell Line Encyclopaedia), where we observed the ssGSEA scores of EMT to be 
positively correlated with PD-L1 levels (Fig. 1E; left). A tissue-specific analysis revealed a majority 
(16 out of 22) of cancers exhibited a strong correlation (ρ > 0.3) between EMT and PD-L1 
expression (Fig. 1E; right).  Next, we investigated more specific scenarios. For instance, three 
breast cancer cell lines along the EMP spectrum – MCF7 (epithelial), MCF10A (hybrid E/M) and 
MDA-MB-231 (mesenchymal) (17,18) – showed consistent trends with PD-L1 levels with MCF7 < 
MCF10A < MDA-MB-231 (Fig 1F). This pattern that was recapitulated in an analysis of TCGA 
luminal breast cancer samples (Fig S1G. Furthermore, MCF10A cells, when driven to a more 
mesenchymal phenotype upon growth factor depletion (19), showed concurrent increase in the 
levels of PD-L1 (Fig 1G). Similarly, comparing two sub-lines of prostate cancer cells PC-3 (20), 
the more mesenchymal one (PC-3/S) showed higher levels of PD-L1, ZEB1, and SLUG relative to 
the hybrid E/M PC-3/Mc cells (Fig 1H). A positive correlation between EMT signature and PD-L1 
levels was also seen in A549 lung adenocarcinoma cells induced to undergo EMT (Fig. S1H), 
suggesting a pan-cancer association of EMT with PD-L1 levels. 

Finally, we analysed TCGA patient cohort datasets for all the above-mentioned features. We 
calculated the Spearman’s correlation coefficient between PD-L1 expression levels with those of  
CDH1, GRHL2, SLUG, and ZEB1 as well as with a Hallmark EMT signature, and epithelial and 
mesenchymal specific signatures (Fig. 1I, S2A). A majority of cancers (21 out of 32) showed a 
strong positive correlation of PD-L1 with the mesenchymal related metrics (ZEB1, SLUG, Hallmark 
EMT, mesenchymal score, and M-E score) while showing an intermediate to strong negative 
correlation with the epithelial ones (CDH1, GRHL2, and epithelial score), thereby endorsing our 
model predictions. Intriguingly, 6 cancer types (THYM, UCS, ACC, LGG, GBM, and THCA) showed 
a positive correlation of PD-L1 with both epithelial and mesenchymal signatures, highlighting a 
possible association of highest PD-L1 levels with the hybrid E/M phenotype. It should be noted 
that our model does not completely preclude the association of an epithelial state with high PD-L1 
levels, although the likelihood of such association is relatively low (Fig 1C). This infrequent 
association may underlie context-specific behavior of epithelial tumours (such as Thymic epithelial 
tumours) also show high PD-L1 positivity (Fig 1I) (21). 
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Overall, in silico predictions, supported by analysis of in vitro and patient data, suggests that a 
change in the EMP status of the cell is positively associated with PD-L1 levels across various 
cancer types. These results clearly indicate the likelihood of the hybrid E/M phenotype being 
(almost) as immune evasive as the mesenchymal phenotype.  

 

Traversal of cells on the EMP spectrum can alter the PD-L1 status of the cells 

After establishing a pan-cancer correlation of more mesenchymal status and higher PD-L1 levels, 
we examined a causal connection between them. We simulated the set of coupled ODEs for a 
representative tristable parameter set with diverse initial conditions and observed convergence to 
three distinct EM states (Fig. 2A). Corresponding PD-L1 levels followed the previously observed 
patterns with epithelial state showing the least PD-L1 levels, while both the hybrid E/M and 
mesenchymal showing nearly equal levels of PD-L1 higher than those of the epithelial state (Fig 
2A). Stochastic simulations for this parameter set created a landscape indicative of the steady 
states under the influence of biological noise. This landscape revealed the co-existence of three 
states (shown by valleys) – (Epithelial, PD-L1 low), (Hybrid E/M, PD-L1 high) and (Mesenchymal, 
PD-L1 high) (Fig. 2B), depicting that as cells change their EMP status, their corresponding PD-L1 
levels are also altered. In another parameter set to study the stochastic dynamics of this network 
(22), we observed spontaneous switches between epithelial and mesenchymal states with a 
concurrent change in the levels of PD-L1 (Fig. 2C). Together, this analysis points towards the 
possibility of a switch like behaviour in acquisition of an immune evasive phenotype as the cells 
undergo EMT.  

To characterize the impact of perturbations on our core regulatory network we simulated the 
scenarios of EMT induction and MET induction. EMT was induced by down expression (DE) of 
miR-200 or over expression (OE) of SLUG; conversely, MET was induced by OE of miR-200 or 
DE of SLUG (13).  SLUG-OE or miR-200 DE increased the proportion of mesenchymal cell states 
with a concurrent decrease in epithelial cases (Fig 2D-E, Fig S3A-B, D-E). This change resulted 
in a significant increase in PD-L1 levels (Fig S3C, F). Opposite trends were observed in the cases 
of MET induction via miR-200 or SLUG-DE, with resultant changes in PD-L1 levels (Fig 2D-E).  

Next, we probed whether our model prediction about a concurrent switch in EMP status and PD-
L1 levels is supported by experimental data through analysing corresponding transcriptomic data. 
HeLa cells treated with TGFβ and EGF led to an induction of EMT, evident by increases in SLUG 
and ZEB1 levels, as well in the activity (as measured via ssGSEA; see Methods) of the Hallmark 
EMT gene set (Fig 2E). In treated cells, CDH1 levels were significantly decreased while PD-L1 
levels were increased (Fig 2E). This phenomenon of EMT-driven increase in PD-L1 was also seen 
in non-cancerous cells where TGFβ  treatment of primary airway epithelial cells led to upregulation 
of EMT and PD-L1 (Fig S3G), indicating that this association between EMT and PD-L1 levels need 
not be restricted to cancer cells. Furthermore, we compared the profiles of triple negative breast 
cancer cells DKAT when grown in a medium supporting epithelial growth (MEGM) vs when grown 
in a medium containing stromal factors (SCGM). These have been shown to differ in their EM 
status: while culturing in SCGM facilitated a mesenchymal phenotype, that in MEGM drove an 
epithelial one (GSE33146). Consistently, SLUG, ZEB1 and PD-L1 levels were significantly higher 
in cells grown in SCGM rather than in MEGM (Fig S3G). The reciprocal nature of expression 
between ERα and EMT programme have been studied in the context of the acquisition of reversible 
drug resistance in ER+ breast cancer (23). Thus, the loss of ERα that drives a more mesenchymal 
phenotype in luminal breast cancer can also lead to an increase in PD-L1 levels (Fig S3I). Next, 
we analysed a set of experiments in which MCF10A cells were induced to undergo EMT either via 
TGFβ application or by induced overexpression of SNAIL. This time course experiment resulted in 
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an increase of activity of Hallmark EMT genes and PD-L1, irrespective of cells’ initial EMP status 
(Fig 2F).  

Finally, we asked whether induction of MET can decrease the levels of PD-L1 in cancer cells. 
HMLE cells, upon overexpression of MET-inducing factor GRHL2, displayed a more epithelial state 
(increased CDH1, decreased ZEB1 and hallmark EMT signature) with a substantial drop seen in 
PD-L1 levels (Fig 2H), pinpointing that EMT-driven changes in PD-L1 levels are reversible. Similar 
observations were made for PD-L1 levels in LNCaP prostate cancer cells which were first induced 
to undergo EMT and subsequently MET was induced. A two-dimensional plot of EM score and 
PD-L1 levels revealed an increase in PD-L1 as EMT was induced, and a decrease when MET was 
induced. Intriguingly, the cell population did not retrace its original path during MET induction, 
indicative of hysteresis in the system (24). The overall levels of PD-L1 were lower at the end of 20 
days of MET than for the uninduced cells themselves, suggesting that MET induction can reset  
the baseline PD-L1 levels upon a cycle of EMT and MET. Collectively, these results underscore 
that induction of EMT or MET in cancer cells can regulate their immune evasion status through 
altered levels of PD-L1.  

 

Fig. 2. Evidence for causal links between EMT associated genes and PD-L1 levels. A) 
Dynamics of EM score and PD-L1 showing presence of epithelial, hybrid, and mesenchymal 
phenotypes and their corresponding PD-L1 levels, when simulated from multiple initial conditions. 
B) Free energy landscape on the PD-L1 and EM score plane, with the valleys representing the 
stable states possible in the system. Three distinct states – Epithelial/ PD-L1 low, Hybrid E-M/ PD-
L1 high, and Mesenchymal/ PD-L1 high – are observed. C) Stochastic simulations of gene 
regulatory network via sRACIPE showing spontaneous switching between different states. D) 
Simulation results showing the fraction of cases of epithelial, hybrid, and mesenchymal phenotypes 
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under control (yellow), SLUG DE (grey) and SLUG OE (orange) conditions. E) Same as D but for 
miR-200 OE (grey) and miR-200 OE (orange) conditions. F) Activity/Expression levels of Hallmark 
EMT and PD-L1 levels in Hela cells induced to undergo EMT (GSE72419). G) Two-dimensional 
Hallmark EMT and PD-L1 plot showing trajectory of MCF10A cells induced with TGFβ or SNAIL 
(GSE89152). H) Activity/Expression levels of Hallmark EMT and PD-L1 levels in HMLE cells where 
MET has been induced via overexpression of GRHL2 (GSE36081).  I) Two-dimensional Hallmark 
EMT and PD-L1 plot showing trajectory of LNCaP prostate cancer cells that have been induced 
with SNAIL to undergo EMT followed by removal of signal to induce MET (GSE80042). * denotes 
a statistically significant difference (p-val < 0.05) between the represented groups assessed by a 
two-tailed Students t-test assuming unequal variances. 

 

Various signalling pathways can either independently or in concert modulate the immune 
evasive properties of cancer cells on the EMP spectrum 

The above-mentioned interconnections among the EMT regulators and PD-L1 levels seldom work 
in isolation. Multiple signalling pathways can independently or in concert affect the expression of 
EMT status of the cells and/or the PD-L1 expression. To investigate such effects, we calculated 
the degree of correlation of 15 well-defined signalling pathways with EMT and with PD-L1 levels 
across different cancers in the TCGA cohort (Fig S4A). A scatter plot of corresponding correlation 
coefficients revealed pan-cancer consistency in signaling pathways associated with EMT and with 
PD-L1 levels (ρ = 0.37; p-value < 0.01) (Fig S4B). Next, we ranked which pathways correlate most 
strongly with EMT signature or PD-L1 levels (Fig 3A). TGFβ, IL2-STAT5, TNFα-NFκB, IL6-STAT3 
and NOTCH signalling were found to correlate strongly with EMT, consistent with their expected 
roles (25–29). Similarly, PD-L1 levels are most correlated with IL6-STAT3, IFNγ, IL2-STAT5, IFNα 
and TNFα-NFκB, all of which have been previously implicated (30). Plotting these pathways 
through their normalised ranks allows identifying the pan-cancer independent regulators of PD-L1 
levels and EMT; for instance, TGFβ and NOTCH can be considered as more EMT-specific, while 
IFNγ and IFNα are PD-L1 specific modulators. IL6-JAK-STAT3, IL2-STAT5 and TNFα-NFκB 
pathways correlated both with PD-L1 and EMT (Fig 3B). IL1β is known to act partially by the NFκB 
pathway (31). Thus, it is not surprising to see that treatment of cancer cells with IL1β caused a 
concerted increase in EMT as well as PD-L1 levels; the consistency in these trends was also visible 
upon withdrawal of the signal (Fig 3C).  

The interplay between stemness and EMT has been extensively investigated (32,33). Thus, we 
asked whether EMT, stemness and PD-L1 levels all vary together. To investigate this crosstalk, 
we simulated an extended regulatory network including stemness regulators (OCT4, miR-145, 
LIN28, let-7) via RACIPE (Fig S4C). A stemness window was defined based on the distribution of 
stemness (SN) score (Fig S4D). This network showed conserved trends between EM score and 
PD-L1 expression level and found that most hybrid E/M solutions lay within the stemness window 
(Fig 3D-E). Quantifying these trends among EMT status, stemness status and PD-L1 levels 
revealed that while hybrid E/M cells were very likely to exhibit both PD-L1 and enhanced stemness; 
the stemness status by itself (irrespective of EMT status) could not predict any association with 
PD-L1 (Fig 3F). The non-monotonic nature of association between EMT states and stemness was 
confirmed by pan-cancer data analysis, where the stemness signature was most enriched in cells 
with hybrid E/M status (Fig 3G; Fig S4E) while no such trend was seen for a direct association of 
stemness with PD-L1 levels (Fig 3H). Together, we conclude that while hybrid E/M cells are more 
stem-like and immune-evasive, these two features are likely acquired independent of one another. 
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Fig. 3. Signalling pathways and biological processes that can affect PD-L1 and/or EMT. A) 
Violin plots of Spearman’s correlation values of different signalling pathways with Hallmark EMT 
programme (top) or with PD-L1 levels (bottom) ordered by corresponding median values across 
27 cancer types in TCGA. (B) Scattered plot between normalised ranks of signalling pathways with 
the EMT programme and with PD-L1 expression levels. Signalling pathways hypothesised to be 
specific to EMT programme are labelled in green, those specific for PD-L1 highlighted in pink and 
those with both in orange. C) Activity/expression levels of Hallmark EMT, PD-L1, SLUG, and CDH1 
levels in lung cancer cells treated with IL-1β and subsequent removal of signal (GSE142620). D) 
Scatter plot of PD-L1 expression and EM score. Horizontal red line shows the partition between 
PDL1 expression level being high vs low for the circuit in Fig S4C. Vertical red lines show the 
partition between phenotypes: Epithelial, Hybrid, and Mesenchymal based on EM score. 
Spearman’s correlation coefficient (ρ) and corresponding p-value (p-val) are reported. E) Scatter 
plot of SN score and EM score showing the presence of clusters having predominantly stem-like 
hybrid and the presence of both stem like and non-stem like epithelial and mesenchymal cells 
scattered in the plane. Horizontal red lines show the partition between stem-like and non-stem-like 
based on SN score and EM phenotypes. F) Bar plot representing conditional probability of PD-L1 
being high given EM status, stem-like phenotype given EM status, and PD-L1 high given stemness 
status respectively. G) Scatter plot showing the non-monotonic association between the hESC 
signature and the Hallmark EMT signature in CCLE dataset. H) No tissue in CCLE show a strong 
significant Spearman’s correlation (ρ > 0.3 and p-val < 0.01) between hESC signature and PD-L1 
levels. * denotes a statistically significant difference (p-val < 0.05) between the represented groups 
assessed by a two-tailed Students t-test assuming unequal variances. 
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Discussion 
Cellular processes are full of regulatory feedback loops and mechanisms that maintain a dynamic 
equilibrium, thus enabling cells to adapt to various internal and external fluctuations. The 
expression of PD-L1 on the surface of cells is one such mechanism that keeps the inflammatory 
responses from uncontrolled activation, by providing necessary brakes. Tumour cells exploit this 
checkpoint to escape from both immunological detection and elimination. PD-L1 on cancer cells’ 
surface enables them to prevent the activation of T cells while simultaneously causing them to be 
exhausted, to prevent T cells from targeting of cancer cells. High PD-L1 has been exhibited in 
circulating tumor cells as well across cancers, and EMT has been associated with higher PD-L1 
levels. Here, we have investigated PD-L1 levels in hybrid E/M phenotypes, given their higher 
fitness for metastasis and evasion of various other treatment options. 

Through in silico simulations for underlying networks incorporating crosstalk between PD-L1 and 
EMT regulators, we observed that hybrid E/M states can show high PD-L1 similar to those seen in 
a ‘full EMT’ (mesenchymal) phenotype. This model prediction is substantiated by analysis of gene 
expression pan-cancer datasets. We further show that EMT/MET can alter PD-L1 status reversibly 
in cancer cells, a trend validated in multiple in vitro datasets. Intriguingly, while hybrid E/M 
phenotype was found to be associated with both enhanced PD-L1 and higher and stemness, a 
direct association between PD-L1 levels and stemness was not found. Our results thus highlight 
another dimension of the high metastatic fitness of hybrid E/M cells: their immune-suppressive 
traits. 

We acknowledge, as with all models, the limitations of our model. We considered here a 
minimalistic regulatory network that captures key features of interest, and, thus is far from being  
comprehensive. On one hand, our model recapitulates key observations especially including 
previously reported associations between EMT and PD-L1 levels; on the other, it provides testable 
predictions, regarding hybrid E/M states being likely to be PD-L1 positive). The overarching 
positive correlations between EMT and PD-L1 levels across a majority of the cancers in TCGA 
shows the broad applicability of our conclusions; these were supported in by the analysis of the 
CCLE and of specific datasets dealing with perturbations. However, our generic model cannot 
explain some specific exceptions, specifically why certain cancer types such as TGCT, PCPG, 
SARC and SKCM do not show strong correlation of PD-L1 with either epithelial or mesenchymal 
programmes. Interestingly, some cancers of mesenchymal origins (LGG, GBM) show positive 
correlations of PD-L1 with epithelial signatures, suggesting the association of a hybrid E/M state 
with maximal PD-L1 levels. Finally, our extended model, obtained by considering the additional 
players OCT4, LIN28, miR-145 and let-7, finds no significant association between stemness and 
PD-L1 levels. Various additional nodes in the network not considered here may alter this trend, 
which may explain previously reported correlations between immune evasion and stemness.  
Thus, future efforts are needed to understand these context-specific scenarios in terms of interplay 
between EMT, stemness and immune evasion.  
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Materials and methods 

Stochastic simulations and Landscape construction 

We simulated the gene regulatory using the Euler-Maruyama method for a representative 
parameter set (Table S4) that showed the co-existence of 3 phenotypes: epithelial with low levels 
of PD-L1; hybrid E/M with high levels of PD-L1 and mesenchymal with high levels of PD-L1. The 
corresponding equation is as follows: 

X!(t + 1) = X!(t) +	∆t ∗ g"! ∗,	
	

$

H%.X$(t), X$!0, n$!, λ$!3 − k"! ∗ X!(t) ∗ 	∆t + √∆t ∗ N(0,1) 

The equation is just a discrete form of the ODE presented before, with an addition of the noise 
term √∆t ∗ N(0,1), where ∆t is the time step and N(0,1) is a normal random variable with mean 0 
and standard deviation 1. For the parameter set, we simulated the network for 100 different initial 
conditions sampled uniformly from the range  80, 1.5 ∗

&"!
'"!	
;. We then normalized the trajectories 

using the mean and standard deviation of each node expression obtained from RACIPE and 
converted the trajectories to EM scores and PD-L1 levels in order to classify them into the observed 
phenotypes.  

Using these trajectories, we constructed obtained a probability density (P) of the EM-PD-L1 score 
pairs and constructed a potential landscape by calculating the pseudo potential as – log (P) (34). 

Gene expression data analysis  

Publicly available microarray datasets and RNA-Seq datasets were obtained from GEO. Single-
sample gene set enrichment analysis (ssGSEA) (35) was performed on the Hallmark signalling 
pathways gene signatures from MSigDB (Molecular Signatures Database) (36) to estimate the 
activity of pathway. 

sRACIPE simulations  

sRACIPE simulations has been performed to generate random set of parameters and to simulate 
the system with a fixed amount of noise. We have used the webserver of Gene Circuit Explorer 
(GeneEx) to simulate stochastic time evolution dynamics of our core gene regulatory circuits (22). 
Parameter values used for the simulation are presented in Table S5. 

Stemness circuit and stemness score calculation 

We have considered a gene regulatory network shown in Fig S4C in which 5 nodes of our core 
regulatory network are present along with 4 other nodes (OCT4, miR-145, LIN28, and let7) which 
represents the key players of stemness signature (Table S1). The stemness scores (SN) were 
calculated by difference in normalized expression values of node representing stem-like and non-
stem-like signatures: (LIN28 + OCT4 – let7 – miR145)/4. Subsequently based on the distribution, 
cells were categorised into non-stem-like (SN score <-0.5 and SN score >0.5), and stem-like (SN 
score = -0.5 to 0.5) represented in Fig 3C. 

EM score calculation  

The scores were calculated by difference in normalized expression values of node representing 
mesenchymal (M) and epithelial (E) signatures. EM score = (ZEB1 + SLUG - miR200 - CDH1)/4. 
Subsequently based on the distribution, cells were categorised into epithelial (<-0.25), hybrid (-
0.25 to 0.5), and mesenchymal (>0.5) represented in Fig 1B.  

RACIPE output of core circuit and its z-normalization 

RACIPE generates the steady-state values in the log2 scale, which we have further converted into 
z-scores by using the equation represented in Eq. (1) for a better comparative study of the 
expression of each gene node. 
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𝑍( =
)$*)%++++

,%
	                                                                                                                                   (1)                         

𝑍( = Z normalised expression value,                                                                                             

Si = each steady state value of a given node, 

𝑆->>>> = combined mean of untransformed expression values.  

𝜎-  = combined standard deviation of untransformed expression values.  

We have used all z normalised steady-state solutions up to penta-stable parameter sets for 
principal component analysis (PCA) plots. PCA was performed on all the z-normalised steady-
state solutions. We identified 3 optimal clusters by performing hierarchical clustering on the z- 
normalised RACIPE data. Contributions of the various node to the principal component axes PC-
1 and PC-2 presented in Table S3. 

For RACIPE, we have used 10,000 parameter sets and 100 initial conditions for each mathematical 
model to integrate the dynamical equations using Euler’s Method numerically. RACIPE takes a 
topology file as an input (Table S1) and samples the parameters for dynamical simulations from a 
biologically relevant range (Table S2). Depending on the particular parameters, a single model 
has the potential to give rise to one or more stable steady-state solutions, dependent upon the 
initial conditions. However, in our current analysis, we have considered up to 5 stable steady-state 
solutions. As from our initial analysis, we have found a minuscule contribution for >5. We have 
also performed both overexpression and downexpression of miR-200 and SLUG by 20 fold 
respectively using RACIPE on the same core circuit.  
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Supplemental figures 

Fig S1. EMT regulatory network coupled with PD-L1. A) PCA (Principal Component Analysis) 
plot showing the presence of different clusters emerging from z-normalised scores from RACIPE 
analysis. Composition of PC1 and PC2 are listed in Table S3. B) Hierarchical clustering for z-
normalised RACIPE output. C) Density histogram of PD-L1 expression fitted with kernel density 
estimate, showing bimodality.  Red lines show the partition between PD-L1 high and PD-L1 low. 
D) PCA plot colored by PD-L1 high vs. PD-L1 low levels, showing the enrichment of high PD-L1 
levels in hybrid E/M and mesenchymal phenotypes, and that of low PD-L1 levels in an epithelial 
phenotype. E) Simulation results showing scatter plot of PD-L1 expression with CDH1, ZEB1, and 
SLUG, as obtained from RACIPE simulations. Spearman’s correlation coefficient (ρ) and 
corresponding p-value (p-val) are reported. F) Bar graph showing expression of CDH1, SLUG, 
ZEB1 and PD-L1 in corresponding phenotypes (defined based on EM scores) respectively. G) 
Scatter plot showing experimental validation from TCGA BRCA – Luminal A cohort of patients of 
correlations between expression of PD-L1 with CDH1, ZEB1, and SLUG, which was earlier 
represented in E). H) Scatter plot showing positive correlation between PD-L1 expression and 
Hallmark EMT signature in A549 lung adenocarcinoma cells treated with TGFb to induce EMT over 
3 days (GSE17708). * denotes a statistically significant difference (p-val < 0.05) between the 
represented groups assessed by a two-tailed Students t-test assuming unequal variances. 
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Fig S2.  Clinical evidence supporting mathematical model predictions. A) Scatter plots 
between expression levels of PD-L1 and Hallmark EMT in representative TCGA cancer types. 
Spearman’s correlation coefficient (ρ) and corresponding p-value (p-val) are reported.  

 

Fig S3. Dynamics upon perturbation of core regulatory network. A-C) Upon miR-200 down 
expression (DE) and miR-200 over expression (OE): A) density histogram of EM Score fitted with 
kernel density estimate; B) Scatter plot of PD-L1 expression and EM score; C) Density histogram 
of PD-L1 expression fitted with kernel density estimate and Bar graph showing change in 
expression of EM score and PD-L1. D-F) Same as A-C but for SLUG DE and SLUG OE. Horizontal 
red line shows the partition between PD-L1 expression level being high and low. Vertical red lines 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449285doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449285
http://creativecommons.org/licenses/by-nc-nd/4.0/


show a partition between phenotypes: Epithelial, Hybrid E/M, and Mesenchymal based on EM 
score. Spearman’s correlation coefficient (ρ) and corresponding p-value (p-val) are given. G) 
Activity/Expression levels of Hallmark EMT and PD-L1 levels in non-cancerous airway epithelial 
cells where EMT has been induced (GSE61220). H) Activity/Expression levels of Hallmark EMT 
and PD-L1 levels in triple negative breast cancer (DKAT) cells grown in either epithelial growth 
medium (MEGM) or stromal growth medium (SCGM) (GSE33146). I) Activity/Expression levels of 
Hallmark EMT and PD-L1 levels in ER+ breast cancer cells (MCF7) cells in control or ERα silenced 
conditions (GSE27473). * denotes a statistically significant difference (p-val < 0.05) between the 
represented groups assessed by a two-tailed Students t-test assuming unequal variances. 

 

 

Fig S4.  Different pathways that may influence the EMT/PD-L1 association. A) Heatmap 
showing Spearman’s correlation between various signalling pathways and Hallmark EMT/PD-L1 
levels respectively. Spearman’s correlation coefficient (ρ) and e corresponding p-value (p-val) are 
reported. B) Scatter plots between the Spearman’s correlation of expression levels of PD-L1 and 
spearman correlation of Hallmark EMT showing the concordance between two heatmaps in (A). 
C) Schematic representation of stemness circuit diagram with nodes representing various EMT, 
immune evasion, and stemness signature players. (D) Density histogram of Stemness Score (SN 
score) (LIN28 + OCT4 – let7 – miR145)/4 fitted with kernel density estimate showing predominantly 
a trimodal distribution. Vertical red lines show the partition between stem-like and non-stem-like 
based on SN score; where intermediate levels of SN score lie within the ‘stemness window’. E) 
Scatter plots between expression levels of PD-L1 with iPSC signature and hESC signature (Ben-
porath et al. 2008) respectively in CCLE datasets. 
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