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Abstract 26 
A clinically actionable understanding of multiple sclerosis (MS) etiology goes through GWAS 27 

interpretation, prompting research on new gene regulatory models. We previously suggested a 28 

stochastic etiologic model where small-scale random perturbations could reach a threshold for 29 

MS development. The recently described mapping of the transient transcriptome (TT), including 30 

intergenic and intronic RNAs, seems appropriate to verify this model through a rigorous 31 

colocalization analysis. We show that genomic regions coding for the TT were significantly 32 

enriched for MS-associated GWAS variants and DNA binding sites for molecular transducers 33 

mediating putative, non-genetic, etiopathogenetic factors for MS (e.g., vitamin D deficiency, 34 

Epstein Barr virus latent infection, B cell dysfunction). These results suggest a model whereby 35 

TT-coding regions are hotspots of convergence between genetic ad non-genetic factors of 36 

risk/protection for MS, and plausibly for other complex disorders. Our colocalization analysis also 37 

provides a freely available data resource (www.mscoloc.com) for future research on MS 38 

transcriptional regulation.  39 
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Introduction 40 
 41 
A large body of literature agrees that regulatory genomic intervals, especially those 42 

encompassing enhancers, are enriched with disease-associated DNA elements. Most of this 43 

evidence comes from genome wide association studies (GWAS) based on single polymorphism 44 

nucleotides (SNPs) representing common variants (Ernst et al., 2011; Farh et al., 2015; Gusev et 45 

al., 2014; Maurano et al., 2012; Vahedi et al., 2015), even though a recent study showed that low-46 

frequency and rare coding variants may somewhat contribute to multifactorial diseases 47 

(chris.cotsapas@yale.edu & Consortium, 2020). Several characteristics of regulatory disease-48 

associated genetic variants complicate GWAS interpretation, prompting research on new gene 49 

regulatory models: (i) SNPs are chosen as haplotypes to spare the genotyping work needed for 50 

the large number of samples used in GWAS, therefore fine mapping and epigenetic studies are 51 

required to integrate GWAS data (Calderon et al., 2019; Mumbach et al., 2017; Ohkura et al., 52 

2020; van Arensbergen et al., 2019); (ii) a fraction of supposedly causal disease-associated 53 

variants directly alters recognizable transcription factor binding motifs as it might be expected, 54 

according to their regulatory function (Farh et al., 2015); (iii) the identified GWAS signals are likely 55 

to exert highly contextual (i.e., time- and position-dependent) regulatory effects, that may change 56 

according to the tissue and to the time when they receive an input from inside or outside the cell. 57 

In summary, current gene regulatory models help only in part to fully detail which disease-58 

associated SNP signals are causal, and by which exact mechanisms they are causal. Recent 59 

studies on the biological spectrum of human DNase I hypersensitive sites (DHSs), that are 60 

disease-associated markers of regulatory DNA, may help to better rework GWAS data and 61 

particularly to contextualize the genomic variants according to tissue/cell states and to gene body 62 

colocalization of DHSs (Meuleman et al., 2020). In this context, the latest version of the 63 

Genotype-Tissue Expression project may provide further insights into the tissue specificity of 64 

genetic effects, supporting the link between regulatory mechanisms and traits or complex 65 

diseases (Consortium, 2020). 66 

Another layer of complexity comes from our recent studies suggesting an MS etiologic model 67 

where stochastic phenomena (i.e., random events not necessarily resulting in disease in all 68 

individuals) may contribute to the disease onset and progression. This model, embedded 69 

between physics of stochastic systems and cell biology, suggests how small-scale random 70 

perturbations would impact on large-scale phenomena, such as exceeding the threshold for MS 71 

development that is set by genetic and non-genetic susceptibility factors (Bordi et al., 2014; Bordi 72 

et al., 2013). Such model is consistent with our previous results on the heterogeneity of MS 73 

etiology components in twin pairs studies (Fagnani et al., 2015; Ristori et al., 2006) and with prior 74 

bioinformatics analyses that determined a significant enrichment of binding motifs for Epstein-75 

Barr virus (EBV) nuclear antigen 2 (EBNA2) and vitamin D receptor (VDR) in genomic regions 76 
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containing MS-associated GWAS variants (Ricigliano et al., 2015). We also demonstrated that 77 

genomic variants of EBNA2 resulted to be MS-associated (Mechelli et al., 2015), and other 78 

groups expanded our findings showing that enrichment of EBNA2-binding regions on GWAS DNA 79 

intervals is involved in the pathogenesis of autoimmune disorders, including MS (Harley et al., 80 

2018).  81 

A recent sequencing innovation (namely, TT-seq) allowed to map the transient transcriptome that 82 

has a typical half-life within minutes, compared to stable RNA elements, such as protein-coding 83 

mRNAs, long-noncoding RNAs, and micro-RNAs, that persists at least a few hours (Michel et al., 84 

2017; Schwalb et al., 2016; Villamil et al., 2019). The transient transcriptome (TT) includes mostly 85 

enhancer RNAs (eRNA), short intergenic non-coding RNAs (sincRNA) and antisense RNAs 86 

(asRNA). Overall, these transient RNAs (trRNA) are relatively short in length, generally lack a 87 

secondary structure, and would not present those chemical modifications that characterize 88 

unidirectional and polyadenylated stable RNAs (Natoli & Andrau, 2012; Schwalb et al., 2016). 89 

Other recent works based on time-resolved analysis, agree on the eRNAs very rapid functional 90 

dynamics model while interacting with the transcriptional co-activator acetyltransferase CBP/p300 91 

complex (Bose et al., 2017; Weinert et al., 2018). This confirms the highly contextual role of 92 

eRNAs through the control of transcription burst frequencies, which are known to influence cell-93 

type-specific gene expression profiles (Larsson et al., 2019). Along these lines, a recent study 94 

showed that T cells selectively filter oscillatory signals within the minute timescale (O'Donoghue 95 

et al., 2021), further supporting the aforementioned model. 96 

In summary, on the basis of our previous research (i.e., the heterogeneity in the MS etiology 97 

components; the stochasticity in the interaction between genetic and non-genetic factors 98 

contributing to disease development; the enrichment of binding sites for environmental factors in 99 

MS-associated DNA intervals) and leveraging the recent sequencing innovations in the mapping 100 

of the transient transcriptome (i.e., the erratic time dynamics and the highly contextual 101 

expression) (Michel et al., 2017; Schwalb et al., 2016), we hypothesize that MS-associated 102 

GWAS signals prevalently fall within regulatory regions of DNA coding for trRNAs. In theory, the 103 

genomic intervals coding for this transient transcriptome may be the hotspots where 104 

temporospatial occurrences (stochastic in nature, as said) may coalesce and so contribute to 105 

physiological (developmental and/or adaptive) outcomes, or possibly give rise to disease onset or 106 

progression. This study is aimed at verifying this working hypothesis through a colocalization 107 

analysis and its further dissection in the context of MS.  108 

  109 
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Results 110 

 111 

MS-associated GWAS signals colocalize with regulatory regions of DNA plausibly coding 112 

for trRNAs 113 

We set up our region-of-interest (ROI) inside GWAS catalogue (Buniello et al., 2019) by 114 

considering all MS GWAS that were published, extracting all SNP positions, and creating a single 115 

set of genomic coordinates that therefore encompass all GWAS-derived or GWAS-verified signal 116 

for MS. We then refined the SNP list by pruning out about 1.5% of the SNPs as they did not 117 

contain intelligible genomic annotations or were duplicates. The final ROI list is reported in 118 

Supplementary Table S1 and consists of 603 unique single-nucleotide regions; to provide a 119 

“threshold” against which the match ROI<>Database would be benchmarked, we used 107,423 120 

regions as Universe, that corresponded to the signals coming from the entire GWAS Catalog. 121 

Next, we matched through colocalization analyses our ROI with lists of regions resulting from the 122 

work by Michel et al., which mapped the transient and stable transcriptome captured by TT-seq 123 

after T cell stimulation (Schwalb et al., 2016). We found a significant enrichment of MS-124 

associated genetic variants in the transient transcriptome (p-value=2.80 x 10-9; Table 1). Of note, 125 

when we split the transcriptome list in two subsets for long (≥ 60 minutes) and short (< 60 126 

minutes) half-life, we found that only the short half-life subset significantly colocalized with the 127 

ROI (p-value 2.06 x 10-8 vs 0.09). This finding was indicative of the relationship between MS-128 

associated GWAS signals and the regulatory regions of DNA coding for trRNA.  129 

When we further dissected the mapping of the ROI colocalization signals, we found a significant 130 

excess of intergenic and intron regions (as anticipated), as well as their prevalent distribution 131 

away from the transcription start site (TSS; Figure 1A). Notably, when we extended this analysis 132 

to GWAS data coming from other multifactorial diseases or traits, dividing immune-mediated and 133 

other complex conditions, we found highly comparable profiles (Figure 1B, 1C, Supplementary 134 

Table S2), suggesting that the colocalization between MS-associated DNA intervals and 135 

intergenic or intronic sequences, plausibly referring to trRNA coding regions, is shared by the 136 

genetic architecture of most multifactorial disorders. 137 

To consolidate this result and gain a deeper biological insight, we extended the colocalization 138 

analysis matching the ROI with a vast set of databases of regulatory DNA regions, including 139 

enhancers and super-enhancers, derived from experiments on diverse tissue types (a total of 140 

4,697,782 DNA regions, plausibly coding for trRNA, were extracted from a wide variety of raw 141 

data sources; referenced in Supplementary Table S3). To improve interpretability of the results 142 

through ranking, we implemented a harmonic score (HS), based on the Odd Ratio, the -log (p-143 

value), and the support of each match. Statistically significant results came from sets included in 144 

SEA, seDB, dbSuper and other single lists of enhancers and non-coding RNAs (Figure 2). 145 
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Interestingly, we found a strong enrichment of MS-associated genetic variants in cell lines of 146 

hematopoietic lineage, including CD19+ and CD20+ B lymphocytes, CD4+ T helper cells, and 147 

CD14+ monocytes. Moreover, among the top-scoring hits, we found microglial-specific 148 

enhancers, which is in line with recent reports on brain cell type-specific enhancer-promoter 149 

interactome activities and the latest GWAS on MS genomic mapping (Consortium, 2019; Nott et 150 

al., 2019). On the other hand, non-relevant tissues serving as controls (such as kidney, muscle, 151 

glands, etc.) scored low in the ranking, crowding the bottom-left corner of Figure 2.  152 

 153 

Genetic and non-genetic factors for MS etiology converge in genomic regions plausibly 154 

coding for the transient transcriptome 155 

 Independent studies support the fact that MS GWAS intervals are enriched with DNA binding 156 

regions (DBRs) for protein ‘transducers’ mediating non-genetic factors of putative etiologic 157 

relevance in MS, such as vitamin D deficiency or EBV latent infection (Harley et al., 2018; 158 

Ricigliano et al., 2015). Therefore, we further inquired whether DNA regions plausibly coding for 159 

trRNA would share these features (i.e., they colocalize with such DRBs). We set up 4 new ROIs 160 

corresponding to the DBRs for VDR, activation-induced cytidine deaminase (AID), EBNA2, and 161 

Epstein Barr nuclear antigen 3 (EBNA3C), chosen among viral or host’s nuclear factors 162 

potentially associated to MS etiopathogenesis (Bäcker-Koduah et al., 2020; Marcucci & Obeidat, 163 

2020; Sun et al., 2013). The DBRs for each nuclear factor were derived from recent literature 164 

(Supplementary Table S4) and matched with the GWAS-derived MS signals to confirm and 165 

expand previous results. We found statistically significant results for VDR, EBNA2, and AID for all 166 

the SNP position extensions (±50, 100, 200 kb up- and down-stream), while for EBNA3C 167 

significant results came out at extension of ±100 and 200 kilobases. This finding suggests that 168 

several DBRs can impact on the MS-associated DNA intervals through colocalization (Table 2).  169 

Building once again on the work by Michel et al. (Michel et al., 2017), we inquired whether there 170 

was a colocalization between genomic regions containing MS-associated variants, DBRs for 171 

VDR, EBNA2, EBNA3C, AID, and DNA intervals plausibly coding for trRNA. To this end, we 172 

considered the transient transcriptome that proved to be enriched with MS-associated variants 173 

(Table 1), and we then matched the corresponding coding regions with the DBRs for the four 174 

molecular transducers. For this analysis DBRs for EBNA2 (6,880 regions), EBNA3C (3,835 175 

regions), AID (4,823 regions), and VDR (23,409 regions), represented the ROI, while the 176 

ENCODE database of Transcription Factors Binding Sites served as Universe (13,202,334 177 

regions; Figure 3a). We report the results of this analysis in Table 3, which shows the significant 178 

colocalization of DNA regions plausibly coding for trRNA with both MS-relevant GWAS signals, 179 

and DBR of 3 out of 4 factors active at nuclear level, and potentially associated with MS. The 180 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.03.12.434773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.434773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

 

R. Umeton, G. Bellucci, R. Bigi, et al., GWAS associated Variants, Non-genetic Factors, and Transient 
Transcriptome in Multiple Sclerosis Etiopathogenesis: a Colocalization Analysis, 2021 

DBR for EBNA3C did not reach statistical significance, though it showed higher values of support 181 

for short half-life transcripts. 182 

To review and confirm previous colocalizations, we considered the genomic regions resulting 183 

from the above reported match between the MS-associated GWAS intervals and the databases 184 

of regulatory DNA regions, containing enhancers and super-enhancers, plausibly enriched in 185 

trRNA-coding sequences (see results in Figure 2 and the online data resource). We therefore 186 

matched these DNA regions with the DBR for VDR, EBNA2, EBNA3C and AID, finding significant 187 

enrichments that allow to contextualize and prioritize genomic positions, cell/tissue identity or cell 188 

status associated to MS. Considering the harmonic score obtained from these colocalization 189 

analyses, the top hits in EBNA2, EBNA3C, and AID involved lymphoid (CD19+ B cell lines and 190 

lymphomas; T regulatory cells; tonsils) and monocyte-macrophage lineages (peripheral 191 

macrophages; dendritic cells) from experiments included in the ENCODE, dbsuper, 192 

roadmapEpigenomics databases (Figure3B-E, see also Supplementary Table S5). Even though 193 

immune cells prevailed also in VDR top hits, a less stringent polarization was seen, somehow 194 

reflecting the wide-spreading actions of this transducer in human biology. However, with a more 195 

stringent cutoff of Harmonic Score>40 that selects the most significant hits (Figure Supplement 196 

1), a core subset of MS-relevant cell lineages, shared across all four examined transducers, 197 

became evident (Supplementary Table S6 and the online data resource).  198 

 199 

A data resource for future research on transcriptional regulation in MS 200 

A public web interface for browsing the results of our colocalization analysis is freely available at 201 

www.mscoloc.com. This is a comprehensive genomic atlas disentangling specific aspects of MS 202 

gene-environment interactions to support further research on transcriptional regulation in MS. It 203 

includes the whole list of results derived from ROI, DBRs and database matches (Figure 4a) 204 

across all performed experiments that yielded significant results. The user can navigate across 205 

the results and perform tailored queries searching and filtering for a variety of parameters, 206 

including MS-associated variant, DBR, experimental cell type, other match details (see Figure 4b 207 

for all available search and filter modalities). Moreover, personalized HS, p-value, support and 208 

Odd Ratio threshold can easily be set to screen results, that are readily displayed in tabular 209 

format. To provide an example, we select “AID, EBNA2, EBNA3C, VDR” in the ‘Matched DBR 210 

region (s)’ panel and obtain the list of MS-associated SNPs targeted by all four transducers 211 

(Figure 4b-c). Through this approach we searched for MS-associated regions shared by the 212 

DBRs analyzed, and we were able to prioritize 275 genomic regions (almost half of the MS-213 

associated GWAS SNPs) capable of binding at least 2 molecular transducers. These regions are 214 

‘hotspots’ of interactions between genetic and nongenetic modifier of MS risk/protection: all four 215 

proteins (VDR, AID, EBNA2, EBNA3C) proved to target 24 regions, 3 of them 115 regions, and 2 216 
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of them 136 regions. A detailed legend and more example queries may be found on the online 217 

data resource website.   218 
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Discussion 219 

Our study supports the hypothesis that investigations on the transient transcriptome may 220 

contribute to clarify how the GWAS signals affect the etiopathogenesis of MS and possibly of 221 

other complex disorders. Specifically, we show that genomic regions coding for the transient 222 

transcriptome recently described in T cells (Michel et al., 2017), are significantly enriched for both 223 

MS-associated GWAS variants, as well as for DNA binding sites for protein ‘transducers’ of non-224 

genetic signals, chosen among those plausibly associated to MS. The colocalization of GWAS 225 

intervals and some DNA-binding factors involved in MS etiology has already been reported 226 

(Harley et al., 2018; Mechelli et al., 2015; Ricigliano et al., 2015), and here we reinforce this 227 

premise further suggesting a model in which trRNA-coding regions are hotspots of convergence 228 

between genetic ad non-genetic factors of risk/protection for MS. Our analysis showed that these 229 

hotspots are shared by two or more of the chosen transducers, indicating possible additive 230 

pathogenic effects or a multi-hits model to reach the threshold for MS development (see Figure 4 231 

and Supplementary Table S6). 232 

In homeostatic conditions, it can be hypothesized that DNA sequences coding for trRNA are 233 

composed of regulatory regions where genetic variability and non-genetic signals interact to finely 234 

regulate the gene expression according to cell identity, developmental or adaptive states, and 235 

time-dependent stimuli. As a matter of fact, the sequence variability of these regions and the strict 236 

time-dependence of their transcription could be instrumental to adaptive features; however, these 237 

same features make these regions susceptible to become dysfunctional or to be the targets of 238 

pathogenic interaction. In some instances, these detrimental interactions come from outside the 239 

cell, such as in the case of EBV interference with host transcription (Mechelli R., 2021, Accepted; 240 

Park et al., 2020), and the pathogenic consequences of vitamin D deficiency; in other cases, the 241 

dysfunction develops within the cell, such as the tumorigenic activity of AID in B cells (Meng et 242 

al., 2014; Qian et al., 2014). 243 

The mapping of transient transcripts by TT-seq approach fits very well with our results obtained 244 

from GWAS data for MS and other multifactorial conditions, showing a significant excess of 245 

intergenic and intronic regions (coding for eRNA, sincRNA, and asRNA), and having a distribution 246 

in DNA intervals mostly far off from transcription start sites (TSS; see Figure 1). This is in 247 

agreement with recent evidence of regulatory DNA region markers which contain genetic variants 248 

for complex disease or traits; indeed, a systematic framework of common coordinates for these 249 

markers showed that about half of them lie within introns and most are located away from the 250 

TSS (Meuleman et al., 2020). 251 

To further support the relationship between trRNA and transcription of regulatory DNA regions, 252 

we matched a large dataset of enhancers and super-enhancers with MS-GWAS signals and DBR 253 

for VDR, EBNA2, EBNA3C and AID. The significant enrichment in cell lines and cell status 254 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2021. ; https://doi.org/10.1101/2021.03.12.434773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.12.434773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

10 

 

R. Umeton, G. Bellucci, R. Bigi, et al., GWAS associated Variants, Non-genetic Factors, and Transient 
Transcriptome in Multiple Sclerosis Etiopathogenesis: a Colocalization Analysis, 2021 

coming from the hematopoietic lineages and the CNS-specific cell subsets corroborates data 255 

coming from recent reports showing the relevance of contextualizing and prioritizing the role of 256 

MS-associated GWAS signals (Consortium, 2019; Factor et al., 2020; Nott et al., 2019; Orrù et 257 

al., 2020). Our analysis supports the pivotal regulatory role of enhancer transcription (i.e., a main 258 

component of transient transcriptome) that was recently reported as not dispensable for gene 259 

expression at the immunoglobulin locus and for antibody class switch recombination (Fitz et al., 260 

2020), though more research is needed to unravel such topic at a finer grain.  261 

Reports on the dynamics of time-course data are a recent area of focus within the analysis of 262 

gene expression, specifically in immune cells. Although current studies use methods that 263 

investigate time points related to the stable transcriptome (RNA-seq performed with time spans of 264 

hours), they clearly show that gene expression dynamics may influence allele specificity, 265 

regulatory programs that seem to depend on autoimmune disease-associated loci, and different 266 

transcriptional profiles based on cell status after stimulation (Gutierrez-Arcelus et al., 2020). A 267 

recent work showed that an IL2ra enhancer, which harbors autoimmunity risk variants and was 268 

one of the first MS-associated loci from GWAS, has no impact on the gene level expression, but 269 

rather affects gene activation by delaying transcription in response to extracellular stimuli 270 

(Simeonov et al., 2017). The importance of the timing in the gene expression control emerges 271 

also from several studies implicating enhancers and super-enhancers in the process of phase 272 

separation and formation of condensates. In this context, the transcriptional apparatus steps-up 273 

to drive robust genic responses (. The overall process seems to be highly dynamic, with time 274 

spans of seconds or minutes, and hence compatible with the temporal features of the transient 275 

transcriptome, which could somehow act upstream for the formation of these phase-separated 276 

condensates.  277 

We suggest that studies on transient transcriptomes may integrate previous RNA-seq data in 278 

accounting for the interplay between genetic variability and non-genetic etiologic factors leading 279 

to MS development. Components of a more-complex-than-anticipated regulation of gene 280 

expression could include transcriptional noise, transitory time-courses, erratic dynamics, and 281 

highly flexibility of some DNA regions, possibly oscillating between bistable states of enhancer 282 

and silencer (Halfon, 2020). The availability of tools to map trRNA could further contribute to the 283 

development of studies on immune cells isolated from patients and matched controls, aimed at 284 

dissecting key aspects of the complex transcriptional response in MS. Our analysis provides a 285 

platform for future studies on transient transcriptome, which we support by making our data 286 

resource available at www.mscoloc.com. Finally, new gene regulatory models may emerge from 287 

this approach in order to better evaluate the meaning of GWAS in complex traits and the impact 288 

of the enhancer transcription (Fitz et al., 2020), which was recently reported as an ancient and 289 

conserved, yet flexible, genomic regulatory syntax (Wong et al., 2020). 290 
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Materials and Methods 291 

 292 

Data pipeline 293 

Analyses were performed in Python and R. A data freeze was applied on 3/1/2020. All GWAS 294 

data was gathered from the GWAS Catalog through its REST API (Buniello et al., 2019); about 295 

1.5% of this data was filtered out as part of a QC process aimed at homogenizing legacy and 296 

more recent data. The MS GWAS regions were extracted from the overall GWAS Catalog data 297 

filtering by trait EFO_0003885. All Transcription Factor Binding Site regions (TFBS) were 298 

obtained from the ENCODE portal (Sloan et al., 2016). All data was organized in various 299 

databases and data pipelines as detailed below. A modular and parallel data pipeline was created 300 

to: (i) readily generate and evaluate all experiments in the paper, (ii) manage and organize all 301 

data coming from various region collections (42,075 ROI regions; 4,697,782 regions plausibly 302 

coding for trRNAs; 13,309,757 Universe regions), multiple ROIs (MS GWAS, EBNA2, EBNA3C, 303 

VDR,  AID, etc.), databases of vast background regions as they were populated with the data 304 

obtained from GWAS Catalog, ENCODE, and other raw data sources, (iii) provide overlaps and 305 

intersection among various data elements, annotate them with the original MS GWAS loci that 306 

generated the signal, and (iv) generate the overarching data resource available at 307 

www.mscoloc.com. 308 

 309 

Statistical analysis 310 

For SNP overlaps and region colocalization, we used LOLA (Sheffield & Bock, 2016) and Fisher’s 311 

exact test with False Discovery Rate (Benjamini-Hochberg) to control for multiple testing. 312 

Resulting -log (p-value), support, and Odds Ratio (OR) were combined into a single score 313 

inspired by the harmonic mean (Wilson, 2019) and multi-objective optimization (Umeton R., 2011) 314 

with the formula below, where the spacing parameter kp was set to 10.0 and we consider all three 315 

contributors equally, setting therefore weights wi to 1.0. Statistical significance was taken at 316 

p<0.05. 317 

 318 

 319 
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 322 

Data availability 323 

All generated data and results are made available at the website www.mscoloc.com.  324 

 325 
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Tables 

Table 1. Enrichment of MS-associated genetic variants in lists of T-cell transient transcripts 

extracted from Michel et al. (21). The whole transcriptome list was split in two sub-lists depending 

on the transcripts’ half-life: short (<60’) and long (≥60’), respectively. Results are considered 

significant at p<0.05 and are highlighted in bold. 

 

 

List -log (p-value) p-value Odds Ratio Support List Size 

Whole transient transcriptome 8.55 2.80 x 10-9 1.65 241 22126 

Short half-life transcripts 7.68 2.06 x 10 -8 1.63 209 20143 

Long half-life transcripts 1.05 0.09 1.29 35 1993 
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Table 2. Enrichment of MS-GWAS regions (at ±50,100,200 kb range of extension) in lists (number in brackets in the right-most column) of DNA 

binding sites of human and viral molecular transducers; significant results (p<0.05, corresponding to a -log (p)>1.301) in bold. 

 ± 50 KB ± 100 KB ± 200 KB 

 -log 

 (pValue) 
Odds Ratio Support Harmonic 

Score 

-log 

 (pValue) 
Odds Ratio Support Harmonic 

Score 

-log 

 (pValue) 
Odds Ratio Support Harmonic 

Score 

EBNA2 

 (6880) 
10.658 1.790 158 45.544 8.616 1.509 239 38.327 15.444 1.542 421 41.913 

 

EBNA3C 

 (3335) 

0.614 1.108 55 11.765 1.647 1.227 109 20.956 3.448 1.294 199 28.098 

 

AID 

 (4823) 

4.963 1.596 99 35.793 3.890 1.374 153 30.259 13.924 1.619 309 43.308 

 

VDR 

 (23409) 

19.348 1.575 474 43.564 19.181 1.422 767 39.635 32.090 1.424 1329 40.872 
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Table 3. Colocalization of human and viral transducer DBRs and MS-GWAS positions (at ±50,100,200 kb range of extension) in DNA regions 

coding for transient transcripts; significant results (p<0.05, corresponding to a -log (p)>1.301) in bold. The transcript half-life is considered short if 

<60’ and long if ≥60’, respectively.  

 

 

 

 
 

 
± 50 KB ± 100 KB ± 200 KB 

  
-log 

 (pValue) 

Odds 
Ratio Support Harmonic 

Score 
-log 

 (pValue) 

Odds 
Ratio Support Harmonic 

Score 
-log 

 (pValue) 

Odds 
Ratio Support Harmonic 

Score 

  
EBNA2 Long half-life 0.023 0.478 3 0.644 0.062 0.717 8 1.708 1.879 1.531 33 24.679 

  Short half-life 6.163 1.920 69 43.011 3.241 1.433 95 29.496 8.945 1.610 189 40.642 

EBNA3C Long half-life 0.064 0.572 2 1.669 0.006 0.321 2 0.185 0.182 0.914 11 4.500 

  Short half-life 0.070 0.794 16 1.923 0.023 0.752 28 0.661 0.066 0.875 58 1.841 

AID Long half-life 0.089 0.682 3 2.303 0.283 1.024 8 6.477 0.051 0.726 11 1.432 

  Short half-life 1.769 1.465 37 23.531 1.346 1.267 59 19.367 3.954 1.442 119 31.416 

VDR Long half-life 1.737 1.502 32 23.571 0.845 1.187 45 14.646 2.315 1.322 97 25.031 

  Short half-life 2.221 1.239 152 23.734 2.336 1.181 267 23.460 11.478 1.367 548 36.561 
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Figures and legends 
 

 
 
Figure 1. GWAS-associated SNP distribution across genomic partitions and their distance 

relative to the transcription starting site (TSS). Panel A, Multiple Sclerosis; B, Immune-mediated 
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conditions: Multiple Sclerosis, Rheumatoid Arthritis, Systemic Lupus Erythematosus, Crohn’s 

Disease, Ulcerative Colitis, Inflammatory Bowel Disease, Celiac Disease, Asthma, Type I 

Diabetes Mellitus; C, Non-immunological complex conditions: Type II Diabetes Mellitus, Aging, 

Obesity, Hypertension, Coronary Artery Disease, Bipolar Disorder. Supplementary Table S2 

include links to these traits in the GWAS catalog. 
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Figure 2. Enrichment of MS-associated SNPs in databases of regulatory elements, sorted by 

experiment/cell lines. X-axis shows the Odd Ratio, y-axis shows the -log (pValue); dot size is 

proportional to the support of each match, i.e., the number of hits resulting from the colocalization 

analysis. Color of each point is related to the Harmonic Score (HS), a comprehensive estimation 

of the relevance of hits, as derived by merging and balancing the OR, pValue and Support of 

each match. Thus, prioritized hits are represented by the darker dots that occupy the upper-right 

area of the chart. Labeled points have HS>40. Labels were arbitrarily designated according to the 

database of origin and the cell lineage where the enrichment occurred.   
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Figure 3. Colocalization analysis of DBRs for human and viral molecular transducers, MS-

associated SNPs and DNA regulatory regions derived from databases. (A),Schematic 

representation of the colocalization analysis. (ROI: Region of interest; DBR: DNA Binding 

Regions; ENCODE TFBS: Transcription Factor Binding Site). The figure shows the tracks we 

considered for the colocalization analyses. In brief, the ROI included the DBRs of MS-related viral 

and human transducers and was matched with MS-associated SNPs extended by 50, 100, and 

200 kilobases that colocalize with regions plausibly coding for trRNAs (Database). As a control 

(Universe), we took from ENCODE the entire list of transcription factors binding sites. Results 

were considered significant if a colocalization was found across ROI and a Databases element 
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without occurring in the Universe as a statistically significant match. (B-E), Colocalization results 

of EBNA2, EBNA3C, AID, VDR. The charts display results of all matches, i.e, with MS-associated 

SNPs and their extension at ±50, 100, 200 kb. X-axis shows the Odd Ratio, y-axis shows the log 

(pValue). Dot size is proportional to the support of each match, i.e., the number of hits resulting 

from each colocalization analysis. The color of each dot is related to the Harmonic Score (HS); 

labeled points have HS>40. Labels were arbitrarily designated according to the database of origin 

and the cell lineage where the enrichment occurred. 
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Figure 4. A comprehensive genomic atlas on gene-environment interactions regulating 

transcription in MS. (A), Searchable results at mscoloc.com derive from the matches of GWAS 

MS regions, DNA binding regions of selected genomic transducers, and more than 4 million of 

regions annotated as plausible transient RNAs. (B), The user interface includes text panels and 

range sliders allowing extremely personalized queries, that combine statistical significance level 

(including Odd Ratio, pValue, support, and Harmonic Score), study source, SNP or reported 

gene, and so on. Filtered results are shown as tables ranked by HS, that can be saved, printed or 

shared through URL. In the example, the cursor selects ‘AID, EBNA2, EBNA3C, VDR’ in the 

‘matched DBR region (s)’ panel looking for MS-associated SNPs (from the ROI, Supplementary 

Table S1) and their extensions at ±50, 100, 200 kb that colocalized within DNA binding regions of 

the molecular transducers. The top hit represents the colocalization of the DBRs, a super-
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enhancer region derived from experiments on CD19+B cells included in sedb, and the rs8007846 

MS-associated SNP on chromosome 14. (C), The Venn diagram shows the number of non-

redundant MS-associated SNPs derived from the query: for each transducer, SNPs are 

considered only once if present in more than one match. Intersections show the numbers of 

regions colocalizing with DBRs of multiple transducers. For instance: 8 regions colocalize with 

both EBNA2 and EBNA3C DBRs, but not with AID nor VDR DBRs; 24 regions colocalize with all 

four DBRs, and could be identified as regulatory “hotspots” in MS. 
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Supplementary material 

 

Supplementary Tables 

S1. MS-associated genomic positions from GWAS catalog after QC process filtering, used 
as Region of Interest (ROI) for the analysis. 

S2. GWAS Catalog References for diseases considered in Figure 1. 

S3. Sources of DNA regions plausibly coding for trRNAs with references. 

S4. Sources of DNA Binding Regions (DBRs) of considered viral and human transducers 
with references. 

S5. Top 10 results of Colocalization analysis. 

S6. Cell types for which the colocalization analysis hits reported a harmonic score >40 in all 
transducers (EBNA2, EBNA3C, AID, VDR). 

 

 

Figure supplement 1: Harmonic Score threshold defining the top colocalization hits.  
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