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Abstract

Computer vision (CV) approaches applied to digital
pathology have informed biological discovery and develop-
ment of tools to help inform clinical decision-making. How-
ever, batch effects in the images have the potential to in-
troduce spurious confounders and represent a major chal-
lenge to effective analysis and interpretation of these data.
Standard methods to circumvent learning such confounders
include (i) application of image augmentation techniques
and (ii) examination of the learning process by evaluating
through external validation (e.g., unseen data coming from
a comparable dataset collected at another hospital). Here,
we show that the source site of a histopathology slide can
be learned from the image using CV algorithms in spite of
image augmentation, and we explore these source site pre-
dictions using interpretability tools. A CV model trained us-
ing Empirical Risk Minimization (ERM) risks learning this
source-site signal as a spurious correlate in the weak-label
regime, which we abate by using a training method with ab-
stention. We find that a patch based classifier trained using
abstention outperformed a model trained using ERM by 9.9,
10 and 19.4% F1 in the binary classification tasks of iden-
tifying tumor versus normal tissue in lung adenocarcinoma,
Gleason score in prostate adenocarcinoma, and tumor tis-
sue grade in clear cell renal cell carcinoma, respectively, at
the expense of up to 80% coverage (defined as the percent
of tiles not abstained on by the model). Further, by examin-
ing the areas abstained by the model, we find that the model
trained using abstention is more robust to heterogeneity, ar-
tifacts and spurious correlates in the tissue. Thus, a method
trained with abstention may offer novel insights into rele-
vant areas of the tissue contributing to a particular pheno-
type. Together, we suggest using data augmentation meth-
ods that help mitigate a digital pathology model’s reliance
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on potentially spurious visual features, as well as selecting
models that can identify features truly relevant for transla-
tional discovery and clinical decision support.

1. Introduction

Computer vision (CV) approaches applied to cancer
histopathology image data have demonstrated emerging po-
tential for biological discovery, precision diagnostics, and
as predictive biomarkers [1, 2, 3, 4, 5]. However, chal-
lenges persist regarding the computational, interpretability
and generalization realms stemming from the giga-pixel na-
ture of the Whole Slide-Images (WSIs) and the absence of
patch-level labels. Previous efforts [6, 7] attempt to address
the computational and interpretability challenges. However,
generalizability is still an unsolved challenge that could re-
sult in variable performance among underrepresented sub-
populations of patients in each hospital [8, 9, 10, 11].
These generalizability issues have resulted in considerable
decision-making complexity when implementing solutions
using deep learning in digital pathology.

1.1. Spurious confounders in digital pathology

For CV applications, lack of model generalizability is
often a result of the effect of spurious correlates intro-
duced as a result of the WSI preparation process, also
known as batch effects [12, 13, 14]. Mitigating all forms of
batch effects parametrically incurs challenges since batch
effects may arise from different parts of the tissue pre-
processing pipeline such as the scanner acquisition proto-
col, slide preparation date and thickness of tissue sections
[15, 16, 17, 18]. These batch effects remain detectable by
machine learning algorithms and can induce spurious cor-
relates. Methods have been proposed to solve visible batch
effects [19, 20]. However, such methods cannot fully ac-
count for subtle batch effects that might persist, such as dis-
tinct patient demographic profiles in different hospitals that
result in different biological and clinical baseline features
specific to data derived from each hospital. Indeed, multiple
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studies have demonstrated that a trained model can learn the
race and age of a patient [15, 17], and these features might
also serve as confounders to the model.

1.2. Distributionally Robust Optimization (DRO)
as a solution to prevent learning spurious con-
founders

When patch-level models that are trained using slide-
level labels exhibit a low training error, they might have
done so by learning spurious correlates from the patches
that do not exhibit features of the slide-level label. This
potential overfitting to spurious correlates could exacerbate
disparities that exist due to underlying differences in patient
populations served at different hospitals, among other fac-
tors [21, 22]. For example, if all tumors of Lung adenocar-
cinoma (a subtype of lung carcinoma, the other major sub-
type being squamous cell carcinoma) are all higher grade in
the training set, but lower grade in the validation set, and
vice versa for squamous cell carcinoma, we want a model
to be robust to the distributional shift in the grade between
the training and validation sets, while performing the sub-
typing task. A subfield of DRO, Group-DRO [21], aims to
increase robustness to shifts in the groups between training
and validation sets. However, this approach requires ex-
pert annotation to explicitly characterize and enumerate the
groups of the cancer tissues.

In addition, when a digital pathology model is trained
on data from one source hospital and tested on data from
the same hospital, it could over-fit to batch effects instead
of fitting to an outcome-wide distribution that generalizes
to other source sites. This problem is often abated by hav-
ing an external test set [10, 23, 24, 25, 26, 27], since us-
ing independent methods of data-collection helps validate
generalization. The task then generalizes to features that
can be observed in a variety of settings with different pre-
processing methods. However, testing on a diverse held-out
set requires holding out data from the training process and
deprives the training process of this diversity.

1.3. Evaluating proposed solution on tasks with clin-
ical relevance

Existing solutions to circumvent the potential confound-
ing introduced by the spurious correlates include methods
to resolve intra-WSI heterogeneity [28]. However, these
methods include computational overheads and more hyper-
parameters. To circumvent this, we propose training using
an abstention method. Here, we evaluate using a group-
DRO method and a model trained with abstention relative
to established approaches across three CV histopathology
tasks with clinical relevance:

1.3.1 Lung Carcinoma

Lung adenocarcinoma (LUAD) is one of the two ma-
jor histologic subtypes of Non-Small Cell Lung Cancers
(NSCLC), the other being Lung Squamous Cell Carcinoma
(LUSC). LUAD and LUSC affect nearly 40% and 20% of
all Lung cancer patients in the United States [29]. Identifi-
cation and subtyping of the tumor in a WSI can help guide
pathologic assessment, as well as potentially determine the
efficacy of therapy [2, 30, 31]. However, identification of
tumor may be confounded by scarring tissue from the ef-
fects of smoking on lung tissue, amongst other features.

1.3.2 Predicting grade in clear cell Renal Cell Carci-
noma

Clear cell Renal Cell Carcinoma (ccRCC) makes up 80%
of the incidence of all Kidney Cancer cases, which will af-
fect an estimated 76,000 people in the United States during
2021 [32, 33]. In patients with ccRCC, amongst pathologi-
cal features classified based on cell shape and arrangement,
nuclear size, nuclear irregularity and nucleolar prominence
showed highest effectiveness in predicting distant metas-
tasis, even more so than tumor size [34]. These features
are used to grade the tumor, with a higher grade implying
worse prognosis. These morphological features can be dis-
tinguished visually and offer potential for the application of
CV algorithms. However, due to inter-observer variability
and intra-tumoral heterogeneity, CV algorithms are suscep-
tible to batch effects and confounding by spurious corre-
lates.

1.3.3 Predicting Gleason score in prostate adenocarci-
noma

Prostate adenocarcinoma (PRAD) forms the large majority
of prostate cancers, which will affect just shy of a quarter of
a million people in the United States during 2021 [35, 36].
The Gleason grading system tailored to specific proper-
ties of this histology is used to describe the patterns ob-
served in tumor tissue in prostate adenocarcinoma (PRAD),
with grades ranging from 1 (least advanced) to 5 (most ad-
vanced). A Gleason score for the sample biopsy is then
calculated by adding the two most prominent grades visible
in the tissue. In practice, the lowest Gleason score awarded
that qualifies as cancer is a 6 (3+3). Recent works have
shown the use of CV to predict the Gleason score of a scan
of biopsy tissue [37, 38]. However, whether or not Glea-
son scoring models are learning spurious correlates of the
Gleason grade is incompletely characterized but critical for
clinical use.
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Figure 1: Models used in our experiments, a) showing a standard ERM model used in our pipeline to predict whether a patch
comes from tumor tissue or surrounding healthy tissue b) a group-DRO algorithm that defines groups based on the source
hospital of the patch c) An algorithm that updates its weights based on loss accumulated on examples that it is confident on

2. Methods
Here, we propose a new training method (henceforth re-

ferred to as training with abstention) that we compare with
conventional backpropagation using Empirical Risk Min-
imization (ERM). A full overview of our pre-processing
pipeline is elaborated in figure 1a. Gigapixel whole slide
images (WSIs) are first passed through a quality control
(QC) process using HistoQC [39] and subsequently divided
into a number of patches (order of 103) in a process called
tiling. Subsequently, they are first augmented through a
color jitter or stain normalization process, described below,
after which, they are passed through machine learning mod-
els described in section 2.1 onward.

Color Jitter We used image augmentation via jittering
the RGB pixel values in the RGB space to prevent over-
fitting to the color distribution by inducing random changes
in the brightness, saturation, and other properties of an im-
age, also known as color jitter [40]. To discretize the color
jitter, we defined a light version of the color jitter that al-
lowed the brightness factor to be chosen uniformly at ran-
dom between [0.875, 1.125], the contrast factor to be cho-
sen uniformly at random between [0.5, 1.5], the saturation
factor to be chosen uniformly at random between [0.5, 1.5]

and the hue factor to be chosen between -0.1 and 0.1. We
similarly defined a heavy version of the color jitter to be
four times proportionally higher (unless limited by the max-
imum allowed limits for each factor). That is, we allowed
the brightness factor to be chosen uniformly at random be-
tween [0.5, 1.5], the contrast factor to be chosen uniformly
at random between [0, 3], the saturation factor to be chosen
uniformly at random between [0, 3] and the hue factor to
be chosen between [-0.4, 0.4]. The limit on the color jitter
we could introduce was placed by the hue factor, which was
forced to be between [-0.5, 0.5].

Stain Normalization We also used image augmentation
via jittering the RGB pixel values in the RGB space to pre-
vent overfitting to the color distribution. In addition to using
color augmentation, we also used stain normalization using
Staintools [41]. We performed stain normalization in two
ways: 1) Where the images in the validation set were nor-
malized to the same template as the images in the training
set and 2) Where the images in the validation set were nor-
malized to a different template compared to the images in
the training set. The first method was used to prevent the
stain template of the image from creating a spurious corre-
late. The second method was used to test the model’s re-

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.09.14.460365doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460365
http://creativecommons.org/licenses/by-nd/4.0/


liance on morphological features that are still observable
despite a distributional shift in the color profile. However,
we did not use stain normalization in our tasks with clinical
relevance owing to the performance bottleneck imposed by
the stain normalization process.

2.1. ERM model

In order to establish a baseline to compare our mod-
els trained with group distributionally robust optimization
(group-DRO) and trained with abstention, we use a pre-
trained ResNet-50 convolutional neural network (CNN)
[42]. The model was pretrained on the ImageNet dataset
[43]. We replaced the final layer with a layer having a num-
ber of heads pertaining to the number of classes in our task
whose weights are initialized uniformly at random [44]. We
used a cross-entropy loss function where the loss is com-
puted and aggregated over the entire dataset. This model is
henceforth referred to as the ERM model.

2.2. group-DRO

In our implementation of a group-DRO method, we de-
fined the groups as hospitals from which the WSIs were
taken. We trained an algorithm by backpropagating the loss
over the tiles from the worst performing hospital, measured
by average loss per tile in a batch. However, the reported
statistics, such as F1, are reported over the whole validation
/ testing dataset, and not the worst performing hospital. A
pictorial representation of this algorithm is shown in Figure
1b.

Input: abstention threshold p, forward function f ,
optimizer g, loss function L, Slide-level
labels y

Output: θ, the parameters of the model
Initialize θ;
for i← 1 to n do

ỹ = fθi(x);
ỹ′ = {ỹi∥ ∃ j s.t. ỹij > p};
l = L(ỹ′, y);
θi+1 ← g(θi, l);

end
Algorithm 1: Forward Propagation of Loss in Absten-
tion architecture

2.3. DRO with abstention

Models were trained using an abstention algorithm (Al-
gorithm 1, Figure 1c) whereby we only accumulated and
backpropagated the losses from images for which the model
predicted a maximum softmax logit score greater than a
predefined threshold, p. We interpret this threshold as a
confidence and only report losses on images for which the

confidence value is greater than p. We used this absten-
tion method while training so that the weights learned by
the model are on data that the model is confident about. To
rescale the outputs of the softmax function into a probabil-
ity distribution for thresholding by p, we used temperature
scaling [45].

2.4. Training details

Cross Validation We performed 5-fold cross validation.
We allowed folds to overlap with one-another at the slide
or patient level depending on the task. In the set of exper-
iments where we trained on one hospital and evaluated on
another, we only performed three cross validation trials.

Early Stopping We train our models to minimize error
and stop training if the error does not improve on the val-
idation set over five consecutive measurements [46]. The
validation performance was measured four times per epoch.
Thus, a lack of performance improvement for five consecu-
tive measurements implies that the model’s validation per-
formance did not increase over one epoch. We found the
patience of five to be suitable through cross validation per-
formance.

Reporting F1 We reported the best validation F1
achieved by the model, unless stated otherwise. We con-
tinued to track the loss metric to evaluate further improve-
ment by the model; however, an improvement in loss does
not necessarily improve F1. Thus, we report the F1 at the
training instant where the F1 is highest even if the model
achieves a lower loss at a different time point.

3. Experiments

3.1. Predicting the source site of a histopathology
tissue

We used an ERM model to predict a scan’s source hospi-
tal for LUAD patches. We trained the model with a one-hot
encoded label of the source site of the image as the label.

Data Imbalance There was an uneven distribution of tiles
across hospitals donating to TCGA. Balancing the number
of WSIs and the number of QC-checked tiles from each hos-
pital proved challenging as some hospitals contributed only
a single WSI. Thus, we limited our study to the ten most
populous hospitals, as measured by the number of WSIs
from the site.

Data Splitting The data were split into training and vali-
dation sets using data from held out patients.
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Interpretability We leveraged Grad-CAM [47] as an ini-
tial step in interpretability. Grad-CAM produces arrays with
the same shape as the input image, which can be overlaid
over the image to produce heatmaps.

3.2. Comparing ERM vs. DRO

We compare our method of training with abstention
against ERM methods in three classification tasks with clin-
ical relevance. We provide more relevant details on the tasks
below.

3.2.1 Lung Carcinoma

In one set of experiments, We evaluated our method on
the task of detecting tumor tissue in Lung adenocarcinoma
(LUAD), using LUAD WSIs from the Cancer Genome At-
las (TCGA) (n = 522). We trained a binary patch-level
classifier using slide-level labels to classify tissue patches
into tumor or normal tissue.

In one set of experiments done on TCGA-LUAD, we
trained the model on data taken from one hospital and val-
idated it on data taken from another without fine-tuning, to
mimic a real-world setting where data is private and cannot
be shared between institutions in a resource scarce setting.
In order to study the effect of the preprocessing steps em-
ployed by a singular hospital, we were limited in our analy-
sis to data from hospitals that have both tumor samples and
surrounding normal tissue.

In another set of experiments, we used a private dataset
to distinguish between the two major subtypes of lung
cancer cases, LUAD and Lung Squamous Cell Carcinoma
(LUSC). Similar to the case of detecting LUAD, we trained
a binary classifier at the patch level.

3.2.2 Predicting Grade of tissue in TCGA-ccRCC

We classified patches of tumor tissues taken from TCGA-
ccRCC (n = 504) into Grade II or Grade IV cancer us-
ing slide-level labels. In order to prevent introducing con-
founders to the model, we first trained a model to extract
tumor tissue from the WSI. This model was trained on a
task of distinguishing tumor tissue from normal tissue us-
ing pixel-level labels from an in-house dataset. We pro-
ceeded with subsequent analysis of determining the grade
on patches of the WSI that showed higher likelihood of be-
ing tumor tissue than healthy tissue, as predicted by this
model. We also repeated the experiments on the whole
dataset without removing non-tumor tiles for the sake of
completeness, with data split into training and validation us-
ing data from held-out hospitals without bleeding data from
the same slide or hospital from training into validation.

3.2.3 Prostate adenocarcinoma (PRAD)

We predicted the aggregate Gleason score at the patch-level
of a WSI taken from TCGA-PRAD (n = 371) using a bi-
nary classifier of low (score of =6) or high (≥ 8). We first
eliminated tiles that had a less than random chance of being
tumor using predictions made on patch-wise labels and data
from Schömig-Markiefka et al. [18]. We also repeated the
experiments on the whole dataset without removing non-
tumor tiles for the sake of completeness, with data split into
training and validation without bleeding data from the same
slide or hospital from training into validation, unless men-
tioned otherwise.

3.2.4 Data splitting and Training details

In the tasks on PRAD, we used a crop size of 512 and a
batch size of 32. In the tasks on ccRCC and LUAD, we use
a crop size of 224 and a batch size of 128. This was decided
based on cross-validation experiments.

In the tasks on LUAD and PRAD, we combined the data
from all hospitals, and compared models trained using DRO
against models trained using ERM, and ablated the number
of hospitals held out during testing, measuring the robust-
ness of the model when more hospitals are held out. In
LUAD and PRAD, when j hospitals held out, we took j
held out hospitals from each class. In ccRCC, however, ow-
ing to data availability constraints, we did not ablate the
number of hospitals. We instead created a validation set
with roughly 30% of the unique hospitals from the entire
dataset, and validated a model on data from those held out
hospitals. The reported statistics (performance, coverage
and errors of the same) are reported on this held out set.

For the method trained with abstention, we report test
statistics, such as F1 and loss, on images for which the
model reports softmax logits with confidence values greater
than p. We compute a macro-F1, aggregating the F1 scores
of the individual classes without weighting them by the
number of samples.

4. Results

4.1. Heterogeneity in predicting tumor vs. normal
tissue

First, we evaluated models trained on a single source site
and validated on either the same or different single source
site on a task of LUAD identification. Overall, we found
significant heterogeneity in model performance based on
the hospital whose data were used to train and validate the
model (Figure 2b). For example, a model trained on data
from the University of Pittsburgh achieved a validation F1
of 0.97 when validated on data from a held-out set of pa-
tients from the University of Pittsburgh, but, at best, only
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Figure 2: a) Heterogeneity in model performance in task to identify whether a patch contains tumor in TCGA-LUAD b)
an ERM model’s performance in identifying the source site of a patch from a TCGA-LUAD WSI with image augmentation
techniques applied to mask out the effect of source site c) pixel importance of source-site prediction task using Grad-CAM

achieved a validation F1 of 0.71, when evaluated on data
from Prince Charles Hospital.

We then consolidated the data by aggregating across hos-
pitals whose data were used to train and validate, again
observing inter-hospital validation heterogeneity. We also
found that hospitals whose data on which models achieve
a higher validation F1, did not achieve comparable perfor-
mance when models trained on that same site’s data were
validated on other hospitals, and vice versa. For example,
a model trained on data from the University of Pittsburgh,
achieved a median validation F1 of 0.86 when validated
on other hospitals. However, models trained on data from
other hospital sites and validated on the University of Pitts-
burgh cohort achieved a median F1 of 0.72. Further, for data
from the hospitals at the University of North Carolina and
Roswell Park, models achieved higher performance when
used for validation (0.95 and 0.91 median F1, respectively)
rather than for training (0.76 and 0.74 median F1, respec-
tively).

4.2. Impact of image augmentation on identifying
the source site of an image

Given the heterogeneity in model performance, we next
evaluated a possible source of this heterogeneity that arises

from the data preparation and pre-processing steps. Con-
sistent with prior reports [48], we found that a model could
recognize the source site of a histopathology scan through
visual features in the absence of stain normalization (Fig-
ure 2a, left). However, we found that color jitter was able
to mitigate the ability of the model to discern the source
site of an image by up to 10%, 33% and 24% when distin-
guishing between 2, 5 and 10 hospitals respectively. To at-
tempt to mask out the stain profile, we normalized the stain
across the images. However, in spite of stain normalization,
we were still able to distinguish the source hospital of an
image with 67% and 49% F1 for 5 and 10 source hospi-
tals respectively, when no color jitter was used (Figure 2b,
middle). When heavy color jitter was applied, this perfor-
mance decreased by 15% and 6% F1 for 5 and 10 hospitals
respectively. With stain normalization such that the valida-
tion template was different from the stain template (Figure
2b, right), we found that the model performed randomly
when there was no color jitter introduced, and as the color
jitter strength increased to heavy, the model performance
increased by 20 and 14% F1 for 5 and 10 hospitals respec-
tively. Thus, source hospital information is, at least, in part
encoded in the stain profile of the scan, which can only be
partially occluded by image augmentation techniques, such
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as color jitter and stain normalization.

4.2.1 Using Grad-CAM to identify features contribut-
ing to source-site prediction

In order to understand the features contributing to source-
site signal, we used Grad-CAM [47]. We applied Grad-
CAM to our models at various resolutions to examine the
highlighted features. At both the 5x and the 20x resolutions,
we found that the image augmentations did not drastically
alter the regions of the image highlighted by Grad-CAM
(example patch at 5x shown Figure 2c). Further, we found
that Grad-CAM segmentations did not agree with any dis-
cernible boundaries of objects in the image, both at the 5x
and 20x resolutions, making the masks hard to interpret.
Thus, we could not identify interpretable features that con-
tributed to source site prediction.

4.3. Lung Carcinoma

Given the multiple challenges presented by batch effects,
we trained a model with group-DRO to evaluate whether
this approach was robust to spurious confounders. When
trained on data from multiple hospitals on the task to de-
tect LUAD, we found that a model trained using group-
DRO performed competitively to an ERM model, while a
model with abstention outperformed a model trained using
ERM under all numbers of hospitals held out, with up to
9.9% gain in F1 at the expense of 45.2% coverage (Table 1).
Thus, application of DRO and group-DRO methods for the
task of identifying tumor tissue in LUAD showed promise
for broader applicability.

In the set of experiments where we trained a model on
data from one hospital and measured its performance on
data from another, we also found that heavy color jitter pro-
duced only up to 0.15 improvement in F1 and using our
abstention model produced up to 0.24 improvement in F1
when used in conjunction with heavy color jitter (Figure
3a). To this effect, we propose using the DRO model to be
more robust to the heterogeneity in training data and OOD
validation data.

Upon investigation, we noted that these methods ab-
stained from making predictions on regions of the WSI cov-
ered by slide-preparation artifacts, such as air bubbles (Fig-
ure 3b), making it less likely to learn spurious correlates.

Further, we found that models trained with abstention
also abstained from more biological spurious correlates
(Figure 4). In an example taken from a brain biopsy of
a metastatic lung cancer, we observed i) an ERM model
placed importance on surrounding brain tissue which was
confirmed by a pathologist to not bear any tumor, and thus
had learned spurious signal; and ii) models trained with
stringent abstention in contrast completely disregarded the
brain tissue, while placing modest confidence in the verified

lung tumor tissue. This example was at full coverage, where
all tiles of Whole Slide Image (WSI) are shown. However,
owing to the different training processes, the models learned
different features.

To further demonstrate the differences in features learned
in each model type, we used each model to separately pro-
duce “pruned” datasets at varying degrees of confidence,
and then used these datasets to train a further set of ERM
models to distinguish lung subtypes. At higher confidence
levels (0.8 and 0.9), models trained on DRO-pruned data of-
fered better performance than those trained on ERM-pruned
data (0.61±0.12 vs. 0.42±0.11 F1 [p = 0.10] at threshold
0.8; 0.81± 0.12 vs 0.53± 0.12 F1 [p = 0.047] at threshold
0.9).

4.4. Using group-DRO to improve generalization in
grade prediction in TCGA cc-RCC

Regarding cc-RCC analyses, we observed an improve-
ment by 18.5% F1 at the patch level after first removing
tiles that do not contain tumor and up to 19.4% F1 when
including non-tumor tiles (Table 2) in the task of identify-
ing whether a tile comes from a slide of grade 2 or 4 tumor.
This performance gain was obtained at the expense of up to
79.6% loss in coverage.

4.5. Predicting Gleason score in TCGA-PRAD

Finally, we compared the performance of a DRO and
group-DRO method to a model trained with ERM on pre-
dicting Gleason score in PRAD. A model trained with
group-DRO, performed comparably to a model trained with
ERM. A model trained with abstention, outperformed a
model trained with ERM, by up to 24.3% in grading the
tumor tiles and 16.7% when all tiles are used (Tables 3 and
4). This performance boost came at 49% loss in coverage
when a tumor filter was used, and 78.5% loss in coverage
when no tumor filter was used.

5. Discussion

In this study, we showed that stain profile can be used
to identify the source site of a histopathology scan and con-
tribute to significant heterogeneity in model performance.
This artifact might lead a model to overfit spuriously cor-
related features of the slide while training on a label with
weak morphological evidence.

In our analyses, we took five slides from each hospital
and one hundred tiles from each slide. The differences be-
tween source sites could reflect differences specific to those
tiles that were selected. However, the models’ ability to
correctly identify the source site of a tile among ten sources
despite using image re-coloring techniques and stain nor-
malization implies that there are features of an image that
provide sufficient visual evidence for a model to identify
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Figure 3: a) Image augmentation improves heterogeneity in performance in task of identifying tumor tissue in TCGA-LUAD
(left) and training by abstention further improves heterogeneity (right). b) Qualitative examination shows model trained with
abstention at high thresholds abstains from making histological predictions on spurious correlates of air bubbles

# of Hosp.
held out

ERM Best DRO Model group-
DRO

F1 F1 Threshold Coverage F1
1 91.1±4.05 98.4±7.89 0.8 86.6±5.80 92.2± 8.08
2 88.3±2.29 95.2±4.39 0.9 54.3±15.0 88.6± 3.99
3 78.6±8.78 82.0±9.26 0.9 65.2±20.8 83.6± 9.84
4 81.1±8.86 91.0±7.70 0.9 54.8±21.8 88.8± 5.85
5 72.2±3.84 79.7±7.37 0.9 59.6±23.8 77.4± 5.09

Table 1: Comparing proposed models against an ERM model in the case of identifying tumor tissue vs. surrounding benign
tissue in LUAD

the source site of an image. It is possible that these fea-
tures could be biological, (e.g., differences in grade, tumor-
infiltrating lymphocyte infiltration, metastatic potential, or
other features that are enriched in the source site’s data), so
consideration of such batch effects are key for successful
analysis of these data types.

We found that models achieved different performances in
the task of identifying LUAD when trained on data from one
hospital and tested on those of another site. We attributed
this finding to a difference in the distributions of spurious
variables between the training and validation datasets. We
hypothesize that if a model tested well on data from a hospi-

tal while using data from other hospitals to train, the testing
data are a narrow distribution of spurious and core variables
that fall within the training data manifold.

We hypothesize that this approach’s capability to abstain
on parts of the tissue, allows the practitioner to better un-
derstand what the model is learning from and thereby de-
velop greater confidence in the model, as its performance
relies on areas of high confidence. Ultimately, we found
that DRO methods that aim to either optimize the model’s
performance on a previously defined subgroup or a learned
subgroup, defined in our case by the training samples that
the model performed well on, were able to provide better
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Figure 4: Qualitative examination shows model trained with abstention at high thresholds abstains from making histological
predictions on spurious correlates of surrounding brain tissue in the case of subtyping metastatic lung carcinomas

# of Hosp.
held out

ERM Best Abstention Model group-
DRO

F1 Threshold Coverage
No TF 64.4±6.95 83.8±12.8 0.8 20.4±5.32 62.1±9.12
TF 68.1±3.98 86.6±12.3 0.8 22.0±3.31 65.1±5.15

Table 2: Comparing performance of proposed models in the case of identifying tumor tissue of grade II vs. grade IV in
ccRCC

performances on an external validation set. We make the
assumption that examples that a model predicts with low
confidence are OOD. However, this assumption needs fur-
ther validation studies to confirm.

6. Conclusion

Learning spurious correlates may interfere with using
models to perform biologically relevant prediction tasks
and impede efforts to deliver translational care and clini-
cal support through artificial intelligence. Machine learn-
ing applied to data from publicly available cohorts, such
as the Cancer Genome Atlas (TCGA), can learn spurious
correlates while trying to analyze large amounts of digi-
tized pathology data paired with molecular and clinical out-
comes, impeding multi-hospital analyses from pan-cancer
patient cohorts.

Here, we evaluated the impact of batch effects and devel-
oped approaches to mitigate these fundamental challenges
to digital pathology. We assessed how source sites can be
learned by models, evaluated existing approaches to address
known sources of batch effects, and highlighted batch effect
features that, although unseen, can still impact downstream
analyses. We also evaluated the role of the interpretabil-
ity tool, Grad-CAM, and proposed a neural network that is
robust to the distributional shifts between training and held-
out test sets. Prospectively, careful consideration of seen
and unseen batch effects in CV digital pathology analysis
will guide successful biological investigations with poten-
tial clinical impact.
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# of Hosp.
held out

ERM Best Abstention Model group-
DRO

F1 Threshold Coverage
1 65.2±11.2 85.0±26.4 0.8 50.3±24.2 50.3±24.2
2 63.0±3.78 77.0±14.6 0.8 43.2±7.47 64.8±5.13
3 60.1±7.31 76.8±5.90 0.9 21.5±10.1 63.0±7.14
4 61.1±7.42 71.8±6.32 0.8 50.6±7.34 59.2±5.00
5 61.5±5.61 66.6±6.81 0.9 28.6±8.30 64.7±5.81

Table 3: Performance of models trained to classify Gleason score of PRAD tiles as either low or high without a tumor filter

# of Hosp.
held out

ERM Best Abstention Model group-
DRO

F1 Threshold Coverage
1 78.5±5.75 94.7±5.42 0.9 52.5±8.48 76.3±2.92
2 81.9±10.4 90.6±11.4 0.8 70.4±8.89 79.1±7.62
3 72.8±5.87 90.2±17.4 0.9 55.6±9.55 69.3±7.09
4 68.2±9.78 92.5±8.20 0.9 51.0±14.3 72.1±8.83
5 68.3±9.25 89.5±7.62 0.8 55.8±7.87 71.1±7.52

Table 4: Performance of models trained to classify Gleason score of PRAD tiles as either low or high with a tumor filter
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Figure 5: Best Validation F1 achieved by a regular CNN model and a model trained with abstention trained on one hospital
(y axis) and validated on another (x axis).

15

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.09.14.460365doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.14.460365
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6: Data from subsets of Figure 5 aggregated across hospitals used to train and validate
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# Hosp. ERM Abstention threshold group-
DRO

held out 0.6 0.7 0.8 0.9
1 91.1±4.05 93.1±4.09 96.6±8.35 98.4±7.89 97.3±4.84 92.2± 8.08
2 88.3±2.29 88.6±1.50 89.1±3.63 93.3±3.94 95.2±4.39 88.6± 3.99
3 78.6±8.78 77.5±7.75 78.9±7.71 78.6±9.50 82.0±9.26 83.6± 9.84
4 81.1±8.86 78.9±9.96 80.4±19.4 84.0±8.89 91.0±7.70 88.8± 5.85
5 72.2±3.84 73.4±3.88 71.9±4.40 76.3±3.61 79.7±7.37 77.4± 5.09

Table 5: Comparing performance of proposed models in the task of identifying tumor tissue in LUAD

# of Hosp. Abstention threshold
held out 0.6 0.7 0.8 0.9
1 98.1±1.14 94.5±8.80 86.6±5.80 63.2±21.0
2 94.6±1.60 87.4±5.63 79.1±10.9 54.3±15.0
3 95.3±1.51 87.3±8.15 83.7±12.4 65.2±20.8
4 94.5±3.08 84.9±28.2 74.0±24.1 54.8±21.8
5 95.5±3.64 90.4±13.7 83.6±16.4 59.6±23.8

Table 6: Comparing coverage of proposed models in the task of identifying tumor tissue in LUAD

ERM Abstention threshold group-
DRO

0.6 0.7 0.8 0.9
No TF 64.4±6.95 68.6±8.83 71.2±14.6 83.8±12.8 76.1±15.1 62.1±9.12
TF 68.1± 3.98 69.7±10.5 72.3±10.9 86.6±12.3 73.2±16.0 65.1±5.15

Table 7: Comparing performance of proposed models in the case of identifying tumor tissue of grade II vs. grade IV in
ccRCC

Abstention threshold
0.6 0.7 0.8 0.9

No TF 65.4±19.8 37.3±17.3 20.4±5.32 8.07±10.3
TF 78.7±13.0 30.4±11.7 22.0±3.31 6.03±7.74

Table 8: Comparing coverage of proposed models in the case of identifying tumor tissue of grade II vs. grade IV in ccRCC

# of Hosp.
held out

ERM Abstention threshold group-
DRO

0.6 0.7 0.8 0.9
1 78.5±5.75 82.9±12.6 89.4±9.49 93.5±5.02 94.7±5.42 76.3±2.92
2 81.9±10.4 82.4±6.52 86.2±10.3 90.6±11.4 90.2±5.09 79.1±7.62
3 72.8±5.87 80.6±7.65 84.7±9.82 87.2±14.0 90.2±17.4 69.3±7.09
4 68.2±9.78 78.1±9.20 77.9±7.93 86.1±7.99 92.5±8.20 72.1±8.83
5 68.3±9.25 74.5±7.65 86.0±8.06 89.5±7.62 88.3±8.34 71.1±7.52

Table 9: Comparing performance of models trained to classify Gleason score of PRAD tiles as either low or high with a
tumor filter
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# of Hosp.
held out

Abstention threshold

0.6 0.7 0.8 0.9
1 88.4±4.21 80.6±2.57 69.5±5.05 52.5±8.48
2 89.5±3.43 81.4±7.64 70.4±8.89 46.3±16.8
3 92.0±1.42 80.7±4.05 70.3±4.36 55.6±9.55
4 90.2±3.45 77.4±5.11 65.7±6.87 51.0±14.3
5 89.4±1.22 74.7±9.82 55.8±7.87 39.0±7.18

Table 10: Comparing coverage of models trained to classify Gleason score of PRAD tiles as either low or high with a tumor
filter

# of Hosp.
held out

ERM Abstention threshold group-
DRO

0.6 0.7 0.8 0.9
1 65.2±11.2 69.7±14.0 74.0±22.7 85.0±26.4 67.0±27.9 63.0±16.4
2 63.0±3.78 69.5±7.86 72.7±12.2 77.0±14.6 72.9±6.64 64.8±5.13
3 60.1±7.31 63.2±8.83 67.9±6.28 69.5±3.52 76.8±5.90 63.0±7.14
4 61.1±7.42 65.1±5.67 68.2±9.69 71.8±6.32 64.9±6.49 59.2±5.00
5 61.5±5.61 63.0±6.33 63.5±10.7 63.6±11.1 66.6±6.81 64.7±5.81

Table 11: Comparing performance of models trained to classify Gleason score of PRAD tiles as either low or high without a
tumor filter

# of Hosp.
held out

Abstention threshold

0.6 0.7 0.8 0.9
1 83.5±3.15 63.5±8.19 50.3±24.2 37.4±30.4
2 84.8±4.49 70.6±4.01 43.2±7.47 22.4±10.4
3 86.7±5.40 62.1±5.90 51.2±9.91 21.5±10.1
4 87.5±2.38 65.6±8.61 50.6±7.34 31.6±6.47
5 86.5±5.37 65.4±7.58 47.8±8.73 28.6±8.30

Table 12: Comparing coverage of models trained to classify Gleason score of PRAD tiles as either low or high without a
tumor filter
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