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Abstract

Recent studies have identified numerous RNAs that are functionally both coding and
noncoding. However, the sequence characteristics that determine bifunctionality remain
largely unknown. In this study, we developed and tested a potentially translated island
(PTI) score, defined as the occupancy of the longest open reading frame (ORF) among
all putative ORFs. We found that this score correlated with translation, including
noncoding RNAs. In bacteria and archaea, coding and noncoding transcripts had narrow
distributions of high and low PTI scores, respectively, whereas those of eukaryotes
showed relatively broader distributions, with considerable overlap between coding and
noncoding transcripts. The extent of overlap positively and negatively correlated with
the mutation rates of genomes and effective population sizes of species, respectively.
These overlaps were significantly increased in threatened species. In macroevolution,
the appearance of the nucleus and multicellularity seem to have influenced the overlap
of PTI score distributions, so that the probability of the existence of bifunctional RNAs
is increased in eukaryotes. In mammalian testes, we observed an enrichment of
noncoding RNAs with high PTI scores, which are candidates for bifunctional RNAs.
These results suggest that the decrease in population size and the emergence of testes in
eukaryotic multicellular organisms allow for the stable existence of bifunctional RNAs,
consequently increasing the probability of the birth of novel coding and non-coding

RNAs.
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Introduction

Recent advances in RNA sequencing technology have revealed that most of the
eukaryotic genome is transcribed, primarily producing noncoding RNAs (Okazaki et al.
2002; Djebali et al. 2012; Ulitsky and Bartel 2013; Kopp et al. 2018). Noncoding RNAs
that are more than 200 nucleotides in length are referred to as long noncoding RNAs
(IncRNAs) and are not translated into proteins (Ulitsky and Bartel 2013; Kopp et al.
2018). LncRNAs have been reported to function in multiple biological phenomena,
including the regulation of transcription, modulation of protein or RNA functions, and
nuclear organization (Ulitsky and Bartel 2013; Kopp et al. 2018). However,
paradoxically, a large fraction of IncRNAs are associated with ribosomes and are
translated into peptides (Frith et al. 2006; Ingolia et al. 2011; Bazzini et al. 2014;
Ingolia et al. 2014; Ruiz-Orera et al. 2014). Peptides translated from transcripts
annotated as IncRNAs have been shown to have biological functions in multiple cases
in eukaryotes (Li and Liu 2019; Huang et al. 2021), and some of these translations are
specific to the cellular context (Dohka et al 2021). Conversely, known protein-coding
genes, such as 7P53, have second roles as functional RNAs (Candeias 2011; Kloc et al.
2011; Huang et al. 2021). The discovery of these RNAs with binary functions has
blurred the distinction between coding and noncoding RNAs, so the characteristics of
RNA sequences that explain the continuity between noncoding and coding transcripts
remain unclear.

During evolution, new genes originate from pre-existing genes via gene duplication or

from non-genic regions via the generation of new open reading frames (ORFs) (Ohno

3
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1970; Chen et al. 2013; Zhang and Long 2014; McLysaght and Guerzoni 2015;
McLysaght and Hurst 2016; Holland et al. 2017). The latter are de novo genes (Begun et
al. 2006; Levine et al. 2006; Begun et al. 2007; Knowles and McLysagtht 2009; Li et al.
2009; Toll-Riera et al. 2009; Li et al. 2010), which have been shown to regulate
phenotypes and diseases (McLysaght and Guerzoni 2015; Chen et al. 2013; Zhang and
Long 2014), including brain function and carcinogenesis in humans (Li C-Y et al. 2010;
Suenaga et al. 2014). IncRNAs serve as sources of newly evolving de novo genes (Ruiz-
Orera et al. 2014), some of which encode proteins. In addition to ORFs exposed to
natural selection, neutrally evolving ORFs are also translated from IncRNAs that stably
express peptides (Ruiz-Orera et al. 2018), providing a foundation for the development
of new functional peptides/proteins. High levels of IncRNA expression (Ruiz-Orera et
al. 2018), hexamer frequencies of ORFs (Sun et al. 2013; Wang et al. 2013; Ruiz-Orera
et al. 2014), and high peptide flexibility (Wilson et al. 2017) have been proposed as
determinants of coding potential; however, the molecular mechanisms by which
IncRNAs evolve into new coding transcripts remain unclear (Van Oss and Carvunis
2019).

In this study, we sought to identify a new indicator for determining RNA protein-coding
potential. Within an RNA sequence, we defined sequence segments that start with AUG
start codons and end with UAG, UGA, or UAA stop codons as potentially translated
islands (PTIs). First, we defined this indicator using PTI lengths and subsequently
examined the associations between the indicator and protein-coding potential. We also

present analyses of more than 3.4 million transcripts in 100 organisms belonging to all
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three domains of life to investigate the relationship between the PTI score and protein-

coding potential over evolutionary history.

Results

Coding transcripts show higher PTI scores in humans and mice

We previously identified a de novo gene, NCYM, and showed that its protein has a
biochemical function (Suenaga et al 2014; Suenaga et al 2020). However, NCYM was
previously registered as a non-coding RNA in the public database, and the established
predictor for protein-coding potential (Wang et al 2013), the coding potential
assessment tool (CPAT), showed a coding probability of NCYM of 0.022, labeling it as
a noncoding RNA (Supplementary Figure 1). Therefore, we sought to identify a new
indicator for coding potential, comparing NCYM with a small subset of coding and non-
coding RNAs to determine whether NCYM has sequence features that would allow it to
be registered as a coding transcript (data not shown). We found that predicted ORFs,
other than major ORFs, seem to be short in coding RNAs. In addition, it has been
reported that upstream ORFs inhibit the translation of major ORFs (Calvo et al 2009).
Therefore, we hypothesized that the predicted ORFs may reduce the translation of major
OREFs, thereby becoming short in the coding transcripts, including NCYM, during
evolution. The term ORF refers to an RNA sequence that is translated into an actual
product; however, the biological significance of non-translating, predicted ORFs has
been largely ignored and remains to be characterized. Therefore, we defined a PTI as an

RNA sequence from the start codon sequence to the end codon sequence and did not


https://doi.org/10.1101/2021.04.14.439730
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439730; this version posted November 16, 2021. The copyright holder for this

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

assume that it would result in a translated product. Thus, PTI can be defined even in
genuine non-coding RNAs. The major ORFs are often the longest PTIs (hereafter,
primary PTIs or pPTIs) in coding transcripts. Thus, to investigate the importance of
pPTIs relative to other PTIs (hereafter, secondary PTIs, or sPTIs) for the evolution of
coding genes, we defined a PTI score as the occupancy of the pPTI length to the total
PTI length (Figure 1 A-B) and assumed that the PTI score was high in coding
transcripts. To examine this hypothesis, we first calculated the PTI scores for all human
transcripts. We analyzed human transcripts from the National Center for Biotechnology
Information (NCBI) nucleotide database for coding and noncoding (RefSeq accession
numbers starting with NM and NR, respectively) transcripts. The data were downloaded
using the Table browser (https://genome.ucsc.edu/cgi-bin/hgTables) after setting the
track tab as “RefSeq Genes.” A total of 50,052 coding (NM) and 13,550 noncoding
(NR) RNAs were registered in 2018 (Supplementary Table 1). To analyze putative
IncRNAs with protein-coding potential, we excluded small RNAs (shorter than 200 bp)
or RNAs with a short pPTI (shorter than 20 amino acids) from the NR transcripts,
focusing on the remaining 12,827 transcripts.

We analyzed the relative frequencies of NM and NR transcripts, designated as f{x) and
g(x), respectively (Figure 1C), where x indicates the PTI score. In human transcripts,
g(x) showed a distribution that shifted to the left with an apex of 0.15; in contrast, the
distribution of f{x) shifted to the right with an apex of 0.55 (Figure 1C, upper panel). As
a control, we generated nucleic acid sequences in which A/T/G/C bases were randomly

assigned with equal probabilities. In the controls, the relative frequencies of PTI scores
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were shifted to the left in both coding and noncoding transcripts (Figure 1C, bottom
panel). The controls that randomly shuffled the original sequence without affecting the
number of A/T/C/G bases in each transcript also had relative frequencies of PTI scores
shifted to the left in both coding and noncoding transcripts (Supplementary Figure 2A).
Similar results were obtained using a dataset from the Ensembl database
(Supplementary Figure 2B). We also calculated the PTI scores of mouse transcripts
from RefSeq and Ensembl and found that the distribution of f{x) was shifted to the right
with an apex of 0.55 (Supplementary Figure 2C), similar to that of human transcripts.
These results suggest that the sequences, not lengths, of the coding transcripts increased

the PTI scores in mice and humans.

PTI scores correlate with protein-coding potential in humans and mice

Next, we examined the relationship between PTI score and protein-coding potential.
Based on the PTI score distributions of coding and noncoding transcripts, protein-
coding potential F(x) was defined as the probability of being a coding transcript with a
PTI score of x. A sample F(0.15) calculation for human transcripts is shown in Figure
ID. This result indicates that any given human RNA transcript with a calculated PTI
score of 0.15 has a protein-coding potential F(x) of 0.183. F(x) was correlated with PTI
scores < 0.65 (Figure 1E and Supplementary Figure 3A). The protein-coding potentials
of sequences in RefSeq data slightly decreased after peaking at 0.65 (Figure 1E),

whereas those of sequences in the Ensembl data remained high (Supplementary Figure
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152 3A). The F(x) of human transcripts was approximated by the following linear

153  regression:

154

155  Based on Ensembl data,

156 F(x)=1.301x +0.0072 (x < 0.65), R*?=0.984

157

158  Based on RefSeq data,

159 F(x)=1.313x+0.0189 (x < 0.65), R*=0.990

160

161  The intercepts were near zero, and the slopes were approximately 1.3. Using these
162  formulas, we can calculate the protein-coding potential F(x) for any given human
163  transcript with a PTI score of < 0.65. For example, the F(x) of NCYM was calculated to
164  be 0.746 and 0.765 based on the Ensembl and RefSeq databases, respectively

165  (Supplementary Figure 1D). In contrast, F(x) for the controls was not correlated with
166  the PTI scores (Figure 1E, bottom panel, and Supplementary Figure 3A). Similar results
167  were obtained for the mouse transcripts (Supplementary Figures 3B). The F(x) of the
168  mouse transcripts (PTI score < 0.65) was approximated as follows:

169

170  Based on Ensembl data,

171 F(x)=1.142x + 0.067, R>=0.982

172

173  Based on RefSeq data,
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F(x)=1.482x-0.061, R>=0.990

For both human and mouse transcripts, the PTI score correlated linearly with the
protein-coding potential at PTI scores < 0.65. Moreover, when the PTI score limit
approached 0, the probability of the transcript being a coding RNA was 0 (Figure 1E

and Supplementary Figure 3).

Characterization of high-scoring human IncRNAs

Next, we investigated whether the PTI score is useful for identifying coding RNAs
among NR transcripts. From the 7,144 transcripts registered as noncoding genes in
2015, we excluded small RNAs (< 200 nucleotides) and those with short primary PTIs
(<20 residues). Among the remaining 6,617 NR genes, 219 were reassigned as NM
over the past 3 years (Supplementary Table 2), including the previously identified de
novo gene MYCNOS/NCYM (Suenaga et al. 2014). The percentage of reclassification
increased for NR transcripts with high PTI scores (Figure 1F). Thus, a high PTI score is
a useful indicator of coding transcripts. NR transcripts with high protein-coding
potential (0.6 < PTI score < 0.8) were then extracted, and the domain structure of the
pPTI amino-acid sequence was assessed using BLASTP. A total of 217 transcripts
showed putative domain structures in pPTI, whereas 310 did not (Supplementary Table
3). Transcripts with domain structures are often derived from transcript variants,
pseudogenes, or readthrough of coding genes; those without domain structures are often

derived from antisense or long intergenic noncoding RNAs (lincRNAs) (Table 1).
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We next examined the functions of genes generating NR transcripts with high coding
potential (0.6 < PTI score < 0.8). We divided the NR transcripts into those with and
without putative domains to investigate novel coding gene candidates, either originating
from pre-existing genes or created from non-genic regions. Analysis using the Database
for Annotation, Visualization, and Integrated Discovery (DAVID) functional annotation
tool (Huang et al. 2009a, 2009b) showed that NR transcripts without domain structures
were derived from original genes related to transcriptional regulation, multicellular
organismal processes, and developmental processes (Supplementary Table 4). Among
the target genes of transcription factors, NMYC (MYCN), TGIF, and ZIC2 were ranked
in the top three and are all necessary for forebrain development (Supplementary Table
4) (Brown et al. 1998; Gripp et al. 2000; van Bokhoven et al. 2005). We observed that
NR transcripts with domain structures originating from genes that undergo alternative
splicing are related to organelle function and are expressed in multiple cancers,
including respiratory tract tumors, gastrointestinal tumors, retinoblastomas, and
medulloblastomas (Supplementary Table 5). Similar analyses were conducted in mice
(Supplementary Tables 6—8) and C. elegans (Supplementary Tables 9—11). In mice, the
original genes related to protein dimerization activity (Supplementary Table 7) and
nucleotide binding or organelle function (Supplementary Table 8) were enriched in
high-PTTI score IncRNAs with and without conserved domains, respectively. In C.
elegans, the original genes related to embryo development (Supplementary Table 10)

and chromosome V or single-organism cellular processes (Supplementary Table 11)

10


https://doi.org/10.1101/2021.04.14.439730
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439730; this version posted November 16, 2021. The copyright holder for this

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY 4.0 International license.

were enriched. Therefore, the relationship between brain development and cancer in the

function of high-PTI-score IncRNAs seems to be specific to humans.

PTIs affect the protein-coding potential predicted by Ka/Ks

To examine the relationship between PTI scores and natural selection in the prediction
of protein-coding potential, we calculated the ratio of nonsynonymous (Ka) to
synonymous (Ks) values by comparing human transcripts with syntenic genomic
regions of chimpanzees and mice (Figure 1G). Transcripts were selected based on the
syntenically conserved regions: 44,593 (vs. chimp) and 14,016 (vs. mouse). We found a
linear relationship between the F(x) and PTI scores in the conserved transcripts (Figure
1G, left panels). As predicted, coding transcripts exhibited Ka/Ks < 0.5 at a higher
frequency than did noncoding transcripts, with large differences observed when for PTI
scores > 0.9 or < 0.1, with the smallest difference for PTI scores of approximately 0.35
to 0.45 (Figure 1G, right panels). These results indicate that for transcripts with PTI
scores near the highest or lowest values, the conservation of ORF/pPTI sequences
(negative selection, Ka/Ks < 0.5) determines the coding potential. In contrast, for
transcripts with PTI scores between 0.35 and 0.45, the conservation of ORF/pPTI
sequences has almost no effect on the coding potential, and thus ORF/pPTI sequences
have more potential to evolve neutrally. Therefore, noncoding transcripts showing both
negative selection (Ka/Ks < 0.5) and the highest PTI scores may include new coding

transcript candidates. We list 23 such transcripts in Supplementary Table 12, including
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four transcript variants of a previously identified IncRNA that encodes a tumor-

suppressive small peptide, HOXB-AS3 (Huang et al 2017).

Translation of small peptides shifts PTI score distributions

To investigate the effect of translation on the PTI score, we calculated the PTI scores of
lincRNAs encoding small proteins and compared them with the PTI score distribution
of all lincRNAs (Figure 2A). We found that lincRNAs translating small proteins shifted
to higher PTI scores, and lincRNAs with PTI scores around 0.45 were increased
compared to the distribution of all lincRNAs.

OREF coverage, ORF size, and transcript length are indicators that have been used to
predict the coding potential of transcripts (Wang et al. 2013; Zeng et al 2018). We
calculated these three values for lincRNAs with translation products, and their
distribution was compared with that of all lincRNAs. The comparison revealed no
rightward shift in the peak, but there was a shift in the higher values of ORF coverage
(Supplementary Figure 4A). On the other hand, there was no rightward shift in ORF
size or transcript length (Supplementary Figure 4B and 4C). Therefore, the translation
of non-coding RNAs was strongly correlated with the PTI score, but not with transcript
length, ORF size, or ORF coverage.

Next, to examine whether PTI scores were associated with translation occupancy of
ORFs in coding RNAs, we defined the ORFs in which translation products were
identified in the sPTIs: uORFs, sPTIs with translation products detected in the 5S'UTRs;

sORFs, PTIs with translation products detected in other frames overlapping with ORFs

12
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of major proteins; and dORF, sPTIs with translation products detected in the 3’UTRs
(Figure 2B). When the PTI scores of coding RNAs with uORF, sORF, and dORF were
calculated and the PTI score distribution was compared with that of all coding RNAs,
the PTI scores shifted to lower values, peaking at 0.35-0.45 (Figure 2C). Although there
are differences in the effect of the location of the translated sPTI in a dataset from a
different database, the PTI score distribution remained similar, that is, it shifted to lower
values and increased the number of coding transcripts with PTI scores of 0.35-0.45
(Supplementary Figure 5). These results support the idea that the PTI score is related to
the occupancy of major ORFs in the translation of RNAs. In addition, when considering
the results in Figure 1G, translation of noncoding RNAs and sPTI in coding RNAs may
increase the chances of pPTI/ORF sequences evolving neutrally by increasing

transcripts with PTI scores of 0.35-0.45.

Relationship between PTI score and relative frequencies of coding/noncoding
transcripts in 100 organisms

To analyze the relationship between PTI scores and protein-coding potential in a broad
lineage of organisms, we selected 100 organisms, consisting of five bacteria, ten
archaea, and 85 eukaryotes (Supplementary Table 1), and calculated PTI scores for
more than 3.4 million transcripts (Supplementary Table 1). Phylogenetic trees of the
cellular organisms are presented on a logarithmic time scale, along with the number of
species in each lineage used in the analyses in Figure 3. To examine the evolutionary

conservation of the linear relationship between the PTI score and protein-coding

13
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potential in humans and mice, we selected a relatively large number of mammalian
species (36). Species with fewer than three IncRNAs were not used to calculate g(x) and
were not included in the histograms illustrating their relationship with the PTI score
(Figures 4 and 5). For all organisms, the relative frequency of coding transcripts f{x)
was shifted to the right (higher PTI score) compared to random or random shuffling
controls (Figures 4 and 5; Supplement Figures 6 and 7).

In bacteria and archaea, f{x) and g(x) exclusively exhibited high and low PTI scores,
respectively, indicating a clear boundary between coding transcripts and IncRNAs in
terms of PTI scores (Figure 4 and Supplementary Figure 6). In addition, the highest
frequency of coding transcript f{x) presenting a PTI score was 0.75 in all examined
bacteria (Figure 4) and > 0.75 in archaea (Supplementary Figure 6). Among eukaryotes,
unicellular organisms and non-vertebrates showed the highest frequencies of coding
transcripts at 0.65 or 0.75 (Figure 4), while most vertebrates showed the highest values
<0.65 (Figures 4 and 5). In addition, the f{x) distribution in vertebrates was broad and
shifted to the left (lower PTI scores) relative to those of bacteria and archaea (Figure 4
and 5). In sharp contrast to f{x), the relative frequency of IncRNAs g(x) was shifted to
the right (higher PTI scores) in eukaryotes, including G. lamblia, which belongs to the
earliest diverging eukaryotic lineage and lacks mitochondria (Figure 4). Since the
distribution of f{x) in the Excavata, including G. lamblia, showed a similar pattern to
that of bacteria, the right shift of g(x) seems to be an earlier event than the left shift of

f(x) in the evolution of eukaryotes. Collectively, the right and left shifts of f{x) and g(x)
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303  contribute to blurring the boundary between coding and noncoding transcripts in

304  eukaryotes.

305

306  PTI score distribution overlap is inversely correlated with effective population size
307  In general, eukaryotes (particularly multicellular organisms) have smaller effective

308  population sizes than prokaryotes, with higher mutation rates due to the effect of genetic
309  drift (Lynch et al 2016). We defined an indicator of coding/noncoding boundary

310  ambiguity (overlapping score, Opii) and examined the relationship between Opi and

311  effective population size and mutation rate, using data from a previous study (Lynch et
312 al 2016). The overlapping score based on ORF coverage, Ocov, Was also defined for

313  comparison (Supplementary Figure 8). Of the 35 species used in this study, 11 had no
314  more than five IncRNAs with pPTIs longer than 20 residues, and transcripts of the

315  remaining 24 species (Supplementary Table 13 and Supplementary Figure 8) were used
316  for the analysis. Similar to a previous report (Lynch et al 2016), the effective population
317  size was inversely proportional to the mutation rate of genomic DNA, even in the

318  remaining 24 species (exponent = —1.126, R? = 0.6842, Figure 6A). O positively and
319  negatively correlated with mutation rates and effective population size, respectively,
320  with relationships that could be approximated as logarithmic (R? = 0.7578) or

321  exponential functions (R* = 0.4667). In contrast, ORF coverage (Ocov) showed a weaker
322  relationship with mutation rates and effective population size (Supplementary Figure 9).
323  Substituting the maximum value of Oy, 1 into this exponential approximation (Figure

324  6A, right upper panel) yields the minimum effective population size, which is 1001.28.
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325  This is consistent with the observation that the minimum effective population size in
326  conservation biology is approximately 1000 (Frankham et al 2014). This result led us to
327  consider the possibility that O, might be elevated in endangered organisms. We

328  calculated Oy for 35 vertebrate species on the [IUCN Red List (left panel, Figure 6B;
329  Supplementary table 1), and found that species at risk of extinction had significantly
330  higher Oy than species with little risk of extinction (Least Concern, LC). In addition,
331  among LCs, Oy was higher for species with decreasing numbers compared to those
332  with stable populations (right panel, Figure 6B; Supplementary table 1).

333

334  Relationship between PTI score and protein-coding potential

335  The overlapping of relative frequencies in f{x) and g(x) led us to examine the

336  relationship between the PTI score and protein-coding potential F(x) in eukaryotes. To
337  avoid being misled by small sample numbers, we selected 32 species with more than
338 1000 IncRNAs that contained pPTIs to calculate F(x) (Figure 7 and Supplementary
339  Figure 10). In humans and mice, the relationship between the PTI score and F(x) was
340  approximated with a linear function passing through the origin of the PTI score < 0.65.
341  Therefore, we used linear approximation of the F(x) of 32 species and found that 27 of
342  the 32 species were well approximated by linear functions (indicated as linear group, L,
343  in Figure 7 and Supplementary Figure 10). In U. americanus, C. canadensis, and G.
344  gorilla, fewer than five IncRNAs exhibited PTI scores of 0.05; thus, we eliminated the
345  F(0.05) in these species for the approximation by linear function (indicated with

346  asterisks in Figure 7). The F(x) of the remaining five species that showed Oy > 0.7 did
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not fit in linear approximations (indicated as constant group C in Figure 7) and were
characterized by low slope values. They belonged to plants (Z. mays), reptiles (4.
carolinensis), and mammals (O. anatinu, S. boliviensis, and G. gorilla) (Figure 7). In
these species, PTI scores showed a weaker association with protein-coding potential.
We noticed that these species may have small effective population sizes, possibly
because of the risk of extinction (O. anatinu and G. gorilla) or artificial selection as pets

(4. carolinensis and S. boliviensis) or as crops (Z. mays).

Characteristics of RNA virus genomes in human and bacterial cells

In sharp contrast to the coding transcripts of bacteria and archaea, the PTI scores of
coding transcripts of eukaryotes overlapped with those of noncoding RNAs due to their
broad distribution of low PTI scores. To investigate the molecular mechanism
underlying the distinct distribution of coding transcripts between bacteria and
eukaryotes, we analyzed the genome sequences of RNA viruses that infect human or
bacterial cells. Positive-sense single-stranded RNAs, or (+) ssRNAs, are parts of the
viral genome that generate mRNAs and are translated into viral proteins via the host
translation system. Therefore, efficient translation in host cells contributes to the
replication of (+) ssSRNA viruses. We speculated that PTIs other than bona fide ORFs
affect the coding potential of the viral genome in host cells. Multiple bona fide ORFs
are present in viral genomes. Thus, we extended the concept of PTIs to multiple ORFs

in viral RNA genomes (Figure 8A) and set the viral ORF (vORF) score.
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Among the positive sense ssSRNA viruses registered in the NCBI database, 198 were
human viruses and 13 were bacteriophages. We eliminated the viruses that produced
viral proteins by exceptional translation mechanisms such as ribosome frameshifting,
alternative initiation sites, ribosome slippage, and RNA editing, focusing on the
remaining 95 human viruses, including nine retroviruses (Supplementary Table 14) and
10 bacteriophages (Supplementary Table 15). The relative frequencies of the human
viruses and bacteriophages showed distinct peaks at PTI scores of 0.65 and 0.75,
respectively (Figure 8B). These values correspond to the PTI scores of the highest
protein-coding potential in humans (Figure 1E and Supplementary Figure 3A) and the
highest frequency of coding transcripts in bacteria (Figure 4). In addition, the relative
frequency of human viruses showed a broader distribution of low PTI scores compared
to bacteriophages, particularly in human retroviruses (Figure 8B). Therefore, RNA virus
genomes appear to have sequence characteristics that maximize their protein-coding

potential in host cells.

The relationship between PTI scores and tissue-specific expressions

The right shift of the PTI score distribution for noncoding RNAs is pronounced in
eukaryotes, especially in multicellular organisms (Figures 4 and 5). To examine the
possibility that different tissues in multicellular organisms show different PTI
distributions for noncoding RNAs, we analyzed transcriptome data to calculate the PTI
scores of human noncoding transcripts expressed in multiple tissues (Figure 8C). The

PTI score distributions were similar for almost all tissues, but, as an exception, they
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shifted to higher values for mature testes (Figure 8C). Similar results were also obtained
for opossums, rats, mice, and macaques, although their shifts were weaker than those of
humans (Supplementary figure 11). Furthermore, the noncoding transcripts that were
expressed in a tissue-specific manner had higher PTI scores than ubiquitously expressed
noncoding transcripts in humans (Figure 8D) and the other four species (Supplementary
figure 12). The relationship between the specificity of expression and the PTI score was
also found for human coding transcripts (Supplementary figure 13). These results
suggest that the tissue-/cell type-specific expression of transcripts evolved in
multicellular eukaryotes contributes to increased PTI scores for noncoding transcripts.
Since the majority of tissue-specific transcripts were expressed in matured testes (7,573
of 8,523 transcripts (89%) in the highest specificity group for humans), the evolution of
the testis also seems to contribute to the existence of high PTI score-noncoding RNAs,

thus contributing to the birth of new coding genes.

Discussion

Here, we showed that PTI scores are associated with protein-coding potential in cellular
organisms. In bacteria and archaea, the PTI-score distributions for noncoding and
coding transcripts were distinct (low and high scores), whereas they were merged in
eukaryotes.

Right shifts in the distribution of noncoding RNA occurred in G. lamblia, one of the
earliest diverging eukaryotes, which are binucleate and lack mitochondria, peroxisomes,

and a typical Golgi apparatus (Ankarklev et al. 2010; Bartelt et al. 2015; Buret et al.
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2020) and were commonly observed in all eukaryotes examined. Moreover, functional
noncoding RNAs, by definition, should not be translated by ribosomes in cells.
However, in bacteria and archaea, newly transcribed RNAs are immediately bound by
ribosomes (Miller et al. 1970; French et al. 2007) and do not have the chance to escape
translation. Thus, as expected, transcripts with noncoding functions in bacteria and
archaea showed low PTI scores (top panel, Figure 9A). Alternatively, in eukaryotes, the
existence of the nucleus prevents the immediate binding of IncRNAs by ribosomes, so
cytoplasmic translocation from the nucleus is required for translation. Therefore,
eukaryotic IncRNAs may function in the nucleus even with high PTI scores, and the
subsequent evolution of cytosolic translocation of these noncoding RNAs may
contribute to the origination of new coding genes (middle panel, Figure 9A). Thus, the
pervasive transcription of the genome seems to help eukaryotes to create new functional
noncoding/coding RNAs, while being disadvantageous for bacteria and archaea by
increasing the risk of transcription of high-PTI-score transcripts, leading to immediate
translation of wasteful and/or toxic proteins (top and middle panels, Figure 9A,
Monsellier et al. 2007). In addition, multicellular organisms have a variety of
intracellular environments because of the large number of cell types, which may
increase the possibility of the existence of an intracellular environment in which newly
created proteins are not toxic (bottom panel, Figure 9A). Since the possibility that a new
protein will not be toxic in multiple intracellular environments is lower than the

possibility that it will not be toxic in a particular intracellular environment, noncoding
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RNAs that are ubiquitously expressed need to have lower PTI scores than those with
specific expression (bottom panel, Figure 9A).

Kaessmann proposed an "out of the testes hypothesis," arguing that the testis facilitates
the birth and evolution of new genes in animals. The germ cells (spermatocytes and
spermatids) in the testes have an active chromatin state, and global transcription occurs,
increasing the possibility of generating new coding genes (Kaessmann 2010).
Consistent with this hypothesis, our results showed that the PTI score distribution of
noncoding RNAs shifted to higher values only in mature testes with spermatocytes and
spermatids, but not in immature testes or in other tissues. In addition, most transcripts
with tissue-specific expression were found in mature testes, and these noncoding RNAs
had high PTI scores. These results suggest that new coding genes are generated from
noncoding RNAs with high PTI scores that are specifically expressed in germ cells of
the mature testis.

Multiple human noncoding RNAs with high PTI scores have been reclassified as coding
genes over the past 3 years, including the human de novo gene NCYM (Suenaga et al.
2014; Suenaga et al. 2020). Because de novo gene products have no known domain
structures, high PTI score-noncoding transcripts without putative domains may be good
candidates as novel de novo genes in eukaryotes. NCYM is an antisense gene of MYCN,
whose protein product stabilizes the MYCN protein (Suenaga et al. 2014). MYCN
directly stimulates NCYM and OCT4 transcription, whereas OCT4 induces MYCN
(Kaneko et al. 2015). This functional interplay forms a positive feedback loop, allowing

these genes to induce each other’s expression in human neuroblastomas (Suenaga et al.
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455  2014; Islam et al. 2015; Kaneko et al. 2015; Shoji et al. 2015). Functional annotation of
456  noncoding genes without putative domains was related to transcriptional regulation, and
457  the target genes of transcription factors, including MYCN, TGIF, and ZIC2, were

458  enriched. As de novo emergence of NCYM occurred in Homininae, NCYM-mediated
459  MYCN activation may modulate human de novo gene births during evolution,

460  regulating the transcription of MYCN target genes. Notably, both NCYM and MYCN
461  are expressed in germ cells of the testes (Suenaga et al 2014; Kanatsu-Shinohara et al
462  2016), and MYCN has been shown to regulate the self-renewal of spermatogonial stem
463  cells (Kanatsu-Shinohara et al 2016). Furthermore, a recent study showed that binding
464  sites for transcription factors, including MYCN, are mutational hotspots in human

465  spermatogonia (Kaiser et al. 2021). Both 7GIF and ZIC2 are mutated in

466  holoprosencephaly, a disorder caused by a failure in embryonic forebrain development
467  (Brown et al. 1998; Gripp et al. 2000), whereas MYCN mutations cause Feingold and
468 megalocephaly syndromes, which are associated with reduced and increased brain size,
469  respectively (van Bokhoven et al. 2005; Kato et al. 2019). Thus, the present study also
470  provides a list of candidate human de novo genes possibly involved in brain

471  development and brain-related diseases.

472  Relative frequencies of positive-sense sSRNA viruses exhibit sharp peaks at vVORF

473  scores of 0.75 in bacteriophages and 0.65 in human viruses, indicating the adaptation of
474  RNA viruses to host cells by maximizing the protein-coding potential of their genomes.
475  Immediately after viral infection, the viral (+) ssSRNA genomes, save for those of

476  retroviruses, are used as templates for translation in the host cytosol. Thus, the distinct
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translation systems between humans and bacteria likely affect the left shift in the viral
genome peak, as well as the left shift in coding RNA distribution in eukaryotes. In
retroviruses, reverse transcriptase produces double-stranded DNA using the viral
genome as a template, which is then inserted into the host genome. The viral genome is
subsequently transcribed in the nucleus, and its mRNA is transported to the cytoplasm
where protein products are translated in a manner similar to that of host proteins.
Therefore, the relatively lower vORF score distribution in human retrovirus genomes is
likely a function by the nuclear localization of the provirus, which may promote the
diversification of PTI scores of RNA genomes via adaptation to host cellular
mechanisms other than translation, such as cytosolic translocation.

While the overlap of PTI score distributions of coding/noncoding transcripts seems to
be beneficial by facilitating new gene birth, excessive overlap in PTI score distributions
was found in species at the risk of extinction. Because the extent of the overlap (Opi)
positively and negatively correlates with higher mutation rates and effective population
sizes, respectively, the small effective population sizes in multicellular eukaryotes seem
to increase the overlap by accumulation of the slightly deleterious or beneficial
mutations driven by random drift, as predicted by neutral theory (Kimura 1968; Kimura
1983) and nearly neutral theory (Ohta 1992). Translation of noncoding RNA or sPTIs in
coding RNAs caused right and left shifts in PTI score distributions, respectively. The
mutations that cause these translations may be beneficial for increasing the possibility
of evolution of new functional RNAs or regulatory mechanisms and be deleterious for

inhibiting existing coding/noncoding functions. Translation of small proteins from
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noncoding RNAs seems to inhibit the noncoding functions of RNA because of ribosome
binding and subsequent translation. In contrast, translation of sPTIs in coding RNAs
seems to inhibit translation of major ORFs because of the competition for translation
(Calvo et al 2009) without the evolution of specific regulatory mechanisms, such as the
recently discovered mechanism in dORF (Wu et al. 2021).

According to the drift-barrier hypothesis (Lynch et al 2010; Lynch et al 2016), the
performance of any molecular trait is expected to become more refined in larger
population sizes, because the effects of selection relative to random drift are stronger.
Consistent with this hypothesis, we found that the molecular traits of coding or
noncoding RNAs were prominent in bacteria/archaea and weak in multicellular
eukaryotes, allowing the existence of bifunctional RNAs. The excessive overlap of PTI
score distributions (Opti > 0.7) diminished the correlation between the PTI score and
protein-coding potential. This indicates that both coding and noncoding transcripts lost
their molecular traits as coding and noncoding RNAs in terms of PTI score, which
became lethal or highly deleterious for the species.

Species with decreasing population sizes showed significantly higher Opi compared
with species with a stable population size, even in the LC group. Combined with the
results discussed above, we propose a novel model of new gene origination in which
new gene birth occurs in response to decreased effective population sizes (Figure 9B).
At stable population sizes, natural selection maintains molecular traits of existing genes,
and thus existing coding and noncoding functions of RNA stably exist with high and

low PTI scores with low overlap of PTI score distribution of coding/noncoding
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transcripts. When new environments reduce the effective population size of species, the
driving force of fixation/elimination of mutations changes from natural selection to
random drift. This increases the probability of fixation of slightly deleterious/beneficial
mutations, resulting in an increase in the overlap of PTI score distributions between
coding and noncoding transcripts. The overlap allows the existence of bifunctional
RNAs as candidates for new functional coding or noncoding transcripts. When the
effective population size approaches 1,000 because of rapid decline, the accumulation
of deleterious mutations decreases the long-term evolutionary potential of populations,
leading to extinction. On the other hand, when the speed is slow enough for beneficial
mutations to be fixed in the populations, the newly evolved coding/noncoding
transcripts contribute to an increase in the effective population size, resulting in
adaptation of the species to new environments. The increase in the effective population
size leads to an increase in the effect of natural selection on the new functions of
coding/noncoding genes as well as pre-existing genes. Thus, if nuclear evolution and
multicellularity contribute to the generation of IncRNAs with high PTI scores and
subsequent generation of novel coding genes (Figure 9A), the ability to generate new
genes in response to population decline (Figure 9B) may be greatest in eukaryotic

multicellular organisms.

In conclusion, the PTI score is an important indicator for integrating the concept of gene
birth into classical evolutionary theory, thereby contributing to the elucidation of the

molecular basis for the evolution of complex species, including humans. In the future, it
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will be necessary to calculate PTI scores based on the transcriptomes of additional
species to test our hypothesis that positioning new gene birth as a countermeasure to the

decline in effective population size.

Materials and Methods

Potentially translated islands (PTIs)

Definition

PTIs are defined as sequence segments beginning at AUG and ending with any of the
UAA, UAG, or UGA stop codons in the 5’ to 3’ direction within an RNA sequence in all
three possible reading frames (Figure 1A).

Example

The PTIs in the human de novo gene NCYM (Suenaga et al. 2014) were identified using
the cDNA sequence (Supplementary Figure 1A) and are shown in bold characters
(Supplementary Figure 1B). Further information is included in the Supplementary

Notes.

The length of a PTI and primary/secondary PTIs

Definition

The PTI length is defined as the length of the amino acid sequence, excluding the stop
codon, and is represented by [ (Figure 1A). In an RNA sequence, the longest PTI is

designated as the primary PTI (pPTI), whereas the others are termed secondary PTIs

26


https://doi.org/10.1101/2021.04.14.439730
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.14.439730; this version posted November 16, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

964  (sPTIs). The lengths of pPTI and sPTI are described as [,pr; and Ispry, respectively
565  (Figure 1A).

966  Example

9567  The shortest possible PTT is “AUGUAA,” “AUGUAG,” or “AUGUGA,” with a single
568  methionine. For example, the NCYM transcript has a pPTI with a length of 109 in

569  frame 1, three sPTIs with lengths of 69, 8, and 6, respectively, in frame 2, and no PTIs
570  in frame 3 (Supplementary Figure 1C and D).

571  Characteristics

572  Therefore, the following relationship between the lengths of pPTI and sPTI is held:

573
o74 1 < Lpri < lppm (1)

575

276  PTI score

917  Definition

578  We defined the PTI score (Figure 1A) according to Equations 2 and 3.

o79 Yi=1lsprii = lsprin + lspriz + o+ lsprie + o+ lsprin - (2)

580 PTI score = —2PTL 3)

lppTi +21=1 LspTId
581  where lypy + XiZ; lspry; represents the sum of all PTI lengths.
582  The definition is derived from the hypothesis that the potential for translation of a pPTI
983 s reduced by translation of sPTIs. Consistent with this hypothesis, coding transcripts
984  with translation of sPTIs had lower PTI scores than all coding transcripts (Figure 2C).

985  Example
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586  For an RNA sequence with only one PTI, the PTI score is 1 (Figure 1B). An RNA

587  sequence with many sPTIs tended to have a score close to 0 (Figure 1B). If the sum of
588  all sPTI lengths was equal to pPTI length, the PTI score is 0.5 (Figure 1B). The PTI
589  score of the NCYM transcript is 0.568 (Supplementary Figure 1C). Further information
590 s included in the Supplementary Notes.

9591  Characteristics

592  Therefore, the range of the PTI score is:

993 0 <PTI score <1 4)
594

995  Relative frequencies f{x) and g(x)

996  Definition

997  We defined the, f{x) and g(x), respectively, as (Figure 1C):

598 f) = T8 (5)
599 gx) = T2 (6)

600 where TNM and TNR represent the total numbers of coding and noncoding

601 transcripts, respectively, excluding transcripts lacking PTIs. NM(x) and NR(x) are the

602  numbers of coding and noncoding transcripts with a PTI score of x, respectively.

603  To define coding/non-coding transcripts with a PTI score of x, we divided the

604  histograms into ten classes, and used the median values of the classes to represent the

605  PTI score (Figure 1C). Therefore, in Equations 5 and 6, the PTI score x is restricted as

606  follows:
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607 x = 0.05,0.15,0.25,0.35, 0.45, 0.55, 0.65,0.75, 0.85, or 0.95 @)
608  Characteristics

609  Thus, f{x) and g(x) follow Equations 8—11:

610
611 0 < fix) <1 8)
612 0 < g(x) <I 9)
613 Yo f)=1 (10)
614 2xg(x)=1 (11)
615

616  Overlapping scores Opi and Ocov
617  Definition

618 The O(x) was calculated according to Equation 12:
619
620 O(x) =X, 0(x) (12)

621

622 where o(x) is the smaller value of the relative frequency of coding f{x) or noncoding
623  transcripts g(x). Opi is O(x) with PTI score =x, and Ocov is O(x) with ORF coverage
624 =x.

625

626 Protein-coding potential F(x)

627  Definition

628 F(x) was calculated according to Equation 13:
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_®
FO) = v (13)

Example
For example, F(0.15) in human transcripts is shown in Figure 1D. F(0.15) was
calculated using Equation 13, as follows:

£(0.15) =0.060

2(0.15)=0.268

£(0.15) _ 0.060
£(0.15)+g(0.15) 0.060+0.268

F(0.15) = =0.18292= 0.183

Identification of noncoding transcripts with high protein-coding potential

NR transcripts with high F(x) (0.6 < x <0.8) were identified from the total NR
transcripts from the NCBI nucleotide database. NR transcripts shorter than 200
nucleotides or with pPTIs encoding putative peptides with fewer than 20 residues were
excluded. The amino acid sequences of pPTIs in these transcripts were subjected to a
BLASTP search to detect the presence of putative domain structures. In the BLASTP
search, non-redundant protein sequences (nr) were applied as the search set, and quick
accelerated protein-protein BLAST (BLASTP) was chosen as the algorithm. In the
search results, putative conserved domains or the message “No putative conserved
domains have been detected” are shown in the Graphical Summary tab.
CDSEARCH/cdd was used to search for conserved domain structures using the default

settings: low-complexity filter, no; composition-based adjustment, yes; E-value
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threshold, 0.01; maximum number of hits, 500. Based on these data, transcripts with or

without putative conserved domain structures are indicated as + or -, respectively.

Functional annotation of original genes

Original genes were defined as those noted in the official gene name of NR transcripts,
including sense genes for antisense transcripts, homologous genes for pseudogenes,
coding genes for noncoding transcript variants, and readthrough, divergent, or intronic
transcripts. For lincRNAs, miRNA host genes, small nuclear RNAs, and other
IncRNAs, the official gene symbol was used for annotation. This information was
manually checked using the information available in the nucleotide database. The
DAVID program (https://www.david.ncifcrf.gov) was used to identify the enriched
molecular functions and pathways related to the original genes. O-values (P-values
adjusted for false discovery rate) were calculated using the Benjamini—Hochberg

method in DAVID.

Nonsynonymous (Ka) to synonymous (Ks) nucleotide substitution ratios

To identify orthologous regions between human transcripts and chimpanzee/mouse
genomes, BLAT v. 36 (Kent 2002) was conducted using human transcript sequences
with the estimated PTI score against chimpanzee (PtRV2) and mouse (GRCm38.p6)
genomic sequences defined in the NCBI database. We defined the blat best-hit genomic
regions of chimpanzee/mouse as orthologs for each human transcript. The human—

chimpanzee (or human—-mouse) sequences were aligned for each exon region and the
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671  sequences were combined for each transcript. Only orthologous sequence pairs of more
672  than 60 bp in length (encoding > 20 amino acid residues) were extracted.

673  Nonsynonymous (Ka) and synonymous (Ks) nucleotide substitution rates were

674  estimated as described by Yang and Nielsen (Yang and Nielsen 2000), implemented in

675 PAML version 4.8a (Yang 1997). Transcripts with high Ka (> 1) or high Ks (> 1) were

676  excluded from our dataset as outliers. We calculated Ka and Ks for 47,228 NM human—
677  chimpanzee, 14,116 NM human-mouse, 8,810 NR human—chimpanzee, and 1,561 NR

678  human—mouse pairs.

679

680 Relative frequencies of negatively selected genes

681  We defined this frequency, A(x), in coding and noncoding transcripts (Figure 1G), as

682  shown in Equation 14:

Nns(x)
TNor(x)

683 h(x) = (14)

684  where TNor(x) represents the total number of coding or noncoding transcripts with
685  orthologous sequences at PTI score = x. Nns(x) is the number of coding or noncoding
686  transcripts with Ka/Ks < 0.5 at PTI score = x. The PTI score x is restricted as shown in
687  Equation 7.

688

689  Phylogenic trees

690 TimeTree (Hedges et al. 2006) was used to draw trees using official species names.

691
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Selection of viruses and identification of vVORFs

The complete genomes of positive-sense single-stranded RNA viruses infecting humans
or bacteria (Supplementary Tables 14 and 15) were collected from the NCBI Virus
database (Hatcher et al. 2017). Viral ORFs were identified, and the sums of vVORF
lengths .7 ; L orF; Were manually calculated. We eliminated those viruses that
translated viral proteins after splicing or using exceptional translation mechanisms such
as ribosome frameshifting, alternative initiation sites, ribosome slippage, and RNA

editing.

VOREF score
Definition

The vORF score was calculated according to Equations 15-17:

2i=1 lvorri = lyorr1 + Lyorrz + -+ lyorrk ++* + Lyoren (15)
Z?=1 liprii = Lptin + lspriz + oo + Lsprie + ...+ LspTIn (16).
Yiz1 loRFi
VORF score = (17)

n n
21 lvorri Zi=q lspTHi

where l,orp; represents the length of the bona fide ORFs, and ).~ , lspry; is the sum of
the lengths of the secondary PTI lengths. > ; L,orri + Xieq LspTi; represents the sum

of the lengths of all PTIs, including all ORFs.

PTI score calculations using transcriptome data
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Transcriptome data from five species were obtained from a previous study (Sarropoulos
et al. 2019). All transcripts expressed at detectable levels (non-zero) in each tissue were
used to calculate PTI scores for IncRNAs and to plot PTI score distributions. For the
correlation between tissue specificity and PTI score, we divided the transcripts into the
indicated groups according to the number of tissues in which the transcript was detected
and described the PTI score distribution in each group. Human transcriptome data for

coding transcripts were obtained from the Human Protein Atlas

(http://www.proteinatlas.org), including RNA isoform data from 131 cell lines and 281

tissues. The PTI score for each transcript was calculated from Ensembl data.

Statistical analyses

Statistical analyses were performed using Excel and R software (R Project for Statistical

Computing, Vienna, Austria).

Data availability
1. Source data for statistical analyses and figures (10 example datasets):

https://figshare.com/s/498cb340a075284b2dbf

2. Code associated with generating and analyzing these tables:

https://figshare.com/s/0f1ed0954d5bd620eb59
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1024

1025  Table 1. Numbers of original transcripts that produced NR transcripts with high coding

1026  frequency (0.6 < PTI score <0.8)

Transcript Domain Total P-value
With Without

Antisense 4 61 65 7.79E-08
LincRNA 3 65 68 7.60E-09
Pseudogene 50 17 67 4.32E-07
Readthrough 7 0 7 6.00E-03
Transcript 146 35 181 1.05E-19
variant of

coding gene

Divergent 0 2 2 N.S.
Intronic 0 6 6 N.S.
Small nuclear 0 3 3 N.S.
RNA

miRNA host 0 3 3 N.S.
gene

Other IncRNA 7 118 125 1.12E-13
Total 217 310 527

1027  P-values were calculated using the Yate’s continuity correction. N.S., not significant.
1028
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Figure legends

Figure 1. Potentially translated island (PTI) scores predict protein-coding potential
of human transcripts. (A) Conceptual schematic of PTIs in an RNA in the three
reading frames and definition of PTI score. Black and white rectangles indicate primary
and secondary PTIs, respectively. The primary PTI is the longest PTI, while secondary
PTIs are all others; [ is PTI length. (B) Schematic of PTI distributions in RNAs with
low (0-0.5), medium (0.5), and high (1) scores. (C) Relative frequencies of PTI scores
of coding f(x) and noncoding g(x) transcripts (upper) and of random controls (bottom).
(D) Explanation of F(x) for a PTI score of 0.15. (E) PTI score correlations with protein-
coding potential, F(x), at PTI scores < 0.65 (upper) and those in random controls
(lower). (F) Relationship between PTI scores and percentages of NR transcripts re-
registered as NM during the past 3 years. N.D., not detected. (G) Relationship between
PTI scores and F(x) in human transcripts syntenic to chimpanzee (upper left) or mouse
(bottom left). The relative frequency of transcripts with negative selection /(x) are
plotted for each PTI score (upper and bottom right). The transcripts are syntenic to the
genome of chimpanzee (upper right) or mouse (bottom right). The open circles indicate

NR transcripts and the closed circles indicate NM transcripts.

Figure 2. Translation effects on human PTI score distributions. (A) PTI score

distribution of lincRNAs translating small proteins (red line, n = 174) registered in the

SmProt database (http://bioinfo.ibp.ac.cn/SmProt/) shifts to higher scores relative to all

lincRNAs registered in Ensembl (black line, n = 11,875). (B) Locations of uORF (blue),
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sORF(red), and dORF(green) relative to major ORF (black). (C) PTI score distributions
of coding transcripts with translation of uORF (blue, n =170), sORF (red, n = 1,698),
and dORF (green, n = 98) compared to all coding transcripts registered in Ensembl

(black, n = 94,039).

Figure 3. Phylogenetic tree. Numbers of species are indicated in each lineage. The
lineages of five species, including one archaea (Nitrososphaera viennensis EN76), two
fungi (Puccinia graminis f. sp. Tritici and Pyricularia oryzae), and two animals
(Strongylocentrotus purpuratus and Lingula anatine) are unknown and excluded from

the figure.

Figure 4. Relationships between PTI scores and relative frequencies of coding and
noncoding transcripts from bacteria to mammals. Histograms of f{x) (white) or g(x)
(black) in observed data (left) and in nucleic-acid—scrambled controls (right) for each
species analyzed. PTI scores with the highest f{x) are presented in the histograms. Oy
was calculated using the PTI score distribution from observed data and indicated in the

left panels.

Figure 5. Relationships between PTI score and relative frequencies of coding f(x)

and noncoding transcripts in Primates (A), Glires (B), and Laurasiatheria (C).
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Figure 6. Overlap of PTI score distributions is negatively correlated with effective
population sizes. (A) Inversely proportional relationship between genome-wide
mutation rates in protein-coding DNA per generation (U,) and effective population sizes
(Ne) in 24 species (left upper). Values are from Lynch et al., 2016. Oy positively and
negatively correlates with U, (left bottom) and N. (right upper); these relationships are
approximated by logaritic and exponential functions, respectively. White, gray, and
black dots indicate bacteria, unicellular eukaryotes, and multicellular eukaryotes,
respectively. (B) Opiiis increased in vertebrates at risk of extinction (left) and with
decreasing population trends (right). LC, least concern (n = 20); NT, near threatened (n
= 3); VU, vulnerable (n = 1); EN, endangered (n = 5); CR, critically endangered (n = 5);

EX, extinct (n = 1). P-values were calculated by the Mann—Whitney U test.

Figure 7. Relationship between PTI score and protein-coding potential F(x) for 32
eukaryotes. Phylogenetic tree including the 32 species (left), dot plots, and shape and
formulas of approximate functions. L and C indicate linear (in black) and constant (in
red) functions. Fewer than five IncRNAs had a PTI score of 0.05 in U. americanus, C.
canadensis, and G. gorilla; therefore, we eliminated the F(0.05) for these species for
linear function approximations (asterisks). Opi was calculated using PTI score

distributions of observed data.

Figure 8. Molecular mechanisms that affect PTI score distributions. (A) Schematic

explanation of sPTI length and bona fide viral ORFs in a (+) ssSRNA virus genome and
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1094  the definition of viral ORF (VORF) score. Black and white rectangles indicate viral
1095  ORFs and secondary PTIs, respectively. [ is the length of the ORFs and PTIs. (B)
1096  Histograms of relative frequencies of human (+) ssRNA viruses (red) and

1097  bacteriophages (black). (C) PTI score distributions of IncRNAs in human tissues.

1098  Distributions in mature testes and other tissues are indicated as black and gray lines,
1099  respectively. (D) The relationship between tissue-specificity and PTI score distributions
1100  in humans. Line intensity represent specificity of gene expression.

1101

1102 Figure 9. Hypothesis: new gene birth is a countermeasure to decline in effective
1103  population size. (A) Schematic explaining how nuclear evolution and multicellularity
1104  contribute to the generation of noncoding RNAs with high PTI scores in eukaryotes. (B)
1105  Schematic illustrating new gene birth in response to decline in effective population size
1106  caused by environmental changes.

1107
1108
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Supplementary figure legends
Supplementary Figure 1. PTIs of NCYM and an example of PTI score calculation.
(A) NCYM cDNA sequence. (B) Coding prediction of NCYM by CPAT

(http://lilab.research.bcm.edu). (C) Translated amino-acid sequence of NCYM in 3

frames in the 5’ to 3’ (sense) direction. Red characters, primary PTI; blue characters,
secondary PTIs. Stop codons are shown as asterisks. (D) Calculation of PTI score and
F(x) for the NCYM transcripts. The length of pPTI is 109 and the sum of sPTI lengths is

83; therefore, the PTI score is 0.568.

Supplementary Figure 2. Relationships between relative frequencies of coding and
noncoding transcripts for human and mouse PTI scores. (A) Histogram of PTI score
relative frequencies in coding f{x) and noncoding g(x) human transcripts with random
shuffling controls using human data sets from RefSeq. (B) Relative frequencies of
coding f(x) and noncoding g(x) transcripts calculated using human data sets from
Ensembl. (B) Relative frequencies of coding f{x) and noncoding g(x) transcripts
calculated using mouse data sets from RefSeq (upper panels) or Ensembl (lower

panels).

Supplementary Figure 3. PTI scores correlate with protein-coding potential, F(x),
at PTI scores < 0.65 for human and mouse transcripts. (A) Relationship between
PTI score and F(x) in a human data set from Ensemble and random controls (center).

Random shuffling controls (right) were generated from a human data set from both
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1131 Ensemble and RefSeq. (B) Relationships between PTI score and F(x) in mouse

1132 transcripts using data sets from RefSeq (upper panels) or Ensembl (lower panels).

1133

1134  Supplementary Figure 4. Effects of translation on distributions of ORF coverage
1135  and size in human lincRNAs. ORF coverage (A) and ORF size (B) distributions of
1136  lincRNAs encoding small proteins (red line, n = 174) registered in the SmProt database

1137  (http://bioinfo.ibp.ac.cn/SmProt/) compared with all lincRNAs registered in Ensembl

1138  (black line, n = 11,875).

1139

1140  Supplementary Figure 5. Translation of sPTI affects on human PTI score

1141  distributions. PTI score distributions of coding transcripts with translation of uORFs
1142 (blue, n = 14,506), sORFs (red, n = 80), and dORFs (green, n = 3,955) registered in the

1143  sORF database (http://www.sorfs.org/), compared to all coding transcripts registered in

1144  Ensembl (black, n = 94,039).

1145

1146  Supplementary Figure 6. Relationships between PTI scores and relative

1147  frequencies of coding and noncoding transcripts in archaea. Phylogenetic tree for 9
1148  archaeal species and histogram of f{x) (white) or g(x) (black) in the data (left) and in
1149  nucleic-acid—scrambled controls (right). PTI scores with highest f(x) are indicated in the
1150  histograms. The lineage of one archaea species (Nitrososphaera viennensis EN76) is
1151  unknown and thus excluded from the phylogenic tree. O was calculated using the PTI

1152  score distribution of observed data.
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Supplementary Figure 7. Relationships between PTI score and relative frequencies
for coding and noncoding transcripts in plants. Phylogenetic tree for 12 plants and
histogram of f{x) (white) or g(x) (black) in the data (left) and in sequence—scrambled
controls (right). PTI scores with highest f{x) are indicated. Oy was calculated using the

PTI score distribution of observed data.

Supplementary Figure 8. Relationships between PTI score and relative frequencies
of coding and noncoding transcripts in species shown in Figure 6. Phylogenetic tree
for 24 cellular organisms and histograms of f{x) (white) or g(x) (black) for PTI scores
(left) and ORF coverage (right). Oy and Ocov Were calculated using the distribution of

observed data.

Supplementary Figure 9. Relationship between overlaps of ORF coverage
distributions and effective population sizes. Dot plots of O,y and U, (left) and N.
(right). These relationships are approximated by the logaritic and exponential functions,
respectively. White, gray, and black dots indicate bacteria, unicellular eukaryotes, and

multicellular eukaryotes, respectively.

Supplementary Figure 10. Relationships between PTI scores and protein-coding
potential F(x) for 32 eukaryotes. Data sets from Ensembl (left, used in Figure 7) and

random controls (right). Mouse and human data are identical to those shown in
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Supplementary Figure 3. Shapes of approximate functions are shown as L or C,
indicating linear (in black) and constant (in red) functions, respectively. Numbers of
IncRNAs with PTI score 0.05 were < 5 in U. americanus, C. canadensis, and G. gorilla.
Therefore, we eliminated the F(0.05) from these species for the approximation by linear

functions (asterisks).

Supplementary Figure 11. PTI score distributions of IncRNAs from tissues from
four mammals. PTI score distributions for mature testes and other tissues are indicated

as black and gray lines, respectively.

Supplementary Figure 12. Relationships between tissue specificity and PTI score
distributions for noncoding transcripts from four mammals. Line intensity

represents specificity of gene expression.

Supplementary Figure 13. Relationships between tissue-specificity and PTI score

distributions for coding transcripts from human cell lines (A) or tissues (B). Line

intensity represents specificity of gene expression.
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Supplementary Table 1. Studied organisms with official names, taxonomic IDs,

lineage information, and numbers of coding/noncoding transcripts.

Supplementary Table 2. Human NR transcripts reassigned as NM during the past

three years.

Supplementary Table 3. Human NR transcripts with high protein-coding potential

(0.6 < PTI score <0.8).

Supplementary Table 4. Functional annotation of human NR transcripts with high

protein-coding potential and without putative domain structure(s).

Supplementary Table 5. Functional annotation of human NR transcripts with high

protein-coding potential and with putative protein domain structure(s).

Supplementary Table 6. Mouse NR transcripts with high protein-coding potential

(0.6 < PTI score <0.8).

Supplementary Table 7. Functional annotation of mouse NR transcripts with high

protein-coding potential and without putative protein domain structure(s).
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Supplementary Table 8. Functional annotation of mouse NR transcripts with high

protein-coding potential and with putative domain structure(s).

Supplementary Table 9. NR transcripts with high protein-coding potential (0.6 <

PTI score < 0.8) from C. elegans.

Supplementary Table 10. Functional annotation of NR transcripts with high

protein-coding potential and without putative domain structure(s) from C. elegans.

Supplementary Table 11. Functional annotation of NR transcripts with high

protein-coding potential and with putative domain structure(s) from C. elegans.

Supplementary Table 12. Twenty-three human noncoding transcripts showing

both negative selection (Ka/Ks < 0.5) and high PTI scores.

Supplementary Table 13. Organisms shown in Figure 6 with official names,
taxonomy IDs, lineage information, and numbers of coding or noncoding
transcripts, Opii, and Ocov. The effective population sizes (/Ve) and mutation rates

(Up) were estimated by Lynch et al. (2016).

Supplementary Table 14. Positive-sense, single-stranded human viruses with

official names, taxonomy IDs, lineage information, genome lengths, and sequences.
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1237
1238  Supplementary Table 15. Positive-sense, single-stranded bacteriophages with
1239  official names, taxonomy IDs, lineage information, source information, genome

1240  lengths, and sequences.
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