

1 The therapeutic and diagnostic potential of amyloid β oligomers (A β Os) 2 selective antibodies to treat Alzheimer's disease

3 Running title: A β O-antibodies for therapeutics and diagnostics

4 Authors

5 Kirsten L. Viola^{1*}, Maira A. Bicca¹, Adrian M. Bebenek³, Daniel L. Kranz¹, Vikas Nandwana², Emily A.
6 Waters⁴, Chad R. Haney⁴, Maxwell Lee¹, Abhay Gupta³, Zach Brahmbhatt³, Weijian Huang¹, Ting-Tung
7 Chang^{5,6}, Anderson Peck^{5,6}, Clarissa Valdez¹, Vinayak P. Dravid², and William L. Klein^{1,7}

8

9 1 Northwestern University, Department of Neurobiology, Evanston, IL 60208

10 2 Northwestern University, Department of Material Science and Engineering, Evanston, IL 60208

11 3 Illinois Math and Science Academy, Aurora, IL 60506

12 4 Northwestern University, Center for Advanced Molecular Imaging, Evanston, IL 60208

13 5 Van Andel Research Institute, Small Animal Imaging Facility, Grand Rapids, MI 49503

14 6 Van Andel Research Institute, Laboratory of Translational Imaging, Grand Rapids, MI 49503

15 7 Northwestern University, Department of Neurology, Chicago, IL 60611

16

17 *corresponding author k-viola@northwestern.edu

18

19

20 Abbreviations: AD-Alzheimer's disease; A β O-Amyloid β oligomer; CSF-cerebrospinal fluid; GFAP-glial
21 fibrillar acidic protein; ICV-intracerebroventricular; MNS-magnetic nanostructures; MRI-magnetic
22 resonance imaging; PET-positron emission tomography; NOR-novel object recognition; NLR-novel
23 location recognition; PiB-Pittsburgh Compound B; pTau-phosphorylated tau; ThioS-thioflavin S; Tg-
24 transgenic; WT-wild-type

25

Abstract

26

Improvements have been made in the diagnosis of Alzheimer's disease (AD), manifesting mostly in the development of *in vivo* imaging methods that allow for the detection of pathological changes in AD by MRI and PET scans. Many of these imaging methods, however, use agents that probe amyloid fibrils and plaques - species that do not correlate well with disease progression and are not present at the earliest stages of the disease. Amyloid β oligomers (A β Os), rather, are now widely accepted as the A β species most germane to AD onset and progression. Here we report evidence further supporting the role of A β Os as pathological instigators of AD and introduce promising anti-A β O diagnostic probes capable of distinguishing the 5xFAD mouse model from wild type mice by PET and MRI. In a developmental study, A β oligomers in 5xFAD mice were found to appear at 3 months of age, just prior to the onset of memory dysfunction, and spread as memory worsened. The increase of A β Os is prominent in the subiculum and correlates with concomitant development of reactive astrocytosis. The impact of these A β Os on memory is in harmony with findings that intraventricular injection of synthetic A β Os into wild type mice induced hippocampal dependent memory dysfunction within 24 hours. Compelling support for the conclusion that endogenous A β Os cause memory loss was found in experiments showing that intranasal inoculation of A β O-selective antibodies into 5xFAD mice completely restored memory function, measured 30-40 days post-inoculation. These antibodies, which were modified to give MRI and PET imaging probes, were able to distinguish 5xFAD mice from wild type littermates. These results provide strong support for the role of A β Os in instigating memory loss and salient AD neuropathology, and they demonstrate that A β O selective antibodies have potential both for therapeutics and for diagnostics.

46

47

48

KEYWORDS: A β oligomers; Alzheimer's disease; 5xFAD; MRI; PET; diagnostics; therapeutics

49

50

Introduction

51

General Alzheimer's disease

52

More than 6 million Americans are currently living with Alzheimer's disease (AD), and Alzheimer's-related deaths have increased 145% from 2000 to 2019 (2021). The financial burden is even more staggering - Alzheimer's and other dementias have cost the US more than \$600 billion in medical expenses and unpaid care in 2021 (2021). Despite the great personal and economic burden, progress toward developing effective diagnostics and therapeutics remains slow. Aduhelm® (also known as Aducanumab) was recently approved as a treatment for AD (Investor Relations, 2021), the first in more than a decade, but it still focuses on A β elimination rather than specific A β O targets. As AD burden is expected to increase drastically with the aging population, improved diagnostics and therapeutics are more urgent now than ever.

61

A β Os as a biomarker for early Alzheimer's disease

62

The primary pathological hallmarks of Alzheimer's disease are extracellular amyloid plaques and intraneuronal tangles of hyperphosphorylated tau (Masters et al., 1985). It is well known, however, that amyloid plaques do not correlate well with cognitive decline in AD (Terry et al., 1991; Hsia et al., 1999; Lee et al., 2004) and are not present in the earliest stages of the disease (Nyborg et al., 2013). Research from the previous two decades strongly indicates that soluble amyloid beta oligomers (A β Os), not plaques, are the more appropriate amyloid beta species to target in AD (Ashe, 2020; Hampel et al., 2021).

69

A β Os are potent neurotoxins that show AD-dependent accumulation in the brain of AD patients (Gong et al., 2003; Kayed et al., 2003; Lacor et al., 2004) and transgenic (Tg) rodent AD models (Chang et al., 2003; Lesne et al., 2006; Ohno et al., 2006). For reviews of other perspectives regarding AD molecular etiology, see (Braak and Del Tredici, 2011; Robakis, 2011; Lasagna-Reeves et al., 2012). A β Os begin to accumulate early in AD, decades prior to symptoms, and are widely held to be the neurotoxic instigators of AD (Rodgers, 2005; Gandy et al., 2010; Schnabel, 2011; Mucke and Selkoe, 2012). A β Os have been shown to exert their toxic effects by instigating failure of synaptic plasticity and memory (Lambert et al., 1998; Wang et al., 2002; Lesne et al., 2006; Townsend et al., 2006). Recently, soluble cortical extracts were examined by ELISA and showed that the ratio of A β O levels to plaque density fully distinguished demented from non-demented patients (Esparza et al., 2013); simply put, those with high A β O to plaque ratios were demented and low A β O to plaque ratios were not.

80

The 5xFAD mouse model

81

The 5xFAD transgenic mouse is an increasingly used AD model that harbors gene mutations in amyloid β protein precursor (A β PP) (K670N/M671L + I716V + V717I) and presenilins (PS1/2) (M146L + L286V) (Oakley et al., 2006). These mutations are known to increase production of A β 42, characteristic of familial AD, and exhibit expedited plaque development compared to other transgenic mice (Oakley et al., 2006). The Mutant Mouse Resource Research Center (MMRRC) found that A β accumulation occurred at different rates, depending on the breeding background, with mice bred on a B6SJL background developing pathology at a significantly more rapid rate (unpublished, available at [MMRRC 5xFAD strain data](#)) than those bred on a C57 background. The 5xFAD mouse model is well characterized for memory impairments (Oakley et al., 2006; Kimura and Ohno, 2009; Ohno, 2009; Girard et al., 2013; Girard et al., 2014; Zhang et al., 2021a), neuron loss (Jawhar et al., 2012; Oblak et al., 2021), and A β plaque accumulation (Devi et al., 2010; Jawhar et al., 2012; Ashe, 2020; Zhang et al., 2021a). Comprehensive studies on the 5xFAD model have also looked at cholesterol and glucose levels (Oblak et al., 2021), activity levels (Oblak et al., 2021), neuroinflammation-related protein levels (Ou-Yang and Van Nostrand, 2013; Oblak et al., 2021), tau phosphorylation (Shao et al., 2011; Kanno et al., 2014), and visual acuity (Zhang et al., 2021a).

96 Alzheimer's disease diagnostics

97 Recommended tests ([Alzheimer's Disease Diagnostic Guidelines | National Institute on Aging \(nih.gov\)](#))
98 for diagnosing Alzheimer's disease include a standard health evaluation and MMSE evaluations. If
99 indicated, these tests are typically followed with cerebrospinal fluid (CSF) assays for tau and A β levels,
100 MRI for brain volume and functionality, and positron emission tomography (PET) scans for A β plaques,
101 glucose metabolism, and/or tau fibrils in the brain (Albert et al., 2011; Jack et al., 2011; McKhann et al.,
102 2011; Sperling et al., 2011). These analyses may rule out other dementia etiologies and help to
103 determine disease severity, but they cannot detect AD at its earliest stages or closely predict disease
104 progression, as they do not probe for AD's earliest biomarkers.

105 Current diagnostic methods in development

106 Spinal taps are invasive, but cerebrospinal fluid assays show promise (Georganopoulou et al., 2005;
107 Toledo et al., 2013b). Nonetheless, assays using CSF analytes have presented challenges with respect
108 to accuracy and reliable disease-state discrimination (Slemmon et al., 2012). More recently, assays for
109 A β O levels in the blood plasma have been developed with promising results (Meng et al., 2019). These
110 assays show a correlation between A β O levels and declining memory scores that appear not to be
111 influenced by age, gender, or ApoE4 status. A promising addition to diagnostic methodology is the
112 detection of AD pathology using targeted *in vivo* brain imaging. The introduction of PET probes for
113 amyloid plaques has been a great technical advance (Klunk et al., 2004) and has established
114 precedent for the usefulness of brain molecular imaging as a diagnostic tool and for proof of efficacy
115 studies in drug development (Johnson et al., 2013). Still, these new imaging tools focus on late-stage
116 by-products of AD such as plaques, rather than early stage instigators such as A β Os.

117 Prior studies using 5xFAD mice have examined early- and late-stage disease development, but none
118 have looked at the progressive development of A β Os in this model. Here, we present an analysis of
119 memory impairment from 2-9 months of age and the progressive accumulation of A β Os across the
120 same age-span. Our studies presented here use an A β O-selective antibody to characterize the
121 spatiotemporal development of A β Os in the 5xFAD mouse model and demonstrate a correlation with
122 memory impairment. Strikingly, intranasal inoculation of the A β O-selective antibody rescued memory
123 performance in 6-month-old 5xFAD mice. We demonstrate the capability of detecting A β O pathology *in*
124 *vivo* in the 5xFAD mouse by introducing molecular imaging modalities (MRI and PET) with probes for
125 A β Os. We additionally present immunofluorescent evidence of a remarkable association between
126 A β Os and GFAP-positive reactive astrocytes in the 5xFAD mice. Taken together, we provide further
127 data implicating A β Os as essential diagnostic indicators and therapeutic targets, and show evidence
128 suggesting a mechanism through which A β Os instigate pathological abnormalities: by induction of
129 reactive astrogliosis.

130

131 **Materials and Methods**

132 **Materials**

133 ACU193 humanized anti-A β O antibody was a generous gift from Acumen Pharmaceuticals, Inc. A β ₁₋₄₂
134 (TFA preparation) was sourced from multiple suppliers (California Peptide, Peptides International,
135 American Peptide). Primary hippocampal cultures were prepared from tissue obtained from BrainBits,
136 LLC, using media and reagents also obtained from BrainBits. All chemicals were purchased from
137 Sigma unless otherwise specified.

138 **Animals**

139 The 5xFAD Tg mouse model (B6SJL-Tg(APPSwF1Lon,PSEN1*M146L*L286V)6799Vas)(Oakley et al.,
140 2006) (Jackson Laboratories) was bred on a non-transgenic background (B6SJLF1/J mice (Jackson
141 Laboratories, RRID: IMSR_JAX:100012)). Aged transgenic and wild-type littermates, 2-20 months old,
142 were used. All mice were kept under a 12/12 h light/dark cycle (7 AM/7 PM) at 22 ± 2 °C. Mice had free
143 access to food and water, including during behavioral experiments, were housed at ≤5/cage (NexGen
144 IVC, Allentown) with enriched environment and daily veterinarian assessment, according to NU's
145 standard procedures. Procedures complied with NIH's Guide for the Care and Use of Laboratory
146 Animals (NIH publication No. 80-23, 1996) and were approved by IACUC (protocol #IS00004010).
147 Behavioral experiments were conducted between 12-6 PM.

148 For intracerebroventricular (icv) experiments, B6SJLF1/J mice (Jackson Laboratories, RRID:
149 IMSR_JAX:100012) were utilized at ages ranging from 6 months of age (30-50 g).

150 **A β Oligomer Preparation**

151 Unlabeled (A β Os) and fluorescently-labeled A β oligomers (FAM-A β Os) were prepared essentially
152 according to the protocol published by Klein and colleagues (Lambert et al., 2007; Velasco et al., 2012).
153 Briefly, A β ₁₋₄₂ (American Peptide or Peptides International) or FAM-A β ₁₋₄₂ (Anaspec) was dissolved in
154 hexafluoro-2-propanol (HFIP) and distributed into microcentrifuge tubes. Hexafluoro-2-propanol was
155 removed by evaporation and traces removed under vacuum; the tubes were stored at -80°C. For
156 unlabeled A β Os, an aliquot of A β ₁₋₄₂ was dissolved in anhydrous dimethyl sulfoxide (DMSO) to ~5 mM,
157 and diluted in ice-cold Ham's F12 medium without phenol red (Caisson Laboratories) to 100 μ M. For
158 FAM-A β Os, an aliquot of each peptide was dissolved in anhydrous dimethyl sulfoxide (DMSO) to ~5
159 mM, mixed 5:1 (mol: mol) A β : FAM-A β , and diluted in ice-cold Ham's F12 medium without phenol red
160 (Caisson Laboratories) to 100 μ M. For both A β O preparations, this solution was incubated at 4°C for 24
161 hr. and centrifuged at 14 000 g for 10 min. The supernatant, defined as the A β O or FAM-A β O
162 preparation, was transferred to a clean microfuge tube and stored at 4°C until use. Protein
163 concentration was determined using Coomassie Plus protein assay kit (Pierce).
164 A modification of this protocol was used to produce crosslinked A β Os (Cline et al., 2019b).
165 All preparations were tested for quality using SDS-PAGE on a 10-20% Tris-Tricine gel followed by both
166 silver stain and Western blot with NU2 anti-A β O antibody (Lambert et al., 2007; Velasco et al., 2012).

167 **Cell Culture**

168 Hippocampal cells were prepared and maintained for at least 18 days as previously described (Gong et
169 al., 2003) by using (0.002%) poly-L-lysine coated coverslips plated at a density of 1.04 x 10⁴ cells per
170 cm² in Neurobasal media (Brainbits, LLC) with B27 supplements and L-glutamine (2.5 μ M).

171 **A β Oligomer Incubation and Immunolabeling of Cells**

172 Cells were incubated at 37°C in conditioned media collected from the cell cultures containing
173 crosslinked A β Os or FAM-A β Os or an equivalent dilution of vehicle. Following incubation with A β Os or
174 vehicle for 60 min, the cells were rinsed rapidly 3 times with warm media then fixed by adding an equal

175 volume of warm 3.7% formaldehyde (in PBS) to the third rinse in each well/dish and allowing it to sit at
176 RT for 5 min. The media/formaldehyde was completely removed and replaced with a volume of 3.7%
177 formaldehyde for 5 min at RT. Cells were blocked in 10% normal goat serum (NGS) in PBS or HBSS
178 for 45 min at RT then incubated overnight at 4°C on an orbital shaker with fluorescent-tagged antibody
179 or anti-A β O probe diluted in blocking buffer. The cells were washed 3 times for 5 min each with PBS or
180 HBSS. After secondary antibody incubation, coverslips were mounted onto glass slides using ProLong
181 Gold Anti-fade reagent with DAPI (Invitrogen) and imaged using an epifluorescence (TE2000, Nikon), a
182 widefield fluorescence microscope (Leica DM6B, Leica Corp.), or confocal microscope (Leica SP2,
183 Leica Corp).

184 A β O intracerebroventricular (icv) administration in mice

185 Icv injections and behavior testing were performed in 4 independent experiments of 13-21 mice each.
186 Littermates were arbitrarily assigned to different injection groups, targeting 5-10 mice/group for
187 statistical power ($n = ((Z_{\alpha/2} * \sigma)/E)^2$ at $\alpha = 0.05$; $\sigma = 10.55$ and $E = 6.67$ derived from pilot studies).

188 Mice were lightly anesthetized (2% isoflurane) during injection (~1 min). A β Os (1, 10 pmol in 3 μ l) or
189 vehicles were administered icv free-handed (Bicca et al., 2015). Separate needles were used for each
190 vehicle, progressing from low-high A β O concentration to minimize carryover. No analgesics or anti-
191 inflammatory agents were necessary. Mice were monitored constantly for recovery of consciousness
192 and ambulation, then periodically for food-and-water intake until behavior analysis. Needle placement
193 was confirmed by brain dissection after behavioral experiments (euthanization: CO₂ then decapitation).
194 Mice showing needle misplacement (3 mice) or cerebral hemorrhage (2 mice) were excluded from
195 analysis; final $n = 5-7$ mice/group.

196 Object Recognition/Location Recognition (NOR/NLR) Tasks

197 Tasks were performed essentially as described (Bicca et al., 2015), to evaluate mouse ability to
198 discriminate between familiar and new, or displaced, objects within an area, measured by object
199 exploration (sniffing, touching). The open-field testing arena was constructed of gray polyvinyl chloride
200 at 21x21x12" (WxLxH), with a 5x5 square grid on floor and visual cue on wall. 24 h post-injection, mice
201 underwent 6 min sessions of habituation and training, with 3 min between. All sessions were video
202 recorded and analyzed by two researchers blind to experimental groups. During habituation and
203 training, mice were screened for ability to move about the arena and explore the objects, two activities
204 required for accurate memory assessment in subsequent testing sessions. Locomotive inclusion criteria
205 (>100 grid crossings and >15 rearings; evaluated in habituation) were based on extensive previous
206 experiments with the same mouse strain and arena; 3/65 mice did not meet this criterion. During
207 training, mice were placed at the arena center with two objects, which were plastic and varied in shape,
208 color, size and texture. Exploration inclusion criteria were low exploration (<3 sec total) or object
209 preference (>50% of total time for either object); 7 of remaining 62 mice did not meet this criterion.

210 Hippocampal-related memory function was assessed 24 h post-training by displacing one of the two
211 training objects. Cortical-related memory function was assessed 24 h later by replacing the displaced
212 object with a novel object. Hippocampal-related memory function was re-tested 31-38 days post-
213 injection by displacing the novel object. Memory dysfunction was defined as an exploration of the
214 familiar object for >40% total time. Mice were arbitrarily assessed by cage. The arena and objects were
215 cleaned thoroughly between sessions with 20% (v/v) alcohol to minimize olfactory cues.

216 Immunolabeling of slices

217 Free floating 45 μ m thick sagittal sections were cut using a Leica SM2010 R sliding microtome and
218 transferred to sterile TBS for storage. Sections were gathered and placed sequentially into wells (~4
219 per well). Sections were then randomly selected from each well to perform antibody staining using the
220 primary antibodies ACU193 (0.2 μ g/ml), Alexa Fluor® 555-conjugated NU4 (0.92 μ g/ml), Cy3-
221 conjugated anti-GFAP (1:800, Sigma) and the secondary antibody Alexa Fluor® 633 goat anti-human

222 IgG (1:2000, Invitrogen). Floating slices were rinsed 3x10 min with TBS and blocked with blocking
223 buffer (10% NGS with 0.3% Triton X-100 in TBS) for 60 min at room temperature. Slices were then
224 incubated with the respective antibodies in blocking buffer overnight at 4°C with gentle rotation.
225 Sections were washed 3 x 10 mins in TBS and incubated with secondary antibody for 3 hours at room
226 temperature (RT) with orbital agitation in the dark. Secondary was prepared in blocking buffer diluted
227 10-fold with TBS. Sections were then washed 3 x 10 mins in TBS, mounted using ProLong Diamond®
228 antifade mounting media with DAPI (Invitrogen) and 24x60mm No.1.5 glass coverslips (Thermo
229 Scientific). Z-stacks of the brain sections were collected at 10x or 100x on a Leica SP5 confocal
230 microscope and analyzed with ImageJ.
231

232 **Thioflavin S counterstain.**

233 Thioflavin-S counterstaining to NU4 immunofluorescence labeling was performed as previously
234 described (Guntern et al., 1992) with a few modifications (Viola et al., 2015). 5xFAD and WT brains
235 were sliced at a thickness of 50µm and immunolabeled following the same protocol described above
236 (immunolabeling of slices). Slices were incubated with antibody as described above. The slices were
237 then washed with PBS for 5 times 5 min each and incubated with 0.002% of Thioflavin-S solution in
238 TBS-T (diluted from a stock solution 0.02% of Thioflavin-S in distilled water) for 10min. Slices were
239 then washed 3 times for 1 min in 50% ethanol and 2 times in TBS-T for 5 min. The slices were mounted
240 with ProLong Gold Antifade reagent for examination by fluorescence microscopy. Images were
241 acquired at 40x magnification and analyzed by ImageJ software.

242 **Radiolabeling and Quality Control**

243 Antibodies, NU4 and non-specific mouse IgG or ACU193 and non-specific human IgG were
244 radiolabeled with positron emitter ^{64}Cu ($^{64}\text{CuCl}_2$ in 0.1 M HCl; radionuclide purity >99%, Washington
245 University). For radiolabeling, Wipke and Wang's method was applied (Wipke et al., 2002). Basically,
246 antibodies mentioned above were conjugated with DOTA-NHS-ester (Macrocyclics, Dallas, TX) and
247 then radiolabeled with ^{64}Cu .

248 **Conjugation.**

249 Antibody solutions were buffer exchanged with PBS using YM-30 Centricon® centrifugal filters
250 (Millipore, Billerica, MA). For conjugation, antibodies were reacted with DOTA-NHS-ester in 0.1 M
251 Na_2HPO_4 buffer of pH 7.5 at 4°C for 12 - 16 h in a molar ratio of DOTA-NHS-ester:antibody = 100: 1.
252 After conjugation, the reaction mixture was centrifuged repeatedly (5 times) through a YM-30
253 Centricon® centrifugal filter with 0.1M pH 6.5 ammonium citrate buffer to remove unconjugated small
254 molecules. The concentrations of purified antibody-conjugate was determined by measuring the
255 absorbance at 280 nm in a UV spectrophotometer.

256 **Labeling.**

257 When labeling with ^{64}Cu , 1 mg DOTA-conjugated NU4 and 5 mCi (185 MBq) of ^{64}Cu as incubated in
258 0.1 M ammonium citrate buffer, pH 6.5, at 43°C for 1 hour. Labeled antibody was separated by a size-
259 exclusion column (Bio-Spin6, BIO-RAD Laboratories).

260 **Quality Control.**

261 Radiochemical purity of antibody was determined by integrating areas on the Fast Protein Liquid
262 Chromatography (FPLC) equipped with a flow scintillation analyzer. This analysis was conducted on a
263 Superose 12 10/300 GL (Cytiva) size-exclusion column and characterized by the percentage of
264 radioactivity associated with the 150 kDa protein peak. The stability of the ^{64}Cu radiolabeled mAbs was
265 determined by bovine serum challenge at 44 hours.

266 **Conjugation efficiency.**

267 Based on our preliminary data, > 90% of conjugation rate, >70% of labeling rate is achieved by
268 following prescribed protocol.

269 **Overall details of micro PET and micro CT acquisition**

270 Mice were placed in a 37.5 °C heated cage 20-30 minutes prior to radiotracer injection and moved to a
271 37.5 °C heated induction chamber 10 minutes prior to injection where they were anesthetized with 2-
272 3% isoflurane in 1000 cc/min O₂. A dose of 40 µg/200 µCi in 100 µL of proposed PET tracers was
273 administered intravenously through the tail vein. Each animal was administered a dose ranging from
274 30-40 µg NU4PET, ACU193PET, or non-immune IgGPET. Probes were administered in a single dose.
275 PET/CT imaging was conducted at 0, 4, 24, and 48 h to measure for changes in distribution and time
276 required for probe clearance or decay.

277 NU4PET scans were acquired using a Genisys⁴ PET (Sofie Biosciences, Culver City, CA) system and
278 CT scans were acquired using a Bioscan NanoSPECT/CT (Washington, D.C.). When scanning, all
279 mice were placed prone on the bed of the scanner. A 10 minute static acquisition was used for PET
280 imaging followed immediately by a 6.5 minute CT acquisition both utilizing the mouse imaging chamber
281 from the Genisys⁴. PET reconstruction was performed without attenuation correction using 3D
282 Maximum Likelihood Expectation Maximization (MLEM) with 60 iterations and CT reconstruction used
283 Filtered Back Projection with a Shepp-Logan Filter. PET and CT reconstructions were exported in
284 dicom image format and fused using custom software developed by the Small Animal Imaging Facility
285 at Van Andel Institute. Fused PET/CT images were analyzed using VivoQuant Image Analysis Suite
286 (inviCRO, LLC, Boston, MA). Standardized Uptake Values (SUV) were calculated using the mouse
287 body weight and corrected for residual dose in the injection syringe and the injection site, as applicable.
288 The formula used to calculate SUV was

289
$$SUV = \frac{\text{Activity}_{\text{tissue}}/\text{Volume}_{\text{tissue}}}{\text{Injected Activity}/\text{BodyWeight}}.$$

290 **Evaluation NU4PET (⁶⁴Cu-NU4) in AβOs detection**

291 Two groups (n = 3/ group) of 6 months old 5xFAD Tg AD mouse model and 2 groups (n = 3/ group) WT
292 mouse model were used for evaluating the capability of AβOs detection. NU4PET (⁶⁴Cu-NU4) or non-
293 specific IgGPET (⁶⁴Cu-IgG) was injected into each 5xFAD Tg AD mouse model and WT mouse model
294 groups, respectively.

295 Target (AβOs)-Background (normal tissue) contrasts in PET images were used to distinguish the
296 difference of the capability of AβOs detection between NU4PET and IgGPET in different mouse
297 models. Tracer uptake of high intensity (hot) areas and background tissues in the brain were chosen by
298 drawing regions-of-interest (ROI) along the edges of the areas from the PET images. Average pixel
299 values of each ROIs were acquired and use in Target (AβOs)-Background (normal tissue) contrasts
300 calculation. The formula used to calculate Target-Background contrast was

301
$$T - B \text{ Contrast} = \frac{\text{Target Average Pixel Value}}{\text{Background Average Pixel Value}}.$$

302 **Tissue Biodistribution Assessment**

303 Animals were sacrificed immediately after the 44 hour post injection image was acquired. Blood was
304 collected, while brains and 13 other organs and tissues were harvested and weighed. After the blood
305 sample was taken from the heart (~500-1000µl), 10 ml of saline was injected into left ventricle while the
306 heart was still beating to flush out the residual blood in the organs. Radioactivity in each tissue (cpm)
307 wa measured using the γ-scintillation counter. Percentages of the injected dose/gram (%ID/g) were
308 calculated for each tissue/ organ by the following formula.

$$\% ID/g = \frac{(\text{Sample Activity} - \text{Background})}{(\text{Injected Activity} - \text{Background})(\text{Sample weight}(g))} \times 100\%$$

309 Student's t-test was conducted to the results between different groups. P<0.05 is considered
310 statistically significant.

311 **Synthesis of Magnetic Nanostructures (MNS)**

312 16 nm magnetite nanoparticles were synthesized by decomposition of iron-oleate at 320°C as
313 described in an earlier report.(Park et al., 2004)

314 *Synthesis of Iron-oleate complexes:* 10.8 g of iron (III) chloride hexahydrate and 36.5 g sodium oleate
315 were dissolved in a mixture of 60 ml distilled water, 80 ml ethanol and 140 ml hexane and heated at
316 60°C for 4 hr. The organic layer of the biphasic mixture becomes dark, indicating phase transfer of iron
317 (III) ions and formation of iron oleate complex. The resulting dark solution is separated and washed with
318 water three times.

319 *Synthesis of 16 nm magnetite nanoparticles:* 18 g of iron oleate complex and 2.58 g of oleic acid were
320 dissolved in 100 g of octadecene at room temperature and heated to 320°C at a rate of 3.3°C per
321 minute. The reaction mixture is kept at 320°C for 40 min., then cooled down to room temperature.
322 Resulting nanoparticles are separated from the solution by addition of ethanol and ethyl acetate
323 followed by centrifugation.

324 **Preparation of Dopamine-TEG-COOH and Phase Transfer**

325 To make the organic phase synthesized MNS suitable for biological application, we functionalized the
326 MNS using an in-house synthesized ligand with carboxylate as terminal group (for antibody
327 conjugation), tetraethylene glycol(TEG) as a stabilizer, and nitrodopamine (nDOPA) as an anchor due to
328 its high affinity for Fe (Nandwana et al., 2016).

329 Synthesis of carboxylate terminated nDOPA ligand and functionalization of the MNS was carried out
330 according to the following protocol. Tetraethylene diacid, N-hydroxysuccinimide (NHS), N,N'-
331 Dicyclohexylcarbodiimide (DCC), nDOPA hydrochloride and anhydrous sodium bicarbonate was
332 dissolved in chloroform under argon atmosphere and stirred for 4 hr. Hexane stabilized MNS were
333 added and stirred for another 24 hr. The precipitate formed was separated by magnet, dispersed in
334 water and purified by dialysis.

335 **Conjugation of antibody to MNS**

336 The conjugation of buffer stabilized MNS with antibody was done using a conventional carboxyl-amine
337 crosslinking method. We first activated the carboxyl terminated MNS by sulfo-N-hydroxy succinimide
338 (SNHS) and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by incubation with
339 corresponding antibody (NU4 or IgG₁, with or without fluorescent label) overnight. Conjugated MNS
340 were separated by magnet to remove excess reagent and antibody then re-dispersed in working media.
341 Conjugation efficiency was estimated using UV spectroscopy (absorbance at 280nm) of the
342 magnetically separated supernatant.

343 Ab conc. = (total mg added Ab) - (mg Ab in supernatant)

344 **Intranasal immunization.**

345 Mice were anesthetized with isoflurane and then placed on their backs with their heads positioned to
346 maximize the residency time for the delivered material to remain on the olfactory surface. Each naris
347 was administered with ACUMNS or non-immune IgGMNS (10 μ l/naris), using a sterile micropipette,
348 slowly over a period of 1 min, keeping the opposite naris and mouth closed to allow complete aspiration
349 of delivered material. Steps were repeated up to 5 times, maintaining anesthetization in between
350 inoculations, for maximum doses of up to 50 μ l/naris

351 **Magnetic Resonance Imaging of Tg and WT mice in vivo**

352 Following intranasal inoculation, the probe was allowed to distribute for 4 hours before MR imaging was
353 performed according to imaging methodology described in Mundt et al.(Mundt et al., 2009) T1, T2, and
354 T2* weighted MR images were acquired on a Bruker BioSpec 9.4T magnet, using a 25 mm RF
355 quadrature coil. The in-plane resolution was 75 μ m with slice thickness 0.4 mm. T1- and T2-weighted
356 images provide anatomical guidance as well as some localization of the ACUMNS and were acquired

357 with a fat suppressed spin echo sequence (Rapid Acquisition with Relaxation Enhancement, RARE)
358 with the following parameters for T1-weighted (TR=1000 ms, TEeff=13.2 ms, rare factor 2, number of
359 excitations, NEX=4) and for T2-weighted (TR=3500 ms, TEeff=58.5 ms, rare factor 4, NEX=4). T2*-
360 weighted imaging provides more of the localization of the NU4MNS as the iron causes local changes in
361 magnetic susceptibility which T2* weighted images can be sensitive to. A gradient echo sequence was
362 used with the following parameters (gradient echo fast imaging, GEFI; TR=1200 ms, TE=5.6 ms, flip
363 angle 35° and NEX=4).

364

365

Results

366
367

Memory dysfunction in 5xFAD mice begins shortly after A β O emergence and progressively worsens with concomitant A β O accumulation in the hippocampus

368

Tg 5xFAD NOR/NLR

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

Amyloid plaque development and intraneuronal A β 42 accumulation are well-established in the 5xFAD transgenic (Tg) mouse model of Alzheimer's disease. There is robust plaque buildup around 5-6 months of age (Ohno et al., 2006) and intraneuronal A β 42 accumulation begins as early as 2 months (Oakley et al., 2006). The majority of neuropathological studies in 5xFAD mice have used probes that show amyloid plaque development; how 5xFAD memory impairment coincides with A β Os pathology and development is much less well-characterized. In order to characterize how memory loss correlates with A β Os in the 5xFAD mice, we used the well-established novel object recognition task (NOR) for non-spatial (cortical) memory (Cohen and Stackman, 2015; Denninger et al., 2018) and the novel location recognition task (NLR) for spatial (hippocampal) memory (Antunes and Biala, 2012; Bengoetxea et al., 2015; Grayson et al., 2015; Denninger et al., 2018). We assessed memory in mice aged 2-18 months. 5xFAD mice showed no evident memory impairment at 2 to 3 months old (Figure 1a). By 4 to 5 months old, most transgenic mice showed memory impairment, and by 6 to 7 months of age memory impairment was apparent in all 5xFAD mice. Importantly, at 4 months old, the majority of 5xFAD mice were impaired in both the hippocampal-dependent and cortical-dependent tasks; there were, however, some mice that showed only cortical-impairment. Though less obvious than their Tg littermates, memory loss was detected at 9 months of age in wild-type mice. In summary, we showed that 5xFAD mice first present memory impairment between 3 and 4 months of age. This memory dysfunction afflicts more mice as their age increases until, at 6 to 7 months, all of the Tg mice are impaired in both hippocampal-dependent and cortical-dependent tasks. These data indicate that memory impairment begins before observed amyloid plaque build-up in the 5xFAD mice.

389

Immunohistofluorescence validation of A β O development

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

The development of amyloid plaque pathology is well-established in the 5xFAD mouse model (Oakley et al., 2006; Ohno et al., 2006). Amyloid plaques, however, are no longer considered the most germane A β species to AD pathology (Overk and Masliah, 2014; Viola and Klein, 2015; Selkoe and Hardy, 2016; Cline et al., 2018; Li and Selkoe, 2020). Characterizing the development of the most relevant species, putatively A β Os, and their association with other pathological changes in AD, such as glial activation or pTau accumulation, is necessary to better understand disease progression in this model. Sagittal sections of brain tissue, collected and fixed from WT and 5xFAD mice at ages 2, 3, 4, 6, and 8 months of age, were immunolabeled with ACU193 and imaged using confocal microscopy. ACU193, a humanized monoclonal antibody that targets A β Os, has been shown to selectively bind oligomers *in vitro* (Krafft et al., 2013; Goure et al., 2014; Savage et al., 2014) and in the TG2576 mouse model. Here, using ACU193 to probe for A β Os, we show the progressive, spatio-temporal accumulation of A β Os in the hippocampus of 5xFAD mice (Figure 1b). A β Os first appear in the subiculum as early as 2 months of age in some mice and are detectable by 3 months in all 5xFAD Tg mice examined. In the transgenic mice, A β Os show a continued accumulation in the subiculum and a spreading of pathology to CA1, CA2 and the dentate gyrus. This timing suggests that A β Os are associated with the observed memory loss.

406

ACU193 detects A β Os bound to primary neurons with high specificity

407
408
409
410
411
412

To validate the specificity of ACU193 for A β Os, the antibody was used *in vitro* to detect synthetic preparations of oligomers introduced into primary hippocampal neurons in culture (Supplemental Figure 1). Primary hippocampal neurons were treated with cross-linked A β Os, which have been shown to preserve A β O structure *in vitro* (Cline et al., 2019b), or vehicle control. The cells were subsequently fixed and labeled with ACU193 at increasing dosages. Confocal imaging of the cells showed somatic staining of A β Os in addition to small, nanoscale puncta along dendritic processes (labeled with MAP2).

413 These ACU193-positive puncta are likely A β Os binding to dendritic spines, as seen in previously
414 published work (Lacor et al., 2007; De Felice et al., 2009; Pitt et al., 2017). Minimal ACU193 labeling
415 was observed on vehicle-treated neurons, indicating its specificity for A β Os.

416 **ACU193 and NU4 detect A β Os**

417 Additional support for the specificity of ACU193 can be seen in comparing the distribution of ACU193 in
418 brain sections with the distribution of NU4, a well-established A β O monoclonal antibody (Lambert et al.,
419 2007; Xiao et al., 2013; Viola et al., 2015). Using ACU193 and NU4 conjugated to Alex Fluor 555 we
420 found that both antibodies similarly detected A β Os in the subiculum and other areas of the
421 hippocampus (Figure 2) including CA1, CA2 and the dentate gyrus. ACU193- (cyan) and NU4-positive
422 (magenta) cells were observed accumulating in a nearly identical pattern, from 3 months to nine
423 months of age. ACU193 and NU4 selectively detect A β Os in the 5xFAD mice with virtually no signal in
424 WT mice.

425 **Alzheimer's-associated astrocyte pathology develops concomitantly with A β Os**

426 To determine whether other Alzheimer's related pathologies show developmental regulation or
427 accumulation in the 5xFAD mouse model for AD in association with A β Os, we examined
428 immunohistochemical patterns of glial fibrillary acidic protein (GFAP), activated microglia (Iba1), and
429 phosphorylated tau (pTau). Immunolabeling for pTau yielded difficult to interpret results which varied
430 amongst the different antibodies for the same epitope and often did not match the literature. Instead,
431 we focused on the inflammatory pathways, stimulated by the strong interest in the involvement of
432 inflammatory responses in AD, in particular a new and growing interest in astrocytes (Wang et al.,
433 2021). Immunolabeling for activated microglia (Iba1) (Supplemental Figure 2) indicated that the WT
434 mice have more ramified microglial cells (resting) while 5xFAD littermates have more amoeboid and
435 activated-shaped microglial cells. Notably, microglial activation was evident at 2 months, with no
436 obvious increase in abundance seen in older animals. In contrast, sagittal sections from 5xFAD or wt
437 mice, aged 3-9 months, were immunolabeled with antibodies against GFAP and co-labeled with
438 ACU193, then imaged by confocal microscopy. We found a marked spatiotemporal association of
439 GFAP pathology with ACU193-positive A β Os in the 5xFAD mice. GFAP (Figure 3, magenta) pathology
440 first appeared in the subiculum at 3 months of age concurrent with the first appearance of A β Os (cyan)
441 in the subiculum and in close proximity to one another. As the mice aged, GFAP and ACU193-positive
442 pathology concomitantly spread throughout the subiculum and hippocampus (Figure 3, B & E). At 9
443 months, WT mice have minimal GFAP expression (Figure 3C) and no A β Os (Figure 3F). These
444 patterns are consistent with possible induction of reactive astrogliosis by A β Os. At higher magnification,
445 we observed GFAP-positive reactive astrocytes surrounding an ACU193-positive neuron and projecting
446 their processes onto the cell soma (Figure 3I). In addition, we observed micron-wide ACU193-positive
447 puncta adjacent to astrocytic processes distant from the cell soma.

448 **A β Os given to WT littermates induces memory impairment within 24 hours**

449 ICV A β Os induce impairment in NLR/NOR

450 While the previous data indicate a relationship between A β O accumulation and memory dysfunction in
451 the 5xFAD mice, the question remained whether A β Os cause the observed memory loss. We therefore
452 asked whether injection of A β Os into WT littermate mice would induce similar behavioral dysfunction.
453 Wild-type littermates from the 5xFAD colony were injected with either 10 pmol synthetic A β Os or
454 volume equivalent of vehicle control into the right lateral ventricle, following our previously established
455 protocol (Lambert et al., 2007; Velasco et al., 2012; Cline et al., 2019b). After 24 hours, the mice were
456 assessed by the NLR task, and later, the NOR assay at 48 hours post-injection. We found that ICV
457 injection of A β Os induce memory dysfunction within 24 hours and impacts both cortical (NOR) and
458 hippocampal (NLR) memory (Figure 4). As in the 5xFAD mice, A β O injected mice showed no
459 preference to either new or old objects and explored both equally. Vehicle-injected mice scored no

460 different from wild-type in these tasks. These data show that A β Os are sufficient to induce memory
461 impairment within 24 hours post-injection in wild-type mice. We next sought to establish the functional
462 effect of neutralizing these A β Os in the 5xFAD mice.

463 **Oligomer-selective antibodies engage and neutralize A β Os responsible for memory 464 dysfunction in 5xFAD mice**

465 ACU193-based probes ameliorate memory dysfunction

466 We have previously observed no short-term detrimental impact after inoculation of our A β O antibodies
467 into 5xFAD mice, but no studies have been done to determine the long-term positive or negative effects
468 in these mice. To determine the impact of A β O-neutralization in 5xFAD mice, 6- and 7-month-old mice
469 were first assessed for memory impairment using the NLR/NOR assay. Mice were then inoculated with
470 ACU193-based probes and imaged 24 hours later *in vivo* to ensure target engagement (see next
471 section). The mice were then housed for 30-40 days to monitor any adverse effects or changes in
472 behavior before being reassessed for memory impairment in the NLR/NOR tasks. Strikingly, we found
473 that 6-month-old 5xFAD mice inoculated with the ACU193-based MRI probe had reversal of memory
474 dysfunction, with performance the same as WT controls in the NOR task 30 days post-inoculation
475 (Figure 5). The ACUPET probe similarly ameliorated memory impairment, measured 40 days post-
476 injection. As controls, 5xFAD mice injected with human IgGMNS or IgGPET probe showed no memory
477 improvement. Results from 4 trials of 10-12 animals each show that the ACU193 antibody engages
478 A β Os *in vivo*, completely reversing memory dysfunction in the 5xFAD mice with no evidence of health
479 issues or side effects. The data establish A β Os as the primary instigators of cognitive dysfunction in
480 5xFAD mice and support the therapeutic relevance of A β O-selective probes.

481 **A β Os imaged *in vivo* using ACU193-based probes distinguish 5xFAD from wild-type 482 mice**

483 MRI signal from ACUMNS distinguishes 5xFAD from wild-type mice.

484 Our previous work showed that A β Os can be detected *in vivo* in the 5xFAD mouse model using
485 antibody-based MRI probes which were conjugated to magnetic nanostructures (MNS) (Viola et al.,
486 2015). These prior studies used NU4 as the A β O-targeting antibody, which as shown above, binds
487 similarly to ACU193. Here we show that ACU193 can also be developed into a molecular probe for
488 A β O detection *in vivo*. After baseline imaging by MRI, 12-month-old mice were intranasally inoculated
489 with MNS-conjugated ACU193 and allowed to recover overnight (about 16 hours) before imaging again
490 (Figure 6). MRI data shows an accumulation of the ACUMNS probe in the hippocampus and cortex of
491 the 5xFAD mice that is absent in WT controls. ImageJ quantification of signal intensity in the
492 hippocampi of inoculated mice shows a ~ 30-fold increase in 5xFAD mice over their WT littermates.
493 Using the ACUMNS probe in 18-month-old mice showed similarly robust AD-dependent MRI signal in
494 the hippocampus of the 5xFAD animals, but signals obtained in younger animals (6-months old) were
495 less consistent. These data add to previous studies with the NU4 probe and show that non-invasive *in*
496 *vivo* imaging of A β Os is possible using the ACUMNS probe, suggesting its potential diagnostic value
497 and ability to confirm target engagement.

498 Development of an ACU193-based PET imaging probe for early A β O detection.

499 While the spatial resolution of MRI is excellent, its sensitivity is lower than other imaging modalities
500 such as positron emission tomography (PET). Given PET sensitivity is at least 100 times greater than
501 MRI, we thought it might detect very low levels of A β Os during early stages of AD development.
502 ACU193 was conjugated to DOTA, a chelator, as the initial step in the PET probe development. To
503 ensure that this conjugation did not interfere with the antibody's ability to target A β Os, sagittal brain
504 slices from 5xFAD mice were probed with the ACU193-DOTA probe and counterstained with Thioflavin
505 S (ThioS) for amyloid plaques (Supplemental Figure 3). Results show that ACU193-DOTA detected
506 A β Os in the 5xFAD brain and did not co-localize with ThioS, consistent with previously obtained results
507 showing that ACU193 does not bind amyloid plaques cores (Cline et al., 2019a).

508 **ACUPET detects pathology in the brains of 4-month and older 5xFAD mice.**

509 The next step was to determine if radiolabeled ACU193-DOTA (ACUPET) detects AD-related A β Os in
510 the 5xFAD mouse brain at an early age. ACU193-DOTA was incubated with ^{64}Cu and free isotopes
511 were removed prior to tail vein injection into mice of either 4 or 18 months old. Mice were then imaged
512 at 1, 4, and 24 hours post-injection for ACUPET distribution. At 4 hours post-injection, ACUPET
513 accumulation in the brain was detectable, but not robust. By 24 hours, accumulation of the ACUPET
514 probe in the brains of the 5xFAD animals was evident in both the 4-month-old animals (Supplemental
515 Figure 4A) and the 18 month old animals (Supplemental Figure 4B-D). Animals at 6, 7, 8 and 12
516 months were also examined and similarly were able to distinguish 5xFAD from WT mice (data not
517 shown).

518 **A β Os are specifically detected in vivo by NU4PET**

519 **NU4-based PET probe development**

520 Given the success of the NU4-based MRI probe (Viola et al., 2015), an NU4-based probe was
521 synthesized for PET imaging. NU4 was conjugated to DOTA and tested to ensure that this conjugation
522 did not interfere with the antibody's ability to target A β Os. Primary hippocampal neurons, pre-treated
523 with fluorescently conjugated A β Os (FAM-A β Os) and were probed with NU4-DOTA (Supplemental
524 Figure 5). Data show that nearly all FAM-A β Os (magenta) were also labeled with the NU4-DOTA probe
525 (colocalization seen as dark blue) and no free NU4-DOTA (cyan) was detected. Vehicle treated cells
526 showed no NU4-DOTA binding. Data confirm the specificity of the NU4-DOTA probe for A β Os,
527 necessary for its use for *in vivo* imaging.

528 **NU4PET detects AD-related pathology *in vivo* in 5xFAD mice, distinguishing them from WT**

529 Validation of the A β O-PET probes as effective for early AD diagnostics requires verification that they
530 produce an *in vivo* signal that depends on the presence of A β Os. To validate our new probe, NU4
531 (Lambert et al., 2007; Acton et al., 2010) and non-specific IgG antibodies were conjugated to DOTA
532 and then radiolabeled with positron emitter ^{64}Cu using Wipke and Wang's method (Wipke et al., 2002).
533 Our next step was to image for A β Os by PET following probe delivery. Animals (12 total), 7 months of
534 age, were injected via tail vein with either NU4PET or IgGPET and then imaged at T=1, 2, 4, 8, 20, 30,
535 40, and 44 hours after injection. After 44 hours, the animals were euthanized and their brains removed
536 for a final *ex vivo* image of all 12 brains simultaneously (3 animals per group). Results showed the
537 NU4PET specifically identified 5xFAD animals (Figure 7). No signal was detected in all three control
538 groups (5xFAD with IgGPET; WT with NU4PET; WT with IgGPET).

539 The fraction of NU4PET probe retained (Supplemental Figure 6) showed good uptake into the brains of
540 the 5xFAD mice but not the WT littermates (quantification of uptake; see Methods). For all mice, the
541 IgGPET probe showed negligible signal. Quantification showed uptake into the brain was comparable
542 to levels of uptake seen with the commercially available Pittsburgh Compound B (PiB) tracer (Mathis et
543 al., 2003; Klunk et al., 2004). To corroborate the presence of A β Os in the animals used for these
544 studies, we analyzed the brain tissue with immunofluorescence. After final PET imaging, the brains
545 were fixed and stored in 10% sucrose until no longer radioactive. Brains were then sliced sagittally at
546 50 μm and probed with ACU193. Images were collected and analyzed for ACU193 signal intensity
547 (Supplemental Figure 7). Data showed that only 5xFAD mice, and not WT littermates, had A β O
548 pathology. Results confirm the NU4 PET probe gives a signal selective for A β O-positive mice.

549

550

DISCUSSION

551 Alzheimer's disease is costly and marked by accumulation of pathological hallmarks such as amyloid
552 plaques and neuronal tangles of hyperphosphorylated tau. Because A β plaques have shown poor
553 correlation with AD progression, there has been a rise in the exploration and development of
554 therapeutics that are not based on amyloid (Cummings et al., 2021). This shift in focus has resulted in
555 numerous potential therapies that have made it into clinical trials, but so far there have been limitations
556 on their impact. As an alternative, focusing on A β Os as the target for diagnostics and therapeutics
557 appears to be a promising strategy for developing disease modifying treatments and early diagnosis.
558 Here, we confirm that A β Os can induce memory dysfunction in wild type mice and that A β Os build up in
559 5xFAD mice in a manner concomitant with astrocyte pathology and with memory dysfunction.
560 Importantly, targeting this buildup with A β O-selective antibodies rescues memory performance.
561 Furthermore, we demonstrate that antibody-based brain imaging probes that target A β Os can be used
562 to identify animals that present with AD pathology, indicating the value of A β O-selective antibodies both
563 for diagnostics and therapeutics.

564 Recent interest in inflammatory processes and their involvement in AD has grown. Our data showed a
565 striking association between GFAP-positive astrocytes and ACU193-positive A β Os. This association
566 and concomitant increase indicates a potential mechanism for A β O-induced behavioral abnormalities.
567 These findings are particularly intriguing given recent studies indicating AD's dependence on astrocytes
568 (Huang et al., 2017; Monterey et al., 2021; Nisa et al., 2021; Preeti et al., 2021; Zhou et al., 2021). One
569 especially interesting study showed that when apolipoprotein E (ApoE), a protein expressed in
570 astrocytes which A β Os associate with at synapses, was knocked out in astrocyte-only populations of
571 P301S mice, AD pathology markedly improved (Wang et al., 2021). As ApoE4 is the greatest genetic
572 risk factor of late onset AD, we propose that it may mediate A β O-induced reactive astrogliosis and the
573 subsequent neuropathology instigated by reactive astrocytes. Another study showed that astrocytes
574 were activated into their reactive state via the JAK/STAT3 pathway in 6 month-old 5xFAD mice (Choi et
575 al., 2020). Consistent with the idea that reactive astrogliosis is necessary for behavioral dysfunction in
576 5xFAD mice, STAT3 phosphorylation inhibition restored cognitive function in the 5xFAD mice. Taken
577 together with our data, we propose that A β Os may induce JAK/STAT3 pathway-dependent reactive
578 astrogliosis in astrocytes which is necessary for observed cognitive dysfunction in 5xFAD mice. In
579 addition to astrocytes, microglia play a major role in AD pathology. The Triggering Receptor Expressed
580 on Myeloid cells 2(TREM2)- expressed in microglia- has already been shown to be involved in AD, with
581 mutations being neuroprotective and TREM2 accumulation being detected in AD patients (Jiang et al.,
582 2013; Benitez et al., 2014; Guven et al., 2020). Previous studies have shown that A β Os associate with
583 TREM2 (Zhao et al., 2018; Zhong et al., 2019; Price et al., 2020), but TREM2 has no impact on
584 established pathology (Yuan et al., 2021).

585 While interest increases in alternatives to the Amyloid Hypothesis, we are still left with no effective
586 diagnostic tools for identifying AD at its earliest stages when therapeutics have the greatest impact.
587 Currently recommended tests may rule out other dementia etiologies and help to determine disease
588 severity, but they cannot detect AD at its earliest stages or closely predict disease progression. While
589 AD diagnosis has significantly improved with the incorporation of a multiple assay evaluation currently
590 being recommended, the tests still cannot predict disease progression or diagnose AD at its earliest
591 stages because they are not quantifying the earliest biomarkers of the disease. However, alternative
592 detection assays are being developed. Pre-tangle Tau, thought to be the toxic form of tau, has now
593 been detected in MCI and AD and has been found to be one of the earliest tau lesions that correlates
594 with cognitive status (Mufson et al., 2014). Synapse loss (Bastin et al., 2020; Buchanan et al., 2020;
595 Camporesi et al., 2020; Mecca et al., 2020; Pereira et al., 2021), changes in hormone levels (Cheng et
596 al., 2021), changes in blood biomarker levels (Guzman-Martinez et al., 2019; Montoliu-Gaya et al.,
597 2021), electroencephalogram (EEG) readings (Hulbert and Adeli, 2013; Siwek et al., 2015; Lin et al.,
598 2021), retinal assays (Ashok et al., 2020; Mirzaei et al., 2020), and changes in specific protein levels

599 (Buchanan et al., 2020; Colom-Cadena et al., 2020) are some of the myriad assays being developed to
600 try to detect AD earlier and predict when and if the change from mild cognitive impairment (MCI) to AD
601 will occur (Zhang et al., 2021b). All of these new developments are focused towards enabling earlier
602 therapeutic intervention when chances for success would be greatest.

603 A β Os as a diagnostic resource are currently unavailable. Cerebrospinal fluid assays show promise
604 (Georganopoulou et al., 2005; Toledo et al., 2013a; Savage et al., 2014; Yang et al., 2015; Yang et al.,
605 2019), but spinal taps are invasive and assays using CSF analytes have presented challenges with
606 respect to accuracy and reliable disease-state discrimination (Slemmon et al., 2012). Other assays for
607 A β O levels are under development and show promise as well (Meng et al., 2019). For example, A β O
608 quantification in blood plasma shows a correlation between A β O levels and declining memory scores
609 that appear to not be influenced by age, gender, or ApoE4 status. Recently, the examination of soluble
610 cortical extracts by ELISA found a link between the ratio of A β Os and fibrils with disease. “The ratio of
611 A β O levels to plaque density fully distinguished demented from non-demented patients, with no overlap
612 between groups in this derived variable.” (Esparza et al., 2013)

613 Because A β Os are regarded as the first toxin to appear in disease progression, they should provide an
614 excellent target for diagnostic imaging (Hefti et al., 2013; Goure et al., 2014). The usefulness of
615 targeting A β Os is indicated by human neuropathology studies in which A β Os initially appear bound to
616 discrete neurons, localizing to synapses in dendritic arbors (Lacor et al., 2004) through putative
617 association with clustered cell surface receptors (Ferreira and Klein, 2011). FAM-A β Os bind at discrete
618 sites on dendrites, showing saturable, concentration-dependent synaptic binding (Viola et al., 2015),
619 further suggesting their potential as a suitable target for an antibody-based diagnostic probe.
620 PronucleonTM imaging used engineered peptides that deliver a readout when associated with beta-rich
621 A β fibers and oligomeric A β (Nyborg et al., 2013). Several PET probes have also been developed
622 including a probe from curcumin¹⁸F (Rokka et al., 2014), a probe created by modifying 6E10 antibody
623 with PEG and ⁶⁴Cu that distinguished Tg from control mice (McLean et al., 2012), and a probe
624 developed from an ¹²⁴I-labeled mAb158 against A β protofibrils (Magnusson et al., 2013). Still, none of
625 these probes specifically target A β Os.

626 Previously, we described a molecular MRI probe that is targeted against A β Os (Viola et al., 2015).
627 Based on the success of our initial MRI probe and the antibody-based probes being explored by others,
628 it follows that A β O-specific antibodies can be used to target probes and provide better signal-to-noise
629 ratios. Here we showed that anti-A β O antibodies can be used to develop molecular MRI and PET probes
630 that distinguish WT mice from their 5xFAD littermates at ages as early as 4 months old. These probes
631 have proven to be non-toxic over the periods examined and, in fact, showed *in vivo* efficacy. These
632 studies, however, are limited to the 5xFAD mouse model for AD and have not yet been tested in other
633 animal models or in human subjects. Our paper in essence establishes proof of concept that oligomers
634 can be detected by antibody-based probes for PET and MRI. This is a first step, and a great deal of
635 work remains. A case in point, while *ex vivo* PET imaging is robust in its ability to distinguish AD from
636 control brains, the conditions for *in vivo* imaging require significant optimization.

637 Early diagnostics are critical to combating this devastating disease, but without effective therapeutics,
638 they have limited value. The first FDA-approved drug to treat Alzheimer’s disease (AD) in nearly two
639 decades, Aduhelm®, shows a preferential affinity for all aggregated forms of amyloid beta (A β), rather
640 than targeting only the toxic A β Os. Currently, there are more than 126 agents in clinical trials, with most
641 aimed at disease modification (Cummings, 2021; Cummings et al., 2021). While less than 10% of these
642 target A β , there remains evidence that A β is a significant target for therapeutic development. Lowering
643 A β O levels by enhancing fibril formation has been shown to be protective (Mucke et al., 2000). This is
644 supported by previous antibody-based studies (Lambert et al., 2007; Xiao et al., 2013). The data
645 presented here importantly show that A β O-selective antibodies rescue memory performance in a
646 widely used AD model. These antibodies, which have been modified for use in brain imaging of A β O,
647 show great promise as potential agents for AD therapeutics and diagnostics; the potential of one A β O-
648 selective antibody is now being assessed in a recently begun clinical trial.

649

650

651 **Acknowledgements**

652 We would like to thank Samuel C. Bartley, Elizabeth A. Johnson, Matthew Perkins, Jake Vitrofsky, Alex
653 L. Qin, Henry Weiss, Rohan Chalasani, and Erika N. Cline for their assistance that helped make this
654 study possible. We would like to thank the Northwestern University Research Experiences for
655 Undergraduates program for their support.

656 This work was supported in part by NIH grants (R41AG054337, R21AG045637 to WLK and
657 RF1AG063903 to Kelleher, Patrie, and WLK). E.A.W. is supported by grant number 2020-225578 from
658 the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation.

659 Microscopy was performed at the Biological Imaging Facility at Northwestern University
660 (RRID:SCR_017767), graciously supported by the Chemistry for Life Processes Institute, the NU Office
661 for Research, the Department of Molecular Biosciences and the Rice Foundation**.

662 MRI and PET/CT imaging work was performed at the Northwestern University Center for Advanced
663 Molecular Imaging (RRID:SCR_021192), graciously supported by the Chemistry for Life Processes
664 Institute, the NU Office for Research. Imaging generously supported by NCI CCSG P30 CA060553
665 awarded to the Robert H Lurie Comprehensive Cancer Center.

666 Imaging work was performed at the Northwestern University High-Throughput Analysis Lab, graciously
667 supported by the Chemistry for Life Processes Institute, the NU Office for Research.

668

669

670

Contribution to the field statement

671 Alzheimer's disease is costly and marked by pathological damage and progressive memory loss. While
672 there has been progress made towards developing better therapeutics and diagnostics, it has been
673 limited. Diagnostic improvements have primarily been in the development of better imaging methods,
674 mostly using agents that probe amyloid fibrils and plaques- species that do not correlate well with
675 disease progression and are not present at the earliest stages of the disease. Amyloid β oligomers
676 (A β Os) are now widely accepted as the A β species most germane to AD onset and progression. Here
677 we report evidence further supporting the role of A β Os in Alzheimer's disease and introduce a
678 promising anti-A β O diagnostic probe capable of distinguishing the 5xFAD mouse model from wild type
679 mice by PET and MRI. Our studies also showed a concomitant development of memory impairment
680 with the accumulation of A β Os and reactive astrocytes. Compelling support for the conclusion that
681 A β Os cause memory loss was found in experiments showing that A β O-selective antibodies into 5xFAD
682 mice completely restored memory function. These antibodies, modified to give imaging probes, were
683 able to distinguish 5xFAD mice from wild type littermates. These results demonstrate that A β O
684 selective antibodies have potential both for therapeutics and for diagnostics.

685

References

686 (2021). 2021 Alzheimer's disease facts and figures. *Alzheimers Dement* 17(3), 327-406. doi:
687 10.1002/alz.12328.

688 Acton, P.Q., PA, US), An, Z.A., PA, US), Bett, A.J.L., PA, US), Breese, R.Q., PA, US), Chang,
689 L.W., IL, US), Dodson, E.C.S., PA, US), et al. (2010). *Anti-ADDL antibodies and uses*
690 *thereof*. United States patent application 11/256332. 08/24/2010.

691 Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., et al. (2011).
692 The diagnosis of mild cognitive impairment due to Alzheimer's disease:
693 recommendations from the National Institute on Aging-Alzheimer's Association
694 workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers Dement* 7(3),
695 270-279. doi: 10.1016/j.jalz.2011.03.008.

696 Antunes, M., and Biala, G. (2012). The novel object recognition memory: neurobiology, test
697 procedure, and its modifications. *Cogn Process* 13(2), 93-110. doi: 10.1007/s10339-
698 011-0430-z.

699 Ashe, K.H. (2020). The biogenesis and biology of amyloid beta oligomers in the brain.
700 *Alzheimers Dement* 16(11), 1561-1567. doi: 10.1002/alz.12084.

701 Ashok, A., Singh, N., Chaudhary, S., Bellamkonda, V., Kritikos, A.E., Wise, A.S., et al. (2020).
702 Retinal Degeneration and Alzheimer's Disease: An Evolving Link. *Int J Mol Sci* 21(19).
703 doi: 10.3390/ijms21197290.

704 Bastin, C., Bahri, M.A., Meyer, F., Manard, M., Delhaye, E., Plenevaux, A., et al. (2020). In
705 vivo imaging of synaptic loss in Alzheimer's disease with [18F]UCB-H positron emission
706 tomography. *Eur J Nucl Med Mol Imaging* 47(2), 390-402. doi: 10.1007/s00259-019-
707 04461-x.

708 Bengoetxea, X., Rodriguez-Perdigon, M., and Ramirez, M.J. (2015). Object recognition test for
709 studying cognitive impairments in animal models of Alzheimer's disease. *Front Biosci*
710 (*Schol Ed*) 7, 10-29.

711 Benitez, B.A., Jin, S.C., Guerreiro, R., Graham, R., Lord, J., Harold, D., et al. (2014). Missense
712 variant in TREML2 protects against Alzheimer's disease. *Neurobiol Aging* 35(6),
713 1510.e1519-1526. doi: 10.1016/j.neurobiolaging.2013.12.010.

714 Bicca, M.A., Costa, R., Loch-Neckel, G., Figueiredo, C.P., Medeiros, R., and Calixto, J.B.
715 (2015). B(2) receptor blockage prevents Abeta-induced cognitive impairment by
716 neuroinflammation inhibition. *Behav Brain Res* 278, 482-491. doi:
717 10.1016/j.bbr.2014.10.040.

718 Braak, H., and Del Tredici, K. (2011). Alzheimer's pathogenesis: is there neuron-to-neuron
719 propagation? *Acta Neuropathol* 121(5), 589-595. doi: 10.1007/s00401-011-0825-z.

720 Buchanan, H., Mackay, M., Palmer, K., Tothová, K., Katsur, M., Platt, B., et al. (2020).
721 Synaptic Loss, ER Stress and Neuro-Inflammation Emerge Late in the Lateral Temporal
722 Cortex and Associate with Progressive Tau Pathology in Alzheimer's Disease. *Mol*
723 *Neurobiol* 57(8), 3258-3272. doi: 10.1007/s12035-020-01950-1.

724 Camporesi, E., Nilsson, J., Brinkmalm, A., Becker, B., Ashton, N.J., Blennow, K., et al. (2020).
725 Fluid Biomarkers for Synaptic Dysfunction and Loss. *Biomark Insights* 15,
726 1177271920950319. doi: 10.1177/1177271920950319.

727 Chang, L., Bakhos, L., Wang, Z., Venton, D.L., and Klein, W.L. (2003). Femtomole
728 immunodetection of synthetic and endogenous amyloid-beta oligomers and its
729 application to Alzheimer's disease drug candidate screening. *J Mol Neurosci* 20(3), 305-
730 313. doi: 10.1385/JMN:20:3:305.

731 Cheng, Y.J., Lin, C.H., and Lane, H.Y. (2021). From Menopause to Neurodegeneration-
732 Molecular Basis and Potential Therapy. *Int J Mol Sci* 22(16). doi:
733 10.3390/ijms22168654.

734 Choi, M., Kim, H., Yang, E.J., and Kim, H.S. (2020). Inhibition of STAT3 phosphorylation
735 attenuates impairments in learning and memory in 5XFAD mice, an animal model of
736 Alzheimer's disease. *J Pharmacol Sci* 143(4), 290-299. doi: 10.1016/j.jphs.2020.05.009.

737 Cline, E., Viola, K., Klein, W., Wang, X., Bacskai, B., Rammes, G., et al. (2019a). "Synaptic
738 intervention in Alzheimer's disease: soluble A β oligomer directed ACU193 monoclonal
739 antibody therapeutic for treatment of early Alzheimer's disease", in: *Clinical Trials on*
740 *Alzheimer's disease*. (San Diego, CA, USA).

741 Cline, E.N., Bicca, M.A., Viola, K.L., and Klein, W.L. (2018). The Amyloid-beta Oligomer
742 Hypothesis: Beginning of the Third Decade. *J Alzheimers Dis* 64(s1), S567-S610. doi:
743 10.3233/JAD-179941.

744 Cline, E.N., Das, A., Bicca, M.A., Mohammad, S.N., Schachner, L.F., Kamel, J.M., et al.
745 (2019b). A novel crosslinking protocol stabilizes amyloid beta oligomers capable of
746 inducing Alzheimer's-associated pathologies. *J Neurochem* 148(6), 822-836. doi:
747 10.1111/jnc.14647.

748 Cohen, S.J., and Stackman, R.W., Jr. (2015). Assessing rodent hippocampal involvement in
749 the novel object recognition task. A review. *Behav Brain Res* 285, 105-117. doi:
750 10.1016/j.bbr.2014.08.002.

751 Colom-Cadena, M., Spires-Jones, T., Zetterberg, H., Blennow, K., Caggiano, A., DeKosky,
752 S.T., et al. (2020). The clinical promise of biomarkers of synapse damage or loss in
753 Alzheimer's disease. *Alzheimers Res Ther* 12(1), 21. doi: 10.1186/s13195-020-00588-4.

754 Cummings, J. (2021). Drug Development for Psychotropic, Cognitive-Enhancing, and Disease-
755 Modifying Treatments for Alzheimer's Disease. *J Neuropsychiatry Clin Neurosci* 33(1),
756 3-13. doi: 10.1176/appi.neuropsych.20060152.

757 Cummings, J., Lee, G., Zhong, K., Fonseca, J., and Taghva, K. (2021). Alzheimer's disease
758 drug development pipeline: 2021. *Alzheimers Dement (N Y)* 7(1), e12179. doi:
759 10.1002/trc2.12179.

760 De Felice, F.G., Vieira, M.N., Bomfim, T.R., Decker, H., Velasco, P.T., Lambert, M.P., et al.
761 (2009). Protection of synapses against Alzheimer's-linked toxins: insulin signaling
762 prevents the pathogenic binding of Abeta oligomers. *Proc Natl Acad Sci U S A* 106(6),
763 1971-1976. doi: 10.1073/pnas.0809158106.

764 Denninger, J.K., Smith, B.M., and Kirby, E.D. (2018). Novel Object Recognition and Object
765 Location Behavioral Testing in Mice on a Budget. *J Vis Exp* (141). doi: 10.3791/58593.

766 Devi, L., Alldred, M.J., Ginsberg, S.D., and Ohno, M. (2010). Sex- and brain region-specific
767 acceleration of beta-amyloidogenesis following behavioral stress in a mouse model of
768 Alzheimer's disease. *Mol Brain* 3, 34. doi: 10.1186/1756-6606-3-34.

769 Esparza, T.J., Zhao, H., Cirrito, J.R., Cairns, N.J., Bateman, R.J., Holtzman, D.M., et al.
770 (2013). Amyloid-beta oligomerization in Alzheimer dementia versus high-pathology
771 controls. *Ann Neurol* 73(1), 104-119. doi: 10.1002/ana.23748.

772 Ferreira, S.T., and Klein, W.L. (2011). The Abeta oligomer hypothesis for synapse failure and
773 memory loss in Alzheimer's disease. *Neurobiol Learn Mem* 96(4), 529-543. doi:
774 10.1016/j.nlm.2011.08.003.

775 Gandy, S., Simon, A.J., Steele, J.W., Lublin, A.L., Lah, J.J., Walker, L.C., et al. (2010). Days to
776 criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta
777 oligomers. *Ann Neurol* 68(2), 220-230. doi: 10.1002/ana.22052.

778 Georganopoulou, D.G., Chang, L., Nam, J.M., Thaxton, C.S., Mufson, E.J., Klein, W.L., et al.
779 (2005). Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic
780 biomarker for Alzheimer's disease. *Proc Natl Acad Sci U S A* 102(7), 2273-2276. doi:
781 10.1073/pnas.0409336102.

782 Girard, S.D., Baranger, K., Gauthier, C., Jacquet, M., Bernard, A., Escoffier, G., et al. (2013).
783 Evidence for early cognitive impairment related to frontal cortex in the 5XFAD mouse
784 model of Alzheimer's disease. *J Alzheimers Dis* 33(3), 781-796. doi: 10.3233/jad-2012-
785 120982.

786 Girard, S.D., Jacquet, M., Baranger, K., Migliorati, M., Escoffier, G., Bernard, A., et al. (2014).
787 Onset of hippocampus-dependent memory impairments in 5XFAD transgenic mouse
788 model of Alzheimer's disease. *Hippocampus* 24(7), 762-772. doi: 10.1002/hipo.22267.

789 Gong, Y., Chang, L., Viola, K.L., Lacor, P.N., Lambert, M.P., Finch, C.E., et al. (2003).
790 Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs)
791 suggests a molecular basis for reversible memory loss. *Proc Natl Acad Sci U S A*
792 100(18), 10417-10422. doi: 10.1073/pnas.1834302100.

793 Goure, W.F., Krafft, G.A., Jerecic, J., and Hefti, F. (2014). Targeting the proper amyloid-beta
794 neuronal toxins: a path forward for Alzheimer's disease immunotherapeutics.
795 *Alzheimers Res Ther* 6(4), 42. doi: 10.1186/alzrt272.

796 Grayson, B., Leger, M., Piercy, C., Adamson, L., Harte, M., and Neill, J.C. (2015). Assessment
797 of disease-related cognitive impairments using the novel object recognition (NOR) task
798 in rodents. *Behav Brain Res* 285, 176-193. doi: 10.1016/j.bbr.2014.10.025.

799 Guntern, R., Bouras, C., Hof, P.R., and Vallet, P.G. (1992). An improved thioflavine S method
800 for staining neurofibrillary tangles and senile plaques in Alzheimer's disease.
801 *Experientia* 48(1), 8-10. doi: 10.1007/BF01923594.

802 Guven, G., Bilgic, B., Samanci, B., Gurvit, H., Hanagasi, H., Donmez, C., et al. (2020).
803 Peripheral TREM2 mRNA levels in early and late-onset Alzheimer disease's patients.
804 *Mol Biol Rep* 47(8), 5903-5909. doi: 10.1007/s11033-020-05661-7.

805 Guzman-Martinez, L., Maccioni, R.B., Farías, G.A., Fuentes, P., and Navarrete, L.P. (2019).
806 Biomarkers for Alzheimer's Disease. *Curr Alzheimer Res* 16(6), 518-528. doi:
807 10.2174/1567205016666190517121140.

808 Hampel, H., Hardy, J., Blennow, K., Chen, C., Perry, G., Kim, S.H., et al. (2021). The Amyloid-
809 beta Pathway in Alzheimer's Disease. *Mol Psychiatry*. doi: 10.1038/s41380-021-01249-
810 0.

811 Hefti, F., Goure, W.F., Jerecic, J., Iverson, K.S., Walicke, P.A., and Krafft, G.A. (2013). The
812 case for soluble Abeta oligomers as a drug target in Alzheimer's disease. *Trends
813 Pharmacol Sci* 34(5), 261-266. doi: 10.1016/j.tips.2013.03.002.

814 Hsia, A.Y., Masliah, E., McConlogue, L., Yu, G.Q., Tatsuno, G., Hu, K., et al. (1999). Plaque-
815 independent disruption of neural circuits in Alzheimer's disease mouse models. *Proc
816 Natl Acad Sci U S A* 96(6), 3228-3233.

817 Huang, S., Tong, H., Lei, M., Zhou, M., Guo, W., Li, G., et al. (2017). Astrocytic glutamatergic
818 transporters are involved in Abeta-induced synaptic dysfunction. *Brain Res*. doi:
819 10.1016/j.brainres.2017.10.011.

820 Hulbert, S., and Adeli, H. (2013). EEG/MEG- and imaging-based diagnosis of Alzheimer's
821 disease. *Rev Neurosci* 24(6), 563-576. doi: 10.1515/revneuro-2013-0042.

822 Investor Relations, B. (2021). "FDA grants accelerated approval for ADUHELM™ as the first
823 and only Alzheimer's disease treatment to address a defining pathology of the disease".
824 (www.biogen.com: Biogen).

825 Jack, C.R., Jr., Albert, M.S., Knopman, D.S., McKhann, G.M., Sperling, R.A., Carrillo, M.C., et
826 al. (2011). Introduction to the recommendations from the National Institute on Aging-
827 Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.
828 *Alzheimers Dement* 7(3), 257-262. doi: 10.1016/j.jalz.2011.03.004.

829 Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T.A., and Wirths, O. (2012). Motor deficits,
830 neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal
831 Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. *Neurobiol Aging*
832 33(1), 196 e129-140. doi: 10.1016/j.neurobiolaging.2010.05.027.

833 Jiang, T., Yu, J.T., Zhu, X.C., and Tan, L. (2013). TREM2 in Alzheimer's disease. *Mol*
834 *Neurobiol* 48(1), 180-185. doi: 10.1007/s12035-013-8424-8.

835 Johnson, K.A., Minoshima, S., Bohnen, N.I., Donohoe, K.J., Foster, N.L., Herscovitch, P., et al.
836 (2013). Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task
837 Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's
838 Association. *Alzheimers Dement* 9(1), e1-16. doi: 10.1016/j.jalz.2013.01.002.

839 Kanno, T., Tsuchiya, A., and Nishizaki, T. (2014). Hyperphosphorylation of Tau at Ser396
840 occurs in the much earlier stage than appearance of learning and memory disorders in
841 5XFAD mice. *Behav Brain Res* 274, 302-306. doi: 10.1016/j.bbr.2014.08.034.

842 Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., et al. (2003).
843 Common structure of soluble amyloid oligomers implies common mechanism of
844 pathogenesis. *Science* 300(5618), 486-489. doi: 10.1126/science.1079469.

845 Kimura, R., and Ohno, M. (2009). Impairments in remote memory stabilization precede
846 hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model.
847 *Neurobiol Dis* 33(2), 229-235. doi: 10.1016/j.nbd.2008.10.006.

848 Klunk, W.E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D.P., et al. (2004).
849 Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. *Ann Neurol*
850 55(3), 306-319. doi: 10.1002/ana.20009.

851 Krafft, G., Hefti, F., Goure, W., Jerecic, J., Iverson, K., and Walicke, P. (2013). ACU-193: A
852 candidate therapeutic antibody that selectively targets soluble beta-amyloid oligomers.
853 *Alzheimer's & Dementia* 9(4, Supplement), P326. doi:
854 <http://dx.doi.org/10.1016/j.jalz.2013.04.166>.

855 Lacor, P.N., Buniel, M.C., Chang, L., Fernandez, S.J., Gong, Y., Viola, K.L., et al. (2004).
856 Synaptic targeting by Alzheimer's-related amyloid beta oligomers. *J Neurosci* 24(45),
857 10191-10200. doi: 10.1523/JNEUROSCI.3432-04.2004.

858 Lacor, P.N., Buniel, M.C., Furlow, P.W., Clemente, A.S., Velasco, P.T., Wood, M., et al.
859 (2007). Abeta oligomer-induced aberrations in synapse composition, shape, and density
860 provide a molecular basis for loss of connectivity in Alzheimer's disease. *J Neurosci*
861 27(4), 796-807. doi: 10.1523/JNEUROSCI.3501-06.2007.

862 Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., et al. (1998).
863 Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system
864 neurotoxins. *Proc Natl Acad Sci U S A* 95(11), 6448-6453.

865 Lambert, M.P., Velasco, P.T., Chang, L., Viola, K.L., Fernandez, S., Lacor, P.N., et al. (2007).
866 Monoclonal antibodies that target pathological assemblies of Abeta. *J Neurochem*
867 100(1), 23-35. doi: 10.1111/j.1471-4159.2006.04157.x.

868 Lasagna-Reeves, C.A., Castillo-Carranza, D.L., Sengupta, U., Guerrero-Munoz, M.J., Kiritoshi,
869 T., Neugebauer, V., et al. (2012). Alzheimer brain-derived tau oligomers propagate
870 pathology from endogenous tau. *Sci Rep* 2, 700. doi: 10.1038/srep00700.

871 Lee, S.P., Falangola, M.F., Nixon, R.A., Duff, K., and Helpner, J.A. (2004). Visualization of
872 beta-amyloid plaques in a transgenic mouse model of Alzheimer's disease using MR
873 microscopy without contrast reagents. *Magn Reson Med* 52(3), 538-544. doi:
874 10.1002/mrm.20196.

875 Lesne, S., Koh, M.T., Kotilinek, L., Kayed, R., Glabe, C.G., Yang, A., et al. (2006). A specific
876 amyloid-beta protein assembly in the brain impairs memory. *Nature* 440(7082), 352-
877 357. doi: 10.1038/nature04533.

878 Li, S., and Selkoe, D.J. (2020). A mechanistic hypothesis for the impairment of synaptic
879 plasticity by soluble Abeta oligomers from Alzheimer's brain. *J Neurochem* 154(6), 583-
880 597. doi: 10.1111/jnc.15007.

881 Lin, N., Gao, J., Mao, C., Sun, H., Lu, Q., and Cui, L. (2021). Differences in Multimodal
882 Electroencephalogram and Clinical Correlations Between Early-Onset Alzheimer's
883 Disease and Frontotemporal Dementia. *Front Neurosci* 15, 687053. doi:
884 10.3389/fnins.2021.687053.

885 Magnusson, K., Sehlin, D., Syvanen, S., Svedberg, M.M., Philipson, O., Soderberg, L., et al.
886 (2013). Specific uptake of an amyloid-beta protofibril-binding antibody-tracer in AbetaPP
887 transgenic mouse brain. *J Alzheimers Dis* 37(1), 29-40. doi: 10.3233/jad-130029.

888 Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K.
889 (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. *Proc
890 Natl Acad Sci U S A* 82(12), 4245-4249.

891 Mathis, C.A., Wang, Y., Holt, D.P., Huang, G.F., Debnath, M.L., and Klunk, W.E. (2003).
892 Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid
893 imaging agents. *J Med Chem* 46(13), 2740-2754. doi: 10.1021/jm030026b.

894 McKhann, G.M., Knopman, D.S., Chertkow, H., Hyman, B.T., Jack, C.R., Jr., Kawas, C.H., et
895 al. (2011). The diagnosis of dementia due to Alzheimer's disease: recommendations
896 from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic
897 guidelines for Alzheimer's disease. *Alzheimers Dement* 7(3), 263-269. doi:
898 10.1016/j.jalz.2011.03.005.

899 McLean, D., Cooke, M.J., Wang, Y., Green, D., Fraser, P.E., George-Hyslop, P.S., et al.
900 (2012). Anti-amyloid-beta-mediated positron emission tomography imaging in
901 Alzheimer's disease mouse brains. *PLoS One* 7(12), e51958. doi:
902 10.1371/journal.pone.0051958.

903 Mecca, A.P., Chen, M.K., O'Dell, R.S., Naganawa, M., Toyonaga, T., Godek, T.A., et al.
904 (2020). In vivo measurement of widespread synaptic loss in Alzheimer's disease with
905 SV2A PET. *Alzheimers Dement* 16(7), 974-982. doi: 10.1002/alz.12097.

906 Meng, X., Li, T., Wang, X., Lv, X., Sun, Z., Zhang, J., et al. (2019). Association between
907 increased levels of amyloid- β oligomers in plasma and episodic memory loss in
908 Alzheimer's disease. *Alzheimer's Research & Therapy* 11(1), 89. doi: 10.1186/s13195-
909 019-0535-7.

910 Mirzaei, N., Shi, H., Oviatt, M., Doustar, J., Rentsendorj, A., Fuchs, D.T., et al. (2020).
911 Alzheimer's Retinopathy: Seeing Disease in the Eyes. *Front Neurosci* 14, 921. doi:
912 10.3389/fnins.2020.00921.

913 Monterey, M.D., Wei, H., Wu, X., and Wu, J.Q. (2021). The Many Faces of Astrocytes in
914 Alzheimer's Disease. *Front Neurol* 12, 619626. doi: 10.3389/fneur.2021.619626.

915 Montoliu-Gaya, L., Strydom, A., Blennow, K., Zetterberg, H., and Ashton, N.J. (2021). Blood
916 Biomarkers for Alzheimer's Disease in Down Syndrome. *J Clin Med* 10(16). doi:
917 10.3390/jcm10163639.

918 Mucke, L., Masliah, E., Yu, G.Q., Mallory, M., Rockenstein, E.M., Tatsuno, G., et al. (2000).
919 High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein
920 precursor transgenic mice: synaptotoxicity without plaque formation. *Journal of*
921 *Neuroscience* 20(11), 4050-4058.

922 Mucke, L., and Selkoe, D.J. (2012). Neurotoxicity of amyloid beta-protein: synaptic and
923 network dysfunction. *Cold Spring Harb Perspect Med* 2(7), a006338. doi:
924 10.1101/cshtperspect.a006338.

925 Mufson, E.J., Ward, S., and Binder, L. (2014). Prefibrillar tau oligomers in mild cognitive
926 impairment and Alzheimer's disease. *Neurodegener Dis* 13(2-3), 151-153. doi:
927 10.1159/000353687.

928 Mundt, A.P., Winter, C., Mueller, S., Wuerfel, J., Tysiak, E., Schnorr, J., et al. (2009). Targeting
929 activated microglia in Alzheimer's pathology by intraventricular delivery of a
930 phagocytosable MRI contrast agent in APP23 transgenic mice. *Neuroimage* 46(2), 367-
931 372. doi: 10.1016/j.neuroimage.2009.01.067.

932 Nandwana, V., Ryoo, S.-R., Kanthala, S., De, M., Chou, S.S., Prasad, P.V., et al. (2016).
933 Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface
934 Coating on Magnetic Resonance Imaging Contrast and Thermal Activation. *ACS*
935 *Applied Materials & Interfaces* 8(11), 6953-6961. doi: 10.1021/acsami.6b01377.

936 Nisa, F.Y., Rahman, M.A., Hossen, M.A., Khan, M.F., Khan, M.A.N., Majid, M., et al. (2021).
937 Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic
938 insight. *Ann Med* 53(1), 1476-1501. doi: 10.1080/07853890.2021.1966088.

939 Nyborg, A.C., Moll, J.R., Wegrzyn, R.D., Havas, D., Hutter-Paier, B., Feuerstein, G.G., et al.
940 (2013). In vivo and ex vivo imaging of amyloid-beta cascade aggregates with a
941 Pronucleon peptide. *J Alzheimers Dis* 34(4), 957-967. doi: 10.3233/jad-122107.

942 Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Craft, J., et al. (2006). Intraneuronal
943 beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with
944 five familial Alzheimer's disease mutations: potential factors in amyloid plaque
945 formation. *J Neurosci* 26(40), 10129-10140. doi: 10.1523/JNEUROSCI.1202-06.2006.

946 Oblak, A.L., Lin, P.B., Kotredes, K.P., Pandey, R.S., Garceau, D., Williams, H.M., et al. (2021).
947 Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing
948 Applications: A MODEL-AD Study. *Front Aging Neurosci* 13, 713726. doi:
949 10.3389/fnagi.2021.713726.

950 Ohno, M. (2009). Failures to reconsolidate memory in a mouse model of Alzheimer's disease.
951 *Neurobiol Learn Mem* 92(3), 455-459. doi: 10.1016/j.nlm.2009.05.001.

952 Ohno, M., Chang, L., Tseng, W., Oakley, H., Citron, M., Klein, W.L., et al. (2006). Temporal
953 memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1.
954 *Eur J Neurosci* 23(1), 251-260. doi: 10.1111/j.1460-9568.2005.04551.x.

955 Ou-Yang, M.H., and Van Nostrand, W.E. (2013). The absence of myelin basic protein
956 promotes neuroinflammation and reduces amyloid beta-protein accumulation in Tg-
957 5xFAD mice. *J Neuroinflammation* 10, 134. doi: 10.1186/1742-2094-10-134.

958 Overk, C.R., and Masliah, E. (2014). Toward a unified therapeutics approach targeting putative
959 amyloid-beta oligomer receptors. *Proc Natl Acad Sci U S A* 111(38), 13680-13681. doi:
960 10.1073/pnas.1414554111.

961 Park, S.Y., Avraham, H.K., and Avraham, S. (2004). RAFTK/Pyk2 activation is mediated by
962 trans-acting autophosphorylation in a Src-independent manner. *J Biol Chem* 279(32),
963 33315-33322. doi: 10.1074/jbc.M313527200.

964 Pereira, J.B., Janelidze, S., Ossenkoppele, R., Kvartsberg, H., Brinkmalm, A., Mattsson-
965 Carlgren, N., et al. (2021). Untangling the association of amyloid- β and tau with synaptic
966 and axonal loss in Alzheimer's disease. *Brain* 144(1), 310-324. doi:
967 10.1093/brain/awaa395.

968 Pitt, J., Wilcox, K.C., Tortelli, V., Diniz, L.P., Oliveira, M.S., Dobbins, C., et al. (2017).
969 Neuroprotective astrocyte-derived insulin/insulin-like growth factor 1 stimulates
970 endocytic processing and extracellular release of neuron-bound Abeta oligomers. *Mol
971 Biol Cell* 28(20), 2623-2636. doi: 10.1091/mbc.E17-06-0416.

972 Preeti, K., Sood, A., and Fernandes, V. (2021). Metabolic Regulation of Glia and Their
973 Neuroinflammatory Role in Alzheimer's Disease. *Cell Mol Neurobiol*. doi:
974 10.1007/s10571-021-01147-7.

975 Price, B.R., Sudduth, T.L., Weekman, E.M., Johnson, S., Hawthorne, D., Woolums, A., et al.
976 (2020). Therapeutic Trem2 activation ameliorates amyloid-beta deposition and improves
977 cognition in the 5XFAD model of amyloid deposition. *J Neuroinflammation* 17(1), 238.
978 doi: 10.1186/s12974-020-01915-0.

979 Robakis, N.K. (2011). Mechanisms of AD neurodegeneration may be independent of Abeta
980 and its derivatives. *Neurobiol Aging* 32(3), 372-379. doi:
981 10.1016/j.neurobiolaging.2010.05.022.

982 Rodgers, A.B. (2005). "Progress report on Alzheimer's disease 2004-2005". U.S. Department of
983 Health and Human Services; National Institutes on Aging; National Institutes of Health).

984 Rokka, J., Snellman, A., Zona, C., La Ferla, B., Nicotra, F., Salmona, M., et al. (2014).
985 Synthesis and evaluation of a (18)F-curcumin derivate for beta-amyloid plaque imaging.
986 *Bioorg Med Chem* 22(9), 2753-2762. doi: 10.1016/j.bmc.2014.03.010.

987 Savage, M.J., Kalinina, J., Wolfe, A., Tugusheva, K., Korn, R., Cash-Mason, T., et al. (2014). A
988 sensitive abeta oligomer assay discriminates Alzheimer's and aged control
989 cerebrospinal fluid. *J Neurosci* 34(8), 2884-2897. doi: 10.1523/jneurosci.1675-13.2014.

990 Schnabel, J. (2011). Amyloid: little proteins, big clues. *Nature* 475(7355), S12-14. doi:
991 10.1038/475S12a.

992 Selkoe, D.J., and Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years.
993 *EMBO Mol Med* 8(6), 595-608. doi: 10.15252/emmm.201606210.

994 Shao, C.Y., Mirra, S.S., Sait, H.B., Sacktor, T.C., and Sigurdsson, E.M. (2011). Postsynaptic
995 degeneration as revealed by PSD-95 reduction occurs after advanced Abeta and tau
996 pathology in transgenic mouse models of Alzheimer's disease. *Acta Neuropathol*
997 122(3), 285-292. doi: 10.1007/s00401-011-0843-x.

998 Siwek, M.E., Muller, R., Henseler, C., Trog, A., Lundt, A., Wormuth, C., et al. (2015). Altered
999 Theta Oscillations and Aberrant Cortical Excitatory Activity in the 5XFAD Model of
1000 Alzheimer's Disease. *Neural Plast* 2015, 781731. doi: 10.1155/2015/781731.

1001 Slemmon, J.R., Meredith, J., Guss, V., Andreasson, U., Andreasen, N., Zetterberg, H., et al.
1002 (2012). Measurement of Abeta1-42 in cerebrospinal fluid is influenced by matrix effects.
1003 *J Neurochem* 120(2), 325-333. doi: 10.1111/j.1471-4159.2011.07553.x.

1004 Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., et al. (2011).
1005 Toward defining the preclinical stages of Alzheimer's disease: recommendations from
1006 the National Institute on Aging-Alzheimer's Association workgroups on diagnostic
1007 guidelines for Alzheimer's disease. *Alzheimers Dement* 7(3), 280-292. doi:
1008 10.1016/j.jalz.2011.03.003.

1009 Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., et al. (1991).
1010 Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major
1011 correlate of cognitive impairment. *Ann Neurol* 30(4), 572-580. doi:
1012 10.1002/ana.410300410.

1013 Toledo, J.B., Korff, A., Shaw, L.M., Trojanowski, J.Q., and Zhang, J. (2013a). CSF alpha-
1014 synuclein improves diagnostic and prognostic performance of CSF tau and Abeta in
1015 Alzheimer's disease. *Acta Neuropathol* 126(5), 683-697. doi: 10.1007/s00401-013-
1016 1148-z.

1017 Toledo, J.B., Xie, S.X., Trojanowski, J.Q., and Shaw, L.M. (2013b). Longitudinal change in
1018 CSF Tau and Abeta biomarkers for up to 48 months in ADNI. *Acta Neuropathol* 126(5),
1019 659-670. doi: 10.1007/s00401-013-1151-4.

1020 Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M., and Selkoe, D.J. (2006). Effects of
1021 secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent
1022 role for trimers. *J Physiol* 572(Pt 2), 477-492. doi: 10.1113/jphysiol.2005.103754.

1023 Velasco, P.T., Heffern, M.C., Sebollela, A., Popova, I.A., Lacor, P.N., Lee, K.B., et al. (2012).
1024 Synapse-binding subpopulations of Abeta oligomers sensitive to peptide assembly
1025 blockers and scFv antibodies. *ACS Chem Neurosci* 3(11), 972-981. doi:
1026 10.1021/cn300122k.

1027 Viola, K.L., and Klein, W.L. (2015). Amyloid beta oligomers in Alzheimer's disease
1028 pathogenesis, treatment, and diagnosis. *Acta Neuropathol* 129(2), 183-206. doi:
1029 10.1007/s00401-015-1386-3.

1030 Viola, K.L., Sbarboto, J., Sureka, R., De, M., Bicca, M.A., Wang, J., et al. (2015). Towards
1031 non-invasive diagnostic imaging of early-stage Alzheimer's disease. *Nat Nanotechnol*
1032 10(1), 91-98. doi: 10.1038/nnano.2014.254.

1033 Wang, C., Xiong, M., Gratuze, M., Bao, X., Shi, Y., Andhey, P.S., et al. (2021). Selective
1034 removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration
1035 and decreases synaptic phagocytosis by microglia. *Neuron* 109(10), 1657-1674 e1657.
1036 doi: 10.1016/j.neuron.2021.03.024.

1037 Wang, H.W., Pasternak, J.F., Kuo, H., Ristic, H., Lambert, M.P., Chromy, B., et al. (2002).
1038 Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term
1039 depression in rat dentate gyrus. *Brain Res* 924(2), 133-140.

1040 Wipke, B.T., Wang, Z., Kim, J., McCarthy, T.J., and Allen, P.M. (2002). Dynamic visualization
1041 of a joint-specific autoimmune response through positron emission tomography. *Nat
1042 Immunol* 3(4), 366-372. doi: 10.1038/ni775.

1043 Xiao, C., Davis, F.J., Chauhan, B.C., Viola, K.L., Lacor, P.N., Velasco, P.T., et al. (2013). Brain
1044 transit and ameliorative effects of intranasally delivered anti-amyloid-beta oligomer
1045 antibody in 5XFAD mice. *J Alzheimers Dis* 35(4), 777-788. doi: 10.3233/JAD-122419.

1046 Yang, T., Dang, Y., Ostaszewski, B., Mengel, D., Steffen, V., Rabe, C., et al. (2019). Target
1047 engagement in an alzheimer trial: Crenezumab lowers amyloid beta oligomers in
1048 cerebrospinal fluid. *Ann Neurol* 86(2), 215-224. doi: 10.1002/ana.25513.

1049 Yang, Y., Kim, J., Kim, H.Y., Ryoo, N., Lee, S., Kim, Y., et al. (2015). Amyloid-beta Oligomers
1050 May Impair SNARE-Mediated Exocytosis by Direct Binding to Syntaxin 1a. *Cell Rep*
1051 12(8), 1244-1251. doi: 10.1016/j.celrep.2015.07.044.

1052 Yuan, Q., Liu, X., Zhang, Y., Xian, Y.F., Zou, J., Zhang, X., et al. (2021). Established Beta
1053 Amyloid Pathology Is Unaffected by TREM2 Elevation in Reactive Microglia in an
1054 Alzheimer's Disease Mouse Model. *Molecules* 26(9). doi: 10.3390/molecules26092685.

1055 Zhang, M., Zhong, L., Han, X., Xiong, G., Xu, D., Zhang, S., et al. (2021a). Brain and Retinal
1056 Abnormalities in the 5xFAD Mouse Model of Alzheimer's Disease at Early Stages. *Front
1057 Neurosci* 15, 681831. doi: 10.3389/fnins.2021.681831.

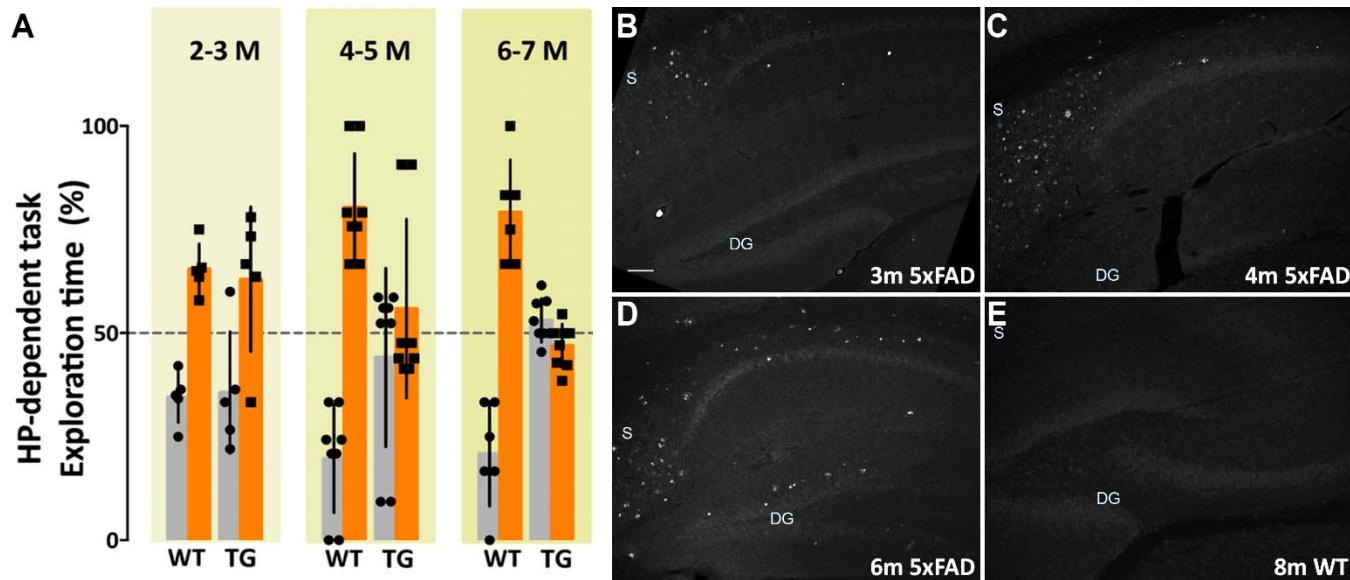
1058 Zhang, T., Liao, Q., Zhang, D., Zhang, C., Yan, J., Ngetich, R., et al. (2021b). Predicting MCI
1059 to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph
1060 Theory Approach. *Front Aging Neurosci* 13, 688926. doi: 10.3389/fnagi.2021.688926.

1061 Zhao, Y., Wu, X., Li, X., Jiang, L.L., Gui, X., Liu, Y., et al. (2018). TREM2 Is a Receptor for β -
1062 Amyloid that Mediates Microglial Function. *Neuron* 97(5), 1023-1031.e1027. doi:
1063 10.1016/j.neuron.2018.01.031.

1064 Zhong, L., Xu, Y., Zhuo, R., Wang, T., Wang, K., Huang, R., et al. (2019). Soluble TREM2
1065 ameliorates pathological phenotypes by modulating microglial functions in an
1066 Alzheimer's disease model. *Nat Commun* 10(1), 1365. doi: 10.1038/s41467-019-09118-
1067 9.

1068 Zhou, R., Ji, B., Kong, Y., Qin, L., Ren, W., Guan, Y., et al. (2021). PET Imaging of
1069 Neuroinflammation in Alzheimer's Disease. *Front Immunol* 12, 739130. doi:
1070 10.3389/fimmu.2021.739130.

1071

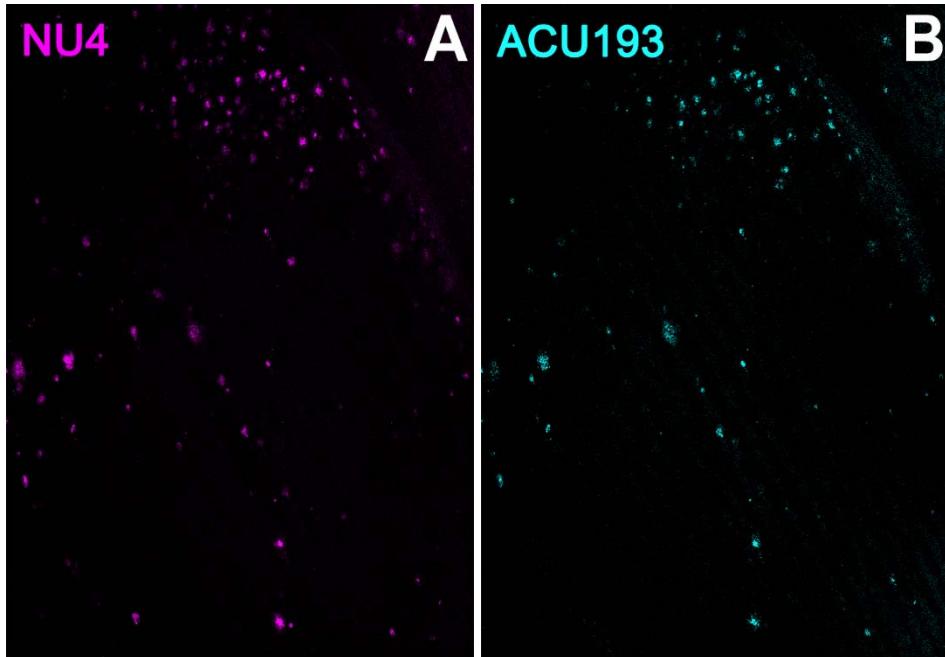

1072

1073

1074

Figures, Titles and Legends

1075

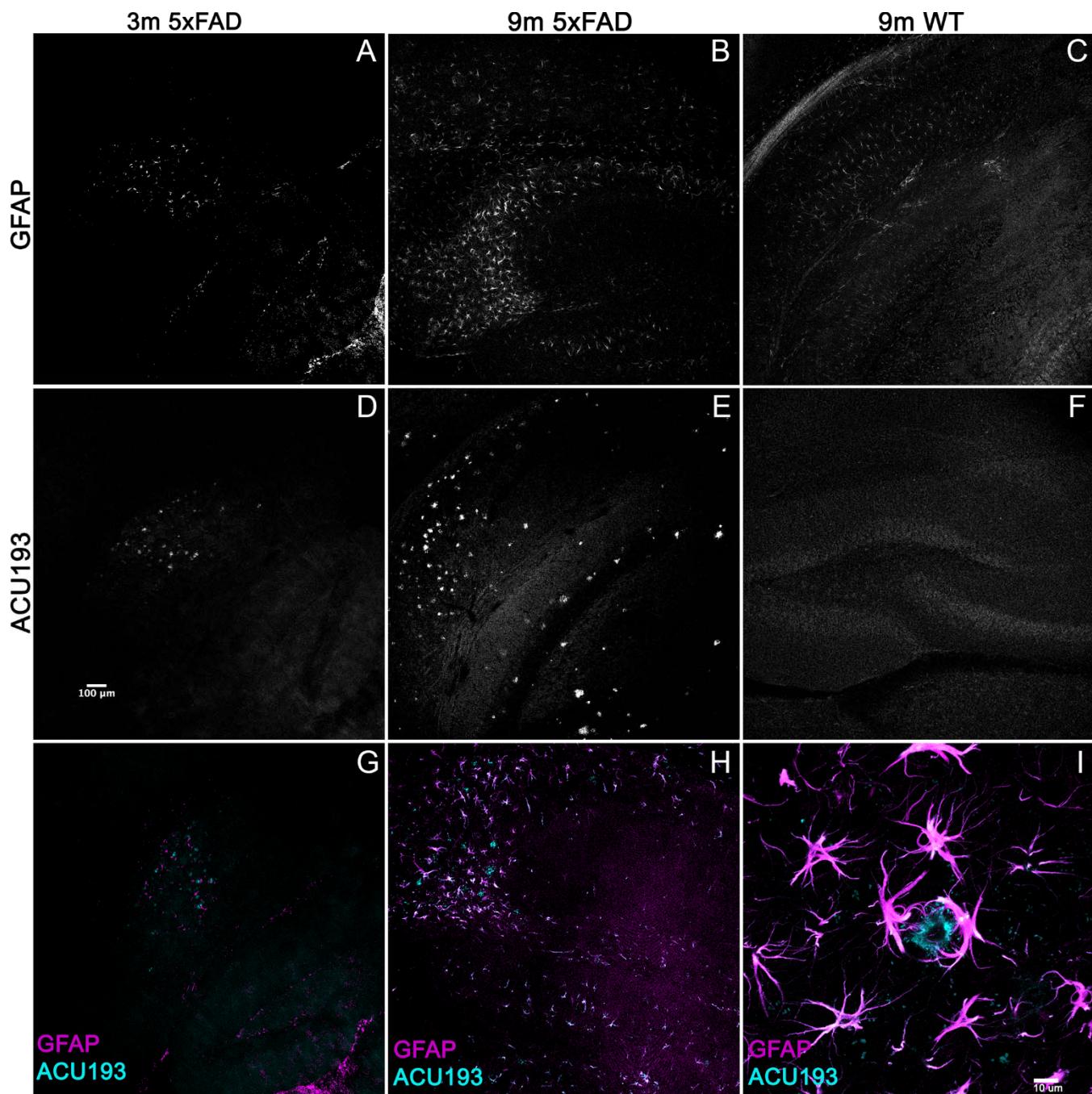

1076

1077 **Figure 1**

1078 **Memory dysfunction in 5xFAD mice is substantial by 4 months and is preceded by A_βO**
1079 **pathology, detectable by 3 months of age.** (Left) 5xFAD mice and wild-type littermates were
1080 assessed for memory dysfunction using novel location recognition (NLR; hippocampal-dependent task)
1081 and novel object recognition tasks (NOR; cortical-dependent task). Ages ranged 2-12 months. Data
1082 shown here are for the hippocampal-dependent NLR assay. In 5xFAD mice, memory impairment was
1083 negligible at 2-3 months, substantial by 4-5 months, and fully penetrant by 6 months of age. Statistical
1084 analysis shows that there was no significant difference between the behaviors of the WT mice and the
1085 5xFAD mice at ages 2-3 months, but a statistically significant difference was evident between the
1086 recognition task behaviors of the WT mice and 5xFAD mice for ages 4-5 months ($p<0.001$) and 6-7
1087 months ($p<0.0001$). (Right) Sagittal brain sections were obtained from 5xFAD and WT mice at ages 2,
1088 3, 4, 6, and 8 months and probed for A_βO pathology using a humanized A_βO monoclonal antibody.
1089 Fluorescent signal was barely detectable at 2 months of age in some mice, more readily detectable by
1090 3 months in all Tg mice, and robust by 6 months. Wild-type littermates presented no signal. Scale bar
1091 = 100 μ m.

1092

1093


1094

1095 **Figure 2**

1096 **ACU193 and NU4 detect A β Os *ex vivo*.** Sagittal sections from 9-month-old 5xFAD mice were
1097 immunolabeled with 2 different anti-A β O antibodies, NU4 and ACU193, to determine the extent to
1098 which A β O pathology is detected by both antibodies. Data show that A β Os accumulate and that
1099 ACU193 and NU4 show very similar detection of A β Os.

1100

1101

1103 **Figure 3**

1104 **Alzheimer's-associated astrocyte pathology develops concomitantly with A β Os.** Sagittal sections
1105 from 5xFAD mice, aged 3-9 months, and their wild-type littermates were immunolabeled with antibodies
1106 against GFAP and ACU193, then imaged on the Leica SP5 confocal microscope at 10x and 100x. Data
1107 show that, like the ACU193, GFAP positive glial cells accumulate in an age dependent manner. Sale
1108 bar = 100 μ m for panels A-H ad 10 μ m for panel I.

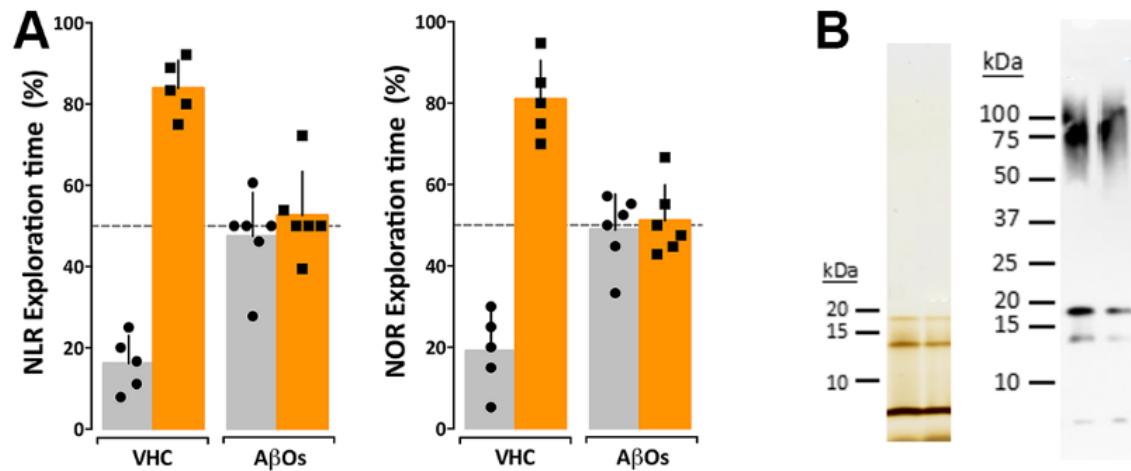


Figure 4

Intraventricular A β O injection causes memory impairment in wild type mice within 24 hours. (A) Wild type mice were tested for performance in recognition tasks beginning 24 hours after receiving vehicle (VHC) or A β O injections (A β Os) (10 pmols in 3 μ l) into the right lateral ventricle. Mice first were assessed for novel location recognition (NLR; 24 hr post-injection) and subsequently for novel object recognition (NOR; 48 hr post-injection). A β O-injected mice were unable to perform either recognition task. Statistical analysis shows that there is a statistically significant difference between the recognition task behaviors of the WT mice and the A β O injected mice ($p<0.0001$). (B) Silver stain (left) and Western blot (right) analysis of the A β Os used for injections and other assays in this study shows preparations contain trimer, tetramer, and higher molecular weight species as has been shown before (Lacor et al., 2007; Lambert et al., 2007; Velasco et al., 2012).

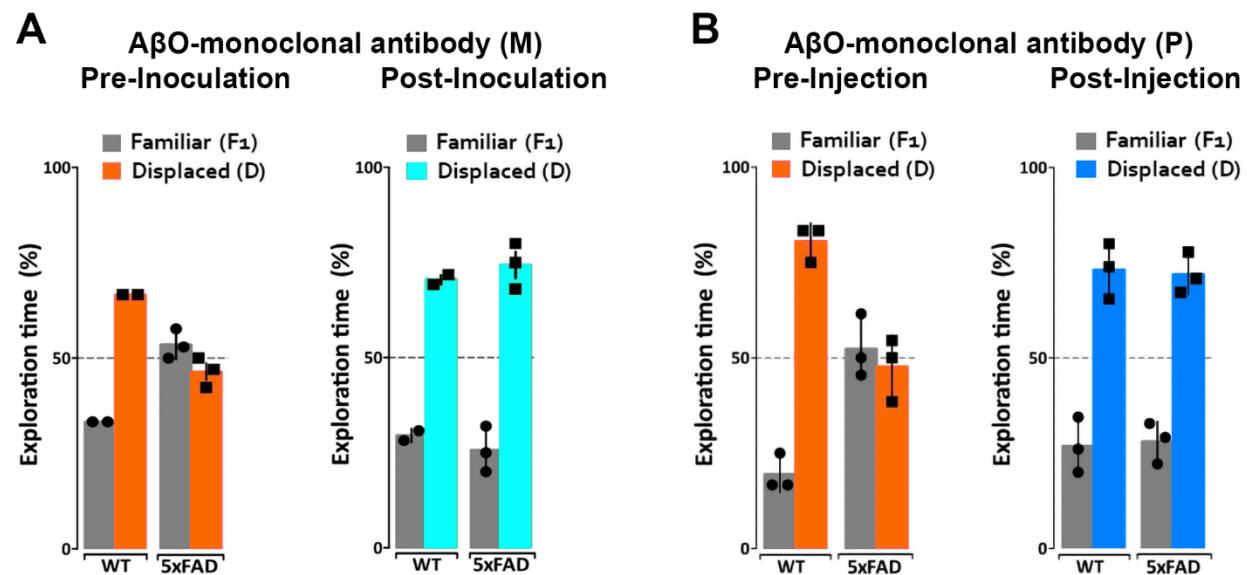
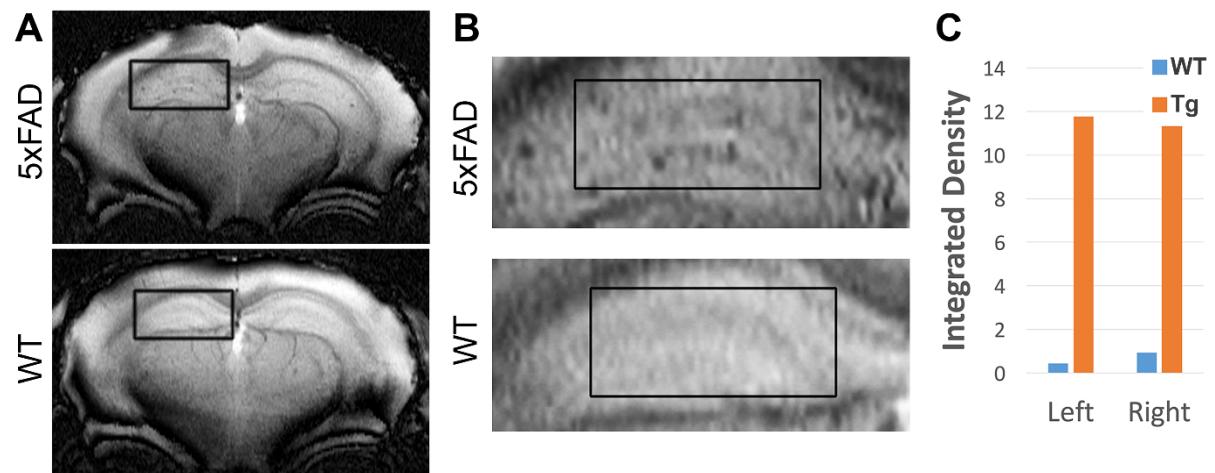
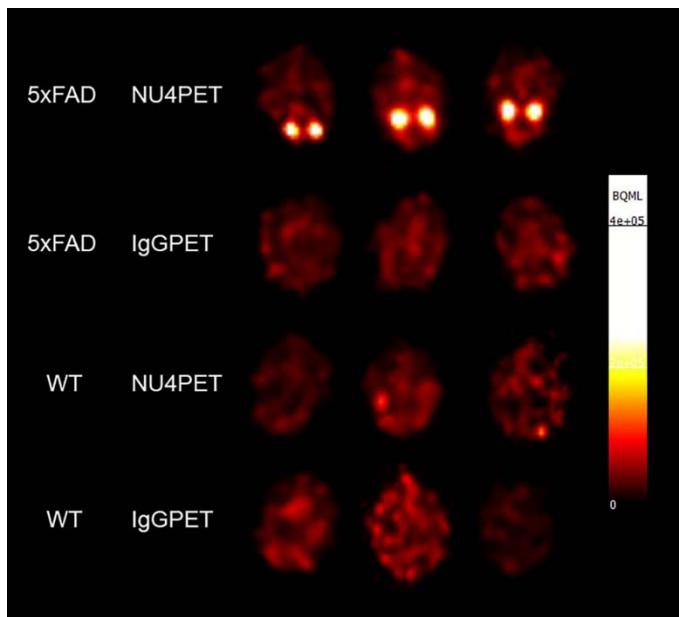



Figure 5

ACUMNS delivered intranasally or ACUPET given iv each rescue memory function in 6- to 7-month-old mice.

Tg and WT mice, aged 6 months (A), were tested by NLR and NOR assays to ensure predicted behavioral deficits. Mice were then intranasally inoculated with ACUMNS and imaged for probe distribution and detection of A_βO pathology *in vivo*. After imaging, animals were monitored for 30 days for signs of adverse reactions to the probe (none detected), then re-tested by NOR. The 6-month-old animals showed a significant recovery of memory impairment 30 days after inoculation. Human IgGMNS showed no impact on memory recovery. (B) To test the impact of the ACUPET probe on memory function, Tg and WT mice, aged 7 months, were tested by NLR and NOR assays prior to imaging as before. Mice were then injected, via tail vein, with ACUPET or non-specific IgGPET and imaged for up to 24 hours to monitor probe distribution. After imaging, animals were monitored for 40 days for signs of adverse reactions to the probe. Animals were re-tested by NOR at 40 days recovery. 5xFAD animals injected with ACUPET showed a persistent recovery of memory impairment that was not seen in the 5xFAD animals injected with IgGPET. ACU-based probes have no impact on wt behavior. Results are representative of 4 separate trials that showed beneficial impact of these antibody-based probes on memory.


1145
1146 **Figure 6**

1147 **ACUMNS gives AD-dependent MRI signal in hippocampus of 12-month-old 5xFAD mice.**

1148 *In vivo* studies with ACUMNS probe show robust AD-dependent MRI signal in the hippocampus of 12
1149 month-old mice.

1150

1151

1152
1153 **Figure 7**

1154 **NU4PET probe gives 5xFAD- specific CNS signal.**

1155 Signal obtained after IV injection of NU4PET showed probe accumulation in the hippocampus of 5xFAD
1156 mice (aged 5-7 months). Controls (IgGPET in AD mice; NU4PET in wild type littermates; IgGPET in
1157 wild type littermates) showed no signal (3 animals per group).

1158

1159