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Abstract

Improvements have been made in the diagnosis of Alzheimer's disease (AD), manifesting mostly in the
development of in vivo imaging methods that allow for the detection of pathological changes in AD by
MRI and PET scans. Many of these imaging methods, however, use agents that probe amyloid fibrils
and plaques - species that do not correlate well with disease progression and are not present at the
earliest stages of the disease. Amyloid B oligomers (ABOs), rather, are now widely accepted as the AR
species most germane to AD onset and progression. Here we report evidence further supporting the
role of ABOs as pathological instigators of AD and introduce promising anti-ABO diagnostic probes
capable of distinguishing the 5XxFAD mouse model from wild type mice by PET and MRI. In a
developmental study, AR oligomers in 5xFAD mice were found to appear at 3 months of age, just prior
to the onset of memory dysfunction, and spread as memory worsened. The increase of ABOs is
prominent in the subiculum and correlates with concomitant development of reactive astrocytosis. The
impact of these ABOs on memory is in harmony with findings that intraventricular injection of synthetic
ABOs into wild type mice induced hippocampal dependent memory dysfunction within 24 hours.
Compelling support for the conclusion that endogenous ABOs cause memory loss was found in
experiments showing that intranasal inoculation of ABO-selective antibodies into 5xFAD mice
completely restored memory function, measured 30-40 days post-inoculation. These antibodies, which
were modified to give MRI and PET imaging probes, were able to distinguish 5XxFAD mice from wild
type littermates. These results provide strong support for the role of ABOs in instigating memory loss
and salient AD neuropathology, and they demonstrate that ABO selective antibodies have potential
both for therapeutics and for diagnostics.

KEYWORDS: AB oligomers; Alzheimer’s disease; 5XFAD; MRI; PET; diagnostics; therapeutics
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Introduction

General Alzheimer’s disease

More than 6 million Americans are currently living with Alzheimer’s disease (AD), and Alzheimer’s-
related deaths have increased 145% from 2000 to 2019 (2021). The financial burden is even more
staggering - Alzheimer's and other dementias have cost the US more than $600 billion in medical
expenses and unpaid care in 2021 (2021). Despite the great personal and economic burden, progress
toward developing effective diagnostics and therapeutics remains slow. Aduhelm® (also known as
Aducanumab) was recently approved as a treatment for AD (Investor Relations, 2021), the first in more
than a decade, but it still focuses on AR elimination rather than specific ABO targets. As AD burden is
expected to increase drastically with the aging population, improved diagnostics and therapeutics are
more urgent now than ever.

ABOs as a biomarker for early Alzheimer’s disease

The primary pathological hallmarks of Alzheimer's disease are extracellular amyloid plagues and
intraneuronal tangles of hyperphosphorylated tau (Masters et al., 1985). It is well known, however, that
amyloid plaques do not correlate well with cognitive decline in AD (Terry et al., 1991; Hsia et al., 1999;
Lee et al.,, 2004) and are not present in the earliest stages of the disease (Nyborg et al., 2013).
Research from the previous two decades strongly indicates that soluble amyloid beta oligomers
(ABOs), not plagues, are the more appropriate amyloid beta species to target in AD (Ashe, 2020;
Hampel et al., 2021).

AROs are potent neurotoxins that show AD-dependent accumulation in the brain of AD patients (Gong
et al., 2003; Kayed et al., 2003; Lacor et al., 2004) and transgenic (Tg) rodent AD models (Chang et al.,
2003; Lesne et al., 2006; Ohno et al., 2006). For reviews of other perspectives regarding AD molecular
etiology, see (Braak and Del Tredici, 2011; Robakis, 2011; Lasagna-Reeves et al., 2012). ABOs begin
to accumulate early in AD, decades prior to symptoms, and are widely held to be the neurotoxic
instigators of AD (Rodgers, 2005; Gandy et al., 2010; Schnabel, 2011; Mucke and Selkoe, 2012). ABOs
have been shown to exert their toxic effects by instigating failure of synaptic plasticity and memory
(Lambert et al., 1998; Wang et al., 2002; Lesne et al., 2006; Townsend et al., 2006). Recently, soluble
cortical extracts were examined by ELISA and showed that the ratio of ABO levels to plague density
fully distinguished demented from non-demented patients (Esparza et al., 2013); simply put, those with
high ABO to plaque ratios were demented and low ABO to plaque ratios were not.

The 5xFAD mouse model

The 5xFAD transgenic mouse is an increasingly used AD model that harbors gene mutations in amyloid
B protein precursor (ABPP) (K670N/M671L + 1716V + V7171) and presenilins (PS1/2) (M146L + L286V)
(Oakley et al., 2006). These mutations are known to increase production of AR42, characteristic of
familial AD, and exhibit expedited plaque development compared to other transgenic mice (Oakley et
al., 2006). The Mutant Mouse Resource Research Center (MMRRC) found that AR accumulation
occurred at different rates, depending on the breeding background, with mice bred on a B6SJL
background developing pathology at a significantly more rapid rate (unpublished, available at MMRRC
5xFAD strain data) than those bred on a C57 background. The 5xFAD mouse model is well
characterized for memory impairments (Oakley et al., 2006; Kimura and Ohno, 2009; Ohno, 2009;
Girard et al., 2013; Girard et al., 2014; Zhang et al., 2021a), neuron loss (Jawhar et al., 2012; Oblak et
al., 2021), and AR plaque accumulation (Devi et al., 2010; Jawhar et al., 2012; Ashe, 2020; Zhang et
al., 2021a). Comprehensive studies on the 5xFAD model have also looked at cholesterol and glucose
levels (Oblak et al., 2021), activity levels (Oblak et al., 2021), neuroinflammation-related protein levels
(Ou-Yang and Van Nostrand, 2013; Oblak et al., 2021), tau phosphorylation (Shao et al., 2011; Kanno
et al., 2014), and visual acuity (Zhang et al., 2021a).
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Alzheimer’s disease diagnhostics

Recommended tests (Alzheimer's Disease Diagnostic Guidelines | National Institute on Aging (nih.gov))
for diagnosing Alzheimer’'s disease include a standard health evaluation and MMSE evaluations. If
indicated, these tests are typically followed with cerebrospinal fluid (CSF) assays for tau and AR levels,
MRI for brain volume and functionality, and positron emission tomography (PET) scans for AR plaques,
glucose metabolism, and/or tau fibrils in the brain (Albert et al., 2011; Jack et al., 2011; McKhann et al.,
2011; Sperling et al., 2011). These analyses may rule out other dementia etiologies and help to
determine disease severity, but they cannot detect AD at its earliest stages or closely predict disease
progression, as they do not probe for AD’s earliest biomarkers.

Current diagnostic methods in development

Spinal taps are invasive, but cerebrospinal fluid assays show promise (Georganopoulou et al., 2005;
Toledo et al., 2013b). Nonetheless, assays using CSF analytes have presented challenges with respect
to accuracy and reliable disease-state discrimination (Slemmon et al., 2012). More recently, assays for
ABO levels in the blood plasma have been developed with promising results (Meng et al., 2019). These
assays show a correlation between ABO levels and declining memory scores that appear not to be
influenced by age, gender, or ApoE4 status. A promising addition to diagnostic methodology is the
detection of AD pathology using targeted in vivo brain imaging. The introduction of PET probes for
amyloid plagues has been a great technical advance (Klunk et al., 2004) and has established
precedent for the usefulness of brain molecular imaging as a diagnostic tool and for proof of efficacy
studies in drug development (Johnson et al., 2013). Still, these new imaging tools focus on late-stage
by-products of AD such as plaques, rather than early stage instigators such as ABOs.

Prior studies using 5XxFAD mice have examined early- and late-stage disease development, but none
have looked at the progressive development of ABOs in this model. Here, we present an analysis of
memory impairment from 2-9 months of age and the progressive accumulation of ABOs across the
same age-span. Our studies presented here use an ABO-selective antibody to characterize the
spatiotemporal development of ABOs in the 5xFAD mouse model and demonstrate a correlation with
memory impairment. Strikingly, intranasal inoculation of the ABO-selective antibody rescued memory
performance in 6-month-old 5XxFAD mice. We demonstrate the capability of detecting ABO pathology in
vivo in the 5XFAD mouse by introducing molecular imaging modalities (MRI and PET) with probes for
ABOs. We additionally present immunofluorescent evidence of a remarkable association between
ABOs and GFAP-positive reactive astrocytes in the 5xFAD mice. Taken together, we provide further
data implicating ABOs as essential diagnostic indicators and therapeutic targets, and show evidence
suggesting a mechanism through which ABOs instigate pathological abnormalities: by induction of
reactive astrogliosis.
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Materials and Methods

Materials

ACU193 humanized anti-ABO antibody was a generous gift from Acumen Pharmaceuticals, Inc. AB;.4.
(TFA preparation) was sourced from multiple suppliers (California Peptide, Peptides International,
American Peptide). Primary hippocampal cultures were prepared from tissue obtained from BrainBits,
LLC, using media and reagents also obtained from BrainBits. All chemicals were purchased from
Sigma unless otherwise specified.

Animals

The 5XFAD Tg mouse model (B6SJL-Tg(APPSwFILon,PSEN1*M146L*L286V)6799Vas)(Oakley et al.,
2006) (Jackson Laboratories) was bred on a non-transgenic background (B6SJLF1/J mice (Jackson
Laboratories, RRID: IMSR_JAX:100012)). Aged transgenic and wild-type littermates, 2-20 months old,
were used. All mice were kept under a 12/12 h light/dark cycle (7 AM/7 PM) at 22 + 2 °C. Mice had free
access to food and water, including during behavioral experiments, were housed at <5/cage (NexGen
IVC, Allentown) with enriched environment and daily veterinarian assessment, according to NU’s
standard procedures. Procedures complied with NIH's Guide for the Care and Use of Laboratory
Animals (NIH publication No. 80-23, 1996) and were approved by IACUC (protocol #1S00004010).
Behavioral experiments were conducted between 12-6 PM.

For intracerebroventricular (icv) experiments, B6SJLF1/J mice (Jackson Laboratories, RRID:
IMSR_JAX:100012) were utilized at ages ranging from 6 months of age (30-50 g).

AR Oligomer Preparation

Unlabeled (AROs) and fluorescently-labeled AR oligomers (FAM-ABOs) were prepared essentially
according to the protocol published by Klein and colleagues (Lambert et al., 2007; Velasco et al., 2012).
Briefly, AB1..2 (American Peptide or Peptides International) or FAM-AB1.42 (Anaspec) was dissolved in
hexafluoro-2-propanol (HFIP) and distributed into microcentrifuge tubes. Hexafluoro-2-propanol was
removed by evaporation and traces removed under vacuum; the tubes were stored at -80°C. For
unlabeled ABOs, an aliquot of AB1.4, was dissolved in anhydrous dimethyl sulfoxide (DMSO) to ~5 mM,
and diluted in ice-cold Ham’s F12 medium without phenol red (Caisson Laboratories) to 100 uM. For
FAM-ABOs, an aliquot of each peptide was dissolved in anhydrous dimethyl sulfoxide (DMSO) to ~5
mM, mixed 5:1 (mol: mol) AR: FAM-ARB, and diluted in ice-cold Ham’s F12 medium without phenol red
(Caisson Laboratories) to 100 uM. For both ABO preparations, this solution was incubated at 4°C for 24
hr. and centrifuged at 14 000 g for 10 min. The supernatant, defined as the ABO or FAM-ARO
preparation, was transferred to a clean microfuge tube and stored at 4°C until use. Protein
concentration was determined using Coomassie Plus protein assay kit (Pierce).

A modification of this protocol was used to produce crosslinked ABOs (Cline et al., 2019b).

All preparations were tested for quality using SDS-PAGE on a 10-20% Tris-Tricine gel followed by both
silver stain and Western blot with NU2 anti-ARO antibody (Lambert et al., 2007; Velasco et al., 2012).
Cell Culture

Hippocampal cells were prepared and maintained for at least 18 days as previously described (Gong et
al., 2003) by using (0.002%) poly-L-lysine coated coverslips plated at a density of 1.04 x 10* cells per
cm? in Neurobasal media (Brainbits, LLC) with B27 supplements and L-glutamine (2.5 pM).

AB Oligomer Incubation and Immunolabeling of Cells

Cells were incubated at 37°C in conditioned media collected from the cell cultures containing
crosslinked ABOs or FAM-ABOs or an equivalent dilution of vehicle. Following incubation with ABOs or
vehicle for 60 min, the cells were rinsed rapidly 3 times with warm media then fixed by adding an equal
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volume of warm 3.7% formaldehyde (in PBS) to the third rinse in each well/dish and allowing it to sit at
RT for 5 min. The media/formaldehyde was completely removed and replaced with a volume of 3.7%
formaldehyde for 5 min at RT. Cells were blocked in 10% normal goat serum (NGS) in PBS or HBSS
for 45 min at RT then incubated overnight at 4°C on an orbital shaker with fluorescent-tagged antibody
or anti-ABO probe diluted in blocking buffer. The cells were washed 3 times for 5 min each with PBS or
HBSS. After secondary antibody incubation, coverslips were mounted onto glass slides using ProLong
Gold Anti-fade reagent with DAPI (Invitrogen) and imaged using an epifluorescence (TE2000, Nikon), a
widefield fluorescence microscope (Leica DM6B, Leica Corp.), or confocal microscope (Leica SP2,
Leica Corp).

ABO intracerebroventricular (icv) administration in mice

Icv injections and behavior testing were performed in 4 independent experiments of 13-21 mice each.
Littermates were arbitrarily assigned to different injection groups, targeting 5-10 mice/group for
statistical power (n = ((Z2*0)/E)?at a = 0.05; o = 10.55 and E = 6.67 derived from pilot studies).

Mice were lightly anesthetized (2% isoflurane) during injection (~1 min). ABOs (1, 10 pmol in 3 ul) or
vehicles were administered icv free-handed (Bicca et al., 2015). Separate needles were used for each
vehicle, progressing from low-high ABO concentration to minimize carryover. No analgesics or anti-
inflammatory agents were necessary. Mice were monitored constantly for recovery of consciousness
and ambulation, then periodically for food-and-water intake until behavior analysis. Needle placement
was confirmed by brain dissection after behavioral experiments (euthanization: CO, then decapitation).
Mice showing needle misplacement (3 mice) or cerebral hemorrhage (2 mice) were excluded from
analysis; final n = 5-7 mice/group.

Object Recognition/Location Recognition (NOR/NLR) Tasks

Tasks were performed essentially as described (Bicca et al., 2015), to evaluate mouse ability to
discriminate between familiar and new, or displaced, objects within an area, measured by object
exploration (sniffing, touching). The open-field testing arena was constructed of gray polyvinyl chloride
at 21x21x12” (WxLxH), with a 5x5 square grid on floor and visual cue on wall. 24 h post-injection, mice
underwent 6 min sessions of habituation and training, with 3 min between. All sessions were video
recorded and analyzed by two researchers blind to experimental groups. During habituation and
training, mice were screened for ability to move about the arena and explore the objects, two activities
required for accurate memory assessment in subsequent testing sessions. Locomotive inclusion criteria
(>100 grid crossings and >15 rearings; evaluated in habituation) were based on extensive previous
experiments with the same mouse strain and arena; 3/65 mice did not meet this criterion. During
training, mice were placed at the arena center with two objects, which were plastic and varied in shape,
color, size and texture. Exploration inclusion criteria were low exploration (<3 sec total) or object
preference (>50% of total time for either object); 7 of remaining 62 mice did not meet this criterion.

Hippocampal-related memory function was assessed 24 h post-training by displacing one of the two
training objects. Cortical-related memory function was assessed 24 h later by replacing the displaced
object with a novel object. Hippocampal-related memory function was re-tested 31-38 days post-
injection by displacing the novel object. Memory dysfunction was defined as an exploration of the
familiar object for >40% total time. Mice were arbitrarily assessed by cage. The arena and objects were
cleaned thoroughly between sessions with 20% (v/v) alcohol to minimize olfactory cues.

Immunolabeling of slices

Free floating 45 pm thick sagittal sections were cut using a Leica SM2010 R sliding microtome and
transferred to sterile TBS for storage. Sections were gathered and placed sequentially into wells (~4
per well). Sections were then randomly selected from each well to perform antibody staining using the
primary antibodies ACU193 (0.2 pg/ml), Alexa Fluor® 555-conjugated NU4 (0.92 pg/ml), Cy3-
conjugated anti-GFAP (1:800, Sigma) and the secondary antibody Alexa Fluor® 633 goat anti-human
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IgG (1:2000, Invitrogen). Floating slices were rinsed 3x10 min with TBS and blocked with blocking
buffer (10% NGS with 0.3% Triton X-100 in TBS) for 60 min at room temperature. Slices were then
incubated with the respective antibodies in blocking buffer overnight at 4°C with gentle rotation.
Sections were washed 3 x 10 mins in TBS and incubated with secondary antibody for 3 hours at room
temperature (RT) with orbital agitation in the dark. Secondary was prepared in blocking buffer diluted
10-fold with TBS. Sections were then washed 3 x 10 mins in TBS, mounted using ProLong Diamond®
antifade mounting media with DAPI (Invitrogen) and 24x60mm No.1.5 glass coverslips (Thermo
Scientific). Z-stacks of the brain sections were collected at 10x or 100x on a Leica SP5 confocal
microscope and analyzed with ImageJ.

Thioflavin S counterstain.

Thioflavin-S counterstaining to NU4 immunofluorescence labeling was performed as previously
described (Guntern et al., 1992) with a few modifications (Viola et al., 2015). 5xFAD and WT brains
were sliced at a thickness of 50um and immunolabeled following the same protocol described above
(immunolabeling of slices). Slices were incubated with antibody as described above. The slices were
then washed with PBS for 5 times 5 min each and incubated with 0.002% of Thioflavin-S solution in
TBS-T (diluted from a stock solution 0.02% of Thioflavin-S in distillated water) for 10min. Slices were
then washed 3 times for 1 min in 50% ethanol and 2 times in TBS-T for 5 min. The slices were mounted
with ProLong Gold Antifade reagent for examination by fluorescence microscopy. Images were
acquired at 40x magnification and analyzed by ImageJ software.

Radiolabeling and Quality Control

Antibodies, NU4 and non-specific mouse IgG or ACU193 and non-specific human IgG were
radiolabeled with positron emitter **Cu (**CuCI2 in 0.1 M HCI; radionuclide purity >99%, Washington
University). For radiolabeling, Wipke and Wang’s method was applied (Wipke et al., 2002). Basically,
antibodies mentioned above were conjugated with DOTA-NHS-ester (Macrocyclics, Dallas, TX) and
then radiolabeled with **Cu.

Conjugation.

Antibody solutions were buffer exchanged with PBS using YM-30 Centricon® centrifugal filters
(Millipore, Billerica, MA). For conjugation, antibodies were reacted with DOTA-NHS-ester in 0.1 M
Na,HPO, buffer of pH 7.5 at 4°C for 12 - 16 h in a molar ratio of DOTA-NHS-ester:antibody = 100: 1.
After conjugation, the reaction mixture was centrifuged repeatedly (5 times) through a YM-30
Centricon® centrifugal filter with 0.1M pH 6.5 ammonium citrate buffer to remove unconjugated small
molecules. The concentrations of purified antibody-conjugate was determined by measuring the
absorbance at 280 nm in a UV spectrophotometer.

Labeling.

When labeling with ®*Cu, 1 mg DOTA-conjugated NU4 and 5 mCi (185 MBq) of ®*Cu as incubated in
0.1 M ammonium citrate buffer, pH 6.5, at 43°C for 1 hour. Labeled antibody was separated by a size-
exclusion column (Bio-Spin6, BIO-RAD Laboratories).

Quality Control.

Radiochemical purity of antibody was determined by integrating areas on the Fast Protein Liquid
Chromatography (FPLC) equipped with a flow scintillation analyzer. This analysis was conducted on a
Superpose 12 10/300 GL (Cytiva) size-exclusion column and characterized by the percentage of
radioactivity associated with the 150 kDa protein peak. The stability of the **Cu radiolabeled mAbs was
determined by bovine serum challenge at 44 hours.

Conjugation efficiency.

Based on our preliminary data, > 90% of conjugation rate, >70% of labeling rate is achieved by
following prescribed protocol.
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Overall details of micro PET and micro CT acquisition

Mice were placed in a 37.5 °C heated cage 20-30 minutes prior to radiotracer injection and moved to a
37.5 °C heated induction chamber 10 minutes prior to injection where they were anesthetized with 2-
3% isoflurane in 1000 cc/min O,. A dose of 40 pg/200 pCi in 100 pL of proposed PET tracers was
administered intravenously through the tail vein. Each animal was administered a dose ranging from
30-40 pug NU4PET, ACU193PET, or non-immune IgGPET. Probes were administered in a single dose.
PET/CT imaging was conducted at 0, 4, 24, and 48 h to measure for changes in distribution and time
required for probe clearance or decay.

NUA4PET scans were acquired using a Genisys* PET (Sofie Biosciences, Culver City, CA) system and
CT scans were acquired using a Bioscan NanoSPECT/CT (Washington, D.C.). When scanning, all
mice were placed prone on the bed of the scanner. A 10 minute static acquisition was used for PET
imaging followed immediately by a 6.5 minute CT acquisition both utilizing the mouse imaging chamber
from the Genisys®. PET reconstruction was performed without attenuation correction using 3D
Maximum Likelihood Expectation Maximization (MLEM) with 60 iterations and CT reconstruction used
Filtered Back Projection with a Shepp-Logan Filter. PET and CT reconstructions were exported in
dicom image format and fused using custom software developed by the Small Animal Imaging Facility
at Van Andel Institute. Fused PET/CT images were analyzed using VivoQuant Image Analysis Suite
(inviCRO, LLC, Boston, MA). Standardized Uptake Values (SUV) were calculated using the mouse
body weight and corrected for residual dose in the injection syringe and the injection site, as applicable.
The formula used to calculate SUV was

SUV = Activitytissue/Volumetissue
Injected Activity/BodyWeight'

Evaluation NU4PET (**Cu-NU4) in ABOs detection

Two groups (n = 3/ group) of 6 months old 5xFAD Tg AD mouse model and 2 groups (n = 3/ group) WT
mouse model were used for evaluating the capability of ABOs detection. NU4PET (**Cu-NU4) or non-
specific IgGPET (**Cu-IgG) was injected into each 5xFAD Tg AD mouse model and WT mouse model
groups, respectively.

Target (ABOs)-Background (normal tissue) contrasts in PET images were used to distinguish the
difference of the capability of ABOs detection between NU4PET and IgGPET in different mouse
models. Tracer uptake of high intensity (hot) areas and background tissues in the brain were chosen by
drawing regions-of-interest (ROI) along the edges of the areas from the PET images. Average pixel
values of each ROIs were acquired and use in Target (ABOs)—Background (normal tissue) contrasts
calculation. The formula used to calculate Target-Background contrast was

Targetpyerage Pixel Value

T — B Contrast =

Backgroundpyerage Pixel value
Tissue Biodistribution Assessment

Animals were sacrificed immediately after the 44 hour post injection image was acquired. Blood was
collected, while brains and 13 other organs and tissues were harvested and weighed. After the blood
sample was taken from the heart (~500-1000ul), 10 ml of saline was injected into left ventricle while the
heart was still beating to flush out the residual blood in the organs. Radioactivity in each tissue (cpm)
wa measured using the y-scintillation counter. Percentages of the injected dose/gram (%ID/g) were
calculated for each tissue/ organ by the following formula.

D (Sample Activity — Background)
%P/ = — _ X 100%
(Injected Activity — Background)(Sample weight(g))

Student’s t-test was conducted to the results between different groups. P<0.05 is considered
statistically significant.
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Synthesis of Magnetic Nanostructures (MNS)

16 nm magnetite nanoparticles were synthesized by decomposition of iron-oleate at 320°C as
described in an earlier report.(Park et al., 2004)

Synthesis of Iron-oleate complexes: 10.8 g of iron (lll) chloride hexahydrate and 36.5 g sodium oleate
were dissolved in a mixture of 60 ml distilled water, 80 ml ethanol and 140 ml hexane and heated at
60°C for 4 hr. The organic layer of the biphasic mixture becomes dark, indicating phase transfer of iron
(1) ions and formation of iron oleate complex. The resulting dark solution is separated and washed with
water three times.

Synthesis of 16 nm magnetite nanoparticles: 18 g of iron oleate complex and 2.58 g of oleic acid were
dissolved in 100 g of octadecene at room temperature and heated to 320°C at a rate of 3.3°C per
minute. The reaction mixture is kept at 320°C for 40 min., then cooled down to room temperature.
Resulting nanoparticles are separated from the solution by addition of ethanol and ethyl acetate
followed by centrifugation.

Preparation of Dopamine-TEG-COOH and Phase Transfer

To make the organic phase synthesized MNS suitable for biological application, we functionalized the
MNS using an in-house synthesized ligand with carboxylate as terminal group (for antibody
conjugation), tetraehylene glycol(TEG) as a stabilizer, and nitrodopamine (nDOPA) as an anchor due to
its high affinity for Fe (Nandwana et al., 2016).

Synthesis of carboxylate terminated nDOPA ligand and functionalization of the MNS was carried out
according to the following protocol. Tetraethylene diacide, N-hydroxysuccinimide (NHS), N,N'-
Dicyclohexylcarbodiimide (DCC), nDOPA hydrochloride and anhydrous sodium bicarbonate was
dissolved in chloroform under argon atmosphere and stirred for 4 hr. Hexane stabilized MNS were
added and stirred for another 24 hr. The precipitate formed was separated by magnet, dispersed in
water and purified by dialysis.

Conjugation of antibody to MNS

The conjugation of buffer stabilized MNS with antibody was done using a conventional carboxyl-amine
crosslinking method. We first activated the carboxyl terminated MNS by sulfo-N-hydroxy succinimide
(SNHS) and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) followed by incubation with
corresponding antibody (NU4 or IgG,, with or without fluorescent label) overnight. Conjugated MNS
were separated by magnet to remove excess reagent and antibody then re-dispersed in working media.
Conjugation efficiency was estimated using UV spectroscopy (absorbance at 280nm) of the
magnetically separated supernatant.

Ab conc. = (total mg added Ab) - (mg Ab in supernatant)

Intranasal immunization.

Mice were anesthetized with isoflurane and then placed on their backs with their heads positioned to
maximize the residency time for the delivered material to remain on the olfactory surface. Each naris
was administered with ACUMNS or non-immune IgGMNS (10 pl/naris), using a sterile micropipette,
slowly over a period of 1 min, keeping the opposite naris and mouth closed to allow complete aspiration
of delivered material. Steps were repeated up to 5 times, maintaining anesthetization in between
inoculations, for maximum doses of up to 50ul/naris

Magnetic Resonance Imaging of Tg and WT mice in vivo

Following intranasal inoculation, the probe was allowed to distribute for 4 hours before MR imaging was
performed according to imaging methodology described in Mundt et al.(Mundt et al., 2009) T1, T2, and
T2* weighted MR images were acquired on a Bruker BioSpec 9.4T magnet, using a 25 mm RF
guadrature coil. The in-plane resolution was 75 pm with slice thickness 0.4 mm. T1- and T2-weighted
images provide anatomical guidance as well as some localization of the ACUMNS and were acquired
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with a fat suppressed spin echo sequence (Rapid Acquisition with Relaxation Enhancement, RARE)
with the following parameters for T1-weighted (TR=1000 ms, TEeff=13.2 ms, rare factor 2, number of
excitations, NEX=4) and for T2-weighted (TR=3500 ms, TEeff=58.5 ms, rare factor 4, NEX=4). T2*-
weighted imaging provides more of the localization of the NU4MNS as the iron causes local changes in
magnetic susceptibility which T2* weighted images can be sensitive to. A gradient echo sequence was
used with the following parameters (gradient echo fast imaging, GEFI; TR=1200 ms, TE=5.6 ms, flip
angle 35° and NEX=4).
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Results

Memory dysfunction in 5xFAD mice begins shortly after ABO emergence and
progressively worsens with concomitant ABO accumulation in the hippocampus

Tg 5xFAD NOR/NLR

Amyloid plaque development and intraneuronal AR42 accumulation are well-established in the 5xFAD
transgenic (Tg) mouse model of Alzheimer's disease. There is robust plaque buildup around 5-6
months of age (Ohno et al., 2006) and intraneuronal AB42 accumulation begins as early as 2 months
(Oakley et al., 2006). The majority of neuropathological studies in 5XxFAD mice have used probes that
show amyloid plaque development; how 5xFAD memory impairment coincides with ABOs pathology
and development is much less well-characterized. In order to characterize how memory loss correlates
with ABOs in the 5xFAD mice, we used the well-established novel object recognition task (NOR) for
non-spatial (cortical) memory (Cohen and Stackman, 2015; Denninger et al., 2018) and the novel
location recognition task (NLR) for spatial (hippocampal) memory (Antunes and Biala, 2012;
Bengoetxea et al., 2015; Grayson et al., 2015; Denninger et al., 2018). We assessed memory in mice
aged 2-18 months. 5XFAD mice showed no evident memory impairment at 2 to 3 months old (Figure
la). By 4 to 5 months old, most transgenic mice showed memory impairment, and by 6 to 7 months of
age memory impairment was apparent in all 5XxFAD mice. Importantly, at 4 months old, the majority of
5xFAD mice were impaired in both the hippocampal-dependent and cortical-dependent tasks; there
were, however, some mice that showed only cortical-impairment. Though less obvious than their Tg
littermates, memory loss was detected at 9 months of age in wild-type mice. In summary, we showed
that 5XFAD mice first present memory impairment between 3 and 4 months of age. This memory
dysfunction afflicts more mice as their age increases until, at 6 to 7 months, all of the Tg mice are
impaired in both hippocampal-dependent and cortical-dependent tasks. These data indicate that
memory impairment begins before observed amyloid plaque build-up in the 5XxFAD mice.

Immunohistofluorescence validation of ABO development

The development of amyloid plague pathology is well-established in the 5xFAD mouse model (Oakley
et al.,, 2006; Ohno et al., 2006). Amyloid plagues, however, are no longer considered the most
germane AR species to AD pathology (Overk and Masliah, 2014; Viola and Klein, 2015; Selkoe and
Hardy, 2016; Cline et al., 2018; Li and Selkoe, 2020). Characterizing the development of the most
relevant species, putatively ABOs, and their association with other pathological changes in AD, such as
glial activation or pTau accumulation, is necessary to better understand disease progression in this
model. Sagittal sections of brain tissue, collected and fixed from WT and 5xFAD mice at ages 2, 3, 4, 6,
and 8 months of age, were immunolabeled with ACU193 and imaged using confocal microscopy.
ACU193, a humanized monoclonal antibody that targets ABOs, has been shown to selectively bind
oligomers in vitro (Krafft et al., 2013; Goure et al., 2014; Savage et al., 2014) and in the TG2576 mouse
model. Here, using ACU193 to probe for ABOs, we show the progressive, spatio-temporal
accumulation of ABOs in the hippocampus of 5xFAD mice (Figure 1b). ABOs first appear in the
subiculum as early as 2 months of age in some mice and are detectable by 3 months in all 5xFAD Tg
mice examined. In the transgenic mice, ABOs show a continued accumulation in the subiculum and a
spreading of pathology to CAl, CA2 and the dentate gyrus. This timing suggests that ABOs are
associated with the observed memory loss.

ACU193 detects ABOs bound to primary neurons with high specificity

To validate the specificity of ACU193 for ABOs, the antibody was used in vitro to detect synthetic
preparations of oligomers introduced into primary hippocampal neurons in culture (Supplemental Figure
1). Primary hippocampal neurons were treated with cross-linked ABOs, which have been shown to
preserve ABRO structure in vitro (Cline et al., 2019b), or vehicle control. The cells were subsequently
fixed and labeled with ACU193 at increasing dosages. Confocal imaging of the cells showed somatic
staining of ABOs in addition to small, nanoscale puncta along dendritic processes (labeled with MAP2).
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These ACU193-positive puncta are likely ABOs binding to dendritic spines, as seen in previously
published work (Lacor et al., 2007; De Felice et al., 2009; Pitt et al., 2017). Minimal ACU193 labeling
was observed on vehicle-treated neurons, indicating its specificity for ABOs.

ACU193 and NU4 detect ABOs

Additional support for the specificity of ACU193 can be seen in comparing the distribution of ACU193 in
brain sections with the distribution of NU4, a well-established ABO monoclonal antibody (Lambert et al.,
2007; Xiao et al., 2013; Viola et al., 2015). Using ACU193 and NU4 conjugated to Alex Fluor 555 we
found that both antibodies similarly detected ABOs in the subiculum and other areas of the
hippocampus (Figure 2) including CA1, CA2 and the dentate gyrus. ACU193- (cyan) and NU4-positive
(magenta) cells were observed accumulating in a nearly identical pattern, from 3 months to nine
months of age. ACU193 and NU4 selectively detect ABOs in the 5XFAD mice with virtually no signal in
WT mice.

Alzheimer’s-associated astrocyte pathology develops concomitantly with ABOs

To determine whether other Alzheimer's related pathologies show developmental regulation or
accumulation in the 5xFAD mouse model for AD in association with AROs, we examined
immunohistochemical patterns of glial fibrillary acidic protein (GFAP), activated microglia (Ibal), and
phosphorylated tau (pTau). Immunolabeling for pTau yielded difficult to interpret results which varied
amongst the different antibodies for the same epitope and often did not match the literature. Instead,
we focused on the inflammatory pathways, stimulated by the strong interest in the involvement of
inflammatory responses in AD, in particular a new and growing interest in astrocytes (Wang et al.,
2021). Immunolabeling for activated microglia (lbal) (Supplemental Figure 2) indicated that the WT
mice have more ramified microglial cells (resting) while 5xFAD littermates have more amoeboid and
activated-shaped microglial cells. Notably, microglial activation was evident at 2 months, with no
obvious increase in abundance seen in older animals. In contrast, sagittal sections from 5xFAD or wt
mice, aged 3-9 months, were immunolabeled with antibodies against GFAP and co-labeled with
ACU193, then imaged by confocal microscopy. We found a marked spatiotemporal association of
GFAP pathology with ACU193-positive ABOs in the 5XxFAD mice. GFAP (Figure 3, magenta) pathology
first appeared in the subiculum at 3 months of age concurrent with the first appearance of ABOs (cyan)
in the subiculum and in close proximity to one another. As the mice aged, GFAP and ACU193-positive
pathology concomitantly spread throughout the subiculum and hippocampus (Figure 3, B & E). At 9
months, WT mice have minimal GFAP expression (Figure 3C) and no ABOs (Figure 3F). These
patterns are consistent with possible induction of reactive astrogliosis by ABOs. At higher magnification,
we observed GFAP-positive reactive astrocytes surrounding an ACU193-positive neuron and projecting
their processes onto the cell soma (Figure 3l). In addition, we observed micron-wide ACU193-positive
puncta adjacent to astrocytic processes distant from the cell soma.

ABOs given to WT littermates induces memory impairment within 24 hours

ICV ABOs induce impairment in NLR/NOR

While the previous data indicate a relationship between ABO accumulation and memory dysfunction in
the 5xFAD mice, the question remained whether ABOs cause the observed memory loss. We therefore
asked whether injection of ABOs into WT littermate mice would induce similar behavioral dysfunction.
Wild-type littermates from the 5xFAD colony were injected with either 10 pmol synthetic ABOs or
volume equivalent of vehicle control into the right lateral ventricle, following our previously established
protocol (Lambert et al., 2007; Velasco et al., 2012; Cline et al., 2019b). After 24 hours, the mice were
assessed by the NLR task, and later, the NOR assay at 48 hours post-injection. We found that ICV
injection of ABOs induce memory dysfunction within 24 hours and impacts both cortical (NOR) and
hippocampal (NLR) memory (Figure 4). As in the 5xFAD mice, ABO injected mice showed no
preference to either new or old objects and explored both equally. Vehicle-injected mice scored no
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different from wild-type in these tasks. These data show that ABOs are sufficient to induce memory
impairment within 24 hours post-injection in wild-type mice. We next sought to establish the functional
effect of neutralizing these ABOs in the 5XFAD mice.

Oligomer-selective antibodies engage and neutralize ABOs responsible for memory
dysfunction in 5XxFAD mice

ACU193-based probes ameliorate memory dysfunction

We have previously observed no short-term detrimental impact after inoculation of our ABO antibodies
into 5XFAD mice, but no studies have been done to determine the long-term positive or negative effects
in these mice. To determine the impact of ABO-neutralization in 5XxFAD mice, 6- and 7-month-old mice
were first assessed for memory impairment using the NLR/NOR assay. Mice were then inoculated with
ACU193-based probes and imaged 24 hours later in vivo to ensure target engagement (see next
section). The mice were then housed for 30-40 days to monitor any adverse effects or changes in
behavior before being reassessed for memory impairment in the NLR/NOR tasks. Strikingly, we found
that 6-month-old 5xFAD mice inoculated with the ACU193-based MRI probe had reversal of memory
dysfunction, with performance the same as WT controls in the NOR task 30 days post-inoculation
(Figure 5). The ACUPET probe similarly ameliorated memory impairment, measured 40 days post-
injection. As controls, 5XFAD mice injected with human IgGMNS or IgGPET probe showed no memory
improvement. Results from 4 trials of 10-12 animals each show that the ACU193 antibody engages
ABOs in vivo, completely reversing memory dysfunction in the 5xFAD mice with no evidence of health
issues or side effects. The data establish ABOs as the primary instigators of cognitive dysfunction in
5XFAD mice and support the therapeutic relevance of ABO-selective probes.

ABOs imaged in vivo using ACU193-based probes distinguish 5xFAD from wild-type
mice

MRI signal from ACUMNS distinquishes 5xFAD from wild-type mice.

Our previous work showed that ABOs can be detected in vivo in the 5xFAD mouse model using
antibody-based MRI probes which were conjugated to magnetic nanostructures (MNS) (Viola et al.,
2015). These prior studies used NU4 as the ABO-targeting antibody, which as shown above, binds
similarly to ACU193. Here we show that ACU193 can also be developed into a molecular probe for
ABO detection in vivo. After baseline imaging by MRI, 12-month-old mice were intranasally inoculated
with MNS-conjugated ACU193 and allowed to recover overnight (about 16 hours) before imaging again
(Figure 6). MRI data shows an accumulation of the ACUMNS probe in the hippocampus and cortex of
the 5xFAD mice that is absent in WT controls. ImageJ quantification of signal intensity in the
hippocampi of inoculated mice shows a ~ 30-fold increase in 5XFAD mice over their WT littermates.
Using the ACUMNS probe in 18-month-old mice showed similarly robust AD-dependent MRI signal in
the hippocampus of the 5XxFAD animals, but signals obtained in younger animals (6-months old) were
less consistent. These data add to previous studies with the NU4 probe and show that non-invasive in
vivo imaging of ABOs is possible using the ACUMNS probe, suggesting its potential diagnostic value
and ability to confirm target engagement.

Development of an ACU193-based PET imaging probe for early ABO detection.

While the spatial resolution of MRI is excellent, its sensitivity is lower than other imaging modalities
such as positron emission tomography (PET). Given PET sensitivity is at least 100 times greater than
MRI, we thought it might detect very low levels of ABOs during early stages of AD development.
ACU193 was conjugated to DOTA, a chelator, as the initial step in the PET probe development. To
ensure that this conjugation did not interfere with the antibody’s ability to target ABOs, sagittal brain
slices from 5xFAD mice were probed with the ACU193-DOTA probe and counterstained with Thioflavin
S (ThioS) for amyloid plaques (Supplemental Figure 3). Results show that ACU193-DOTA detected
ABOs in the 5xFAD brain and did not co-localize with ThioS, consistent with previously obtained results
showing that ACU193 does not bind amyloid plaques cores (Cline et al., 2019a).
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ACUPET detects pathology in the brains of 4-month and older 5xFAD mice.

The next step was to determine if radiolabeled ACU193-DOTA (ACUPET) detects AD-related AROs in
the 5XFAD mouse brain at an early age. ACU193-DOTA was incubated with **Cu and free isotopes
were removed prior to tail vein injection into mice of either 4 or 18 months old, Mice were then imaged
at 1, 4, and 24 hours post-injection for ACUPET distribution. At 4 hours post-injection, ACUPET
accumulation in the brain was detectable, but not robust. By 24 hours, accumulation of the ACUPET
probe in the brains of the 5XxFAD animals was evident in both the 4-month-old animals (Supplemental
Figure 4A) and the 18 month old animals (Supplemental Figure 4B-D). Animals at 6, 7, 8 and 12
months were also examined and similarly were able to distinguish 5XxFAD from WT mice (data not
shown).

ABOs are specifically detected in vivo by NU4APET

NU4-based PET probe development

Given the success of the NU4-based MRI probe (Viola et al.,, 2015), an NU4-based probe was
synthesized for PET imaging. NU4 was conjugated to DOTA and tested to ensure that this conjugation
did not interfere with the antibody’s ability to target ABOs. Primary hippocampal neurons, pre-treated
with fluorescently conjugated AROs (FAM-ABOs) and were probed with NU4-DOTA (Supplemental
Figure 5). Data show that nearly all FAM-ABOs (magenta) were also labeled with the NU4-DOTA probe
(colocalization seen as dark blue) and no free NU4-DOTA (cyan) was detected. Vehicle treated cells
showed no NU4-DOTA binding. Data confirm the specificity of the NU4-DOTA probe for ABOs,
necessary for its use for in vivo imaging.

NU4PET detects AD-related pathology in vivo in 5XFAD mice, distinguishing them from WT

Validation of the ABO-PET probes as effective for early AD diagnostics requires verification that they
produce an in vivo signal that depends on the presence of ABOs. To validate our new probe, NU4
(Lambert et al., 2007; Acton et al., 2010) and non-specific IgG antibodies were conjugated to DOTA
and then radiolabeled with positron emitter **Cu using Wipke and Wang’s method (Wipke et al., 2002).
Our next step was to image for ABOs by PET following probe delivery. Animals (12 total), 7 months of
age, were injected via tail vein with either NU4PET or IgGPET and then imaged at T=1, 2, 4, 8, 20, 30,
40, and 44 hours after injection. After 44 hours, the animals were euthanized and their brains removed
for a final ex vivo image of all 12 brains simultaneously (3 animals per group). Results showed the
NU4PET specifically identified 5xFAD animals (Figure 7). No signal was detected in all three control
groups (5XFAD with IgGPET;WT with NU4PET; WT with IgGPET).

The fraction of NU4PET probe retained (Supplemental Figure 6) showed good uptake into the brains of
the 5XFAD mice but not the WT littermates (quantification of uptake; see Methods). For all mice, the
IgGPET probe showed negligible signal. Quantification showed uptake into the brain was comparable
to levels of uptake seen with the commercially available Pittsburgh Compound B (PiB) tracer (Mathis et
al., 2003; Klunk et al., 2004). To corroborate the presence of ABOs in the animals used for these
studies, we analyzed the brain tissue with immunofluorescence. After final PET imaging, the brains
were fixed and stored in 10% sucrose until no longer radioactive. Brains were then sliced sagittally at
50 um and probed with ACU193. Images were collected and analyzed for ACU193 signal intensity
(Supplemental Figure 7). Data showed that only 5xFAD mice, and not WT littermates, had ABRO
pathology. Results confirm the NU4 PET probe gives a signal selective for ABO-positive mice.
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DISCUSSION

Alzheimer’s disease is costly and marked by accumulation of pathological hallmarks such as amyloid
plagues and neuronal tangles of hyperphosphorylated tau. Because AR plaques have shown poor
correlation with AD progression, there has been a rise in the exploration and development of
therapeutics that are not based on amyloid (Cummings et al., 2021). This shift in focus has resulted in
numerous potential therapies that have made it into clinical trials, but so far there have been limitations
on their impact. As an alternative, focusing on ABOs as the target for diagnostics and therapeutics
appears to be a promising strategy for developing disease modifying treatments and early diagnosis.
Here, we confirm that ABOs can induce memory dysfunction in wild type mice and that ABOs build up in
5XxFAD mice in a manner concomitant with astrocyte pathology and with memory dysfunction.
Importantly, targeting this buildup with ARO-selective antibodies rescues memory performance.
Furthermore, we demonstrate that antibody-based brain imaging probes that target ABOs can be used
to identify animals that present with AD pathology, indicating the value of ABO-selective antibodies both
for diagnostics and therapeutics.

Recent interest in inflammatory processes and their involvement in AD has grown. Our data showed a
striking association between GFAP-positive astrocytes and ACU193-positive ABOs. This association
and concomitant increase indicates a potential mechanism for ABO-induced behavioral abnormalities.
These findings are particularly intriguing given recent studies indicating AD’s dependence on astrocytes
(Huang et al., 2017; Monterey et al., 2021; Nisa et al., 2021; Preeti et al., 2021; Zhou et al., 2021). One
especially interesting study showed that when apolipoprotein E (ApoE), a protein expressed in
astrocytes which ABOs associate with at synapses, was knocked out in astrocyte-only populations of
P301S mice, AD pathology markedly improved (Wang et al., 2021). As ApoE4 is the greatest genetic
risk factor of late onset AD, we propose that it may mediate ABO-induced reactive astrogliosis and the
subsequent neuropathology instigated by reactive astrocytes. Another study showed that astrocytes
were activated into their reactive state via the JAK/STAT3 pathway in 6 month-old 5xFAD mice (Choi et
al., 2020). Consistent with the idea that reactive astrogliosis is necessary for behavioral dysfunction in
5xFAD mice, STAT3 phosphorylation inhibition restored cognitive function in the 5xFAD mice. Taken
together with our data, we propose that ABOs may induce JAK/STAT3 pathway-dependent reactive
astrogliosis in astrocytes which is necessary for observed cognitive dysfunction in 5XxFAD mice. In
addition to astrocytes, microglia play a major role in AD pathology. The Triggering Receptor Expressed
on Myeloid cells 2(TREM2)- expressed in microglia- has already been shown to be involved in AD, with
mutations being neuroprotective and TREM2 accumulation being detected in AD patients (Jiang et al.,
2013; Benitez et al., 2014; Guven et al., 2020). Previous studies have shown that ABOs associate with
TREM2 (Zhao et al., 2018; Zhong et al., 2019; Price et al., 2020), but TREM2 has no impact on
established pathology (Yuan et al., 2021).

While interest increases in alternatives to the Amyloid Hypothesis, we are still left with no effective
diagnostic tools for identifying AD at its earliest stages when therapeutics have the greatest impact.
Currently recommended tests may rule out other dementia etiologies and help to determine disease
severity, but they cannot detect AD at its earliest stages or closely predict disease progression. While
AD diagnosis has significantly improved with the incorporation of a multiple assay evaluation currently
being recommended, the tests still cannot predict disease progression or diagnose AD at its earliest
stages because they are not quantifying the earliest biomarkers of the disease. However, alternative
detection assays are being developed. Pre-tangle Tau, thought to be the toxic form of tau, has now
been detected in MCI and AD and has been found to be one of the earliest tau lesions that correlates
with cognitive status (Mufson et al., 2014). Synapse loss (Bastin et al., 2020; Buchanan et al., 2020;
Camporesi et al., 2020; Mecca et al., 2020; Pereira et al., 2021), changes in hormone levels (Cheng et
al., 2021), changes in blood biomarker levels (Guzman-Martinez et al., 2019; Montoliu-Gaya et al.,
2021), electroencephalogram (EEG) readings (Hulbert and Adeli, 2013; Siwek et al., 2015; Lin et al.,
2021), retinal assays (Ashok et al., 2020; Mirzaei et al., 2020), and changes in specific protein levels
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(Buchanan et al., 2020; Colom-Cadena et al., 2020) are some of the myriad assays being developed to
try to detect AD earlier and predict when and if the change from mild cognitive impairment (MCI) to AD
will occur (Zhang et al., 2021b). All of these new developments are focused towards enabling earlier
therapeutic intervention when chances for success would be greatest.

ABOs as a diagnostic resource are currently unavailable. Cerebrospinal fluid assays show promise
(Georganopoulou et al., 2005; Toledo et al., 2013a; Savage et al., 2014; Yang et al., 2015; Yang et al.,
2019), but spinal taps are invasive and assays using CSF analytes have presented challenges with
respect to accuracy and reliable disease-state discrimination (Slemmon et al., 2012). Other assays for
ABO levels are under development and show promise as well (Meng et al., 2019). For example, ABO
guantification in blood plasma shows a correlation between ABO levels and declining memory scores
that appear to not be influenced by age, gender, or ApoE4 status. Recently, the examination of soluble
cortical extracts by ELISA found a link between the ratio of ABOs and fibrils with disease. “The ratio of
ABO levels to plaque density fully distinguished demented from non-demented patients, with no overlap
between groups in this derived variable.” (Esparza et al., 2013)

Because ABOs are regarded as the first toxin to appear in disease progression, they should provide an
excellent target for diagnostic imaging (Hefti et al., 2013; Goure et al., 2014). The usefulness of
targeting ABOs is indicated by human neuropathology studies in which ABOs initially appear bound to
discrete neurons, localizing to synapses in dendritic arbours (Lacor et al.,, 2004) through putative
association with clustered cell surface receptors (Ferreira and Klein, 2011). FAM-ABOs bind at discrete
sites on dendrites, showing saturable, concentration-dependent synaptic binding (Viola et al., 2015),
further suggesting their potential as a suitable target for an antibody-based diagnostic probe.
Pronucleon™ imaging used engineered peptides that deliver a readout when associated with beta-rich
AB fibers and oligomeric AR (Nyborg et al., 2013). Several PET probes have also been developed
including a probe from curcumin®®F (Rokka et al., 2014), a probe created by modifying 6E10 antibody
with PEG and ®*Cu that distinguished Tg from control mice (McLean et al., 2012), and a probe
developed from an ***|-labeled mAb158 against AR protofibrils (Magnusson et al., 2013). Still, none of
these probes specifically target AROs.

Previously, we described a molecular MRI probe that is targeted against ABOs (Viola et al., 2015).
Based on the success of our initial MRI probe and the antibody-based probes being explored by others,
it follows that ABO-specific antibodies can be used to target probes and provide better signal-to-noise
ratios. Here we showed that anti-ABO antibodies can be used to develop molecular MRI ad PET probes
that distinguish WT mice from their 5XxFAD littermates at ages as early as 4 months old. These probes
have proven to be non-toxic over the periods examined and, in fact, showed in vivo efficacy. These
studies, however, are limited to the 5xFAD mouse model for AD and have not yet been tested in other
animal models or in human subjects. Our paper in essence establishes proof of concept that oligomers
can be detected by antibody-based probes for PET and MRI. This is a first step, and a great deal of
work remains. A case in point, while ex vivo PET imaging is robust in its ability to distinguish AD from
control brains, the conditions for in vivo imaging require significant optimization.

Early diagnostics are critical to combating this devastating disease, but without effective therapeutics,
they have limited value. The first FDA-approved drug to treat Alzheimer’'s disease (AD) in nearly two
decades, Aduhelm®, shows a preferential affinity for all aggregated forms of amyloid beta (AB), rather
than targeting only the toxic ABOs. Currently, there are more than 126 agents in clinical trials, with most
aimed at disease modification (Cummings, 2021; Cummings et al., 2021). While less than 10% of these
target AR, there remains evidence that AR is a significant target for therapeutic development. Lowering
ABO levels by enhancing fibril formation has been shown to be protective (Mucke et al., 2000). This is
supported by previous antibody-based studies (Lambert et al., 2007; Xiao et al., 2013). The data
presented here importantly show that ABO-selective antibodies rescue memory performance in a
widely used AD model. These antibodies, which have been modified for use in brain imaging of ABO,
show great promise as potential agents for AD therapeutics and diagnostics; the potential of one ABO-
selective antibody is now being assessed in a recently begun clinical trial.
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Contribution to the field statement

Alzheimer’s disease is costly and marked by pathological damage and progressive memory loss. While
there has been progress made towards developing better therapeutics and diagnostics, it has been
limited. Diagnostic improvements have primarily been in the development of better imaging methods,
mostly using agents that probe amyloid fibrils and plaques- species that do not correlate well with
disease progression and are not present at the earliest stages of the disease. Amyloid B oligomers
(ABOs) are now widely accepted as the AR species most germane to AD onset and progression. Here
we report evidence further supporting the role of ABOs in Alzheimer's disease and introduce a
promising anti-ABO diagnostic probe capable of distinguishing the 5xFAD mouse model from wild type
mice by PET and MRI. Our studies also showed a concomitant development of memory impairment
with the accumulation of ABOs and reactive astrocytes. Compelling support for the conclusion that
ABOs cause memory loss was found in experiments showing that ABO-selective antibodies into 5XxFAD
mice completely restored memory function. These antibodies, modified to give imaging probes, were
able to distinguish 5XxFAD mice from wild type littermates. These results demonstrate that ABO
selective antibodies have potential both for therapeutics and for diagnostics.
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Figure 1

Memory dysfunction in 5XxFAD mice is substantial by 4 months and is preceded by ABO
pathology, detectable by 3 months of age. (Left) 5xFAD mice and wild-type littermates were
assessed for memory dysfunction using novel location recognition (NLR; hippocampal-dependent task)
and novel object recognition tasks (NOR; cortical-dependent task). Ages ranged 2-12 months. Data
shown here are for the hippocampal-dependent NLR assay. In 5XFAD mice, memory impairment was
negligible at 2-3 months, substantial by 4-5 months, and fully penetrant by 6 months of age. Statistical
analysis shows that there was no significant difference between the behaviors of the WT mice and the
5XxFAD mice at ages 2-3 months, but a statistically significant difference was evident between the
recognition task behaviors of the WT mice and 5xFAD mice for ages 4-5 months (p<0.001) and 6-7
months (p<0.0001). (Right) Sagittal brain sections were obtained from 5xFAD and WT mice at ages 2,
3, 4, 6, and 8 months and probed for ABO pathology using a humanized ABO monoclonal antibody.
Fluorescent signal was barely detectable at 2 months of age in some mice, more readily detectable by
3 months in all Tg mice, and robust by 6 months. Wild-type littermates presented no signal. Scale bar
=100 pm.
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1095 Figure 2

1096 ACU193 and NU4 detect ABOs ex vivo. Sagittal sections from 9-month-old 5xFAD mice were
1097 immunolabeled with 2 different anti-ABO antibodies, NU4 and ACU193, to determine the extent to
1098  which ABO pathology is detected by both antibodies. Data show that ABOs accumulate and that
1099 ACU193 and NU4 show very similar detection of ABOs.
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Figure 3

Alzheimer’s-associated astrocyte pathology develops concomitantly with ABOs. Sagittal sections
from 5xFAD mice, aged 3-9 months, and their wild-type littermates were immunolabeled with antibodies
against GFAP and ACU193, then imaged on the Leica SP5 confocal microscope at 10x and 100x. Data
show that, like the ACU193, GFAP positive glial cells accumulate in an age dependent manner. Sale
bar = 100 um for panels A-H ad 10 um for panel I.



https://doi.org/10.1101/2021.09.20.460817
http://creativecommons.org/licenses/by-nc/4.0/

1111
1112

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

1124

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.20.460817; this version posted October 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Amu- 100~ B
|

Eg [ =~ 80 100 —

@ ] Qv L]

= u E n - 75 —' '
= £ 50 —

= 60 ] € 60 o +

(=] .

= S IR ——nla.— e B [ i - 37 —

Y b = . .f

LS a0- " % 401 kDa 25 —

E- - & ¢ 20 — 20— -
o ‘ - I 15 — 15— _

= 20 o, O 20 -

. z * 10 — 10 —
L ]
L] —
0 0 pom)
VHC ABOs VHC ABOs

Figure 4

Intraventricular ABO injection causes memory impairment in wild type mice within 24 hours. (A)
Wild type mice were tested for performance in recognition tasks beginning 24 hours after receiving
vehicle (VHC) or ABO injections (ABOs) (10 pmols in 3 pl) into the right lateral ventricle. Mice first were
assessed for novel location recognition (NLR; 24 hr post-injection) and subsequently for novel object
recognition (NOR; 48 hr post-injection). ABO-injected mice were unable to perform either recognition
task. Statistical analysis shows that there is a statistically significant difference between the recognition
task behaviors of the WT mice and the ABO injected mice (p<0.0001). (B) Silver stain (left) and
Western blot (right) analysis of the ABOs used for injections and other assays in this study shows
preparations contain trimer, tetramer, and higher molecular weight species as has been shown before
(Lacor et al., 2007; Lambert et al., 2007; Velasco et al., 2012).
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Figure 5

ACUMNS delivered intranasally or ACUPET given iv each rescue memory function in 6- to 7-
month-old mice.

Tg and WT mice, aged 6 months (A), were tested by NLR and NOR assays to ensure predicted
behavioral deficits. Mice were then intranasally inoculated with ACUMNS and imaged for probe
distribution and detection of ABO pathology in vivo. After imaging, animals were monitored for 30 days
for signs of adverse reactions to the probe (none detected), then re-tested by NOR. The 6-month-old
animals showed a significant recovery of memory impairment 30 days after inoculation. Human
IgGMNS showed no impact on memory recovery. (B) To test the impact of the ACUPET probe on
memory function, Tg and WT mice, aged 7 months, were tested by NLR and NOR assays prior to
imaging as before. Mice were then injected, via tail vein, with ACUPET or non-specific IgGPET and
imaged for up to 24 hours to monitor probe distribution. After imaging, animals were monitored for 40
days for signs of adverse reactions to the probe. Animals were re-tested by NOR at 40 days recovery.
5xFAD animals injected with ACUPET showed a persistent recovery of memory impairment that was
not seen in the 5xFAD animals injected with IgGPET. ACU-based probes have no impact on wt
behavior. Results are representative of 4 separate trials that showed beneficial impact of these
antibody-based probes on memory.
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Figure 6

ACUMNS gives AD-dependent MRI signal in hippocampus of 12-month-old 5xFAD mice.

In vivo studies with ACUMNS probe show robust AD-dependent MRI signal in the hippocampus of 12
month-old mice.
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1152
1153 Figure 7

1154  NUA4PET probe gives 5xFAD- specific CNS signal.

1155 Signal obtained after IV injection of NU4PET showed probe accumulation in the hippocampus of 5xFAD
1156 mice (aged 5-7 months). Controls (IgGPET in AD mice; NU4PET in wild type littermates; IgGPET in
1157  wild type littermates) showed no signal (3 animals per group).
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